A SYSTEM FOR FAST TEXT-TO-BRAILLE TRANSLATION
BASED ON FPGAS

Xuan Zhang, Cesar Ortega-Sanchez and lain Murray

Curtin University of Technology
Electrical and Computer Engineering Department
Kent Street, Bentley 6102, Western Australia
+618-9266-4540

L.murray@ece.curtin.edu.au

ABSTRACT

This paper describes a fast text to Braille translator
based on Field Programmable Gate Arrays (FPGAs).
Compared with most commercial methods, this
translator is able to carry out the translation in
hardware instead of using software. To achieve the fast
translation, a FPGA with big programmable resource
has been utilized, and an algorithm, proposed by Paul
Blenkhorn, has been revised to perform the fast
translation. The translator has been described using
Very high speed integrated circuit Hardware
Description Language (VHDL). The test results
indicate that the hardware-based translator achieves the
same results as software-based commercial translators,

and moreover, this system achieves superior
throughput compared to Blenkhorn’s original
algorithm.

1. INTRODUCTION

In 1829, Louis Braille developed a system which
allowed the blind to read and write. Braille’s system
employed a 6-dot cell and was based upon normal
spelling. 6 dots can represent only sixty-four
combinations including the blank symbol. In the
combinations, there are 26 alphabetic letters, decimal
numbers, punctuations and sing marks.

Although it is possible to transcribe Braille by
simply substituting the equivalent Braille character for
its printed equivalent, such character-by-character
transcription, known as Grade 1 Braille, is used only
by beginners because of its low throughput.

Partly because of the bulk problem of the original
Braille [2], and partly to improve the speed of writing
and reading, English and many another languages
employ contractions [1] [3]. When contractions are
used, Braille is usually called "grade 2". In English,
almost all Braille is grade 2 with 189 contractions [2].

Since Braille became one of the most important
ways for the blind to learn and obtain information,
translating normal text into Braille became a necessity.
However, considering the number of printed materials
to be translated, a fast automatic method to achieve the
translation is needed.

Today, most Braille translators rely on the use of a
computer and the American Standard Code for
Information Interchange (ASCII). In software-based
translators, sixty-four ASCII codes, referred to as
Braille ASCII codes are employed to represent the
sixty-four basic Braille characters. Therefore, the
translating process becomes the conversion from
ASCII codes into Braille ASCII codes [4].

The most common approach for text-to-Braille
translation is the use of programs running in personal
computers. Several commercial translating programs
are available, such as Duxbury Braille Translator,
Megadots and WinBraille. Another solution for text to
Braille translation is portable devices. Most of them
have multifunction including text-to-Braille
translation, such as Mountbatten Brailler. These
devices are based on a microcontroller running a
translating program. However, when mass text
documents need to be translated, a faster method for
text to Braille translation is obviously preferred.

Therefore, instead of using software, this paper
presents a hardware based solution. Using a FPGA
with big programmable resource, we provide a fast
parallel method to achieve fast text to Braille
translation.

2. COMPUTERIZED BRAILLE TRANSLATION

Several proposals have been made for computerized
text-to-Braille translation. One solution, for instance, is
the use of production rules derived from a Markov
system. This approach has been followed by W. A.
Slaby [5]. However, this solution results in a rapid
increase of the number of productions rules.

In 1980°’s, Slaby developed another system for
German contracted Braille translation which uses rules
with left and right contexts. This system allows non-
experts to modify rules to perform translation of
different languages into Braille [1] [6].

Based on Slaby’s algorithm, Paul Blenkhorn’s
proposed a system to convert text into Standard
English Braille [1]. This method uses a decision table
with input classes and states and a table with more
than one thousand rules for translation. The format of
each row in the table is:

Table 1. Fragment of Rule Table
Input Left Focus Right Output | New
Class | Context Context Text State
1 2 ~ G H# ;G 3
2 2 # G ;G 3
3 1 ~ G H# ;G 4
4 1 # G ;G 4
5 2 ! GHAI GHAI -
6 2 ! GHEAD GHI1D -
7 2 ! GHEAP GHIP -
8 2 ! GHIL GHIL -
9 2 ! GHOL 15 GHOL -
10 2 ! GHOR N GHOR -
11 2 ! GHOUS 15 GH\S -
12 2 GHUN T GHUN -
13 2 GH < =
14 2 GOOD GD -
15 2 GOVERN ESS GOVIN -
16 2 ~ GO ~ G -
17 2 ! GG ! 7 -
18 2 GREAT GRT -
19 1 G R G -
20 1 G ~ G -
21 1 G ~ G -
22 1 G G -

Input class <TAB> Rule <TAB> New state

Every rule has the following format:

Left context [focus] Right context = input text

Several wildcards can be used in the left context and
the right context. These are as follows:

“1” a letter;

“#” a number;

“I”” a space or punctuation (include apostrophe);

“space” only a space character;

“/” zero or more capital signs;
one or more characters that are potentially roman
numerals;

“;” zero or more letters;

“+” one or more digits;

An example is given here to explain how
Blenkhorn’s system works. A rule table shown in Table
1 is used for translation.

Assume that we want to translate the word “GO”. If
the word is between two spaces, then we can use the
spaces as the left and right contexts. For the first step,
the system will find the table entry according to the
first letter of this word. Obviously, the entry is letter
‘G’. Then, the system will go through the rules of letter

11335

‘G’, and check the rules including focus, input class,
present state, left and right context, one by one, until
finding the rule “2~[GO]~=G-”. Because all the
information of this rule matches the input, the
translated result is “G”. The hyphen mark for new state
means that new state keeps unchanged.

Blenkhorn’s algorithm has been implemented in a C
program, proving that the algorithm works well.
However, modifications are necessary for its
implementation in hardware.

In the system presented in this paper, input class and
sates are not used, because when the system performs
the Grade 1 and Grade 2 Braille translation all the
rules, except those for letter signs with the index input
class 1 or 2, have present state as either 1 or 2.
Therefore, those rules always have a value of 1
according to the decision table.

On the other hand, rules which have present states 3
and 4 in the rule table are always valid and once the
next space character is found, the system will change
the state to 1 or 2. In summary, if computer Braille is
not going to be considered, the decision table is not
necessary.

3. HARDWARE-BASED FAST TRANSLATION

According to Blenkhorn’s algorithm, all rules are listed
in ASCII alphabetical order. For rules whose focuses
start with the same character(s), the order in which
they appear in the table is related to their priority. So,
the rules have to be checked in order from top to
bottom. The first rule which is found has to be used.
Therefore, actually the Blenkhorn’s algorithm can be
regarded as a Markov system [7].

Take the rule table with the letter ‘A’ started as an
example to explain the translation process. There are
50 rules in this group, and the terminating rule is “1
[A] = [A] -”. If a contraction “AR” needs to be
translated, the system has to check the 5 rules before
the rule “2 [AR] = & -”. In this case, the string “AR”
can be translated fast. But, if a word “ALTOGETHER”
needs to be translated, the system has to check 36 rules
before the rule “2 ~ [ALTOGETHER] = ALT -”.
Especially, when only the terminating rule has to be
used, the translation speed will be significantly slow
down. However, the translation process can be
accelerated, if the ‘A’ group is separated into small
subgroups which can be used in parallel.

Therefore, in this paper, a parallel translating
method is discussed. To achieve fast translation,
independent translating cells have been built. In each
cell, there is an alphabetically ordered sub-table.
During translation process, those translating cells
which are activated perform translation concurrently.

Translator
. Translating Block
S ; Translating Controller
A
| v
Controller vV Vv \ AV YyYv
Find |
Ent Translating|__
=l Cells | |, oad
> | Translated
. > Codes
Braille
ASCII
D Translated ‘/]
< Codes N
Fig. 1. Block Diagram of Text to Braille Translator

The principles of generating subgroups can be
described as follows:

e Keep the original order of the rule table
unchanged.

e For letter rules, use original terminating rules as
one single subgroup, called terminating subgroup.
The cell which stores the terminating rules is
called terminating cell. Therefore, when
translation is performed, the terminating subgroup
never fails to be used.

e Rules have to be separated into groups properly,
so that only one translating cell except the
terminating cell is able to apply a particular rule
successfully during translating process. Therefore,
if one rule’s focus is part of another rule’s, and
there is no left and right context to distinguish
these two rules, they can not be separated.

Take the ‘A’ rules as an example to explain the
principle of generating subgroups. In the ‘A’ table,
those rules with focus “AND ” and “AND” are used as
a subgroup. In this case, it will not happen that the
contraction “AND” will be translated by two cells. The
rules started with the string “AFTER” need to be used
in one subgroup. Using this method, the ‘A’ rules can
be separated into 7 subgroups, while the biggest table,
‘B’ table with 122 rules, can be separated into 9
subgroups. For those tables with small number of
rules, such as ‘J’ table which only has 10 rules, it is not
necessary to separate into subgroups.

4. ARCHITECTURE OF THE SYSTEM

Figure 1 shows a block diagram of text to Braille
translator implemented in an FPGA. Before the
translation starts, the data-controller receives the rule
tables and distributes them to particular block RAMs
located in translating cells. Then the data-controller is
ready to receive text.

The translating controller block gets feedback from
the load-translated-codes block and also receives and
stores the text data in registers. The load-translated-
codes block feeds back the number of translated
characters so that the translating controller can skip
over those characters and find a new entry. The entry
character is sent to the find-entry block. The original
text is sent to translating cells. In this particular
implementation, the translator carries out the
conversion word by word and five words at a time.

The find-entry block receives one entry character
from the translating-controller and outputs addresses
for the corresponding translating-cells. The entry
character is the first un-translated character in the input
text string. In find-entry block, there is an address
decoder that translates the entry characters into
addresses. If no entry address can be found for a
particular character, then the untranslated character and
a fail signal are sent to the output-translated-codes
block.

The translating cells receive un-translated codes
from the translating-controller as well as addresses
from the find-entry block. The parallel translating
processes is shown in Figure 2. Those cells which
received addresses will carry out the translation.

Translating Cell

Tramslating | " Focus Check q
Controller C
Right J
R Context >
Find Entry Output Check Ouput |
Rule Focus
Data_ bl Block (= ’| Left Context >
Controller =y RAM] Check
Fig. 3. Block diagram of a translating cell

Load
Translated
Codes

Find Entry

Fig. 2. Translating in Parallel

Figure 3 shows the block diagram of a translating
cell. Every cell has a block RAM where the table rules
are stored in alphabetical ordered. Before the
translation process starts, the un-translated codes from
the translating-controller are sent to the focus and
right-context check blocks by the output-rule block.
Then the output-rule receives an address and gets a
particular rule from the rule table. The rule will be
separately sent to the three following blocks. The
focus, right-context and left-context check blocks are
built using finite state machines which are able to
check if the rule can be applied.

As shown in figure 3, the three blocks work
concurrently, providing better performance than
sequential implementations [8].

Each block generates signals for the output-focus
block indicating if the focus, the right context or the

left context were successfully matched. The translation
output will be sent to the load-translated-codes block.
If one of the three fails, then a signal is sent back to the
output-rule block requesting the next rule. If no rule
can be used, a signal will be generated and sent to the
load-translated-codes block indicating that the
translating cell cannot find a match for translation.

The load-translated-codes block will receive
translation results from the terminating cell or one of
other cells. The terminating never will fail to be
applied. However, compared with other cells, the
terminating cell has lower priority. Therefore, if the
load-translated-codes block receives translated codes
from two cells respectively, the codes from terminating
cell will be discarded.

Therefore, the load-translated-codes block will
output the translation according to set priorities.
Meanwhile, it will send signals to the translating-
controller block to indicate how many characters were
translated.

After one group of characters has been translated,
the output-translated-codes block transmits the
corresponding Braille ASCII characters one by one.
Then the translation of a new set of characters can
begin.

5. IMPLEMENTATION AND TEST

The translator has been implemented using a Top-
Down design methodology where high level functions
are defined first, and the lower level implementation
details are filled in later [9].

FPGA
JL
:
Text Receiver 8
files i
72}
=
T N\ | E
—_ | Serial =
Transmitter

Fig. 4. Test bench for Braille translator

Table 2. Timing comparison between sequential and

parallel method

Time by Time by

Un-translated | Translation sequential parallel

focuses results method method

(clock (clock

cycles) cycles)
AND & 137 136
AS z 309 34
ABOUT AB 326 52
AGAIN AG 360 86
AFTER AF 465 190
ALSO AL 543 34
ALREADY | ALR 582 67
ALTOGETHER | ALT 622 101
ACCORDING | AC 663 134
AINES AI9NES 689 34
A A 770 207

The system has been successfully implemented in a
Xilinx’s Virtex-4 FPGA evaluation board [10]. The
texts to be translated, as well as the results of the
translation were stored in a PC as text files and
transmitted using an RS-232 serial connection.

Figure 4 shows the setting used to test the translator.
The system works as follows:

1. The text to be translated is sent to the FPGA
through a serial link using Hyper Terminal.

2. Part of the FPGA implements a receiver that
converts serial data into bytes that are loaded into
the translator.

3. The translator takes the new character and stores it
in a buffer. Characters are stored until a space is
detected. At this point the translation process
described in section 2 takes place.

4. The results of the translation are sent to a serial
transmitter so that they can be received and stored
in a text file by the computer.

For the implementation reported in this paper, the
FPGA receives the text file to be translated at 4,800

bauds and sends the translated text back to the PC at
57,600 bauds. In this setting, because this system is
only able to translate groups of characters, after
translation is done, the serial transmitter has to send all
the translated codes to computer before the next group
of text is received. That is why the baud rate for
transmitting is 12 times as fast as receiving.

To simplify the implementation, all rules were
modified to be of the same length. ASCII code 0 was
used as end-sign for every part of the rule. Although
this method increases the amount of memory required,
Virtex4 FPGAs have dedicated memory blocks that
can contain the complete table.

All the blocks of the serial communication and the
translator were implemented in VHDL. Xilinx’s ISE

FPGA-development suite was wused for system
implementation, synthesis, simulation, and FPGA
configuration.

For testing, outputs of the hardware translator were
compared with the outputs of the previous work which
uses sequential translating method [11]. The results
show that using parallel method is able to perform
translations with superior speed. Using the simulation
tool, ModelSim, the numbers of clock cycles using
sequential and parallel method can be accurately
calculated. The sample test results are shown in Table
2.

6. CONCLUSIONS AND FUTURE WORK

The design and implementation of an FPGA-based,
fast text-to-Braille translator has been presented. In its
current version, the system can be used in embedded
and high-performance applications. However, there are
several improvements which will be incorporated in
future versions of the hardware translator.

For example, the current system is a stand-alone
component. Its structure has to be changed for every
individual application. An improved version will
incorporate the hardware translator in a system on a
chip for multifunctional text-Braille translation. The
system will consist of a microcontroller for interface
and control, and the text-Braille translator, all
integrated in one single chip.

For further improvement, a multi-language-Braille
translator will be considered. Look-up tables for
different languages could be stored in flash memory so
that when translation of text in a particular language is
required, the microcontroller loads the corresponding
look-up table into the FPGA.

Standards for Braille translation are much higher
than for print. This level of accuracy is necessary
because Braille uses the same ASCII code for different
purposes according to the context. Hence, even slight
errors can cause extreme difficulties in interpretation.
The results obtained with the hardware-based
translator show that the system is able to implement
text-to-Braille translation with high accuracy.

7. REFERENCES

Blenkhorn, P., “A System for Converting Print into
Braille”, IEEE Transactions on Rehabilitation
Engineering, vol. 5, No. 2, pp. 121-129, 1997.

Jonathen, A., “Recent Improvement in Braille
Transcription”, Proceedings of the ACM annual
Conference, vol. 1, Boston, pp.208-218, 1972.

Blenkhorn, P., “A System for Converting Braille into
Print”’, IEEE transactions on Rehabilitation
Engineering, vol. 3, no. 2, pp.215-221, 1995.

Jorgen V., “Computerized Braille production”, ACM
SIGCAPH Computers and the Physically
Handicapped, issue 15, pp. 35-40, 1975.

Wolfgang, A. Slaby, 1975, “The MARKOV system of
production rules: a universal Braille translator”, ACM
SIGCAPH Computers and the Physically
Handicapped, issue 15, pp. 53-59

[6]

[7]

(9]

Wolfgang, A. Slaby, 1990, “Computerized Braille
Translation”, Journal of Microcomputer Appl., vol.
13, issue n2, pp. 107-113

Peter, L., Introduction to Formal Languages and
Automata, Boston: Jones and Bartlett, 2001, ISBN:
0763714224

Zhang X., Ortega-Sanchez C., and Murray I.,
“Hardware-Based Text-to-Braille Translator”, the 8th
International ACM SIGACCESS Conference on
Computers & Accessibility, Portland, Oregon, USA,
pp. 229-230, 2006

Zeidman, B., Designing with FPGAs and CPLDs,
CMP books, 2002, ISBN: 1-57820-112-8.

[10] Memec Inc. Virtex-4(TM) FX12 LC Development

Board User’s Guide,
version 1.0, 2005.

electronic documentation,

[11] Zhang X., Ortega- Sanchez C., and Murray 1., “Text-

to-Braille Translator in a Chip”, International
Conference on Electrical and Computer Engineering,
2006

