
31st October 2003

Greg Howell
16 Hume Rd
High Wycombe WA 6057

Professor Syed Islam
School of Electrical and Computer Engineering
Curtin University of Technology
Kent St
Bentley WA 6102

Dear Sir,

Re: Final Year Project

As part of the requirement for Bachelor of Engineering (Computer Systems
Engineering), I hereby submit this final year project thesis entitled “Development of
a Screen Reader for Mac OS X” for your perusal.

Yours Sincerely,

Greg Howell

i

SYNOPSIS

This thesis outlines the design, development and testing of a screen-reader

application for the Macintosh operating system, Mac OS X. Included is a review of

existing screen-reader products, for both the Macintosh and other platforms, and an

examination of assistive architectures in general. The product is a screen-reader

application that will enable the vision-impaired to use the graphical user interface of

the Mac OS X operating system. A screen-reader converts the graphical information

that comprises the user interface into textual information. This textual information

can then be conveyed to the vision-impaired user using speech synthesis or other

technologies.

ii

ACKNOWLEDGEMENTS

The author would like to express his thanks and gratitude to the following

organizations or people:

• Apple University Consortium (AUC), for providing a software and hardware

grant that allowed for the development and testing of this project.

• Iain Murray, for his guidance and advice throughout the course of the project.

• Andrew Brownell, for his assistance in proofreading this document.

iii

TABLE OF CONTENTS

SYNOPSIS .. I

ACKNOWLEDGEMENTS...II

TABLE OF CONTENTS... III

TABLE OF FIGURES..VII

TABLE OF TABLES.. VIII

1. INTRODUCTION ..1

2. SCREEN READER THEORY...4

2.1. OVERVIEW OF SCREEN READER THEORY ...4

2.2. BASICS OF SCREEN READERS...4

2.3. APPROACHES TO BUILDING SCREEN READERS ...6

2.4. ACCESSIBILITY ARCHITECTURES..8

2.4.1. Overview...8

2.4.2. Apple’s Accessibility API...8

2.4.3. GNOME Accessibility Project ...13

2.4.4. Windows Accessibility ...14

2.4.5. Summary ...16

2.5. ALTERNATIVES ...18

2.5.1. Overview...18

2.5.2. Emacspeak ..18

2.5.3. Macintosh Based Alternatives..19

2.5.4. Windows Based Alternatives..19

iv

3. SCREEN READER DESIGN...21

3.1. OVERVIEW..21

3.2. INPUT FROM THE USER ..21

3.3. ACCESSING THE ACCESSIBILITY ARCHITECTURE ..25

3.4. PROCESSING THE ACCESSIBILITY OBJECT HIERARCHY....................................27

3.5. SPEECH SYNTHESIS ...29

3.5.1. Overview...29

3.5.2. Speech Speed...30

3.5.3. Speech Voice ...32

3.5.4. Other Properties..32

3.5.5. Conclusions...33

3.6. USER PREFERENCE SYSTEM...33

3.6.1. Overview of User Preference System ...33

3.6.2. Preferences to Store ..34

3.6.3. Using XML to Store User Preferences ...34

3.7. SCREEN READER DESIGN CRITERIA ...35

3.8. PROGRAM STRUCTURE ..37

4. SCREEN READER IMPLEMENTATION...40

4.1. IMPLEMENTATION OVERVIEW..40

4.2. PROJECT BUILDER...40

4.3. COCOA AND CARBON ..41

4.4. OBJECTIVE-C..42

4.5. PARAKEET DESCRIPTION ...45

4.5.1. General ...45

v

4.5.2. Speech Synthesis Implementation ..48

4.5.3. Accessing the User Interface ...52

4.5.4. Processing the Accessibility Object Hierarchy.......................................52

5. SCREEN READER TESTING ..54

5.1. OVERVIEW OF TESTING METHODS ...54

5.2. RESULTS OF TESTING ..55

5.3. EFFECTIVENESS OF THE SCREEN READER ...55

6. CONCLUSIONS...59

6.1. SUMMARY ..59

6.2. FUTURE WORK..60

REFERENCES ...62

A. APPENDIX A – OPERATING SYSTEM AND COMPILER VERSIONS...65

B. APPENDIX B – SOURCE CODE ...67

B.1. APPSHELL.H...67

B.2. APPSHELL.M ..68

B.3. AXSTRINGPROCESSOR.H ..78

B.4. AXSTRINGPROCESSOR.M..79

B.5. INSPECTORWINDOW.H ..85

B.6. INSPECTORWINDOW.M..86

B.7. PARAKEET.H ..90

B.8. PARAKEET_PREFIX.H..91

B.9. MAIN.M ..91

B.10. INFOPLIST.STRINGS...92

vi

C. APPENDIX C – CONTENTS OF THE CD-ROM ...93

vii

TABLE OF FIGURES

Figure 1: Overview of Screen Reader ...5

Figure 2: Accessibility Hierarchy Example (Apple Accessibility Model)10

Figure 3: Button Example (TextEdit) ..11

Figure 4: Menu Example (TextEdit) ...12

Figure 5: Basic Mac OS X Graphical User Interface ...22

Figure 6: Timer-driven Update Flowchart ...24

Figure 7: UI Element Inspector ...26

Figure 8: Sample Hierarchy Tree ..27

Figure 9: Sample XML Preference Storage...35

Figure 10: Program Structure..38

Figure 11: Use Case Diagram ...39

Figure 12: Project Builder IDE ...41

Figure 13: Objective-C object method call syntax...44

Figure 14: Screenshot of Parakeet during execution..46

Figure 15: Universal Access Preference Panel Settings ...47

Figure 16: Speech Synthesis Settings ..48

viii

TABLE OF TABLES

Table 1: Descriptive Message Formats..29

Table 2: Speech Synthesis Benchmarking...31

Table 3: Functionality of the Finder in OS X with Parakeet56

Table 4: Functionality of Applications with Parakeet ..57

Table 5: IDE Component Versions ...65

Table 6: Compiler and Debugger Versions..66

1

1. INTRODUCTION

In the last decade or so, the personal computer has moved from being a useful item

for business to being an essential part of everyday life. The modern personal

computer is employed extensively in the education and training environment, is an

essential communications tool and is used increasingly as a form of entertainment

and recreation.

With the expansion and enhancement of the Internet, more and more information is

being made available in a digital format. In some areas, the Internet is not only

replicating but is replacing traditional media forms. Computer literacy and access is

no longer desirable but it is essential. In an increasingly large number of fields of

employment, the ability to use a computer is assumed.

For these reasons it is essential that all people in society can make use of computers.

This includes those with disabilities. In recent years, guidelines and laws have been

introduced that ensure that people with disabilities can access the wealth of

information made available in digital format via the computer.

Disabled people face many difficulties when using a computer. Those with physical

disabilities may find using a keyboard or mouse in an effective manner impossible.

Those with sensory disabilities such as vision impairment or deafness may

experience difficulty receiving some forms of feedback that the computer may

provide. Those with learning difficulties may find the format of information

2

provided to them via the computer difficult to interpret. All of these disabilities limit

or prevent effective computer access. From an engineering viewpoint, making the

computer accessible to the disabled is a multi-disciplined effort, involving research

and development in both hardware and software areas. Making the computer

accessible also involves the field of psychology as usability and visualisation issues

arise.

Vision impairment is one disability that makes accessing computers difficult. In

Western Australia, it is estimated that 1.36% of people (approximately 24,900

people) are blind or vision-impaired (Association for the Blind of Western Australia,

2001). Around two-thirds of the vision-impaired population of Western Australia are

over 65 years of age. The number of blind or vision-impaired people is expected to

increase over the next fifteen years by around 50%. ABWA states that the increase

is linked to age related vision conditions that cannot be corrected. With an ageing

population, providing computer access to the vision impaired is an issue that will

increase in significance with time. Murray (2001) states that there is a “demographic

trend toward a growing elderly population (particularly as the “baby boom”

generation ages)”. This trend suggests a significant sector of the population will be

elderly and financially independent. These people will require assistive technologies

such as screen readers to use computers and will make up a significant proportion of

the market for such technologies.

Those with vision impairments face many difficulties when using computers. For

those with partial blindness, the text on the screen may prove too small to be read.

3

This can be overcome with various screen magnification utilities that enlarge parts of

the screen for users. Other vision-impaired users may find software that inverts or

alters the colour scheme displayed on the screen useful in interpreting the visual

feedback that the computer provides. For those people with total blindness,

accessing a computer without accessibility aids is impossible.

A screen reader is an accessibility aid that allows a vision-impaired or blind person

to use a computer. A screen reader is a piece of software that monitors the properties

of the graphical user interface. The screen reader then interprets what is happening

and converts the visual information into textual information that is then conveyed to

the user. This information may be conveyed in an audible format via speech

synthesis or conveyed in a braille format via a refreshable braille display device.

This report focuses on the design, development and testing of a screen reader for the

Macintosh OS X operating system. An overview of screen reader theory is included

and a review of existing products for other platforms is provided. A discussion of

the technologies required by a screen reader is also included and a brief overview of

the development environment used during implementation is provided. The screen

reader makes use of Apple’s speech synthesis technologies to provide feedback to

the vision-impaired user as they navigate the graphical user interface.

4

2. SCREEN READER THEORY

2.1. Overview of Screen Reader Theory

This section focuses on the theory of the technologies behind screen readers and

reviews a number of existing screen reader products. Alternatives to screen readers

are also discussed. Accessibility APIs, a feature of modern operating systems that

significantly improve the accuracy and aid the development of screen readers, are

also examined and compared.

2.2. Basics of Screen Readers

A basic screen reader consists of three main components:

• An engine that interrogates the graphical user interface and produces

information concerning what is happening on the screen

• An interpretive engine that processes the information, builds a model of what

is happening on the screen, converts the model into a textual format and

parses the textual model to extract pertinent information

• A speech synthesis engine that takes the textual information and presents it to

the user in an aural format

A screen reader can be viewed as software that converts information from one format

(graphical information that is displayed on the screen) to another format (textual

information that can be spoken to the user). A basic overview of the major

components of a screen reader is shown in the figure below. This illustrates the three

primary components of a basic screen reader described above.

5

Figure 1: Overview of Screen Reader

There are two general approaches to interrogating the graphical user interface

produced by the operating system. The first is by way of examining the video

signals that are being sent to the monitor. This is usually achieved by examining the

video memory. These are processed and interpreted in order to discover what is

happening on the screen. This approach is both computationally intensive and

difficult to develop. It relies on a large amount of information being hard coded into

the screen reader, making it difficult to update as graphical user interfaces are

updated. The second approach involves linking the screen reader into an

accessibility API (Application Programming Interface) that is usually provided by

the vendor of the operating system or operating system interface. This API provides

information in a textual format about the components that make up the graphical user

6

interface. This approach allows the screen reader to have greater accuracy as it can

interpret the user interface as it is should be interpreted. This interpretation is

defined by the accessibility API. Making use of the accessibility API allows the

screen reader to be modified for new interface designs and elements in a

straightforward manner. This is because all information used by the screen reader is

obtained from the accessibility API, and this API will be updated as the user

interface is updated.

The interpretive component of the screen reader is responsible for taking the

information provided by the video interpretation or accessibility API and extracting

some meaning from it. Ideally, it needs to be able to have some understanding of

what the user is trying to do with the computer if it is going to have any success in

conveying this information to the user. The interpretive component provides

whatever intelligence (artificial as it is) the screen reader possesses. The richer the

interpretive engine of the screen reader the easier it is to use.

The speech synthesis component of the screen reader is generally provided as a

feature of the operating system. The textual information produced by the interpretive

engine is spoken to the user through the sound output system via the speech synthesis

capabilities of the operating system. In cases where there is no speech synthesis

support, this component must be developed separately.

2.3. Approaches to Building Screen Readers

There are two distinct approaches to developing screen reader applications:

7

• Using an accessibility API

• Interpreting video signals

Using an accessibility API is the desired approach as it provides greater accuracy and

usually allows the screen reader to extract information in a significantly more

efficient manner when compared to interpreting video signals. Using an accessibility

API does have limitations in that you are limited to whatever information the API

knows about. Accessibility APIs generally rely on the applications that they are

interrogating being coded in a manner that is aware of the accessibility API. On

modern operating systems, there are many ways to construct graphical user

interfaces, and not all of these methods provide information to the accessibility API.

As a result, there are always applications and features on operating systems that

cannot be accessed using the accessibility API. These areas may or may not be

accessible via the approach of interpreting video signals.

Despite this limitation, building a screen reader application using an accessibility

API is by far the most desirable approach. Using the accessibility API approach

allows screen readers to be adapted to new versions of the operating system and

applications in a more structured and straightforward manner.

8

2.4. Accessibility Architectures

2.4.1. Overview

This section examines a range of accessibility architectures that are available for

modern operating systems. Architectures from three popular platforms (Macintosh,

Linux and Windows) are examined and compared.

2.4.2. Apple’s Accessibility API

The accessibility API implemented in Mac OS X consists of a hierarchy of

accessibility objects. Accessibility objects may be buttons, windows, menu items or

any other element that makes up the graphical user interface. These accessibility

objects are arranged in a hierarchy, with objects down the hierarchy as children and

objects up the hierarchy as parents. For example, a “menu item” accessibility object

is the child of a “menu” accessibility object, and the “menu” accessibility object the

parent of the “menu item” accessibility object.

Accessibility objects have the following attributes (Apple Computer Inc., 2002a):

• Role

• Role description

• Value (eg. the text string contained in a text field accessibility object)

• A list of the accessibility objects that are children of the object

• A localized help string

9

Accessibility objects also contain information pertaining to the action that they

perform. Examples of these are “press” for a button, “pick” for a checkbox and

“increment” for a slider.

The following figure illustrates two example accessibility object hierarchies. The

numbering system illustrated on the diagram shows the parent-child relationships

that exist in each hierarchy. For instance, the menu item accessibility object has a

number of 4, and is the child of the menu accessibility object, which has a number of

3. The hierarchy can be viewed in manner such that higher objects (with smaller

numbers) contain lower objects (with higher numbers). Actual instances of the

examples in the following figure are shown later in this section.

10

Figure 2: Accessibility Hierarchy Example (Apple Accessibility Model)

The following figure shows the basic Accessibility Object Hierarchy that is

constructed for a button. The button is considered a component contained within a

window (in this case entitled “Untitled”), which in turn is contained within the

application (“TextEdit”). The button itself has the name property of “Align left”.

11

Figure 3: Button Example (TextEdit)

The following figure is a second example of an Accessibility Object Hierarchy. In

this case, menu structures are examined. The “New” menu item is contained in the

“File” menu, which itself is contained in the “TextEdit” menu bar. It is worth noting

that both the name of the menu item (“New”) and the shortcut key combination

(“Command-N”) can be extracted from the hierarchy. In Mac OS X, (and earlier

versions of the Macintosh operating system) there is a common menu bar. This

differs from Microsoft Windows significantly, where each application can have their

own menu bar. This means that as the user switches between applications, the

contents of the menu bar (and the name of the menu bar itself) changes. It is

therefore important that the name of the application that currently “owns” the menu

bar is obtained.

12

Figure 4: Menu Example (TextEdit)

It is worth noting that not all applications that execute on the Mac OS X operating

system are accessible. Applications that execute in the Mac OS 9 based “Classic”

environment do not interact with the Accessibility API. As Apple is no longer

installing the “Classic” environment on new Macintosh computers, lack of

accessibility for this environment is not a significant issue. Carbon-based

applications are also generally not supported, unless the developer has implemented

appropriate functionality into the Carbon user interface elements.

13

2.4.3. GNOME Accessibility Project

A popular graphical user interface for the Linux platform (and other Unix based

platforms) is the GNOME Desktop user interface. The GNOME Desktop user

interface is based around windows, menus and buttons in a similar manner to Mac

OS X or Microsoft Windows.

Associated with the development of the GNOME Desktop environment is the

GNOME Accessibility Project (GAP). The aim of this project is to produce an

accessibility architecture for applications that are available for use with the GNOME

Desktop. This architecture will then allow access to the user interface for various

assistive technologies including screen readers, on screen keyboards, magnifiers and

braille devices.

The accessibility architecture constructed by the GAP is based on the GTK+ widget

set. This widget set is large and includes most of the widgets that are required to

construct standard user interfaces. The widget set includes:

• Buttons

• Labels

• Frames

• Dialogs

• Radio Buttons

• Images

• Scrollbars

• Progress Bars

14

The architecture itself is loosely based on the Java Accessibility API (GNOME

Project, 2003). Whenever a programmer uses a GTK+ widget from the standard

widget set the accessibility features of the widget are automatically enabled. Little

programmer involvement is required to create an accessible application using

standard GTK+ widgets.

There are a number of issues with the accessibility architecture produced by the

GAP. Firstly, non-standard or custom widgets used or created by developers must be

modified in order to function correctly with the accessibility architecture. Secondly,

not all GNOME based applications are created using GTK+ widgets. This means

that on a standard install of the GNOME Desktop environment there may be a

significant number of inaccessible applications.

2.4.4. Windows Accessibility

Microsoft Active Accessibility is the collection of APIs that are used on the

Windows operating system to enable assistive technologies. Documentation for

Microsoft Active Accessibility can be found at the Microsoft Developer Network

website (http://msdn.microsoft.com/, search for “Active Accessibility”). Most

versions of the Microsoft Windows operating system are supported to some degree,

with the exception of versions earlier than Windows 95.

Active Accessibility is built on the Component Object Model (COM) that has been

developed by Microsoft. This technology is supported by most Microsoft

15

applications and by many developers of third-party software for Windows. Through

the dominance of Windows, COM technology has become the de-facto industry

standard communication between applications and the operating system on the

Windows platform. As a consequence of this, COM is a well supported and

documented technology.

The extraction of information from user interface elements in Active Accessibility is

achieved via the IAccessible COM interface. This COM interface also allows the

user interface element to be manipulated directly. This allows for greater flexibility

and increased functionality of assistive software that takes advantage of this COM

interface. Using a screen reader as an example, this would allow the user to not only

determine the functionality of the button they have selected but also “click” the

button using an interface provided by the screen reader.

Blenkhorn and Evans, (2002), describe two methods for making Windows

applications accessible. If the application provides an Active Accessibility interface,

the application becomes a server for information about the application. This means

assistive software can extract information from the application in a straightforward

manner. If the application does not provide an Active Accessibility interface, an

assistive application can extract some information from it assuming it is constructed

using standard user interface elements. This can be achieved by employing the

Object Linking and Embedding (OLE) technologies provided in many Windows

applications. Blenkhorn and Evans describe how applications that contain an OLE

interface expose their object model to other applications. This technology allows an

16

assistive application to not only extract information from OLE enabled applications

but to control their behaviour as well.

Active Accessibility depends on the developer using standard COM-based objects

when they construct their applications. Other non-standard objects can be modified

to interact with the Active Accessibility system but this process involves recoding

sections of the code for the particular object. Limiting accessibility to applications

built using COM-based objects limits the number and range of accessible

applications. There are many methods for building applications on the Windows

platform and only a few of these methods will result in Active Accessibility

compliant software products.

2.4.5. Summary

This section has provided an overview of the accessibility features that exist in the

popular modern operating systems. All three accessibility architectures discussed are

satisfactory in that they allow assistive applications to be constructed that will be

compatible with a reasonable amount of available software. All three follow the

same approach by enabling elements of their user interface to return information

regarding properties and functionality.

The common weakness with all accessibility architectures discussed is that unless the

user interface of applications is constructed using the standard elements or widgets

provided, adding accessibility to an application requires significant effort on the part

17

of the developer. Legacy applications that execute on modern operating systems are

common and are unlikely to be redeveloped to enable accessibility.

The Accessibility API provided by Apple on Mac OS X is an excellent solution in

that it combines a feature rich accessibility framework with a stable operating system

and a relatively consistent user interface. With the majority of new applications for

Mac OS X being developed using Cocoa or Carbon technologies for their graphical

user interface, the number and range of accessible applications available will

increase significantly.

The Gnome Accessibility Project is a viable solution for Linux and Unix-based

platforms but is limited in that it only supports certain graphical user interface

construction toolkits. It has the advantage of being an open project in terms of

design and implementation, which should result in the project being both feature rich

and stable.

The Microsoft Active Accessibility framework is the only viable option for assistive

applications on Windows because it is compatible with the large amount of

Microsoft products available (in particular the Office suite of applications and

Microsoft’s Internet applications such as Outlook and Internet Explorer). As is the

issue with the GNOME Accessibility Project, the number of non-accessible methods

to use to construct applications under Windows is large, meaning that the majority of

applications available may not be supported by an assistive application.

18

2.5. Alternatives

2.5.1. Overview

This section outlines some alternatives solutions available that enable the vision-

impaired to use a computer. Software for most major operating systems is

considered and the advantages and disadvantages of each is outlined. The add-on

software for the emacs text editor, Emacspeak, was considered for porting to Mac OS

X and as such is covered in depth.

2.5.2. Emacspeak

Emacspeak is a speech interface add-on for the emacs text editor. The emacs text

editor is a Unix application that has been ported to most other operating systems,

including Mac OS X, Linux and Windows. It is described fully in T.V. Raman’s

article for the Dr. Dobb’s Journal (Raman, 1997). Emacspeak is independent of

emacs in terms of code base and is structured in a layered manner. Only the lowest

layers of Emacspeak are device dependent. Emacspeak also functions with other

applications that are Unix based.

Emacspeak was considered a viable option for Mac OS X due to the fact that Mac

OS X has BSD Unix underpinnings. The process of porting Unix based applications

to Mac OS X is described by Apple Computer Inc. (2002d). This would conceivably

make the process of speech-enabling Unix software that is ported to Mac OS X

straightforward.

19

The process of porting Emacspeak to Mac OS X was stopped as it became difficult to

re-route the textual output to Apple’s speech synthesis API. Emacspeak includes

drivers for specific speech synthesizers and does not support speech output through

the speakers of the computer. Hardware speech synthesizers are an expensive option

and would prove difficult to configure with modern Macintosh computers. This is

due to the lack of drivers and serial ports on the Macintosh platform.

2.5.3. Macintosh Based Alternatives

There are currently no other screen readers available for Mac OS X. Outspoken is a

screen reader application available for earlier versions of the Macintosh operating

system (Mac OS 8 and 9). Support for these versions of the Mac OS operating

system, however, does not exist on modern Apple hardware. The latest version of

Outspoken for the Macintosh (version 9.2) supports Mac OS 9 and development has

ceased at this revision (Lakes, 2003).

2.5.4. Windows Based Alternatives

The most popular screen reader application for the Windows platform is JAWS.

JAWS has reasonable reviews, and functions correctly with a significant amount of

Windows software. Prices for JAWS range from $895 to $1095 (USD), making it an

expensive option. The price of JAWS approximately doubles the cost of a personal

computer for a vision-impaired user. This extra cost will prove prohibitive in most

cases as the majority of vision-impaired people are dependent on social security

benefits.

20

21

3. SCREEN READER DESIGN

3.1. Overview

This section proposes the design for the screen reader. The components of the screen

reader are considered individually and the design for each is presented. The overall

design of the structure of the screen reader software is then considered.

Considered in the design of the screen reader are forms of user input, methods for

accessing the accessibility API, methods for processing the accessibility object

hierarchy, requirements of the speech synthesis system and the design of a user

preference system. Included also is a discussion of general screen reader design

criteria and an overall program structure of the proposed screen reader.

3.2. Input from the User

For the vision impaired, using the keyboard for input is preferable to using the

mouse. In order to use a mouse effectively, users must be able to interpret the

feedback it provides. This feedback is usually graphical in the form of a mouse

cursor that appears on the screen and is able to be moved.

The Mac OS X operating system is primarily mouse driven. Keyboard shortcuts are

available that execute commands from menu structures but in order to navigate the

menus the mouse must be used. The same comments apply for the Dock application

and other regions of the interface. This is in contrast to the Windows operating

system, which allows full access to menus via the ALT key and arrow keys.

22

The regions of the graphical user interface of Mac OS X are illustrated on the

following diagram.

Figure 5: Basic Mac OS X Graphical User Interface

The Dock application, shown on the left hand side of the screen shot figure above,

can be positioned at the left, right or bottom edges of the screen. It functions as a

launcher for applications and documents and provides a convenient way to switch

between running applications. The Dock is driven entirely by mouse.

23

There are two menu bars at the top of the screen. The one to the left is controlled by

whatever application is running in the foreground (with the exception of the Apple

menu). As the user switches between applications, the content of this menu bar

changes. The menu bar located at the top right of the screen is managed by the

SystemUIServer application. It contains utilities such as the clock, battery level and

sound volume. The menu structures are primarily driven by mouse however shortcut

keys do exist for some of the menu functions.

Finder windows, one of which is shown in the preceding figure, list the drives, files

and directories (or folders as they are referred to on the Macintosh) associated with

the system. These windows can be driven by the keyboard. This is achieved by

using a combination of the arrow keys to select items and the keyboard shortcuts in

the Finder application to manipulate them.

For these reasons, a screen reader for Mac OS X must be at least partially mouse

driven. In initial development, the screen reader for Mac OS X will be mouse driven

and provide feedback to the user regarding the position and movement of the mouse

cursor. Further developments of the screen reader will seek to remove the

dependency on the mouse by providing keyboard access to the user interface.

The following figure illustrates the basic algorithm that will be used to allow the

screen reader to be mouse driven. The algorithm is driven by a timer and requires

the mouse coordinates to be stored after the timer expires. When the timer next

expires, the stored coordinates (X and Y locations) are compared with the current

24

mouse coordinates to determine if the user has moved the mouse in the last timer

period. The “Process” step in the flowchart is where the screen reader extracts and

processes the information from the user interface and produces the descriptive strings

for speech synthesis.

Figure 6: Timer-driven Update Flowchart

25

3.3. Accessing the Accessibility Architecture

The methods of accessing the accessibility architecture are illustrated well by a free

utility produced by Apple Computer called “UI Element Inspector”. This utility

extracts the accessibility information from the element of the user interface that is

directly below the mouse cursor. It presents this information in a structured manner

showing the accessibility object hierarchy, attributes and actions separately. A

screen shot of the application running (with the mouse cursor over the “Window”

menu) is shown below.

26

Figure 7: UI Element Inspector

The source code for “UI Element Inspector” is freely available from Apple’s

developer website in the sample code section (http://developer.apple.com/). The

27

code is an excellent example of how to extract accessibility information from the

user interface and will be used as a starting point in the construction of the screen

reader.

3.4. Processing the Accessibility Object Hierarchy

Once the accessibility object hierarchy for the user interface area that we are

interested in has been obtained, the process of extracting information from it and

processing this information to produce descriptive strings is considered.

The first step in the process it to extract the type of object that is at the base of the

accessibility object hierarchy that has been obtained. This can be achieved by

processing the hierarchy tree component of the object model. An example hierarchy

tree is shown below.

<AXApplication: “Finder”>

 <AXMenuBar: “”>

 <AXMenuItem: “Window”>

 <AXMenu: “Window”>

 <AXMenuItem: “Bring All to Front”>

Figure 8: Sample Hierarchy Tree

The regular formatting and structure of this sample will allow generic methods to be

developed that allow the value (eg. “Finder”) to be extracted for a key (eg.

“AXApplication”). The object at the root of the hierarchy tree in the preceding

28

sample is an AXMenuItem object with value “Bring All to Front”. All other

supported user interface elements are represented in the same manner. A looping

algorithm that processes the hierarchy tree on a line-by-line basis would allow the

root object to be discovered. This algorithm would also provide information

pertaining to the context in which the object is found. Such information includes the

parent application of the object and the region of the user interface the object is

found. This step is important as it allows contextual information about the interface

to be obtained. Using the above sample hierarchy, the contextual information that

can be obtained is:

• The user is in the “Finder” application

• They are accessing the “Window” menu

• They have selected the “Bring All to Front” menu option

The screen reader can now construct a textual message that describes to the user the

area of the user interface with which they are interacting. Using the above example,

this message may be “Finder, Window menu, Bring All to Front menu item”.

The following table shows the format of messages for different objects. The [name]

parameter refers to the text value of the object. In the previous example, this would

be “Bring All to Front”. The [application] parameter represents the name of the

foreground application. In the previous example, this would be “Finder”.

29

Root Object Message Format

AXApplication [name] or [name] [application]

AWWindow [name] window

AXButton [name] button

AXMenuBar [application] menubar

AXMenu [name] menu

AXMenuItem [name] menu item

AXTextField [name] text field, contains {contents of text field}

AXTextArea [name] text area, contains {contents of text area}

Table 1: Descriptive Message Formats

The above table shows a basic set of user interface objects and the general structure

of the messages that should be generated for them. It should be noted that for

specific applications this format might be inappropriate. An example of this is the

“Dock” application, where the icons to launch applications or documents are of the

AXButton type. In this case a message of the form “Dock, launch Safari” when the

user has selected the “Safari” icon in the “Dock” application region.

3.5. Speech Synthesis

3.5.1. Overview

This section outlines the design requirements of the speech synthesis component of

the screen reader. The speech produced is the only output provided by the screen

reader. Speech parameters including speed and voice are described and issues

30

relating to the properties of the speech synthesis system provided by Apple are

discussed.

3.5.2. Speech Speed

Speech synthesis speed (measure in words per minute) is the most important property

of the speech synthesis system in the context of screen readers. The more proficient

the vision-impaired user becomes at using the operating system and screen reader

combination, the faster they wish to hear the feedback provided.

The Dectalk hardware speech synthesizer is capable of speaking at speeds between

75 and 650 words per minute (Mates, 2000). To be of use, the developed screen

reader must be capable of speech synthesis speeds in this range. Basic tests

involving the TextEdit application (which is speech enabled in Mac OS X) and a few

sample paragraphs of text were conducted. The results are shown in the following

table. These paragraphs were made up of text from actual documents to ensure an

appropriate average word length and complexity. Punctuation was also included.

31

Test Word Count Elapsed Time (seconds) Calculated WPM

593 175 203

85 22 232

43 10 258

12 3 240

Table 2: Speech Synthesis Benchmarking

(Note: The above tests were conducted using a PowerBook G3 400Mhz with 192

MB of RAM and running Mac OS X 10.2.6).

The basic tests conducted show that speech synthesis speeds of around 250 words per

minute are possible for strings with low numbers of words. As the strings to be

synthesized in a screen reader are generally short, expecting word rates of around

250 words per minute is reasonable. In the above tests, TextEdit sets up a new

speech channel every time the speech synthesis functionality is requested. In the

screen reader, the speech channel will be set up once at launch and used until the

program terminates. For this reason, high speech rates are expected from the screen

reader.

It is also important for the speech synthesis speed to be adjustable. This allows the

screen reader to cater to the needs of a wide range of different vision-impaired users

and to scale well as users become more familiar with using the software.

32

3.5.3. Speech Voice

The voice used by the screen reader for speech synthesis defines the accent and

punctuation behaviour of the output. For that reason, the optimal voice for the screen

reader is a personal preference of the user. The ability for the user to pick the voice

used is therefore a requirement of any screen reader. This area of design is covered

in section 3.6.

The default installation of Mac OS X version 10.2 includes 22 different voices.

There are, however, only a few that suit the requirements of a screen reader.

Candidate voices should be able to be heard clearly at high speeds and should match

the accent of the user as closely as possible.

It is worth noting that in order to customize the screen reader for languages other

than English, voices that speak those languages must be created. Currently all voices

that are installed with Mac OS X are English American speaking voices. These

voices do not pronounce other languages correctly.

3.5.4. Other Properties

It is important that any speech synthesis system considered can be interrupted when

it is part of the way through speaking a string. This means that when the mouse is

over one particular area of the screen, the screen reader is describing that area, and

the mouse moves to another area, the speech synthesis regarding the first area is

stopped and the screen reader begins to describe the new area immediately. The

speech synthesis libraries provided by Apple in Mac OS X support this feature.

33

The speech synthesis libraries under Mac OS X are also non-blocking in that once a

user application initiates speech synthesis the user application is free to continue

executing (Apple Computer Inc., 2002c). This is an important property as it allows

the screen reader to keep up with the actions of the user.

3.5.5. Conclusions

The speech synthesis functionality and libraries provided by Apple in Mac OS X

satisfy the requirements of a screen reader application. The provided voices are

sufficient for a screen reader although it is anticipated that third-party voices will be

constructed or used as required by users. These can be added to the operating system

and enabled independently of the screen reader. While initial testing of the speech

synthesis libraries indicate that speeds achieved by Dectalk devices and the like are

unattainable, the speed achieved is adequate for initial development. Methods of

speeding up the speech synthesis will have to be investigated if the screen reader is to

be used by all members of the vision-impaired community.

3.6. User Preference System

3.6.1. Overview of User Preference System

A useful feature of a screen reader is the ability to store sets of preferences for

different users. This would allow multiple users who share a common computer to

have individual sets of preferences. Sets of preferences could be loaded by default or

selected from a list when the screen reader is started.

34

3.6.2. Preferences to Store

The following screen reader properties can be stored as user specific preferences:

• Speech synthesis voice

• Speech synthesis speed

• Speech synthesis volume

• A user experience indicator that corresponds to the verbosity of the output

• A user specific dictionary of words and pronunciations

A default set of preferences should be available and should correspond to the system

settings on the computer.

3.6.3. Using XML to Store User Preferences

A suitable format for storing user preferences is the Extensible Markup Language

(XML). Methods for defining XML documents are discussed by Graham and Quin

in their book “XML Specification Guide” (Graham & Quin, 1999). A sample user

preference defined in an XML format is shown below.

35

Figure 9: Sample XML Preference Storage

The Mac OS X operating system includes libraries that allow XML files to be

loaded, interpreted and saved in a straightforward manner. Preference files under

Mac OS X (with a .plist extensions) are standard XML files and the Cocoa

programming environment provides functions to access and manipulate them. Being

text files in terms of file format, XML files are also editable by any user familiar

with an ASCII text editor.

3.7. Screen Reader Design Criteria

The most important property of screen reader is the degree in which it is compatible

with the operating system and applications that the user utilizes. Unless the screen

reader can extract a useful amount of information from the accessibility API about

the components that make up the graphical user interface the screen reader will be

ineffective. This is dependent largely on the accessibility API provided by the

operating system.

36

The speed at which the screen reader operates is important in terms of how usable it

is. If there is a significant lag between the event occurring on the screen and the user

learning about it through the output of speech synthesis the screen reader will prove

difficult to use. In most instances, this is dependent on the processor load.

As the synthesized speech produced by the screen reader is it’s only form of output,

speech quality is an important design criterion. The voice used for speech synthesis

needs to be intelligible at high rates. The speed and voice used by the speech

synthesis engine needs to be customisable.

An important aspect of an effective screen reader is the ability to customize its

properties to suit the needs of particular users. This would be implemented via a user

preference system, as discussed in section 3.6.

The manner in which the screen reader handles errors is also of importance. The

stability of the screen reader is an important issue as the only sign the user will get

when the screen reader exits prematurely is that the speech synthesis will stop.

Without speech synthesis running there is no way to report to the user any errors or

problems. A screen reader with excellent functionality and compatibility but poor

stability becomes an system administration issue as generally the vision-impaired

user will be unable to restart the screen reader (or indeed reboot the operating

system).

37

3.8. Program Structure

The overall structure of the screen reader consists of three components. The first is

the main application shell that is responsible for initialising the application,

extracting the accessibility information from the user interface and managing the

speech synthesis functionality. This component is also responsible for maintaining

the timer-based update system. It is labelled “Appshell” on the following diagram.

The second component is responsible for the basic graphical user interface that the

screen reader has. It is labelled “InspectorWindow” on the following diagram. The

third component provides the processing function of the screen reader and is

responsible for searching and interpreting the accessibility information that has been

extracted from the user interface. It is labelled “AXStringProcessor” on the

following diagram. Note that the “AX” is short hand for accessibility.

38

Figure 10: Program Structure

Below is a use case diagram for the screen reader that has been designed. The actors

in the system are the user, the screen reader itself, the speech synthesis subsystem

and the accessibility API subsystem. The latter two are considered actors as the

screen reader simply uses services that are provided by them. The diagram illustrates

the interactions between the actors that are required to provide the necessary

functionality of the screen reader.

39

Figure 11: Use Case Diagram

In the current design, the output of the screen reader is text that is sent to the speech

synthesis system for conversion and speech. It is important for this to be designed in

a manner that allows other feedback systems to be used (for example a refreshable

braille display) in a straightforward manner. For this reason the component

responsible for speech synthesis and the component responsible for constructing the

text to be synthesized to speech are separate and modular.

40

4. SCREEN READER IMPLEMENTATION

4.1. Implementation Overview

The design of a Mac OS X screen reader described in earlier sections was

implemented using Apple’s Project Builder and Interface Builder software. The

program developed, named Parakeet, was coded in Objective-C. Parakeet is Cocoa

based, compatible with Mac OS X version 10.2 and above, and requires no additional

hardware or software to function.

4.2. Project Builder

Project Builder is the integrated development environment (IDE) provided by Apple

with their operating system (Mac OS X). It is the hub application of Apple’s

developer tools (Davidson, 2002). It provides a graphical front-end to the GNU C

Compiler (gcc) and the GNU Debugger (gdb) as well as allowing source code and

other resources to be collected together to form a project. It supports development in

many programming languages (including Objective-C, C, C++ and others) and has

good integration with the compiler and debugger. A screen shot of the Project

Builder IDE is shown below.

41

Figure 12: Project Builder IDE

The Project Builder IDE allowed all of the source files, resource files and the

application icon to be collected together in a single project and accessed quickly and

easily via the IDE interface. Compilation settings, revision numbering and reference

manuals are also easily accessible through the Project Builder interface. Refer to

Appendix A for the version numbers of the components of the Project Builder IDE

used in the development of Parakeet.

4.3. Cocoa and Carbon

There are two programming APIs that have been used in the development of the

Parakeet screen reader: Cocoa and Carbon. Carbon is a set of procedural APIs that

are based on legacy toolbox APIs that have been modified to function in Mac OS X.

The Carbon APIs allow Mac OS 9 based applications to be ported to Mac OS X in a

42

well-defined manner. Cocoa is a set of object oriented APIs that are based on the

NeXT operating system programming environment. Most modern Mac OS X

applications are Cocoa-based (Davidson, 2002).

In Parakeet, the speech synthesis features used are Carbon-based (Apple Computer

Inc., 2002c). The graphical user interface of Parakeet is constructed using Cocoa

widgets. The Accessibility API is accessible by both Carbon and Cocoa based

applications (Apple Computer Inc., 2002a).

4.4. Objective-C

The Objective-C programming language is a superset of the ANSI C programming

language. Included in Objective-C is some syntax and runtime extensions that

enable object oriented programming (Davidson, 2002, Pinson, 1991 and Apple

Computer Inc. 2002b).

Objective-C was chosen as the primary language for development of the screen

reader for a number of reasons. Firstly, it is the predominant language for Cocoa

development on the Macintosh platform. This means that a substantial amount of

sample source code and documentation is available to aid development. Secondly,

Objective-C allows easier integration with the user interface components that exist

under Mac OS X. This is important for a screen reader as it allows straightforward

access to these components.

43

Being an object-oriented programming language, Objective-C offers advantages over

languages such as C in the form of code reuse through structured object-oriented

design. Other object-oriented features of Objective-C are not specifically exploited

in Parakeet.

Objective-C code differs from regular C code in a few specific areas. Firstly, header

files in Objective-C (with the .h file extension) can be either regular C style header

files or files that describe the accessible interface to an object. For instance,

“Queue.m” will contain the implementation of the queue class and “Queue.h” will

contain the interface to the queue class. Secondly, the syntax for calling methods on

objects is unique is a significant departure from ANSI C syntax. An example is

shown below.

44

Figure 13: Objective-C object method call syntax

In the above example, the “bInDock” Boolean variable stores the result of executing

the “isEqualToString” method of the NSString object (“stringAppName”) with the

parameter “Dock”. If the contents of the “stringAppName” object equal “Dock”,

bInDock will be set to true, otherwise it will be set to false.

45

4.5. Parakeet Description

4.5.1. General

The screen reader developed, named Parakeet, is a single window application that

can be launched by the user. Automatic launching by the operating system is

possible. It is designed to run in a minimized state to avoid window clutter. The

user interface is simple and consists of two tabbed panels. The first, entitled

“Overview” contains buttons to start and stop speech synthesis, a text field showing

the current information being conveyed to the user and a text field to show the

Accessibility Object Hierarchy that has been extracted from the graphical user

interface. The second, entitled “Settings” will contain controls that allow the user to

change the various parameters of the screen reader. This has not been implemented.

The following screen shot illustrates Parakeet during execution. Highlighted are the

various regions of the interface described.

46

Figure 14: Screenshot of Parakeet during execution

In order to run Parakeet, some settings in the System Preferences panels under Mac

OS X need to be changed. To allow Parakeet to access the accessibility APIs the

“Enable Access for Assistive Devices” option in the Universal Access system

preferences panel must be checked. This option can be found under the “Seeing” tab

towards the bottom of the panel and is illustrated in the following figure. This tab

contains other options that aid access to the computer by vision impaired users.

47

Figure 15: Universal Access Preference Panel Settings

In the current implementation, the speech synthesis settings for Parakeet are the same

as the system speech synthesis settings. These settings can be accessed via the

System Preferences under the “Speech” panel. The “Default Voice” tab contains the

options that can be adjusted to change the speech synthesis properties of Parakeet.

The only changes that can be made are the voice used and the speed at which text is

spoken. These settings are shown in the screenshot figure that follows.

48

Figure 16: Speech Synthesis Settings

4.5.2. Speech Synthesis Implementation

The document entitled “Speech Synthesis Manager Reference” by Apple Computer

Inc., 2002 (available from the website http://developer.apple.com/ as a PDF file)

outlines the speech synthesis facilities available under Mac OS X. Described in this

reference is the SpeakString function that allows a string to be passed directly to the

speech synthesis engine for immediate speech. The function makes use of the

default speech properties of the system outlined in section 4.5.1. The SpeakString

function uses the speech channel that is provided internally for the Speech Synthesis

Manager. This speech channel is also used by the spoken user interface features of

Mac OS X so after synthesizing the string passed by the SpeakString function, the

49

speech synthesis manager continued to synthesize speech as part of the spoken user

interface utility. This is not satisfactory for a screen reader as there is no way to

prevent extra and unnecessary speech being generated with each SpeakString call.

The solution to this problem was to create a dedicated speech channel and use the

SpeakText function. The SpeakString function accepts a speech channel as a

parameter and allows greater control of speech synthesis. A speech channel was

created in the following manner:

SpeechChannel fCurSpeechChannel; // in AppShell.h

[self createNewSpeechChannel]; // in awakeFromNib in AppShell.m

The speech channel has been defined in the header file but instantiated in the

awakeFromNib method of the class implementation. The awakeFromNib method is

executed when the application is loaded and performs other initialisation functions.

The createNewSpeechChannel method of the AppShell class was developed, and

uses the default speech synthesis settings as described earlier. The code for the

createNewSpeechChannel method is shown below:

- (void)createNewSpeechChannel
{
 OSErr theErr = noErr;

 // Dispose of the current one, if it exists
 if (fCurSpeechChannel) {
 theErr = DisposeSpeechChannel(fCurSpeechChannel);
 if (theErr != noErr)
 NSRunAlertPanel(@"DisposeSpeechChannel", [NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL,
NULL);

 fCurSpeechChannel = NULL;
 }

50

 // Create a speech channel
 if (theErr == noErr) {
 theErr = NewSpeechChannel(NULL, &fCurSpeechChannel);
 if (theErr != noErr)
 NSRunAlertPanel(@"NewSpeechChannel", [NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL,
NULL);

}

// Setup our refcon to the document controller object so we
have access within our Speech callbacks

if (theErr == noErr) {
 theErr = SetSpeechInfo(fCurSpeechChannel, soRefCon,
(Ptr)self);
 if (theErr != noErr)
 NSRunAlertPanel(@"SetSpeechInfo(soRefCon)",
[NSString stringWithFormat:@"Error #%d returned.", theErr], @"Ok",
NULL, NULL);

}

 if(DEBUG_PARAKEET){
 printf("AppShell:createNewSpeechChannel\n");
 }
}

This code checks that the speech channel that is being created has not already been

created and if not proceeds with instantiation. If the speech channel already exists, it

is closed and a new speech channel created. The next section of the code allows

Parakeet to be aware of when individual strings have been synthesized. This is

achieved using a call back function. The call back function,

OurSpeechDoneCallBackPrac, is a Pascal function that returns once the particular

piece of text we have sent to be spoken has been synthesized.

pascal void OurSpeechDoneCallBackProc(SpeechChannel inSpeechChannel,
long inRefCon)
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 // calls the AppShell method "speechIsDone" when TTS has
completed
 [(AppShell *)inRefCon
performSelectorOnMainThread:@selector(speechIsDone) withObject:NULL
waitUntilDone:false];
 [pool release];
}

51

The speechIsDone method in the AppShell object is called when the call back

function is called. Currently this function does nothing apart from report that speech

synthesis has completed. It is worth noting that unless a given string is completely

synthesized the speechIsDone method is not called. Any speech synthesis of strings

that is interrupted by another speech synthesis request does not return via the call

back function.

The function that initiates speech synthesis in the AppShell object is called

startSpeakingText, and is shown below:

- (void)startSpeakingText
{
 OSErr theErr = noErr; // store any errors that we might
encounter

 // check if we can speak by accessing the start/stop TTS state
stored
 // in the InspectorWindow object
 if ([_inspectorWindow getStartStopState] == TRUE){
 // set up the callback (TTS has finished)
 // this is done via the SetSpeechInfo method
 if (theErr == noErr){
 theErr = SetSpeechInfo(fCurSpeechChannel,
soSpeechDoneCallBack, OurSpeechDoneCallBackProc);
 if (theErr != noErr)

NSRunAlertPanel(@"SetSpeechInfo(soSpeechDoneCallBack)",[NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL,
NULL);
 }

 // speak the string
 // strlen only works on "C" strings
 theErr =
SpeakText(fCurSpeechChannel,theTTSString,strlen(theTTSString));
 }
}

This method checks that the screen reader is allowed to “speak” and sets the call

back function information via the SetSpeechInfo function. The SpeakText function

is then used to speak the string via speech synthesis.

52

4.5.3. Accessing the User Interface

The approach used in Parakeet to extract the accessibility information from the user

interface is based largely on the UIElementInspector utility. Parakeet is driven off a

timer that is set to expire every tenth of a second. This parameter should eventually

be user configurable. When the timer expires the new location for the mouse cursor

is checked against the old location of the mouse cursor.

If these two cursor locations differ, the accessibility API is interrogated and the user

interface element that is at the new cursor location is copied into an off screen

storage element. The accessibility object hierarchy for this element is then

constructed and the attributes extracted. This information is stored in a string.

This string is then processed by the AXStringProcessor object.

4.5.4. Processing the Accessibility Object Hierarchy

A class was developed, named AXStringProcessor, to process the accessibility object

hierarchy string produced by the accessibility API. The first step in processing

involves converting the string into an array delimited by the new line character. The

following code shows this conversion.

NSArray * AXDataArray = [(NSString *)passedString
componentsSeparatedByString:@"\n"];

53

The resulting array is then searched entry by entry for particular object tags. Once a

tag corresponding to an accessibility object has been found (AXApplication for

instance) the value is extracted (eg. Finder) and the information is added to the string

that is being built. The presentation format of these strings is discussed in section

3.3. This string is the descriptive string that will be synthesized to speech.

54

5. SCREEN READER TESTING

5.1. Overview of Testing Methods

There are two approaches for testing the effectiveness of a screen reader. The first

involves testing with sighted users and requires that the screen of the computer is

covered or turned off during testing. The second involves testing with vision-

impaired users. A secondary testing issue is the level of computer proficiency that

the user has.

The second method of testing is favoured for a number of reasons. Firstly, vision-

impaired users are the target users of this application and optimising the screen

reader using feedback from this form of testing is essential. Secondly, a sighted user

that has used the graphical user interface of the Macintosh has a mental picture of

what the interface looks like. This mental picture is different to the one constructed

by a vision-impaired user as they navigate the user interface. A vision-impaired user

will rely entirely on the feedback provided by the screen reader to use the computer,

whereas a sighted person will rely partially on what they know of the interface from

previous experience. A better gauge of the performance and effectiveness of the

screen reader will be obtained through testing using vision-impaired users.

The level of experience that the tester has with computers in general is also an

important factor in interpreting the results of any tests. The screen reader may

function in an effective manner for experienced computer users but may be

inappropriate for users with limited computer experience. A testing process that

55

includes both experienced and novice computer users will provide the most effective

feedback data in that it will highlight all weaknesses and issues with the software.

5.2. Results of Testing

A very limited amount of testing was conducted with Parakeet. This was due mainly

to time constraints and the fact that testing and improvement of the software will be

the focus of a later project. The testing that was conducted focussed on checking and

documenting the compatibility of Parakeet with the “Finder” application and the

testing of various applications for both compatibility with Parakeet and level of

interaction with the Mac OS X Accessibility API. The results of these tests are

documented in the following section.

5.3. Effectiveness of the Screen Reader

The following table shows the regions of the “Finder” application (the primary

desktop application in Mac OS X) that Parakeet has been found to function correctly

with. Of note is the fact that no information can be extracted from the Accessibility

API when the user is interacting with the desktop in the “Finder”. Finder windows

are also inaccessible.

56

Region Functional Comments

Dock Yes Contextual Dock menu not supported

Menu Bar (left) Yes Contains Apple Menu and other menus

Menu Bar (right) No Contains clock, battery level etc.

Finder window No No information can be extracted from the

API

Desktop No No information regarding the files etc. on

the desktop can be extracted from the API

Table 3: Functionality of the Finder in OS X with Parakeet

The following table lists commonly used applications on Mac OS X. These

applications have been tested with software (UIElementInspector) that attempts to

interrogate the accessibility API for information about the user interface. The level

of information that is extracted by UIElementInspector will indicate whether

Parakeet will be compatible with the application. UIElementInspector has been used

as Parakeet has not been developed to the point where it handles all user interface

elements.

57

Application Functional Comments

Microsoft Office X

(Word, Excel, PowerPoint,

Entourage)

No No Microsoft applications

are accessible (Office X is

carbonised but uses non-

standard user interface

elements)

Internet Explorer 5.2.1 No See above

Safari 1.0 (web browser) Limited Buttons, menus and

bookmarks are supported

but no HTML pages

Mail (client email

application)

Yes Buttons, menus, email

message browsing and

reading are all supported

AppleWorks (office suite) Partially Some UI elements appear

to be custom

iChat (chat client) Yes

Table 4: Functionality of Applications with Parakeet

Of considerable concern is the limited accessibility of the Safari web browser. Given

that Microsoft’s Internet Explorer web browser is inaccessible, it was hoped that

Safari would be fully accessible. The HTML based web pages that are rendered by

Safari are not compatible with the accessibility API, however the rest of the

application appears to be fully compliant. It is anticipated that access to the rendered

HTML pages (via the WebKit object architecture) will be available in future

58

revisions of the Mac OS X operating system. Discussions with Apple software

engineers confirm that this is a priority for Apple.

59

6. CONCLUSIONS

6.1. Summary

This project has shown that with a suitable speech synthesis engine and a

comprehensive accessibility API, a simple screen reader application can be designed

and constructed with relative ease. With the accessibility interrogation and speech

synthesis components requiring little development, the developer can focus on

ensuring that the screen reader is compatible with as many user interface elements

(and combinations of elements) as possible and produces messages for the user that

are as informative and appropriate as required.

Any screen reader that relies on an accessibility API to garner information about the

graphical user interface is inherently limited by the quality and compatibility of the

API. The success of the developed screen reader largely depends on the level of

compatibility it has with both the Mac OS X operating system and the third party

applications that are required by the user. Currently, not all of the Mac OS X Finder

application is accessible by the screen reader. It is hoped and expected that these

issues will be resolved in future versions of the operating system. Depending on the

methods used in development, most third party applications are accessible to some

degree. As complete compatibility in these applications will generally require extra

effort on the part of the programmer, it is unclear whether software developers will

support Apple’s Accessibility API. It is hoped that all applications developed and

60

supported by Apple will be completely compatible with the Accessibility API. With

a basic office application in AppleWorks, a web browser in the form of Safari and

chat and email client, the Apple software suite contains most applications required

by users. If all of these are accessible by the screen reader, a complete computer

experience can be provided to the vision-impaired user.

It is worth noting that the U.S. Government’s Section 508 standard will eventually

force software and hardware developers to make their products accessible to the

disabled. This will mean future software products from Apple and third-party

developers should have an increased in level of compliance with the Accessibility

API.

6.2. Future Work

With the basic design and program structure complete, future work on this project

will involve coding extra functionality into the AXStringProcessor class to allow

interaction with a wider range of user interface elements. This involves extending

the processing algorithm to search for other user interface elements and constructing

meaningful messages to convey to the user.

The user preference system needs to be developed and a convenient method of

changing settings implemented. This needs to be convenient for all users of the

screen reader. The screen reader also needs to be able to detect key presses (and

combinations of key presses) and map them to the keyboard shortcuts available in

the current active application.

61

The capturing of system events also needs to be implemented, possibly via kernel

extensions. This would allow the screen reader to be aware of messages boxes that

appear rather than relying on the user to discover them by chance. The speech

synthesis function of the screen reader also needs to be examined and methods of

extracting greater speech rates investigated.

A significant component of making Mac OS X accessible to the vision-impaired is

removing the dependency on the mouse for user input. Developing an add-on for

Mac OS X that allows the user to drive the graphical user interface using the

keyboard would improve accessibility significantly. This may be possible to

implement using a kernel extension.

The Parakeet screen reader requires an extensive program of testing and feedback if

it is to be developed into a useful product. This would involve testing Parakeet with

vision-impaired users of varying computer literacy, collecting feedback information

and observing usage patterns. This information would then need to be analysed and

the necessary changes made to the software.

62

REFERENCES

Apple Computer Inc. (2002). Making Your Carbon Application Accessible to Users

with Disabilities, Apple Computer Inc. Downloaded from

http://developer.apple.com/techpubs/macosx/Carbon/HumanInterfaceToolbo

x/Accessibility/accessibility.html in 2003.

Apple Computer Inc. (2002). Inside Mac OS X: The Objective-C Programming

Language, Apple Computer Inc. Downloaded from

http://developer.apple.com/ in 2003.

Apple Computer Inc. (2002). Inside Mac OS X: Speech Synthesis Manager

Reference, Apple Computer Inc. Downloaded from

http://developer.apple.com/ in 2003.

Apple Computer Inc. (2002). UNIX Porting Guide: An Overview of How to Bring

UNIX Applications to Mac OS X, Apple Computer Inc. Downloaded from

http://developer.apple.com/ in 2002.

Association for the Blind of W.A. (Inc), (2001). Understanding Blindness,

Association for the Blind of W.A. Downloaded from

http://www.abwa.asn.au/resources.html in 2003.

63

Davidson, J. D. & Apple Computer Inc. (2002). Learning Cocoa with Objective-C,

O’Reilly.

Evans, G. & Blenkhorn, P. (2002). Architectures of assistive software applications

for Windows-based computers, Journal of Network and Computer

Applications (online).

The GNOME Accessibility Project, The GNOME Project. Downloaded from

http://developer.gnome.org/projects/gap/ in 2003.

Graham, I. & Quin, L. (1999). XML Specification Guide, Wiley Computer

Publishing.

Lake, L. (2003). ALVA to Cease Development of outSPOKEN for Macintosh and

inLARGE for Macintosh, ALVA Access Group. Downloaded from

http://www.aagi.com/news/news.asp?44 in 2003.

Mates, B. (2000). Adaptive Technology for the Internet: Making Electronic

Resources Accessible to All, American Library Association.

Murray, I. (2000). Making IT Accessible, School of Electrical and Computer

Engineering, Curtin University of Technology. Downloaded from

http://www.ece.curtin.edu.au/~iain/webaccess/ in 2003.

64

Pinson, L.. & Wiener, R. (1991). Objective-C: Object-Oriented Programming

Techniques, Addison-Wesley Publishing Company.

Raman, T.V. (1997). Emacspeak: A Speech-Enabling Interface, Dr. Dobb’s Journal,

September 1997 (available online from http://www.ddj.com/).

65

A. APPENDIX A – OPERATING SYSTEM AND COMPILER VERSIONS

The software was developed concurrently on an Apple eMac (supplied as part of the

AUC grant) and an Apple Macintosh PowerBook G3. Both were running the same

version of the Mac OS X operating system, namely Mac OS X 10.2.6.

The software was developed and compiled using Apple’s Project Builder integrated

development environment. The version used was Project Builder 2.1 (December

2002 Developer Tools Edition). The components of the IDE are recorded in the

following table.

Component Version

PB IDE Revision 114.0

PB CODE Revision 112.0

ToolSupport Revision 110.0

Table 5: IDE Component Versions

The following table lists the versions of the compiler and debugger used by the

Project Builder IDE. It is worth noting that this software was developed using GCC

3.1, and has not been tested with the newer version of GCC (version 3.3) that is

included with the Mac OS X 10.3 (Panther) operating system.

66

Tool Version

gcc (GNU C Compiler) GCC version 1175, based on gcc version

3.1 20020420 (prerelease)

gdb (GNU Debugger) GNU gdb 5.3-20021014 (Apple version

gdb-250)

Table 6: Compiler and Debugger Versions

67

B. APPENDIX B – SOURCE CODE

B.1. AppShell.h

/*
 --

 File Name: AppShell.h
 Project: Parakeet
 Author: Greg Howell (with some help from Apple sample
code)
 Revision Date: 22/08/2003 (0.2)

 Description: AppShell object interface.
 --

*/

#import <Cocoa/Cocoa.h>
#import <Appkit/NSAccessibility.h>
#import "InspectorWindow.h"
#import "AXStringProcessor.h"

/*
 --

 AppShell interface
 --

*/
@interface AppShell : NSObject {
 // reference to the InspectorWindow object that we have
 // InspectorWindow is the interface window of Parakeet
 IBOutlet InspectorWindow * _inspectorWindow;

 // stores information for the current UI element selected
 AXUIElementRef _currentUIElementRef;
 AXUIElementRef _systemWideElement;

 // used to determine if the mouse has moved since the last timer-based
update
 Point _lastMousePoint;

 // speech channel used by TTS code
 SpeechChannel fCurSpeechChannel;
}

// class methods
+ (void)updateCurrentUIElement;
+ (NSString *)descriptionOfValue:(CFTypeRef)theValue
beingVerbose:(BOOL)beVerbose;
+ (NSString *)descriptionForUIElement:(AXUIElementRef)uiElement
attribute:(NSString *)name beingVerbose:(BOOL)beVerbose;
+ (NSString *)stringDescriptionOfAXValue:(CFTypeRef)valueRef
beingVerbose:(BOOL)beVerbose;
+ (id)valueOfExistingAttribute:(CFStringRef)attribute
ofUIElement:(AXUIElementRef)element;
+ (void)processAXString:(NSMutableString *)theAXString;

// instance methods

68

- (void)setCurrentUIElement:(AXUIElementRef)uiElement;
- (AXUIElementRef)currentUIElement;
- (void)performTimerBasedUpdate;
- (void)updateCurrentUIElement;
- (void)createNewSpeechChannel;
- (void)startSpeakingText;
- (void)speechIsDone;
- (void)setTTSString:(NSMutableString *)theTTSString;

@end

B.2. AppShell.m

/*
 --

 File Name: AppShell.m
 Project: Parakeet
 Author: Greg Howell (with some help from Apple sample
code)
 Revision Date: 22/08/2003 (0.2)

 Description: AppShell object implementation.
 Interrogates the Accessibility API and produces
strings to be spoken via the TTS API.
 --

*/

#import <Cocoa/Cocoa.h>
#import <AppKit/NSAccessibility.h>
#import <Carbon/Carbon.h>
#import "AppShell.h"
#import "Parakeet.h"

AppShell * gAppShell = NULL; // an AppShell object called
gAppShell, initialised to NULL
AXStringProcessor * _AXStringProcessor = NULL;

NSMutableString * lastTTSString; // state variable that stores the last
spoken string
NSMutableString * currentTTSString; // variable that stores the string to be
spoken
char * theTTSString; // string used to call the TTS
functions (a "C" string)

const UInt32 kShutupHotKeyIdentifier = 'sUIk';
const UInt32 kShutupHotKey = 109; // corresponds to F10 (and command key)

EventHotKeyRef gMyHotKeyRef; // hot key related object
EventHotKeyID gMyHotKeyID; // hot key related object
EventHandlerUPP gAppHotKeyFunction; // hot key related object

// prototype of the callback process that lets us know when the TTS has
finished
static pascal void OurSpeechDoneCallBackProc(SpeechChannel inSpeechChannel,
long inRefCon);

// prototype for the shutup hot-key handler
pascal OSStatus ShutupHotKeyHandler(EventHandlerCallRef nextHandler,
EventRef theEvent, void *userData);

@implementation AppShell

69

/*
 --

 updateCurrentUIElement
 --

*/
+ (void)updateCurrentUIElement
{
 [gAppShell updateCurrentUIElement];
}
/*
 --

 descriptionOfValue

 Deals with element title (eg. Mail) and role (eg. Application)
 --

*/
+ (NSString *)descriptionOfValue:(CFTypeRef)theValue
beingVerbose:(BOOL)beVerbose
{
 NSString * theValueDescString = NULL;

 if (theValue) {

 if (AXValueGetType(theValue) != kAXValueIllegalType) {
 theValueDescString = [AppShell
stringDescriptionOfAXValue:theValue beingVerbose:beVerbose];
 }
 else if (CFGetTypeID(theValue) == CFArrayGetTypeID()) {
 theValueDescString = [NSString stringWithFormat:@"<array of size
%d>", [(NSArray *)theValue count]];
 }
 else if (CFGetTypeID(theValue) == AXUIElementGetTypeID()) {

 NSString * uiElementRole = NULL;

 if (AXUIElementCopyAttributeValue((AXUIElementRef)theValue,
kAXRoleAttribute, (CFTypeRef *)&uiElementRole) == kAXErrorSuccess) {
 NSString * uiElementTitle = NULL;

 uiElementTitle = [AppShell
valueOfExistingAttribute:kAXTitleAttribute
ofUIElement:(AXUIElementRef)theValue];

 #if 0
 // hack to work around cocoa app objects not having titles
yet
 if (uiElementTitle == nil && [uiElementRole
isEqualToString:(NSString *)kAXApplicationRole]) {
 pid_t theAppPID = 0;
 ProcessSerialNumber theAppPSN = {0,0};
 NSString * theAppName = NULL;

 if (AXUIElementGetPid((AXUIElementRef)theValue,
&theAppPID) == kAXErrorSuccess
 && GetProcessForPID(theAppPID, &theAppPSN) ==
noErr
 && CopyProcessName(&theAppPSN, (CFStringRef
*)&theAppName) == noErr) {
 uiElementTitle = theAppName;
 }
 }
 #endif

70

 if (uiElementTitle != nil) {
 theValueDescString = [NSString stringWithFormat:@"<%@:
“%@”>", uiElementRole, uiElementTitle];
 }
 else {
 theValueDescString = [NSString stringWithFormat:@"<%@>",
uiElementRole];
 }
 [uiElementRole release];
 }
 else {
 theValueDescString = [(id)theValue description];
 }
 }
 else {
 theValueDescString = [(id)theValue description];
 }
 }
 return theValueDescString;
}

/*
 --

 descriptionForUIElement
 --

*/
+ (NSString *)descriptionForUIElement:(AXUIElementRef)uiElement
attribute:(NSString *)name beingVerbose:(BOOL)beVerbose
{
 NSString * theValueDescString = NULL;
 CFTypeRef theValue;
 CFIndex count;
 if (([name isEqualToString:NSAccessibilityChildrenAttribute]
 ||
 [name isEqualToString:NSAccessibilityRowsAttribute]
)
 &&
 AXUIElementGetAttributeValueCount(uiElement, (CFStringRef)name,
&count) == kAXErrorSuccess) {
 // No need to get the value of large arrays - we just display their
size.
 // We don't want to do this with every attribute because
AXUIElementGetAttributeValueCount
 // on non-array valued attributes will cause debug spewage.
 theValueDescString = [NSString stringWithFormat:@"<array of size
%d>", count];
 } else if (AXUIElementCopyAttributeValue (uiElement, (CFStringRef)name,
&theValue) == kAXErrorSuccess && theValue) {
 theValueDescString = [self descriptionOfValue:theValue
beingVerbose:beVerbose];
 }
 return theValueDescString;
}
/*
 --

 valueOfExistingAttribute
 --

*/
+ (id)valueOfExistingAttribute:(CFStringRef)attribute
ofUIElement:(AXUIElementRef)element
{
 id result = nil;

71

 NSArray *attrNames;

 if (AXUIElementCopyAttributeNames(element, (CFArrayRef *)&attrNames) ==
kAXErrorSuccess) {
 if ([attrNames indexOfObject:(NSString *)attribute] != NSNotFound
 &&
 AXUIElementCopyAttributeValue(element, attribute, (CFTypeRef
*)&result) == kAXErrorSuccess
) {
 [result autorelease];
 }
 [attrNames release];
 }
 return result;
}
/*
 --

 stringDescriptionOFAXValue
 --

*/
+ (NSString *)stringDescriptionOfAXValue:(CFTypeRef)valueRef
beingVerbose:(BOOL)beVerbose
{
 NSString *result = @"AXValue???";

 switch (AXValueGetType(valueRef)) {
 case kAXValueCGPointType: {
 CGPoint point;
 if (AXValueGetValue(valueRef, kAXValueCGPointType, &point)) {
 if (beVerbose)
 result = [NSString stringWithFormat:@"<AXPointValue x=%g
y=%g>", point.x, point.y];
 else
 result = [NSString stringWithFormat:@"x=%g y=%g",
point.x, point.y];
 }
 break;
 }
 case kAXValueCGSizeType: {
 CGSize size;
 if (AXValueGetValue(valueRef, kAXValueCGSizeType, &size)) {
 if (beVerbose)
 result = [NSString stringWithFormat:@"<AXSizeValue w=%g
h=%g>", size.width, size.height];
 else
 result = [NSString stringWithFormat:@"w=%g h=%g",
size.width, size.height];
 }
 break;
 }
 case kAXValueCGRectType: {
 CGRect rect;
 if (AXValueGetValue(valueRef, kAXValueCGRectType, &rect)) {
 if (beVerbose)
 result = [NSString stringWithFormat:@"<AXRectValue x=%g
y=%g w=%g h=%g>", rect.origin.x, rect.origin.y, rect.size.width,
rect.size.height];
 else
 result = [NSString stringWithFormat:@"x=%g y=%g w=%g
h=%g", rect.origin.x, rect.origin.y, rect.size.width, rect.size.height];
 }
 break;
 }
 case kAXValueCFRangeType: {
 CFRange range;

72

 if (AXValueGetValue(valueRef, kAXValueCFRangeType, &range)) {
 if (beVerbose)
 result = [NSString stringWithFormat:@"<AXRangeValue
pos=%ld len=%ld>", range.location, range.length];
 else
 result = [NSString stringWithFormat:@"pos=%ld len=%ld",
range.location, range.length];
 }
 break;
 }
 default:
 break;
 }
 return result;
}
/*
 --

 processAXString

 - Takes the output of the InspectorWindow displayInfoForUIElement
method.
 - Uses the AXStringProcessor object to process the string.
 - Sets the global currentTTSString with the string that
AXStringProcessor produces.

 - Coded by Greg Howell 01/09/2003, revised and added to 07/09/2003.
 - Revised by Greg Howell 21/09/2003 to use AXStringProcessor object.
 --

*/
+ (void)processAXString:(NSMutableString *)theAXString
{
 if(DEBUG_PARAKEET){printf("AppShell:processAXString\n");}

 [_AXStringProcessor setAXString:theAXString];
 [_AXStringProcessor processAXString];
 NSString * strToSpeak = [_AXStringProcessor returnAXString];

 if(DEBUG_PARAKEET){printf("AppShell:processAXString produced:
%s\n",(char *)[strToSpeak cString]);}
 currentTTSString = (NSMutableString *)strToSpeak;
}

/*
 --

 awakeFromNib

 - Executes when the application is loaded (nib file loaded).
 - Checks that the Accessibility APIs are turned on.
 - Sets up the application (key listening, TTS initialisation).
 --

*/
- (void)awakeFromNib
{
 EventTypeSpec eventType;

 // We first have to check if the Accessibility APIs are turned on. If
not, we have to tell
 // the user to do it (they'll need to authenticate to do it). If you
are an accessibility app
 // (i.e., if you are getting info about UI elements in other apps), the
APIs won't work unless
 // the APIs are turned on.
 if (!AXAPIEnabled ())

73

 {
 NSRunAlertPanel(@"Error",@"Please check the 'Enable access for
assistive devices' checkbox in the Universal Access System Preferences and
relaunch Parakeet.",@"OK",NULL,NULL);

// quit the application here as we cannot keep going from here
 [NSApp terminate:nil];
 }

 gAppShell = self;

 if(DEBUG_PARAKEET){printf("AppShell:awakeFromNib (DEBUGGING
ENABLED)\n");}

 _AXStringProcessor = [[AXStringProcessor alloc] init];
 [_AXStringProcessor reset];

 _systemWideElement = AXUIElementCreateSystemWide();

 gAppHotKeyFunction = NewEventHandlerUPP(ShutupHotKeyHandler);
 eventType.eventClass = kEventClassKeyboard;
 eventType.eventKind = kEventHotKeyPressed;
 InstallApplicationEventHandler(gAppHotKeyFunction, 1, &eventType, NULL,
NULL);
 gMyHotKeyID.signature = kShutupHotKeyIdentifier;
 gMyHotKeyID.id = 1;
 // unfortunately we cannot simply remove the "cmdKey" parameter from
this call
 // to make just F10 the key we are listening for
 RegisterEventHotKey(kShutupHotKey, cmdKey, gMyHotKeyID,
GetApplicationEventTarget(), 0, &gMyHotKeyRef);

 // set the lastTTString variable to an initial value so comparisons
further on don't fail
 // we need to "cast" our initialisation string as an NSMutableString
 // (this avoids a compiler warning but either way the code works fine?)
 // I have initialised with a dash character as this is unlikely to
conflict with any generated
 // strings when it comes to performing string comparisons
 // Greg Howell 15/08/2003
 lastTTSString = (NSMutableString *)@"-";

 // create a new speech channel to use
 [self createNewSpeechChannel];
 [self performTimerBasedUpdate];

 // initialise the start/stop state so that we start speaking as soon
 // as the application is launched
 [_inspectorWindow setStartStopState:TRUE];
}
/*
 --

 performTimerBasedUpdate

 - application uses timer based updates to check what is going on with
the user and the system
 --

*/
- (void)performTimerBasedUpdate
{
 [gAppShell updateCurrentUIElement];

 [NSTimer scheduledTimerWithTimeInterval:0.1 target:self
selector:@selector(performTimerBasedUpdate) userInfo:nil repeats:NO];
}
/*

74

 --

 setCurrentUIElement
 --

*/
- (void)setCurrentUIElement:(AXUIElementRef)uiElement
{
 if (uiElement)
 CFRetain(uiElement);

 if (_currentUIElementRef)
 CFRelease(_currentUIElementRef);

_currentUIElementRef = uiElement;
}
/*
 --

 currentUIElement
 --

*/
- (AXUIElementRef)currentUIElement
{
 return _currentUIElementRef;
}
/*
 --

 updateCurrentUIElement
 --

*/
- (void)updateCurrentUIElement
{
 // Point object
 Point pointAsCarbonPoint;

 // The current mouse position with origin at top left.
 GetMouse(&pointAsCarbonPoint);

 // Only ask for the UIElement under the mouse if has moved since the
last check.
 // Prevents unnecessary updating of information.
 if (pointAsCarbonPoint.h != _lastMousePoint.h || pointAsCarbonPoint.v !=
_lastMousePoint.v) {

 CGPoint pointAsCGPoint;
 AXUIElementRef newElement = NULL;

 pointAsCGPoint.x = pointAsCarbonPoint.h;
 pointAsCGPoint.y = pointAsCarbonPoint.v;

 // Ask Accessibility API for UI Element under the mouse
 // And update the display if a different UIElement
 if (AXUIElementCopyElementAtPosition(_systemWideElement,
pointAsCGPoint.x, pointAsCGPoint.y, &newElement) == kAXErrorSuccess &&
newElement && ([self currentUIElement] == NULL || ! CFEqual([self
currentUIElement], newElement))) {

 [self setCurrentUIElement:newElement];
 [_inspectorWindow displayInfoForUIElement:newElement];

 // display the current application name (GH)
 [_inspectorWindow setCurrentAppString:currentTTSString];
 // set the TTS string (GH)

75

 [self setTTSString:currentTTSString];
 }
 // Update _lastMousePoint
 _lastMousePoint = pointAsCarbonPoint;
 }
}

/*
 --

 createNewSpeechChannel

 - Create a new speech channel for the given voice spec. A nil voice
spec pointer
 causes the speech channel to use the default voice. Any existing
speech channel
 for this window is closed first.

 - Borrowed from Apple's Cocoa Speech Synthesis Example (24/07/2003)
 - Modified by Greg Howell (31/07/2003)
 --

*/
- (void)createNewSpeechChannel
{
 OSErr theErr = noErr;

 // Dispose of the current one, if it exists
 if (fCurSpeechChannel) {
 theErr = DisposeSpeechChannel(fCurSpeechChannel);
 if (theErr != noErr)
 NSRunAlertPanel(@"DisposeSpeechChannel", [NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL, NULL);

 fCurSpeechChannel = NULL;
 }

 // Create a speech channel
 if (theErr == noErr) {
 theErr = NewSpeechChannel(NULL, &fCurSpeechChannel);
 if (theErr != noErr)
 NSRunAlertPanel(@"NewSpeechChannel", [NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL, NULL);

}

// Setup our refcon to the document controller object so we have
access within our Speech callbacks

if (theErr == noErr) {
 theErr = SetSpeechInfo(fCurSpeechChannel, soRefCon, (Ptr)self);
 if (theErr != noErr)
 NSRunAlertPanel(@"SetSpeechInfo(soRefCon)", [NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL, NULL);

}

 if(DEBUG_PARAKEET){
 printf("AppShell:createNewSpeechChannel\n");
 }
}

/*
 --

 startSpeakingText

 - Speaks the text.

 - Modified code from Apple's Cocoa Speech Synthesis Example (24/07/2003)

76

 - Added ability to check start/stop TTS state information (20/08/2003)
 --

*/
- (void)startSpeakingText
{
 OSErr theErr = noErr; // store any errors that we might encounter

 // check if we can speak by accessing the start/stop TTS state stored
 // in the InspectorWindow object
 if ([_inspectorWindow getStartStopState] == TRUE){
 // set up the callback (TTS has finished)
 // this is done via the SetSpeechInfo method
 if (theErr == noErr){
 theErr = SetSpeechInfo(fCurSpeechChannel, soSpeechDoneCallBack,
OurSpeechDoneCallBackProc);
 if (theErr != noErr)

NSRunAlertPanel(@"SetSpeechInfo(soSpeechDoneCallBack)",[NSString
stringWithFormat:@"Error #%d returned.", theErr], @"Ok", NULL, NULL);
 }

 // speak the string
 // strlen only works on "C" strings
 theErr =
SpeakText(fCurSpeechChannel,theTTSString,strlen(theTTSString));
 }
}

/*
 --

 speechIsDone

 - This method is called by the OurSpeechDoneCallBackProc process.
 --

*/
- (void)speechIsDone
{
 // do nothing for the time being
 if(DEBUG_PARAKEET){
 printf("AppShell:speechIsDone\n");
 }
}

/*
 --

 setTTSString

 - Method to set the TTS string (calls the TTS routine if required)
 - Coded by Greg Howell (13/08/2003)
 --

*/
- (void)setTTSString:(NSMutableString *)stringToSpeak
{
 // declare local NSMutableString to store the last string spoken
 NSMutableString *tempLast = [[NSString alloc]
initWithString:lastTTSString];
 // declare local NSMutableString to store the next string to be spoken
 NSMutableString *tempNext = [[NSString alloc]
initWithString:stringToSpeak];

 // perform a comparison on the two strings
 BOOL bCompare = [tempLast isEqualToString:tempNext];

77

 // if they are the same we don't speak the string
 // this stops us repeating ourselves (as that gets a tad annoying)

 if (bCompare != TRUE){
 // convert the NSString provided into a "C" string
 // you need to call the cString method AND cast the result
 // as a (char *)
 theTTSString = (char *)[tempNext cString];

 // set the last string variable to the string we are about to say
 // could go in the SpeechIsDone method but we will do it here to
make sure
 // it happens
 lastTTSString = tempNext;

 // call startSpeakingText
 [self startSpeakingText];
 }

}

/*
 --

 toggleShutup

 - Called when the user activates our hot-key
 - Coded by Greg Howell (20/08/2003)
 --

*/
- (void)toggleShutup:(id)sender
{
 if ([_inspectorWindow getStartStopState] == TRUE)
 {
 [_inspectorWindow setStartStopState:FALSE]; // set to FALSE (shut
up)
 }
 else
 {
 [_inspectorWindow setStartStopState:TRUE]; // set to TRUE (stop
being shut up)
 }
}

@end

/*
 --

 OurSpeechDoneCallBackProc

 - Called by speech channel when all speech has been generated.
 - Modified code from Apple's Cocoa Speech Synthesis Example (24/07/2003)
 --

*/
pascal void OurSpeechDoneCallBackProc(SpeechChannel inSpeechChannel, long
inRefCon)
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
 // calls the AppShell method "speechIsDone" when TTS has completed
 [(AppShell *)inRefCon
performSelectorOnMainThread:@selector(speechIsDone) withObject:NULL
waitUntilDone:false];

78

 [pool release];
}
/*
 --

 ShutupHotKeyHandler

 - Called when the user activates our hot-key
 - Modified code from Apple's UIElementInspector Example (20/08/2003)
 --

*/
pascal OSStatus ShutupHotKeyHandler(EventHandlerCallRef nextHandler,
EventRef theEvent, void *userData){

 [NSTimer scheduledTimerWithTimeInterval:0.1 target:gAppShell
selector:@selector(toggleShutup:) userInfo:nil repeats:NO];

 return noErr;
}

B.3. AXStringProcessor.h

/*
 --

 File Name: AXStringProcessor.h
 Project: Parakeet
 Author: Greg Howell
 Revision Date: 21/09/2003 (0.2)

 Description: AXStringProcessor object interface.
 --

*/

#import <Foundation/Foundation.h>

@interface AXStringProcessor : NSObject {
 NSMutableString * stringToProcess; // current
string to process
 NSString * currentStringProduced; // current
string produced by object
 NSString * lastStringProduced; // last string
produced by object
}
- (void)setAXString:(NSMutableString *)newString; // set the AXString to
be processed
- (void)processAXString; // process the
AXString
- (NSString *)returnAXString; // return
processed result
- (void)reset; // reset the
internal variables of the object
- (NSString *)extractAXValue:(NSString *)sourceString; // extract
the AX value from a string
- (BOOL)lineIsEmpty:(NSString *)lineToTest; // utility method to
test for empty string
- (void)processAXHierarchy:(NSString *)passedString; // process the
hierarchy part of the AX info
- (void)processAXAttributes:(NSString *)passedString; // process the
attributes part of the AX info
- (void)processAXRemaining:(NSString *)passedString; // process the

79

remaining part of the AX info

@end

B.4. AXStringProcessor.m

/*
 --

 File Name: AXStringProcessor.m
 Project: Parakeet
 Author: Greg Howell
 Revision Date: 21/09/2003 (0.2)

 Description: AXStringProcessor object implementation.
 --

*/

#import "AXStringProcessor.h"
#import "Parakeet.h"

NSString * smartQuoteLeft = @"\322"; // Note that \322 is the code
for the opening smart
NSString * smartQuoteRight = @"\323"; // quote and \323 the code for
the closing smart quote

@implementation AXStringProcessor

/*
 --

 Method Name: setAXString
 Parameters: NSMutableString object
 Returns: None

 - Instance method for setting the string to process.
 --

*/
- (void)setAXString:(NSMutableString *)newString
{
 [newString retain]; // keep the string we are
passed
 [stringToProcess release]; // release the previous string
 stringToProcess = newString; // store the passed string
 if(DEBUG_PARAKEET){printf("AXStringProcessor:setAXString\n");}
}

/*
 --

 Method Name: processAXString
 Parameters: None
 Returns: None

 - Instance method that produces the string to be returned.
 --

*/
- (void)processAXString
{
 if(DEBUG_PARAKEET){printf("AXStringProcessor:processAXString\n");}

80

 [self processAXHierarchy:stringToProcess];
}

/*
 --

 Method Name: returnAXString
 Parameters: None
 Return Value: NSString object

 - Instance method that returns the produced string.
 --

*/
- (NSString *)returnAXString
{
 if(DEBUG_PARAKEET){printf("AXStringProcessor:returnAXString\n");}
 return currentStringProduced;
}

/*
 --

 Method Name: reset
 Parameters: None
 Returns: None

 - Instance method that resets the object.
 --

*/
- (void)reset
{
 [currentStringProduced release]; // reset the
currentStringProduced object
 currentStringProduced = @"";

 [stringToProcess release]; // reset the
stringToProcess object
 stringToProcess = (NSMutableString *)@"";

 [lastStringProduced release]; // reset the
lastStringProduced object
 lastStringProduced = @"";

 if(DEBUG_PARAKEET){printf("AXStringProcessor:reset\n");}
}

/*
 --

 Method Name: extractAXValue
 Parameters: NSString object
 Returns: NSString object

 - Instance method that extracts a key out of an AX string.
 - Passed an NSString object.
 - String between the smart quotes in the passed string is extracted and
returned.

 - Coded by Greg Howell 22/09/2003
 --

*/
- (NSString *)extractAXValue:(NSString *)sourceString
{
 NSRange startRange; // used to locate the starting

81

quote
 NSRange endRange; // used to locate the ending
quote
 NSRange outputRange; // used to select the AX key value
 NSString * stringToExtractFrom; // stores the string that is passed to
the method
 NSString * valueToReturn; // stores the string that the
method is going to return
 int lengthOfInput; // length of the passed string

 stringToExtractFrom = sourceString; // store
passed string
 lengthOfInput = 0; // initialize
length
 lengthOfInput = [stringToExtractFrom length]; // store length of
passed input

 if (lengthOfInput > 0) { // check that
the passed string is of valid length
 startRange = [stringToExtractFrom rangeOfString:smartQuoteLeft]; //
get start quote location
 endRange = [stringToExtractFrom rangeOfString:smartQuoteRight]; //
get end quote location

 if((startRange.length < 0) && (endRange.length < 0)){
 valueToReturn = @"";
 }
 else{
 outputRange.location = startRange.location + 1; // compute value
location
 outputRange.length = endRange.location - startRange.location -
1; // compute value length

 if (outputRange.length > 0){ // ensure that we are not going
to return garbage
 valueToReturn = [stringToExtractFrom
substringWithRange:outputRange];
 }
 else{
 valueToReturn = @""; // return empty string if
result is nothing
 }
 }
 }
 else{
 valueToReturn = @""; // return empty string if input
is empty string
 }

 return valueToReturn; // return string to calling method
}

/*
 --

 Method Name: lineIsEmpty
 Parameters: NSString object
 Returns: BOOL object

 - Instance method tests if a string object (line in this application) is
empty.
 - Passed an NSString object to test.

 - Coded by Greg Howell 23/09/2003
 --

*/

82

- (BOOL)lineIsEmpty:(NSString *)lineToTest
{
 NSString * stringPassed; // string to store
passed object
 stringPassed = lineToTest; // store what we are
passed

 if ([stringPassed isEqualToString:@""]){ // test for equality to the
empty string object
 return TRUE; // return true if
equality returns true
 }
 else if([stringPassed isEqualToString:@" "]){
 return TRUE;
 }
 else{
 return FALSE; // return false
otherwise
 }
}

/*
 --

 Method Name: processAXHierarchy
 Parameters: NSString object
 Returns: None

 - Processes the "hierarchy" section of the data returned by the
Accessibility API.
 - Breaks the data into an array.
 - Loops through the array until it reaches an empty row.
 - Checks for various tags and constructs the string to speak to the
user.
 - Provides the "intelligence" (dim as it may be) for Parakeet.

 - Coded by Greg Howell 23/09/2003, revised 14/10/2003
 --

*/
- (void)processAXHierarchy:(NSString *)passedString
{
 int rowBeingProcessed; // the line
of the array we are processing
 NSString * lineToProcess; //
the contents of the line of the array we are processing
 BOOL keepGoing; //
flag used in the while loop
 NSRange searchRange; // utility
search range
 N S M u t a b l e S t r i n g * s t r i n g T o R e t u r n = (N S M u t a b l e S t r i n g *)@""; // string
that we are producing
 // (note the strange way of initialising an NSMutableString - looks very
dodgy - GH 24/09/2003)

 NSString * stringAppName; //
application name
 BOOL bInDock; // flag to
indicate we are in the Dock application
 BOOL bInFinder; //
flag to indicate we are in the Finder application
 BOOL bInMenuBar; //
flag to indicate we are in the Menu Bar area

 NSMutableString * menuInfo = (NSMutableString *)@""; // string to
store info about the child menu object

83

 keepGoing = TRUE; //
initialisation section
 rowBeingProcessed = 0;
 N S A r r a y * A X D a t a A r r a y = [(N S S t r i n g *) p a s s e d S t r i n g
componentsSeparatedByString:@"\n"];
 bInDock = FALSE;
 bInMenuBar = FALSE;

 if(DEBUG_PARAKEET){printf("AXStringProcessor:processAXHieracrhy (%i rows
of text to process)\n", [AXDataArray count]);}

 while(keepGoing){
 lineToProcess = [AXDataArray objectAtIndex:rowBeingProcessed];

 if([self lineIsEmpty:lineToProcess]){
 keepGoing = FALSE;
 }
 else{
 // ---
---------------- AXApplication
 searchRange = [lineToProcess rangeOfString:@"AXApplication"];
 if(searchRange.length){
 s t r i n g A p p N a m e = (N S M u t a b l e S t r i n g *) [self
extractAXValue:lineToProcess];

 bInDock = [stringAppName isEqualToString:@"Dock"];
 bInFinder = [stringAppName isEqualToString:@"Finder"];

 s t r i n g T o R e t u r n = (N S M u t a b l e S t r i n g *) [(N S S t r i n g
*)stringToReturn stringByAppendingString:stringAppName];
 s t r i n g T o R e t u r n = (N S M u t a b l e S t r i n g *) [(N S S t r i n g
*)stringToReturn stringByAppendingString:@" "];
 }
 // ---
---------------- AXWindow
 searchRange = [lineToProcess rangeOfString:@"AXWindow"];
 if(searchRange.length){
 s t r i n g T o R e t u r n = (N S M u t a b l e S t r i n g *) [(N S S t r i n g
*)stringToReturn stringByAppendingString:@" "];
 if(!(bInFinder)){
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:(NSMutableString *)[self
extractAXValue:lineToProcess]];
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:@" window "];
 }
 }
 // ---
---------------- AXMenuBar
 searchRange = [lineToProcess rangeOfString:@"AXMenuBar"];
 if(searchRange.length){
 bInMenuBar = TRUE;
 menuInfo = (NSMutableString *)@"";
 menuInfo = (NSMutableString *)[(NSString *)menuInfo
s t r i n g B y A p p e n d i n g S t r i n g : (N S M u t a b l e S t r i n g *) [s e l f
extractAXValue:lineToProcess]];
 menuInfo = (NSMutableString *)[(NSString *)menuInfo
stringByAppendingString:@" menu bar "];
 }
 // ---
---------------- AXMenu
 searchRange = [lineToProcess rangeOfString:@"AXMenu"];
 if(searchRange.length){
 bInMenuBar = TRUE;
 menuInfo = (NSMutableString *)@"";
 menuInfo = (NSMutableString *)[(NSString *)menuInfo

84

s t r i n g B y A p p e n d i n g S t r i n g : (N S M u t a b l e S t r i n g *) [s e l f
extractAXValue:lineToProcess]];
 menuInfo = (NSMutableString *)[(NSString *)menuInfo
stringByAppendingString:@" menu "];
 }
 // ---
---------------- AXMenuItem
 searchRange = [lineToProcess rangeOfString:@"AXMenuItem"];
 if(searchRange.length){
 bInMenuBar = TRUE;
 menuInfo = (NSMutableString *)@"";
 menuInfo = (NSMutableString *)[(NSString *)menuInfo
s t r i n g B y A p p e n d i n g S t r i n g : (N S M u t a b l e S t r i n g *) [s e l f
extractAXValue:lineToProcess]];
 menuInfo = (NSMutableString *)[(NSString *)menuInfo
stringByAppendingString:@" menu item "];
 }
 // ---
---------------- AXButton
 searchRange = [lineToProcess rangeOfString:@"AXButton"];
 if(searchRange.length){
 if(bInDock){
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:@" launch "];
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:(NSMutableString *)[self
extractAXValue:lineToProcess]];
 }
 else{
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:@" "];
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:(NSMutableString *)[self
extractAXValue:lineToProcess]];
 stringToReturn = (NSMutableString *)[(NSString
*)stringToReturn stringByAppendingString:@" button "];
 }
 }
 // ---

 rowBeingProcessed = rowBeingProcessed + 1;
 }
 }

 // add the menu information if we are in the menu bar
 if(bInMenuBar){
 stringToReturn = (NSMutableString *)@"";
 stringToReturn = (NSMutableString *)[(NSString *)stringToReturn
stringByAppendingString:menuInfo];
 }

 // return the string we have produced
 currentStringProduced = (NSString *)stringToReturn;
}
/*
 --

 Method Name: processAXAttributes
 Parameters: NSString object
 Returns: None

 -
 --

*/
- (void)processAXAttributes:(NSString *)passedString
{

85

 // not coded yet
}

/*
 --

 Method Name: processAXRemaining
 Parameters: NSString
 Returns: None

 -
 --

*/
- (void)processAXRemaining:(NSString *)passedString
{
 // not coded yet
}

@end

B.5. InspectorWindow.h

/*
 --

 File Name: InspectorWindow.h
 Project: Parakeet
 Author: Greg Howell (with some help from Apple sample
code)
 Revision Date: 22/08/2003 (0.2)

 Description: InspectorWindow object interface.
 --

*/

#import <Cocoa/Cocoa.h>
#import <Appkit/NSAccessibility.h>

/*
 --

 InspectorWindow interface
 --

*/

@interface InspectorWindow : NSPanel
{
 IBOutlet NSTextView * _consoleView; // the large NSTextView
displaying the current element's info
 IBOutlet NSTextView * _currentApp; // displays the current
application
 BOOL boolAudibleState; // if TRUE we are speaking, if FALSE we
are not
}

// instance methods
- (void)setCurrentAppString:(NSMutableString *)currentApp;
- (void)setStartStopState:(BOOL)onoff;
- (BOOL)getStartStopState;
- (void)displayInfoForUIElement:(AXUIElementRef)uiElement;

86

- (NSString *)stringDescriptionOfUIElement:(AXUIElementRef)inElement;
- (NSString *)stringDescriptionOfCFArray:(NSArray *)inArray;

// instance methods for the interface elements
- (IBAction)stopButtonPressed:(id)sender;
- (IBAction)startButtonPressed:(id)sender;

@end

B.6. InspectorWindow.m

/*
 --

 File Name: InspectorWindow.m
 Project: Parakeet
 Author: Greg Howell (with some help from Apple sample
code)
 Revision Date: 22/08/2003 (0.2)

 Description: InspectorWindow object implementation.
 --

*/

#import <Cocoa/Cocoa.h>
#import <Carbon/Carbon.h>
#import "AppShell.h"
#import "InspectorWindow.h"
#import "Parakeet.h"

@implementation InspectorWindow
/*
 --

 awakeFromNib
 --

*/
- (void)awakeFromNib
{
 // We're using Cocoa's mouseMoved: message to trigger updating
 //[self setAcceptsMouseMovedEvents:true];
}
/*
 --

 setCurrentAppString
 --

*/
- (void)setCurrentAppString:(NSMutableString *)currentApp
{
 [_currentApp setString:currentApp];
 [_currentApp display];
}
/*
 --

 setStartStopState
 --

*/

87

- (void)setStartStopState:(BOOL)onoff
{
 // set the global boolAudibleState to onoff, the variable
 // passed to the method
 boolAudibleState = onoff;
}
/*
 --

 getStartStopState
 --

*/
- (BOOL)getStartStopState
{
 return boolAudibleState;
}

/*
 --

 mouseMoved
 --

*/
- (void)mouseMoved:(NSEvent *)theEvent
{
 // Tell AppShell that the mouse moved
 // mouseMoved is used to trigger updating
 [AppShell updateCurrentUIElement];
}
/*
 --

 displayInfoForUIElement
 --

*/
- (void)displayInfoForUIElement:(AXUIElementRef)uiElement
{
 NSString *temp = [[NSString alloc] initWithString:[self
stringDescriptionOfUIElement:uiElement]];

 [_consoleView setString:temp];
 [_consoleView display];
 [AppShell processAXString:(NSMutableString *)temp];
}
/*
 --

 lineageOfUIElement
 --

*/
- (NSArray *)lineageOfUIElement:(AXUIElementRef)element{
 NSArray *lineage = [NSArray array];
 NSString *elementDescr = [AppShell descriptionOfValue:element
beingVerbose:NO];
 AXUIElementRef parent = (AXUIElementRef)[AppShell
valueOfExistingAttribute:kAXParentAttribute ofUIElement:element];

 if (parent != NULL) {
 lineage = [self lineageOfUIElement:parent];
 }
 return [lineage arrayByAddingObject:elementDescr];
}
/*

88

 --

 lineageDescriptionOfUIElement
 --

*/
- (NSString *)lineageDescriptionOfUIElement:(AXUIElementRef)element {
 NSMutableString *result = [NSMutableString string];
 NSMutableString *indent = [NSMutableString string];
 NSArray *lineage = [self lineageOfUIElement:element];
 NSString *ancestor;
 NSEnumerator *e = [lineage objectEnumerator];
 while (ancestor = [e nextObject]) {
 [result appendFormat:@"%@%@\n", indent, ancestor];
 [indent appendString:@" "];
 }
 return result;
}
/*
 --

 stringDescriptionOfUIElement
 --

*/
- (NSString *)stringDescriptionOfUIElement:(AXUIElementRef)inElement
{
 NSMutableString * theDescriptionStr = [[NSMutableString new]
autorelease];
 NSArray * theNames;
 CFIndex nameIndex;
 CFIndex numOfNames;

 [theDescriptionStr appendFormat:@"%@", [self
lineageDescriptionOfUIElement:inElement]];

 //
 // Display attributes
 //
 AXUIElementCopyAttributeNames(inElement, (CFArrayRef *)&theNames);
 if (theNames) {

 numOfNames = [theNames count];

 if (numOfNames)
 [theDescriptionStr appendString:@"\nAttributes:\n"];

 for(nameIndex = 0; nameIndex < numOfNames; nameIndex++) {

 NSString * theName = NULL;
 id theValue = NULL;
 Boolean theSettableFlag = false;

 // Grab name
 theName = [theNames objectAtIndex:nameIndex];

 // Grab settable field
 AXUIElementIsAttributeSettable(inElement,
(CFStringRef)theName, &theSettableFlag);

 // Add string
 [theDescriptionStr appendFormat:@" %@%@: “%@”\n", theName,
(theSettableFlag?@" (W)":@""), [AppShell descriptionForUIElement:inElement
attribute:theName beingVerbose:false]];

 [theValue release];
 }

89

 [theNames release];
 }

 //
 // Display actions
 //
 AXUIElementCopyActionNames(inElement, (CFArrayRef *)&theNames);
 if (theNames) {

 numOfNames = [theNames count];

 if (numOfNames)
 [theDescriptionStr appendString:@"\nActions:\n"];

 for(nameIndex = 0; nameIndex < numOfNames; nameIndex++) {

 NSString * theName = NULL;
 NSString * theDesc = NULL;

 // Grab name
 theName = [theNames objectAtIndex:nameIndex];

 // Grab description
 AXUIElementCopyActionDescription(inElement, (CFStringRef)theName,
(CFStringRef *)&theDesc);

 // Add string
 [theDescriptionStr appendFormat:@" %@ - %@\n", theName,
theDesc];

 [theDesc release];
 }

 [theNames release];
 }

 return theDescriptionStr;
}
/*
 --

 stringDescriptionOfCFArray
 --

*/
- (NSString *)stringDescriptionOfCFArray:(NSArray *)inArray
{

 NSMutableString * theDescriptionStr = [[NSMutableString new]
autorelease];
 CFIndex theIndex;
 CFIndex numOfElements = [inArray count];

 [theDescriptionStr appendFormat:@"{"];

 for(theIndex = 0; theIndex < numOfElements; theIndex++) {

 id theObject = [inArray objectAtIndex:theIndex];

 if (CFGetTypeID(theObject) == CFDictionaryGetTypeID()) {

 if (theIndex == 0)
 [theDescriptionStr appendFormat:@"(<UI Element: %d>)",
theObject];
 else
 [theDescriptionStr appendFormat:@", (<UI Element: %d>)",

90

theObject];
 }
 else {
 if (theIndex == 0)
 [theDescriptionStr appendFormat:@"%@", [inArray
objectAtIndex:theIndex]];
 else
 [theDescriptionStr appendFormat:@", %@", [inArray
objectAtIndex:theIndex]];
 }
 }

 [theDescriptionStr appendFormat:@"}"];

 return theDescriptionStr;
}
/*
 --

 close
 --

*/
- (void)close
{
 [super close];
 [NSApp terminate:NULL];
}
/*
 --

 stopButton
 --

*/
- (IBAction)stopButtonPressed:(id)sender
{
 [self setStartStopState:FALSE];
 if(DEBUG_PARAKEET){
 printf("InspectorWindow:stopButtonPressed (STOP)\n");
 }
}
/*
 --

 startButton
 --

*/
- (IBAction)startButtonPressed:(id)sender
{
 [self setStartStopState:TRUE];
 //[StartButton setEnabled:true];
 if(DEBUG_PARAKEET){
 printf("InspectorWindow:startButtonPressed (START)\n");
 }
}
@end

B.7. Parakeet.h

/*
 --

91

 File Name: Parakeet.h
 Project: Parakeet
 Author: Greg Howell
 Revision Date: 22/08/2003 (0.2)

 Description: Parakeet header file.
 Includes header information common to the
application as a whole.
 --

*/

// Setting DEBUG_PARAKEET to TRUE allows Parakeet to print debugging
// information to the run window in Project Builder
// Setting DEBUG_PARAKEET to FALSE turns this feature off
// Just remember to turn it off before you compile a public release
version....
#define DEBUG_PARAKEET TRUE

B.8. Parakeet_Prefix.h

/*
 --

 File Name: Parakeet_Prefix.h
 Project: Parakeet
 Author: Greg Howell
 Revision Date: 01/08/2003 (0.1)

 Description: Prefix header for all source files of the 'Parakeet'
target in the
 'Parakeet' project. Compiled first (compiles the
Cocoa headers).
 --

*/

#ifdef __OBJC__
 #import <Cocoa/Cocoa.h>
#endif

B.9. main.m

/*
 --

 File Name: main.m
 Project: Parakeet
 Author: Greg Howell
 Revision Date: 23/07/2003 (0.1)

 Description: Standard main function.
 Generated by Project Builder, documented by Greg
Howell
 --

*/

92

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])
{
 // NSApplication loads the GUI stored in the MainMenu.nib file.
 // MainMenu.nib file then loads the AppShell class and the program
starts.
 // awakeFromNib method is then called in the AppShell class
 // (At least I think that is how it works!)
 return NSApplicationMain(argc, argv);
}

B.10. InfoPlist.strings

/* Localized versions of Info.plist keys */

CFBundleName = "Parakeet";
CFBundleShortVersionString = "Parakeet v 0.2";
CFBundleGetInfoString = "Parakeet v 0.2, Copyright 2003 Greg Howell & Iain
Murray.";
NSHumanReadableCopyright = "Copyright 2003 Greg Howell & Iain Murray.";

93

C. APPENDIX C – CONTENTS OF THE CD-ROM

The CD-ROM attached to this report is compatible with Mac OS X systems. The

Project Builder software is required to open the project files for Parakeet. Refer to

Appendix A for a listing of the software versions used.

The CD-ROM contains:

• An electronic copy of this report

• The source code and project files for the Parakeet screen-reader project

• A compiled Parakeet application including README file

