[image: image9.png]Curtin

University of Technology

Grade 2 Braille-Print Translation on the OMAP Microprocessor
by
Shannon Thrower

A thesis submitted for the degree of

Bachelor of Engineering in Computer Systems Engineering
November 2005
[image: image10.png]

 Department Of Electrical And Computer Engineering

[image: image11.jpg]

[image: image12.png]

[image: image13.png]

Synopsis
This thesis details the development of software to perform the translation of Grade 2 Braille to and from print and the implementation of this software on the OMAP microprocessor which will be used to control a Braille Typewriter. The Rehabilitative Engineering and Assistive Technologies Laboratory has been awarded a grant to produce this typewriter which is aimed at assisting the communication between blind and non-Braille fluent people. The software developed is essentially a translation engine which can be used with a variety of input and output devices that the Braille Typewriter may use.

Shannon Thrower
45 Ledger Rd,

Gooseberry Hill, WA, 6076

November 4, 2005
Professor Syed Islam

Head of Department

Department of Electrical and Computer Engineering

Curtin University of Technology

Bentley WA 6102

Dear Professor Islam,

I am pleased to present this thesis entitled “Grade 2 Braille-Print Translation on the OMAP Microprocessor” as part of the requirements for the degree of Bachelor of

Engineering, majoring in Computer Systems Engineering. This is entirely my own work outside of the acknowledgements given.
Yours faithfully,

Shannon Thrower

Acknowledgements

I would like to thank my supervisor Mr. Iain Murray for his guidance and support throughout this project.

I would also like to thank Chris Moore, the Development Engineer for the Braille Typewriter project for his valuable information.

Contents

iSynopsis

iiiAcknowledgements

viList of Figures

viiList of Tables

11
Introduction

11.1
The nature of the problem

31.2
Aim of the project

51.3
Thesis structure

72
Evolution of Computerised Braille Translation

72.1
Braille Representation

72.1.1
The Braille Code

102.1.2
Computer Braille

112.2
Current trends in Braille-Print translation

112.2.1
Introduction

132.2.2
Finite-State Syntax-Directed Translation

152.2.3
The Markov System

162.2.4
Segment Translation System

172.2.5
Blenkhorn Algorithms

203
Detailed Requirements

203.1
Requirements Analysis

213.2
Proposed Solution

244
Development and Implementation

244.1
The translation algorithms

244.1.1
Explanation of the algorithms

274.1.1.1
The Focus Field

274.1.1.2
The Input Class Field, State Field and Decision Table

304.1.1.3
The Context Fields

314.1.2
Activity Diagram

324.1.3
An example translation

354.2
Implementation on the OMAP microprocessor

354.2.1
Program Development with the OSK5912 Development Board

394.2.2
Programming for an Embedded Environment

475
Verification and Results

526
Recommendations and Conclusions

526.1
Concluding Remarks

536.2
Considerations for Future Development

557
References

59Appendix A – Project Plan

60Appendix B – Computer Braille

63Appendix C – Rules for Forward Translation

74Appendix D – Rules for Backward Translation

79Appendix E – Source Code for Forward Translation

89Appendix F – Source Code for Backward Translation

List of Figures

Figure 2.1 – Braille Cell Numbering…………………………………………………8
Figure 2.2 – Braille Cell for the Letter M…………………………………………….8
Figure 2.3 – A Generic Translation……………………………………………...….13
Figure 4.1 – Pseudo code for the Translation Algorithms…………………………..26
Figure 4.2 – Example of the Changing Window Size……………………………....27
Figure 4.3 – Activity Diagram for Translation Programs…………………………...32
Figure 4.4 - A Subset of Rules for Backwards Translation……………………...….33
Figure 0.1 – Block Diagram of the OMAP Microprocessor………………………...36
Figure 0.2 – Block Diagram of the OSK5912 Development Board………………...37
Figure 0.3 – Host/OSK5912 Configuration for ARM Development…………….….38
Figure 0.4 - High Level Memory Map of the OMAP……………………………….39
Figure 0.5 – Data Structure for Forward Translation……………………………….42
Figure 0.6 – Representation of Linked Lists Accessed through an Array…………43
Figure 0.7 - Pseudo Code for Generating the Rules Linked Lists…………………45

List of Tables
Table 2.1 – Relationship between Print, Braille and Computer Braille……….…….11
Table 4.1 – Decision Table for Forward Translation…………………….………….29
Table 4.2 – Decision Table for Backward Translation…………………………..….29
Table 4.3 – Context Wildcards for Forward Translation……………………...…….30
Table 4.4 – Context Wildcards for Backward Translation………………………….30
Table 0.1 - Translation Accuracy for Three Texts………………….……………….49

1 Introduction

1.1 The nature of the problem

Braille is a method of representing characters through a pattern of raised dots so that they can be read through touch. While it was originally developed as a means for soldiers to read communications at night without the need for lighting which could expose their position, Braille has now been adopted as the standard form of written communication for visually impaired people.
Written communication between two people is an easy task provided they can both read and write the same language. However if this communication is between a sighted and a blind person problems can arise if the sighted person does not understand Braille. A translator is needed to convert a print message to Braille so that a blind person can read it or alternatively to convert a Braille message to print so that a sighted person can read it. This translation between Braille and print is not a simple task as Braille is essentially as shorthand representation of English, consequently there are many rules governing when abbreviations or contractions may be used.

For this reason several approaches to computerised Braille-Print translation have been developed. There has been software programs developed for general purpose computers. The problem with these programs is that their main output is a display on a computer monitor and consequently they remain somewhat inaccessible to blind people. A dedicated device was needed to provide a system that could be easily used by both blind and sighted people on a regular basis.
Such a device is under development by the Rehabilitative Engineering and Assistive Technologies Laboratory at Curtin University. This device, or Brailler, is aimed at aiding the written communication between visually impaired and non-Braille fluent people. The Brailler will have both a Braille keyboard and standard Qwerty keyboard attached to it, allowing users to input either Braille or print. The Braille or print input may also come from a removable storage device such as USB thumb drives to allow the translation of files from other sources. This input may then be translated and printed or embossed. Translating print to Braille is termed Forward Translation while Backward Translation is the translation of Braille back to print. Alternatively the input may be stored for later use or be transferred to a portable storage device for use on another computing system. The Brailler will also have speech synthesis capabilities which will enable text to be read aloud for a blind person to listen to as well as provide vital statistics about the device such as a low battery or end of page.
Although similar Braillers are commercially available these devices tend to be upwards of $2500 US and can lack some of the features mentioned above. The aim of the Brailler is that it be extremely versatile and easy to use, retain all the functionality of the more expensive commercial products but cost less than $1000. The Brailler is intended for personal use and not large scale literary translations for publication and hence would benefit any blind or non-Braille fluent people who have a need to produce either Braille or print documents. Blind students who would typically need to send their work to a translator to be translated to print before being sent on to a teacher for grading would greatly benefit from the speed and ease at which their work could be translated by the Brailler.
The device would also allow the simultaneous use of the Braille and Qwerty keyboards to aid communication with the Deaf Blind. A Deaf Blind person’s only form of communication is though touch and consequently a conversation can be quite a problem. To facilitate this, the Brailler will be able to read aloud or print a translated input from the Braille keyboard while simultaneously embossing a translated input from the Qwerty keyboard.
The Brailler is to be an embedded system, performing the specific tasks outlined above in a stand alone environment. The software and hardware of the device is under various stages of design and construction by students and staff of Curtin University. Of concern to this project was the development of software to perform both Forward and Backward Translation of Grade 2 contracted Braille. To be successful the software was required to translate with a certain degree of accuracy and be executable on the Texas Instruments OMAP microprocessor which will be controlling the Brailler. Other software and hardware development for the Brailler was not of concern to this project.

1.2 Aim of the project

A Braille character consists of a combination of up to six embossed dots. This limits the Braille alphabet to 64 characters, much less than that of the English alphabet which has many punctuation and special characters. As a result there are several grades of Braille each with varying degrees of complexity. This problem is further discussed in section 2.1.1. Grade 2 Braille is the most common form of Braille and hence was the form to be considered for the Braille-Print translation.
Due to the complexities of Grade 2 Braille-Print Translation, there have been many algorithms developed to attempt to correctly and efficiently translate Braille to print and vice versa. Selecting an algorithm that could perform the translation correctly for all words and phrases, as well as being sufficiently fast and compact was central to the success of the project. Two algorithms needed to be developed, one for the forward translation and another for the backward translation. These algorithms are notably different with historically more focus being placed of forward translation for literary material.
While there have been many Braille-Print translators developed for general purpose computers, it was the task of this project to develop a translator for an embedded system. This limited the software somewhat as it needed to be reasonably compact yet also efficient and accurate.
The translation algorithm was vital to the success of this project. Not only did it have to execute in the prescribed embedded environment but it needed to operate efficiently to produce accurate translations. Papers written on translation algorithms showed that developing algorithms was a difficult task, often taking a very long time to develop and refine. Consequently many existing algorithms were examined for suitability. Many of these algorithms have been develop right through to the stage of executable programs. Rather than developing another program it was decided to examine some of these existing open source programs for suitability to the project and then possibly implement the best of these. Unfortunately these open source programs generally had multiple authors and were quite complex with little or no documentation. This made them very difficult to understand and almost impossible to alter and refine for the particular requirements of the project.
Two pseudo code algorithms developed by Blenkhorn (1995, 1997) were eventually chosen. Although these algorithms were not implemented to the stage of a compliable and executable program such as most other algorithms, they were far superior as they enabled a concise program to be written which could be tailored for the project.
Since this was to be an embedded system is was essential that the translation software could run on the microprocessor used to control the system. This microprocessor was the OMAP5912 developed by Texas Instruments. This microprocessor runs a Linux kernel and to execute, the software had to be developed in ANSI C. While this processor has ample memory and performance capabilities for the translation software to run, embedded software techniques such as minimising memory usage and complex instructions such as floating point arithmetic were avoided wherever possible. This placed minimal demand on the processor meaning it could devote more resources to other functions it may eventually need to support.
1.3 Thesis structure

This thesis begins with a brief illustration of the complexities involved in Braille-print translation. Chapter 2 outlines an assessment of current trends in Braille-Print Translation and explains the broad approaches that have been taken in performing these translations. A detailed explanation of the requirements of the project is provided in chapter 3 while chapter 4 explores the algorithms ultimately chosen, how they were written in ANSI C and implemented on the OMAP microprocessor. The accuracy of the translations is tested and reported in chapter 5 with recommendations and conclusions in chapter 6.

2 Evolution of Computerised Braille Translation
2.1 Braille Representation
2.1.1 The Braille Code
While most people have heard of Braille, few understand its complexities any why Braille-Print Translation is not as simple as first thought. This section gives a brief description of Grade 2 Braille and attempts to alert the reader to some of the issues needing to be considered in computerised Braille translation.
Braille characters are represented by cells of embossed or raised dots. Each cell may have a combination of six dots which are formed into two rows of three. An eight dot Braille variant does exist but is not widespread. The combination of raised dots denotes a particular Braille character. Each dot is given a number as shown in Figure 2.1. In this way Braille characters can be written numerically by writing the numbers corresponding to raised dots. Thus the Braille cell representing the letter M as seen in Figure 2.2 can also be represented as 1-3-4. Similarly a six bit binary number can be used to represent the character, with a one in the positions of raised dots and a zero in the positions of non-raised dots. Thus the letter M would be represented by the binary number 101100. Many Braille peripherals such as embossers use this binary representation.

With this six dot system of representing characters, the Braille alphabet is limited to just 64 unique cells or characters including a null or space character. This is much less than that of the English alphabet if uppercase, lowercase, numbers, punctuation and special characters are to be considered. Consequently there is a problem in representing the English alphabet with the smaller Braille alphabet.

This has led to the reuse of Braille cells such that they may have multiple meanings. For example only lowercase letters are represented by individual Braille cells. Then to represent an uppercase character one of these lowercase characters is preceded by a special character known as the capital sign. In addition to this another special character, the number sign, is used to signal that the following characters are to be interpreted as numbers. Then the letters A to J, preceded by this character are used to represent the ten numerical characters. In this way only 28 unique Braille cells are needed to represent all 62 uppercase, lowercase and number characters found in the English alphabet. These special characters such as the capital and number signs are termed composition signs.
There are two predominate forms of Braille, one more complex than the other. Grade 1 Braille is the simplest form which consists of fully spelt words, punctuation, numbers and composition signs. However Braille cells have a minimum physical size below which they become difficult to read and this limits a page of Braille to just 25 lines of 40 characters. This means that Braille books can become quite bulky. To try and reduce the size of these books and increase the speed at which Braille can be read Grade 2 or contracted Braille was introduced.
Grade 2 Braille, the most common form used, expands on the Grade 1 Braille alphabet by using contractions, whereby letter groups or even whole words may be represented by one or two Braille characters. In addition to this a Braille character representing a letter group may be context sensitive. This means that the character will have a different meaning depending on its placement within a word. For example the Braille cell 2-3-5 stands for “to” when placed at the beginning of a word (total), “ff” when placed in the middle of a word (buffet) and “!” when placed at the end of a word (stop!).
There are also rules concerning syllabification and pronunciation (Session 7: Part-word Contractions 1998). For example the contraction for the letter group “the” may be used in the translation of “another” but may not be used on the translation of “sweetheart” where the letter group extends over a syllable boundary. This is further complicated by regional dialects. For example the contraction of “of” in the word “professor” would be used in the U.K. but not in North America. This is probably due to the way the word is pronounced in the different regions.
Worldwide there are two main systems for English Contracted Braille. These are the American System and the British System. These systems are very similar with both employing the same contractions. They differ in some finer details such as syllabification as mentioned above and the more stringent use of capital signs in the American System. Being trained in one system does not prevent someone from reading the other, as the two systems are so similar. As Jolley (2003) states, Australia has adopted a hybrid system, combining both the American and British systems. This has resulted in a lack of standardised code specifications and teaching manuals in Australia and consequently there is a move to standardise Australia’s system. Recently the General Assembly of the International Council on English Braille (ICEB 2004) approved a Unified English Braille code that may be adopted by many countries including Australia. The translation programs have been written according to the British system as this is closer to the current Australian hybrid system
It is the numerous rules of Grade 2 Braille that make the translation process quite complex. Consequently many translation algorithms have been developed to try and overcome these complexities. The following sections outline some of the current translation algorithms and attempts to compare and contrast these to develop an algorithm best suited to an embedded system environment.

2.1.2 Computer Braille

Computer Braille is a method of representing Braille cells in a manner that is easily recognised and manipulated by a computer. As mentioned the 6 bit binary representation of Braille cells can be used by computing devices but this is not easily readable to a human user. Consequently Computer Braille was developed. This is essentially an assignment of an ASCII character to each Braille character. The standard is called North American Computer Braille Code (Computer Braille Code 1999). The ASCII characters with decimal values of 32 through to 95 were assigned to the 64 Braille characters as seen in Appendix B – Computer Braille (King 2001). These assignments were made such that ASCII character M, for example was matched to the Braille cell representing the letter M. Other characters such as the capital sign were mapped to non-alpha ASCII characters within this range. Table 2.1 shows the relationship between Print, Braille and Computer Braille representations of the word “knowledgeable”. This shows how parts of the word are contracted to new characters. For example the part of the word “ed” is contracted to the cell 1-2-4-6 which in Computer Braille is represented by the ASCII character “$”.
	Print
	knowledgeable

	Grade 2 Translation
	Braille
	[image: image1.png]@l Document! - Microsoft Word)

Ele Edt Vew Iwet Fomat ook Table Window Help page numbering - x

DEEa8 GRY 28 o- 1 |2-A- 2

Page 1 Sec 1 11 AL 8Sm Ln7 Col i REC TRC BT OV Engish(hus O

	
	Computer Braille
	“KL$GEA#

2.2 Current trends in Braille-Print translation
2.2.1 Introduction
Computerised Braille-Print Translation has been around for quite some time with early efforts focused on the translation of literary material to Grade 2 Braille to assist in the production of Braille books. These early translation algorithms tended to be open source, available for anyone to comment on and develop. Modern translation has tended to shift to the private sector as commercial companies have realised the potential profit to be made from Braille-Print Translation software. Consequently it is difficult to determine exactly how this modern software achieves the translation. It is assumed that these programs are simply refinements of the early algorithms.
There are several methods for performing forward and backward Braille-Print Translation arising from the context sensitive nature of Braille. A common point among these methods is that they use a set of substitution rules or a dictionary to translate a potential window of text, but, as stated by Blenkhorn (1995) they differ in the way they check the context of this window.

Figure 2.3 depicts an example of a generic translation. Rules are searched sequentially until a rule matches and can be applied. The focus is part of a rule that is contained within square braces. This must match to a window, or portion of the input. The first rule in this example is rejected as the focus does not match. The second rule has a right context represented by “~” signifying that the input window must be followed by a space character for this rule to be applied. As this is not the case the rule is also rejected. The third rule matches and is applied by appending ““K” to the output. Finally the window is removed from the input ready for the next substitution rule to be applied and the whole process repeated.

[image: image2]
In this example the second rule contained context information represented by the character “~”. Some of the first methods developed used a state machine to store the current context. More recent methods use this type of context information within the rule to check against the adjacent portions of the window in the input. Modern translation algorithms tend to use a mix of these methods, employing both a state machine and left and right context checking. The following sections outline some of these methods and examine their strengths and weaknesses.
2.2.2 Finite-State Syntax-Directed Translation

Millen (1970) developed one of the first Braille-Print Translation methods which he termed Finite-State Syntax-Directed Translation. Slaby (1990) describes the model as consisting of a finite set of states used for encoding relevant information and a control function that decides the next state depending on the current state and input.

This method models a Finite State Machine (FSM) with each state representing a particular context. For example translation may start from state 1 which may represent that the window of text currently being considered for translation is at the beginning of a word. Then rules would contain information about what state the FSM must be in for that rule to be applied. Hence only state 1 rules may be applied at this stage of translation. After this window has been translated the FSM may transition to state 2 to indicate the current context is in the middle of a word. In another case another state may be entered after the number character has been encounter indicating that the following characters must be interpreted as number characters. In this way the context sensitivity of cells can be retained.
One of the problems with this method is that it uses a control function to decide the next state of the FSM depending on the current state and the current input. This represents a problem as it is very difficult to develop and maintain such a function. In addition to this the state table also needed to be considered when modifying the program. This means that new rules cannot be easily added as the control function, state table and rules must all be updated and tested and consequently this meant that non-technical users could not readily add rules to adapt the program to their specific needs.
A relatively wide spread translation program called NFBTRANS, developed by the National Federation of the Blind (National Federation of the Blind 2002) uses this state machine approach to provide both forward and backward Braille-Print Translation. For the translation from Print to Braille the program requires a state machine which has 29 different states and each rule then has the form “type | match | replace” where type represents the required state for the rule to be applied. For example the rule “4 | ff | 6” is a type 4 rule meaning the rule can only be applied when the state machine is in state 4 and this will only happen when the program is in the middle of translating a word. This means that the translation of “ff” into the Braille cell represented by “6” can only be made in the middle of a word. This applies to all type 4 rules. The state machine is updated by the program so that future translations can be made. While this program is reasonably effective in performing translations the large number of states makes it quite difficult to modify.
2.2.3 The Markov System

The difficulties of the Finite-State Syntax-Directed Translation method led to the proposal of the Markov System proposed by Slaby (1973). This method attempted to perform the translation without the use of a state machine. The Markov System instead used a set of prioritised rules with a focus or match field that effectively encapsulated the context. This prioritisation ensured that translations such as whole word contractions would take higher priority over simple letter combinations. Even exceptions to a rule could easily be implemented by placing the contradictory rule at a higher priority. As the focus needed to be extended to encapsulate the context, the number of required rules increased significantly as a rule was needed for each combination of contexts. Slaby states that over 6000 rules were required for the translation to German contracted Braille.
One of the peculiarities of this method is that it does not necessarily translate a word from left to right as in the state method. It instead matches part of the word to the first scanned rule that has a matching focus. This has both advantages and disadvantages. In some cases it may be desirable to change order of an input. For example the print input “20 yds” should be translated to “YD20”. This is possible under the Markov System but is not so easy under the state method.
This large set of rules combined with the fact that they needed to be searched sequentially in order to keep their priority and searched repeatedly for each part word translation resulted in a very slow translation process. The advantage of this system is that the rules can easily be modified by a user without any technical knowledge of how the program works. The systems downfall was, at this time when computers were much slower, the slow systematic searching through rules. This led to the Segment Translation System also proposed by Slaby (1990).
2.2.4 Segment Translation System

The Segment Translation System used a strict method of left and right context checking and consequently each rule contained additional information about the context in which it could be applied. The rules were of the form u(v[x,y] meaning that u will be translated to v, if u has a right context of y and a left context of x. The left and right contests may be wildcards used to represent a type of context such as punctuation and in this way the context is more generalised. Slaby argued that this system would result in fewer rules that would also be easier for users to manipulate. Indeed when this method was implemented in a program called SEGBRA for the translation German contracted Braille there were 4510 different rules required (Slaby 1990). This is a reduction of almost 25 per cent compared to the number of rules required by the Markov System.
The system was faster than that of the Markov System since the translation of a word could now be performed from left to right. Further, since the rules were not prioritised only a subset of the rules needed to be searched for each translation. Again the user was not concerned with state tables or control functions and only needed to alter the rules to tailor the translation.
2.2.5 Blenkhorn Algorithms
The Blenkhorn algorithms are two algorithms developed by Paul Blenkhorn, a Research Fellow at the Research Centre for the Education of the Visually Handicapped at Birmingham University. In two papers written by Blenkhorn he describes a method for translating Braille into Print (Blenkhorn, 1995) and another algorithm for translating Print into Braille (Blenkhorn, 1997). These methods are very similar and incorporate both the finites state method of the Finite-State Syntax-Directed Translation System and the strict left and right context checking of Segment Translation System. In this way just six states are used to store the broad context of the translation such as the focus is at the beginning or middle of a word while the left and right context store more specific information such as the focus follows a number or it precedes a punctuation character. By doing this the amount of state and context information required is greatly reduced.

The rules have the form:
inputClass leftContext[focus]rightContext=output nextState
The two methods differ in that Braille to Print Translation does not require a left context field where Print to Braille does. This is because when translating part of a print word to Braille, the resulting Braille may differ depending on what preceded that part of the word but when translating this Braille back to print the preceding Braille does not effect the translation. This means that the backward translation is not left context sensitive.
The input class represents the state the program must be in for the rule to be applied. These methods avoid the need for the control function required by the Finite-State Syntax-Directed Translation System as rules now contain a next state field. For example if the input class was 1, representing that translation context is at the start of a word, then the next state field may be 2 to represent the translation context should now move to being in the middle of a word. Hence the difficulties of defining a control function are avoided by explicitly defining the next state in the rules. Then to adapt the program a user only needs to know the meaning of the states of the program to add or change rules and since there are only six state this does not present any significant problem to the user.
Essentially the translation algorithm is to find a rule with a focus that matches part of the input word. Then if the input class and left and right contexts all match, the output can be used to replace the focus. The state is then updated to match the next state field.

While early programs tended to fit into either the Finite-State Syntax-Directed Translation or Segment Translation Systems, more modern programs tend to be a mix of the two. Through the use of state and context matching approaches, these programs enable a non-technical user to easily modify context rules, as well as providing the flexibility associated with the state machine approach.
Due to the simplicity of these algorithms and the ease at which non-technical users can modify the rules that the algorithms use, combined with the superior performance of the algorithms it was decided to use the Blenkhorn algorithms for the project. The algorithms and their implementation are further explained in chapter 4.

3 Detailed Requirements

3.1 Requirements Analysis
Essentially the requirements of this project were to develop a prototype program to perform Braille-Print Translation to execute on the OMAP microprocessor. This program had to be developed in ANSI C since this is the most common standard used worldwide and since the OAMP is capable of executing ANSI C compiled programs.

The program was required to execute on the OMAP microprocessor. Not only did this restrict the programming language used and how it was implemented but it meant that the program had to be written for an embedded environment with limited resources. The OMAP has ample memory and processing power for this application however embedded practices were sill beneficial to the project.
Since Grade 2 Braille is the most common form of Braille used worldwide it follows that this would be the most appropriate form to be used by the program. As this is a contracted form this could lead to inaccuracies in a translation. There were no specifications to how accurate the translations were required to be and consequently the objective was to produce translations that were as accurate as possible.

Grade 2 Braille has several variations worldwide with the main variations being used in Britain and North America. Australia’s variation of Grade 2 Braille at present is a mix of both the British and American versions. These variations are not substantial and mainly concern the placement of letter signs and other minor issues. There were no specifications as to which variation should be used for the Brailler however it was assumed that the Brailler was intended for the Australian market and consequently should use the Australian version of Grade 2 Braille. An initial challenge that was faced was only a set of British translation rules could be found. The British version is called Standard English Braille, however this is not the standard in countries such as America. Since this was the only set of rules available this Standard English Braille was the form implemented in the programs. A full record of Standard English Braille rule is given in British Braille: A Restatement of Standard English Braille (2004). Due to the small differences in the British and Australian versions this was not a significant issue. Testing of translation accuracy was done against the Australian version of Grade 2 Braille.

The input and output to the programs was required to be in ASCII format which is useable on most computing platforms. The print files were required to be standard text files with a file extension “txt”. The file extension for the Braille files was required to be “brf”. These BRF files are used by many software applications and peripherals such as embossers and refreshable displays to represent Braille in ASCII format.
3.2 Proposed Solution

As there are several open source Braille-Print Translation programs available it was decided to examine the suitability of these for implementation on the OMAP microprocessor. Rather than spend excessive time developing and writing a program from just an algorithmic design, an existing program may have been adapted quickly leaving more time to concentrate on developing the program to work with other aspects of the Brailler.
Viable programs were found by searching the internet for downloadable open source programs. Most of these programs were available through reputable organizations such as the National Federation of the Blind. This would suggest that the programs were reasonably well developed with fairly accurate translations.

All the programs examined contained many thousands of lines of code, however they usually had many additionally features that were not of interest to the project and consequently it was thought that much of this code could be removed. Unfortunately removing code segments proved somewhat of a problem as it was difficult to separate out functionality within the code and there was often little or no documentation available with the program. A reason for this could be that the programs, being open source, often had multiple authors and contributors. This meant that the first available step in modifying a program was to look at thousands of lines of source code. In addition to these complications it was difficult to even use some programs which required complicated set up or didn’t work at all.
These programs for reasons such as those above, were all deemed unusable for the project. Consequently the programs needed to be written from scratch. The Blenkhorn algorithms (Blenkhorn 1995, 1997), as discussed in section 2.2.5, were expressed in pseudo code making them very easy to implement. These algorithms have been developed into a C application called BrailleTrans and a Java application called BrailleTrans for Java (King 2001). The Java version is open source and licensed under the GNU General Public License making it freely available for use and development. The C version is privately licensed and consequently is not available for development. As stated in section 3.1 the programs had to be written in ANSI C making the Java version unusable. Consequently development of the Blenkhorn algorithms had to be done from the pseudo code level in which the algorithms were defined.
The algorithms are superior to other methods of translation as they perform translations quickly, they require fewer rules and are easier for users to modify. As the software was to be embedded it was important that it place as little demand on processing power and memory usage as possible. Being easy to modify is not so important in such an embedded system however this was still seen as beneficial as it will aid any future development.
Writing the programs from the pseudo code level meant that they could be fully tailored for the project. Every line of code has a purpose and reason to be included in the software. This could not have been guaranteed if an existing program were to be implemented. For these reasons it was decided to develop the programs from the pseudo code developed by Blenkhorn (1995, 1997).
4 Development and Implementation
4.1 The translation algorithms
4.1.1 Explanation of the algorithms

To perform the Forward and Backward Translations two algorithms developed by Paul Blenkhorn (Blenkhorn 1995, 1997) were chosen for developing into executables on the OMAP microprocessor. This section describes these algorithms in detail. Since the two algorithms are very similar they will be discussed as one algorithm with their differences highlighted where they occur.
Essentially the Forward and Backward translations are performed by applying a set of substitution rules. This requires finding a rule that matches the input so that it may be substituted with the rule’s output field to generate a translated text. It is in finding the appropriate rule that the difficulty of translation occurs. As stated in section 2.2.5 these algorithms use both a state method and left and right context checking to verify a rule which have the form:
inputClass leftContext[focus]rightContext=output nextState

The rules for Forward Translation can be found in Appendix C, while the rules for Backward Translation can be found in Appendix D. These rules have been altered slightly from the original rules provided by Blenkhorn due to some deficiencies found during testing of the programs. The purpose of each of the fields with a rule and how they are used is explained in the following sections.

There is a trade-off between the number of rules used in the translation process and the accuracy of the resulting translations. This applies to these algorithms as well as the other methods described in section 2.2. Many rules will have instances where they may not be applied or different translation must be applied instead. This then requires additional rules to take care of these exceptions. There are 113 part word and full word contractions which form the core of Grade 2 Braille (BRL: Braille-only Contractions 2000). This may suggest that only 113 rules are needed, however this is not the case as most of these rules will not be applied in certain words and situations and consequently additional rules need to be introduced to govern these situations. With the addition of more rules, more situations can be catered for.
As pseudo code the algorithm can be expressed as seen in Figure 4.1. The algorithm contains two nested while loops. The inner loop examines rules according to the start of the input until a matching rule is found. When a rule is found it is “fired” by removing that rule’s focus from the input, appending its output field to the translated output and updating the state variable. The outer loop causes this process to be repeated until the whole input has been translated. These algorithms are complicated somewhat by the need to check for capital letter signs as checking needs to be performed to see if the translation is starting a new word or finishing a word.

A rule should be found for all inputs even if this rule just matches one character and translates to the same character for output. However if the rules are insufficient or if there is an unusual combination of input characters then a matching rule may not be found. The actions of the programs as a consequence of this may be altered but at present they simply remove the first character of the input impeding the match and append to the output, the word “ERROR” to signal, that the translation has not occurred correctly. The state of the program must then be reset to state 1. Appendix E contains the source code for the Forward translation program while appendix F contains the source code for the Backwards translation program.

4.1.1.1 The Focus Field
A rule’s focus field must be matched to a window corresponding to the current part of the input to be translated. This window will vary in length according to the length of the focus. This can be seen in the example provided in Figure 4.2. For the first rule window size is three characters resulting in a right context of “appear”. The second rule’s focus is two characters long causing the window to now be two characters long and the right context to be “sappear”. In both these cases the focus actually matches as the window and focus are the same and the program can go on to check the remaining parts of the rule. For the third rule the window is again three characters long but this time the focus and window do not match. Consequently the rule is rejected and new rule considered.

4.1.1.2 The Input Class Field, State Field and Decision Table
As already stated these algorithms use a state machine approach to store the broad context of the translation. This is in fact implemented as a decision table allowing a class of rules to be implemented in several states rather that just one state. The algorithms for Forward and Backward translation differ in the states and input classes and hence the decision tables.
Table 4.1 shows the decision table and the state and input class meanings for the Print to Braille Translation algorithm. The states represent information such as currently translating to Grade 1 or Grade 2 Braille. The input classes represent a group of rules that may be applied in one or more of these states. For example class one rules may be applied when translating to any Braille except computer Braille. Hence the first column, representing class one rules, contains all 1’s except in the last row which corresponds to the state where the program is translating computer Braille. A “1” in the decision table represents a match. For example if the program is in state one and an input class one rule is being considered the entry in the first row and first column. As this is a 1 a match occurs and the program can continue on to check the next part of the rule. If a 0 occurs in the decision table then the rule may not be used.
Table 4.2 shows the decision table and state and input class meanings for the Braille to Print Translation algorithm. As can be seen there is one more state and one more input class required for this algorithm. This is due to the complexities of the composition signs and context sensitive cells used in Braille. For example the number composition sign is used to tell a reader that the following cells represent numbers. To the program this requires transitioning to state 4 which will only consider input class 1 and 7 rules.
The program transitions to a new state according to the Next State field in a rule. So in backwards translation the Number Composition sign will cause the program to transition to state 4, the “within a number” state. For both algorithms the program starts in state 1 to represent the program is at the beginning of a word. The majority of Forward translation rules have a Next State field of “-“. This signifies that no change of state is required if this rule is implemented.
	Print To Braille
	
	Braille to Print

	
	Input Classes
	
	
	Input Classes

	
	1
	2
	3
	4
	5
	6
	
	
	1
	2
	3
	4
	5
	6
	7

	States
	1
	1
	1
	0
	0
	0
	0
	
	States
	1
	1
	1
	1
	0
	0
	0
	0

	
	2
	1
	0
	0
	0
	0
	0
	
	
	2
	1
	0
	1
	0
	0
	0
	0

	
	3
	1
	0
	1
	0
	0
	0
	
	
	3
	1
	0
	0
	1
	0
	0
	0

	
	4
	1
	0
	0
	1
	0
	0
	
	
	4
	1
	0
	0
	0
	0
	0
	1

	
	5
	0
	0
	0
	0
	1
	0
	
	
	5
	1
	0
	0
	0
	1
	0
	0

	States
	
	
	6
	0
	0
	0
	0
	0
	1
	0

	1
	Grade 2 Braille
	
	States

	2
	Grade 1 Braille
	
	1
	At the start of the word

	3
	After Letter sign (G2)
	
	2
	In punctuation at the start of the word

	4
	After Letter sign (G1)
	
	3
	After the start of the word

	5
	Computer Braille
	
	4
	Within a number

	Input Classes
	
	5
	Within member of the group "&!(A)"

	1
	Any Braille except computer Braille
	
	6
	Within the scope of a letter sign

	2
	Grade 2 rules
	
	Input Classes

	3
	Valid after Letter Sign (G2)
	
	1
	Don’t care

	4
	Valid after Letter Sign (G1)
	
	2
	Valid at the start of a word

	5
	Computer Braille
	
	3
	Valid in punctuation or at the start of a word

	6
	Always allowed
	
	4
	Only valid after the start of a word

	
	
	
	
	
	
	
	
	
	5
	Valid for member of the group "&!(A)"

	
	
	
	
	
	
	
	
	
	6
	Valid within the scope of a letter sign

	
	
	
	
	
	
	
	
	
	7
	Valid within a number

4.1.1.3 The Context Fields
The left and right context field of a rule may contain a string which specifies the characters that must surround the window currently being considered for translation for that rule to be applied. If the context field is absent then the rule may be applied in any context. Another difference between Forward and Backward translation occurs in context matching as Backwards translation does not require a left context. This is part of the reason why Backwards translation requires more states than Forwards translation.
The context may contain literal characters or wildcard characters. Wildcards may have meaning such as the window must be followed by one or more number characters. The Wildcards for Forward translation are shown in Table 4.3 while Table 4.4 shows the Wildcards used for Backwards translation.
	Print to Braille

	Wildcard
	Meaning

	"!"
	a letter

	"#"
	a number

	"~"
	a space or punctuation

	" "
	a space character

	"|"
	zero or more capital signs

	"'"
	one or more roman numeral characters

	";"
	zero or more letters

	"+"
	one or more digits

	Braille to Print

	Wildcard
	Meaning

	"!"
	one or more of the set "&!(A)"

	" "
	any white space character

	"~"
	one or more roman numeral characters

	":"
	zero or more punctuation characters

	"-"
	an actual space character

In addition to the wildcards a context may be a literal character. This means that if the character is not a wildcard then it must appear in the context of the window. An example of a Forward translation rule with both left and right contexts is:
~[beg]a=2G
The left context is the wildcard “~” which for Forward Translation means a space or punctuation character. The right context is “a” which is not a wild character and hence an “a” must appear in the input after the window “beg”. This rule would be used in translating a word such as “began”. Then the Braille representation of began would be 2GAN.
4.1.2 Activity Diagram

Figure 4.3 show the activity diagram for the Forward Translation program. For the backward translation diagram, the “Match left context” state and decision is simply removed. This diagram shows the outer loop repeating until all input text has been translated, terminating only after this condition. It can be seen that if any field does not match, the next rule in the list is considered. If no more rules exist then the first character of the input is removed, the message “ERROR” is appended to the output and the state is reset to 1.
[image: image3.jpg]Read rues i to sucture
Get next part ofinput

fend of input]

e

[not end of input] append "ERROR" o output

getnext e
ot end of

Setstato o1
end of rules fie]
rules file]
@mm@ @ms@ @mmmm@ @mmummmna

[fatse] false] false] [false]

firue] Tirve] Tirve] [rue]

Remove focus from input

Update state

4.1.3 An example translation

In this section the steps taken to translate a particular word will be outlined to show the reader exactly how the translation process is applied. The example is a Backward translation of the word “2FH&” which in Computer Braille represents the word beforehand. A subset of the Backward translation rules is provided in Figure 4.4. These are the rules that will be considered for the translation. It may be necessary to refer to Tables 4.2 and 4.4 to follow this example.

The translation starts with the input “2FH&” and the state is set to 1 representing the current translation is at the start of a word. The first rule is tested. The focus of this rule is “2C” and since this does not match the window of “2F” the rule is rejected and the next rule in the list is tested. This time the focus matches. The next test performed is to check the decision table to see if this combination of state and input class can be used. For this rule the input class is 3 meaning that the rule can only be applied in punctuation or at the start of a word. The state is still set to 1. A 1 is located in the decision table at the coordinates 1,3 indicating a match and consequently the test succeeds. Next the right context is tested. For this rule the right context is “:” indicating zero or more punctuation characters. Since the window of the input has a right context of an “H” this test fails. Consequently there is no match for this rule and the next rule must now be considered. For this rule the focus, decision table and right context all match. Since left context checking is not used for Backward translation this is not checked. Then all tests have been passed and the rule can be implemented. “before” is appended to the output, “2F” is removed from the input and the state of the program is updated to state 3 to indicate that the next part of the translation will be after the start of a word.

Now the beginning of the input is “H” and the state is 3. Note that due to the Hashing function the examination of rules does not start from the beginning of the list with the rules containing a focus starting with “2”. Rather the examination starts at rules containing a focus beginning with “H”. The first of these rules has a focus that matches and an input class of 7 representing that it is valid within a number. Checking coordinates 3,7 of the decision table reveals a 0 indicating that a match has not occurred and consequently the next rule is examined. For this rule the focus and the decision table match. There is no right context meaning that it can be applied in any context and consequently the rule matches. The character “H” is appended to the output and removed from the input. The state of the program remains at state 3.

The input is now “&”. The first rule fails as it requires the window to have a context of one or more of the set “&!(A)”. The second rule matches and “and” is appended to the output, “&” is removed from the input and the state remains in state 3. Since there is no more input the translation finishes and the resulting output is “beforehand”.

4.2 Implementation on the OMAP microprocessor

4.2.1 Program Development with the OSK5912 Development Board

The programs were required to execute on the Texas Instruments OMAP5912 microprocessor. This meant that they had to be written for this specific environment. Fortunately this was not too much of an issue as the OMAP can be loaded with one of several operating systems including Symbian and Windows Mobile which are used in many third generation mobile phones. For the Brailler the OMAP will run a Linux kernel. This kernel can execute programs written in ANSI C. This meant that the programs could be written in a standard C Integrated Development Environment (IDE) to assist development. The IDE chosen for this was LCC-win32 because of its simplicity and ease of use and because this program was readily available on the University’s computers.
The OMAP is a dual core architecture with a host general purpose ARM processor and a Digital Signal Processor (DSP) both of which run at 192MHz. As there were no DSP operations to be performed only programming of the ARM was necessary. The DSP processor may later be used for other aspects of the Brailler device. The ARM processor is a 32bit, pipelined, reduced instruction set computer (RISC). These OMAP processors are used in many Third Generation mobile phones and Personal Digital Assistants (PDA) as they are specifically designed for wireless communication and multimedia operations. A block diagram of the OMAP is provided in Figure 4.5.
[image: image4.png]Flash

soRAM
5

%

R
e
96 MHz 32

o

LOD Control SRAM 15 Mb

DsP

TMS320085¢™
Core
192 MHz

2 —]
Systom Shared +—>
—

ARM

T Enhancad
ARMS26E) Core
192 Mz

ARM Shared

The OMAP was programmed through the use of the OMAP Starter Kit (OSK) 5912 Development Board produced by Spectrum Digital. This board contains several peripherals to use with the OMAP including additional memory. A block diagram of the OSK5912 Development Board can be seen in Figure 4.6. These peripherals will eventually be used to drive devices such as an embosser, monitor and keyboards. For development of the translation programs, translations were performed on a file to file basis meaning that no input or output (I/O) devices were needed and hence these peripherals were not used.
[image: image5.png]Expansion Connector A Expansion Connector D
EMIFS/MMC Future Expansion

OMAP OSK5912
CompactFlash

EEPROM

ENET
Interface

McBSP1

5912

12MHz

T
IC Bus,

MultilCE

TIJTAG [$[8) JP1 TRST PUIPD
[[88 JP3 Fast/Full Boot

Expansion Connector C
Serial Interfaces Camera, LCD, GPIO

Guides from Spectrum Digital (OSK5912 Users Guide) and Percival (2005) were extremely helpful for learning how to setup and program the OSK board. The OSK5912 provides serial and Ethernet connections to the OMAP so that a host machine may be connected to the development board to program the OMAP. Figure 4.7 shows the configuration used to connect a host machine to the OSK Board for development on the ARM processor. Using an Ethernet and Serial connection, a two way link can be set up to allow bidirectional communication between the host and OSK board. This allows the OSK to boot off a remote file system located on the host machine rather than booting off the Flash memory contained within the OMAP. This is made possible through a program called MontaVista Preview Kit produced by MontaVista Software. The mounted file system assists development as the Flash memory is not required to be flashed with a new file system image each time a file is altered.

Upon first use of the OMAP it was necessary to restore the kernel image and file system stored within the Flash memory of the OMAP. The OMAP ships with a version of these already in memory, however it was decided to restore both the kernel and file system so it was known exactly what was running the OMAP as different versions may have resulted in unexpected behavior. To do this both the factory kernel and file system images needed to be copied from the OSK CDROM which was supplied with the OSK board, to the SDRAM memory on the OMAP. Figure 4.8 shows a high level representation of the memory within the OMAP. From the SDRAM the kernel image had to be copied to memory location 0x00100000 and the file system image to location 0x01000000. Information on restoring OMAP factory settings was provided by Spectrum Digital (Restoring the Factory Configuration 2004), the makers of the OSK board.
[image: image6.png]0x00000000

U-Boot

0x00020000

0x00100000

0¢01000000|

0x10000000

Parameter|

Linux
Kernel

JFFS
[Filesystem

SDRAM

==

By performing file to file translations it was possible to test a large number of translations per execution of a program. The input files to be translated were required to be stored in the same location as the compiled programs so that they could also be mounted on the shared file system. Then by using “printf” statements within the programs it was possible to see the results of the translation as displayed on the host monitor. Such commands would not normally be possible if the file system was stored on the OAMP. One of the problems in using a mounted file system is that an output file could not be produced. This occurs because of permission settings of files on the OMAP. This should be easily overcome by explicitly setting the file permissions and should not be an issue when the programs are stored in the OMAP flash memory.
4.2.2 Programming for an Embedded Environment

In any embedded environment it is important to minimize resource usage so that costs may be kept to a minimum. As the decision was made to use the OMAP this cost was fixed, however it was not known what resources would be used by other software modules for the Brailler. For this reason it was desirable to minimize resource usage by the translation software. The main resources of consideration were processing time and memory usage. The way in which rules were stored and searched would greatly affect these resources.

There were several options available for storing the rules. Most Braille translation programs for desktop computers store the rules in files on the hard drive, so that they may be altered by a user. When a program begins executing it reads the rules from these files into memory. This provides a performance advantage because memory access is much faster than disk access. In addition, the rules file need only be parsed by the program once. If the rules were never read into memory, then each rule in the file would have to be parsed into a usable form every time it was required during translation.

Being embedded software, a user would generally not be given the option to alter files. This meant that the rules could be coded directly into the programs. This would reduce processing times as rules could be stored in an array of data structures with each rule field being referenced by a data structure field. However the flexibility of separate file for storing rules would be lost.
Another option was to store rules in a separate file and read this file only once at the beginning of execution separating out fields and storing them in data structures. These data structures could then be stored in linked lists. This method would require twice as much memory as the rules would be stored in a separate file and again in a linked list. However the benefit of this method is the added flexibility to alter rules without having to make any alterations to the program’s source code. It was decided to use this method for storing and using the rules as the flexibility and ease of use was quite attractive. The tradeoff of more memory usage was seen as acceptable as less than 30KB was required for both the Forward and Backward translation rules. With the OMAP’s 32MB of flash memory for storing the executables and rules files combined with 32MB of memory for runtime data this memory usage was not seen as an issue.

After being reading the rules from the input file there were two options for storing them. The first of these was two dimensional arrays while the second was to use linked lists. There are two main benefits in using linked lists over arrays to store rules. The first of these is the ability to insert and remove rules in constant time. That is the time to insert or remove a rule is not proportional to the total number of rules, it is O(1). This is not the case with arrays as to insert a rule would take time proportional to the total number of rules and hence is O(n). To do this with arrays it would be necessary to alter the array index of all rules following the rule to be inserted or removed. With linked lists the only action necessary would be to change the “next rule” pointer of the preceding rule within the list. The second benefit of a linked list is its ability to grow without first having to know the total number of rules. To add rules that are directly coded into an array within the program it is necessary to alter the dimensions of that array. Using linked lists generated from a text file, no alterations would have to be made to the program with the only addition being that of the rule itself.
Storing the rules in data structures was done through a loop to tokenize each rule to separate out each of its fields so that they could be stored in data structures and referenced individually. Tokenizing refers to a C command which generates a substring by separating a string at defined delimiters or tokens. For instance the focus of the rule is always written within square brackets. Hence the starting token would be “[“ and the finishing token would be “]”. Some problems did arise when the focus itself was a square bracket but this was easily overcome with additional conditional statements. Once these fields were separated out they were stored in data structures. The data structure for Forward Translation is given in Figure 4.9. The data structure for Backward Translation is similar to this but without the left context field.

The last field of this data structure is a pointer to a data structure of the same type. This enables linked lists to be formed so that rules can be easily searched. For Forward Translation there are 1,228 rules which may be applied in a particular translation. Rather than search all of these rules it is quicker to just search a subset of the rules. By using a Hash Table with separate chaining the complete rules file could be separated into 27 independent linked lists. This allowed a linked list per letter of the alphabet plus one list for miscellaneous characters. The head of each linked list was then stored in an array so that they could be accessed. This is shown diagrammatically in Figure 4.10.

Then the head of a linked list could be accessed through the corresponding array index. A hashing function was used to determine which linked list needed to be searched depending on the current focus and hence the array index needing to be accessed. This hashing function was a very simple function simply returning the value of array index corresponding to a particular letter. For example, the first letter of the input would be sent to the hashing function. This would then return the index of the array where the head of a corresponding linked list would be stored. The advantage of a Hashing function is that runs in O(1) time, meaning that it will not take longer to locate the head of a linked list if there are more rules. The hashing function could easily be altered to accommodate characters other than the standard 26 English characters if the programs were ever altered for use in translating another language.
The pseudo code for generating these linked lists is shown in Figure 4.11. Rules are stored one per line in an input file. A FOR loop is then used to process each of these lines. The line is tokenized and the fields of the data structure are set. By using the hash function the array index corresponding to the first letter of this rule’s focus is returned. If this index is empty then this rule is the first rule to be encountered that starts with this particular letter and consequently this rule should become the head of a linked list. If the index is not empty then it already contains the head of a linked list. Thus the linked list must then be traversed so that the last rule in the list can be set to point to the new rule.

By using multiple linked lists the speed of the program can be increased as only one linked list needs to be searched for a particular translation. For example if the input started with the letter “D” then only rules containing a focus starting with the letter “D” need be searched. This eliminates wasted time searching other rules that would not match the current input. The performance advantage of using multiple linked lists in this way is based on the assumption that these rules are evenly distributed over the 27 linked lists. It would be pointless having one list containing 90 per cent of the rules with other lists containing only a few rules. Then if it is assumed that the 27 linked lists are of equal lengths the average time to find a rule will depend on two factors. The first of these will be the constant time for the Hashing function to find head of the linked list, with the second factor being the time to search that particular list. Then average time to find a rule when using multiple linked lists is:

O(1) + (O(n) / 27)

If just one linked list containing all rules was used, the average and worst case search times would be:

O(n)

This means that while the search time for one linked list or 27 liked lists are both proportional to the total number of rules, the 27 linked list approach will, on average be almost 27 times faster.

A problem with using the alphabet as a method of dividing the rules is that it resulted in somewhat unbalanced list lengths. For Backward Translation there were only three rules starting with the letter “Z” while there were 28 rules beginning with the letter “A” and 242 rules beginning with miscellaneous characters. This problem could have been helped to some degree by dividing the miscellaneous rules into two or more lists. It is not generally possible to make divisions of rules containing a focus starting with a particular letter such as “A” as these rules have a precedence order and hence the division would have to go beyond the normal alphabetical partitioning.
5 Verification and Results
Both Forward and Backward Translation programs were written in an incremental fashion, testing and verifying each section of code as it was implemented. This started with reading the rules from a text file, separating them into fields and matching each field and applying the rule. Consequently debugging and corrections were made to the code at all steps of development. Both programs work well and have not had any fatal errors since being finished. The execution time of the programs on the OMAP when translating a file of several thousand words is under a few seconds making them acceptable for use in the Brailler.
The major concern for results came from the accuracy of the translations. Without a detailed knowledge of Grade 2 Braille the most efficient way of testing the results of translations was by comparisons to other texts. A challenge in using a comparison to perform testing is that the tests are only as accurate as the translation being compared against. If the translations were compared against another incorrect translation then the results would be inaccurate. This risk was minimized by using the Duxbury Braille Translator (DBT) (Duxbury System’s Web Site), an industry leading program capable of translating multiple languages on multiple platforms. Since DBT is the industry leading Braille translation program (Duxbury Products)(Duxbury Braille Translation Software 2003) it was assumed that the translations produced by this software were correct and any differences in comparisons implied that the translations produced by the developed programs were incorrect.
DBT is capable of translating complete files similarly to the programs developed. By comparing a whole file of translated text it was possible to examine many translations of many different words and combinations of punctuation per execution of the programs. Using DBT a print text file was input to both the developed Forward translation program and DBT. Then by comparing the resulting BRF files the Forward translation accuracy could be determined. Since the DBT output file was assumed to be correct this was then input into the developed Backward translation program and the resulting translation compared to the original print text file.
Settings within DBT allow for English Grade 2 Braille in American, U.K., and Australian versions as well as some other languages. Even though the programs were developed for Standard English Braille testing was done with the Australian version of Grade 2 Braille. The two versions are very similar and consequently there was not too much deviation between translations that could be attributed to the differences in versions.
In order to gain a numerical result for the accuracy of translations it was decided that a word for word comparison would be made. Then the percentage of correctly translated words could be obtained by dividing the number of correct words by the total number of words translated. In order to obtain a range of translations three different files were translated. These included the GNU General Public License, a laboratory report and the first chapter of Kenneth Graham’s well known book The Wind in the Willows (Ebooks 2005).

Table 5.1 shows the percentage of correctly translated words for these three texts, however a great deal of care is needed in interpreting these results. For the Forward translation of the Wind in the Willows, 3.5 per cent of words were translated incorrectly. However there is a lot of quotation within this text and the opening quotation marks were translated differently by DBT and the developed Forward translation program. If these particular differences are ignored the program translates just 0.44 per cent of words incorrectly. Hence, in this situation the program achieves a translation accuracy of 99.56 per cent which is a very respectable accuracy. The differences in the translation of the opening quotation mark may result from the differences in the Australian and British systems of Grade 2 Braille. If the different translations for opening quotation marks are ignored the Backward translation of this text is 99.1 per cent correct.
	Text
	Total number of words
	Percentage of words translated correctly

	
	
	Forward
	Backward

	The Wind in the Willows
	4,366
	96.5

(99.56)
	99.1

	Laboratory
	2,006
	97.23
	96.3

	GNU
	3,000
	98.5
	99.51

The poor accuracy of the translation of the Laboratory text was mainly due to different representation of numbers with decimal points. This text had many numbered headings containing decimal points as well as numbers throughout the body of the text. The decimal point in these numbers was translated to different characters by the two programs. Again this may be due to the different rules of the Australian and British systems. In both the case of the opening quotation mark and the decimal point these translations can be altered to coincide with the DBT translation through the alteration of just one rule.
In addition to the decimal points the Laboratory text had a lot of complex punctuation in it which included some equations and mixed numerical/non-numerical words. This caused errors which contributed to the poor accuracy of this translation. However this type of text would generally not be found in the literary materials that the programs were designed for.
Since it was assumed that DBT translations were correct the BRF files produced by DBT were used as the input to the Backward translation program. This resulted in some interesting results. Within both the GNU and Laboratory text there were several single alpha characters and numbers used. It was found that in Forward translation, DBT did not apply the letter and numeral composition signs as strictly as the developed program. Consequently this was recorded as an inaccurate translation by the developed program. For example the letter “C” would be translated to “C” by DBT but would be translated to “;C” by the developed program. Note that “;” is the letter composition sign meaning that the “C” should be interpreted as a single letter. When “C” is found on its own in Braille it may be interpreted as meaning “can”. Consequently when this was input into the developed Backward translation program the output was “can” rather than the original “C” and recorded as another inaccurate translation.
These BRF files were also Backwards translated by DBT and again “C” translated to the word “can”. As this did not match the original text this too should have been recorded as an inaccurate translation and by this reasoning DBT did not achieve 100 per cent accuracy. If the letter composition sign was included in the input the translation from the developed Backwards translation program was exactly as the original. This type of behavior was noted quite frequently throughout the GNU and Laboratory texts. Consequently there is some ambiguity as to which translation is best.
Even with these problems, translations of about 99 percent accuracy suggested that the programs may be considered reasonably proficient. With further development of the rules higher accuracies should be achievable. There are some translations as mentioned by Blenkhorn (1995, 1997) which will be translated incorrectly and cannot be easily overcome, however these should not be encountered too often by the average user of the Brailler in which this software will eventually reside.
6 Recommendations and Conclusions

6.1 Concluding Remarks

The programs have been shown to perform considerably well. They execute correctly on the OMAP producing reasonably accurate translations. In this way the original objectives of the project have been met. It was speculated when starting the project that data from a keyboard may be input into the OMAP and translated in real time. This was not achieved due to the complexities of programming the OMAP. A number of problems were encountered in installing drivers for the keyboard and USB connections and consequently time was spent more productively refining the translation software.
The software achieves the translation of Grade 2 Braille both to and from print with acceptably high levels of accuracy. For a literary text, of which this software is intended, The Wind in the Willows, a translation accuracy of 99.56 percent is achievable.
Through the use of good software engineering practices, rule search times during translation are kept to a minimum. This has resulted in almost instantaneous translations of files containing several thousand words when executed on the OMAP. This means that there will be no timing problems when the programs are used for real-time translation as a user inputs a stream of text.

The programs have been designed to be as general as possible to work with other aspects of the Brailler. Consequently it should not be a significant issue to get them to work with other software modules.

Although the translation software has been developed as two independent programs for the Forward and Backward translation it will not be a significant problem to combine them into a single program should the designers of the Brailler feel it necessary. However the user would need to be supplied with some method of telling the software to translate Forwards or Backwards.
6.2 Considerations for Future Development

The translation programs work well for their purpose of simply translating an input to produce an output. However there are several improvements that could be made to the programs to make them more versatile and beneficial to an end user.

As discussed previously, due to the physical size of Braille cells and the bulkiness of Braille documents the formatting of a page of Braille is quite different to that of a page of print. For example, a page of Braille is limited to 25 lines of 40 characters, blank lines between paragraphs are removed and page numbers are inserted. The programs do not currently perform this formatting as they simply translate the files as they are. A full description of Braille formatting is given by Braille Formats (1997). Hence if the input file contains a line which translated to 80 characters, this line will not be split up into 2 new lines. This does not represent a significant problem as a post-processing program may be written to perform this formatting. Blenkhorn and Evans (2001) state that most Braille translation programs perform the translation and formatting in two independent steps. This formatting program would be relatively simple, using counting loops to determine where new line and new page characters should be inserted.
The programs currently translate from an input file and generate another file containing translated text. The concept of the Brailler requires that the input may be entered by a user via a keyboard. One of the features of the Brailler will be a real-time translator. This means that the programs will need to perform the translations as the input is entered. This will require some modifications to the programs as they currently translate a whole line of input at a time. This modification would not be too complex as they can be changed to translate a word at a time rather than a whole line. This would allow words to be translated and displayed as they are entered. It would not be possible to translate and show anything smaller than a full word due to the context sensitive nature of Grade 2 Braille. Some care would be needed in translating words such a “to” which gets converted to a single Braille cell and appended to the beginning of the following word.
Also under development by the department of Rehabilitative Engineering is a device to optically scan embossed Braille and recognise individual Braille cells. The Backward Translation program could be made to work with this Braille scanner by simply adding a pre-processor to convert the scanned representation of the Braille characters into Computer Braille which the program uses. Using a processor to convert the Computer Braille into corresponding six bit binary representation as shown in Appendix B – Computer Braille, would allow the programs to be used with all sorts of Braille peripherals and software.
7 References

Blenkhorn, P 1995, ‘A System for Converting Braille into Print’, IEEE Transactions on Rehabilitation Engineering, vol. 3, no. 2, pp. 215-221.
Blenkhorn, P 1997, ‘A System for Converting Print into Braille’, IEEE Transactions on Rehabilitation Engineering, vol. 5, no. 2, pp. 121-129.
Blenkhorn, P & Evans, G 2001, ‘Automated Braille Production from Word-Processed Documents’, IEEE Transactions on Neural Systems and Rehabilitative Engineering, vol. 9, no. 1, pp. 81-85.

Braille Formats: Principles of Print to Braille Transcription 1997.
Retrieved October 2, 2005, from

http://braille.brl.org/formats/

British Braille: A Restatement of Standard English Braille 2004, Braille Authority of the United Kingdom, Peterborough.
BRL: Braille-only Contractions 2000.
Retrieved September 21, 2005, from

http://www.brl.org/refdesk/brlcont.html
Computer Braille Code 1999.
Retrieved April 20, 2005, from

http://www.twcu.ac.jp/~k-oda/AccessBlind/CompBrailleE.html

Duxbury Products
Retrieved October 25, 2005, from

http://www.jacksontechnology.com/Duxbury%20Products%20-%20Duxbury%20Braille%20Translator.htm

Duxbury Braille Translation Software 2003

Retrieved October 25, 2005, from

http://www.accessingenuity.com/Product%20Pages/Duxbury.htm

Duxbury System’s Web Site 2005.
Retrieved October 25, 2005, from

http://www.duxburysystems.com/
Ebooks 2005.
Retrieved October 20, 2005, from

http://education.powys.gov.uk/english/literacy_special/ebooks.php

ICEB. 2004, Green Light for Unified English Braille, media release, International Council on English Braille, Toronto, April

Jolley W 2003, ‘Braille codes at the cross roads’, National Conference of the Round Table on Accessible Information for People with Print Disabilities Inc., Melbourne.

King, A 2001, ‘Text and Braille Computer Translation’, University of Manchester Institute of Science and Technology.

Millen, J 1970, ‘DOTSYS II: Finite-State Syntax-Directed Translation’, The Mitre Corporation

National Federation of the Blind 2002.
Retrieved September 22, 2005, from

http://www.nfb.org/

OMAP5912 Processor Device Diagram 2005.
Retrieved September 25, 2005, from

http://focus.ti.com/omap/docs/omapgenpage.tsp?navigationId=12344&templateId=5663&path=templatedata/cm/omapproc/data/omap5912_devicediag

OMAP5912 Starter Kit (OSK5912) Users Guide

Spectrum Digital Inc
Percival, M 2005, OSK5912 Newbie Guide.
Retrieved August 8, 2005, from
http://www.capgo.com/Resources/SoftwareDev/osk-newbie-guide.pdf

Restoring the Factory Configuration, 2004.
Retrieved August 8, 2005, from

http://omap.spectrumdigital.com/osk5912/factoryconfig/

Session 7: Part-word Contractions 1998.

Retrieved September 14, 2005, from

http://www.brl.org/intro/session07/pw1.html

Slaby, WA 1975, ‘The MARKOV system of production rules: a universal Braille translator’, ACM Press, New York, USA, pp. 53-59, 1975

Slaby, WA 1990, ‘Computerised Braille Translation’, J. Microcomput. Applicat, vol. 13, pp. 107-113

Appendix A – Project Plan

The following two figures show the planned and actual project schedules. The main reason for deviations from the planed timeline resulted from difficulties arising from using and implementing programs on the OMAP. It was planned to investigate operations and possibly get some Input/Output working on the OMAP but this proved to be a difficult task and a lot of time was being used for minimal gains. Hence the decision was made to begin work on writing the translation software before this OMAP work was complete.
[image: image7.png]March April May June. July August September October Novembel
Task 6132027 3 1017/24 1 8 15 22(20 5 1211926 3 (1017 24/31 7 14,2128 4 111825 2 8 162330 6 13 20

Project
Requirements specs/
basic research
Selection of a
translation algorith

Cormplete O for g
OMAP m El
Implement Algorthm < —— H

2 =
Thesis 2 g
Start thesis — intro 3 z2
planing etc 2 El
Complete body of - 2
thesis s

Presentation
Cormplete Power Poirt]
presentation
Complete speech for
presentation

[image: image8.png]March April May June July August September October Nov
Task 6132027 3[1017/24 1 8 1522020 5 1211926 3 (1017 24/31 7 14,2128 4 111825 2 3 162330 6 1320

Project
Requirements specs/
basic research
Background reading
Selection of a
translation algorith
Implernentation on
OMAP

Implement Algorithrn

Thesis
Statt thesis — planing,
intro and background
Cormplete body of
thesis

JaI5aUES T PUT

UOISSLANS - Ujp I3CUIBAON

Presentation
Cormplete Power Poirt]
presentation
Complete speech for
presentation

Appendix B – Computer Braille

	ASCII

Value
	ASCII Character
	Braille

Character
	Binary Representation

	
	
	
	D6
	D5
	D4
	D3
	D2
	D1

	32
	(space)
	
	0
	0
	0
	0
	0
	0

	33
	!
	!
	1
	0
	1
	1
	1
	0

	34
	“
	"
	0
	1
	0
	0
	0
	0

	35
	#
	#
	1
	1
	1
	1
	0
	0

	36
	$
	$
	1
	0
	1
	0
	1
	1

	37
	%
	%
	1
	0
	1
	0
	0
	1

	38
	&
	&
	1
	0
	1
	1
	1
	1

	39
	‘
	'
	0
	0
	0
	1
	0
	0

	40
	(
	(
	1
	1
	0
	1
	1
	1

	41
)
)
	1
	1
	1
	1
	1
	0

	42
	*
	*
	1
	0
	0
	0
	0
	1

	43
	+
	+
	1
	0
	1
	1
	0
	0

	44
	,
	,
	1
	0
	0
	0
	0
	0

	45
	-
	-
	1
	0
	0
	1
	0
	0

	46
	.
	.
	1
	0
	1
	0
	0
	0

	47
	/
	/
	0
	0
	1
	1
	0
	0

	48
	0
	0
	1
	1
	0
	1
	0
	0

	49
	1
	1
	0
	0
	0
	0
	1
	0

	50
	2
	2
	0
	0
	0
	1
	1
	0

	51
	3
	3
	0
	1
	0
	0
	1
	0

	52
	4
	4
	1
	1
	0
	0
	1
	0

	53
	5
	5
	1
	0
	0
	0
	1
	0

	54
	6
	6
	0
	1
	0
	1
	1
	0

	55
	7
	7
	1
	1
	0
	1
	1
	0

	56
	8
	8
	1
	0
	0
	1
	1
	0

	57
	9
	9
	0
	1
	0
	1
	0
	0

	58
	:
	:
	1
	1
	0
	0
	0
	1

	59
	;
	;
	1
	1
	0
	0
	0
	0

	60
	<
	<
	1
	0
	0
	0
	1
	1

	61
	=
	=
	1
	1
	1
	1
	1
	1

	62
	>
	>
	0
	1
	1
	1
	0
	0

	63
	?
	?
	1
	1
	1
	0
	0
	1

	64
	@
	@
	0
	0
	1
	0
	0
	0

	65
	A
	A
	0
	0
	0
	0
	0
	1

	66
	B
	B
	1
	0
	0
	0
	1
	1

	67
	C
	C
	0
	0
	1
	0
	0
	1

	68
	D
	D
	0
	1
	1
	0
	0
	1

	69
	E
	E
	0
	1
	0
	0
	0
	1

	70
	F
	F
	0
	0
	1
	0
	1
	1

	71
	G
	G
	0
	1
	1
	0
	1
	1

	72
	H
	H
	0
	1
	0
	0
	1
	1

	73
	I
	I
	0
	0
	1
	0
	1
	0

	74
	J
	J
	0
	1
	1
	0
	1
	0

	75
	K
	K
	0
	0
	0
	1
	0
	1

	76
	L
	L
	0
	0
	0
	1
	1
	1

	77
	M
	M
	0
	0
	1
	1
	0
	1

	78
	N
	N
	0
	1
	1
	1
	0
	1

	79
	O
	O
	0
	1
	0
	1
	0
	1

	80
	P
	P
	0
	0
	1
	1
	1
	1

	81
	Q
	Q
	0
	1
	1
	1
	1
	1

	82
	R
	R
	0
	1
	0
	1
	1
	1

	83
	S
	S
	0
	0
	1
	1
	1
	0

	84
	T
	T
	0
	1
	1
	1
	1
	0

	85
	U
	U
	1
	0
	0
	1
	0
	1

	86
	V
	V
	1
	0
	0
	1
	1
	1

	87
	X
	X
	1
	1
	1
	0
	1
	0

	88
	X
	X
	1
	0
	1
	1
	0
	1

	89
	Y
	Y
	1
	1
	1
	1
	0
	1

	90
	Z
	Z
	1
	1
	0
	1
	0
	1

	91
	[
	[
	1
	0
	1
	0
	1
	0

	92
	\
	\
	1
	1
	0
	0
	1
	1

	93
]
]
	1
	1
	1
	0
	1
	1

	94
	^
	^
	0
	1
	1
	0
	0
	0

	95
	_
	_
	1
	1
	1
	0
	0
	0

Appendix C – Rules for Forward Translation
	2
['EN] = 'EN
-

3
[]=
1

4
[]=
2

1
[--]=--
-

1
[-]=--
-

1
[]=
-

5
[]=
-

1
[!]=6
-

5
[!]=!
-

1
 ["] ="1
-

1
["...]=8 '''
-

1
["=]=8;
-

1
["]^=8
-

1
["]^^=8
-

1
["] (=8
-

1
["]~=0
-

1
["]=8
-

5
["]="
-

1
[#]#=#
-

1
[#]=#
-

5
[#]=#
-

1
[$G1]=
2

1
[$G2]=
1

1
[$#]=
-

1
[$+]=;6
-

1
[$-]=;-
-

1
[$X]=;8
-

1
[$D]=;4
-

1
[$=]=;7
-

1
[$/]=
-

1
[$$]=$$
-

1
[$]#=4
-

5
[$]#=$
-

1
[$]!=@4
-

1
[%]=3P
-

5
[%]=%
-

2
[&ING]=&+
-
1
[&]=&
-

5
[&]=&
-

2
['CAUSE]='CAUSE
-

2
['DO]='DO
-

1
!['D]~='D
-

2
['FLU]='FLU
-

2
['ER]=']
-

2
['EN]='5
-
2
~['IN]=,8IN
-

2
['IN]='IN
-

2
['YOU]='Y\
-

1
!['C]~='C
-

1
!['M]~='M
-

2
['NEATH]='N1
-

1
!['N]-='N
-

2
['TIS]='TIS
-

2
['TWAS]='TWAS
-
	1
!['T]~='T
-

1
!['S]='S
-

1
#['S]='S
-

1
!['']=0'
-

1
~['0]=#'J
-

1
~['1]=#'A
-

1
~['2]=#'B
-

1
~['3]=#'C
-

1
~['4]=#'D
-

1
~['5]=#'E
-

1
~['6]=#'F
-

1
~['7]=#'G
-

1
~['8]=#'H
-

1
~['9]=#'I
-

1
~[']~='
-

1
![']~='
-

1
~[']=,8
-

1
[']='
-

5
[']='
-

1
[(]=7
-

5
[(]=(
-

1
[)]=7
-

5
[)]=)
-

1
[*]#=;8
-

1
[*]=99
-

5
[*]=*
-

1
[+]#=;6
-

1
[+]="
-

5
[+]=+
-

1
#[,0]='J
-

1
#[,1]='A
-

1
#[,2]='B
-

1
#[,3]='c
-

1
#[,4]='D
-

1
#[,5]='E
-

1
#[,6]='F
-
1
#[,7]='G
-

1
#[,8]='H
-

1
#[,9]='I
-

1
[,]#='
-

1
[,]=1
-

5
[,]=,
-

2
[-T]0~=-T
-

2
[-ING]~=-+
-

2
[-IN]~=-9
-

2
[-C]OM=-C
-

2
[-BY]=-BY
-

2
[--INTO|]=-}96
-

2
[--IN]=--9
-

2
[--C]OM=--C
-

1
![----]=----
-

1
[--]~=--
-

1
[--]=-
-

1
#[-0]=-J
-

	1
#[-1]=-A
-

1
#[-2]=-B
-

1
#[-3]=-C
-

1
#[-4]=-D
-

1
#[-5]=-E
-

1
#[-6]=-F
-

1
#[-7]=-G
-

1
#[-8]=-H
-

1
#[-9]=-I
-

1
[-]=-
-

5
[-]=-
-

1
[.] =4
-

1
[....]='''4
-

1
[...']='''0'
-

1
[..."]='''0
-

1
[...]='''
-

1
[.]+.=
?

1
.+[.]=
-

1
#[.]## A.M.=
-

1
#[.]## P.M.=
-

1
#[.0]=1J
-

1
#[.1]=1A
-

1
#[.2]=1B
-

1
#[.3]=1C
-

1
#[.4]=1D
-

1
#[.5]=1E
-

1
#[.6]=1F
-

1
#[.7]=1G
-

1
#[.7]=1H
-

1
#[.8]=1I
-

1
[.0]=#1J
-
1
[.1]=#1A
-

1
[.2]=#1B
-

1
[.3]=#1C
-

1
[.4]=#1D
-

1
[.5]=#1E
-

1
[.6]=#1F
-

1
[.7]=#1G
-

1
[.8]=#1H
-

1
[.9]=#1I
-

1
[.]#=1
-

1
[.]~=4
-

1
[.]=4
-

5
[.]=.
-

2
[/SUB]=*
-

2
[/SUP]=+
-

1
[/]+/=
-

1
/+[/]=
-

1
~[/]#=;4
-

1
[/]=/
-

5
[/]=/
-

1
#[0]=J
-

1
[0]=#J
-

5
[0]=0
-

2
#[1ST]=A/
-

2
[1ST]=#A/
-

1
#[1]=A
-

1
[1]=#A
-
	5
[1]=1
-

1
#[2]=B
-

1
[2]=#B
-

5
[2]=2
-

1
#[3]=C
-

1
[3]=#C
-

5
[3]=3
-

1
#[4]=D
-

1
[4]=#D
-

5
[4]=4
-

1
#[5]=E
-

1
[5]=#E
-

5
[5]=5
-

1
#[6]=F
-

1
[6]=#F
-

5
[6]=6
-

1
#[7]=G
-

1
[7]=#G
-

5
[7]=7
-

1
#[8]=H
-

1
[8]=#H
-

5
[8]=8
-
1
#[9]=I
-

1
[9]=#I
-

5
[9]=9
-

1
[:]#=
-

1
[:]=3
-

5
[:]=:
-

1
[;]=2
-

5
[;]=5
-

1
[<]=8
-

5
[<]=<
-

2
~[=T-SHI]IRT=;T-SHI
-

2
[=]!=;
3

1
[=]!=;
4

1
[=]=;8
-

5
[=]==
-

1
[>]=0
-

1
[>]=>
-

1
[?]=8
-

5
[?]=?
-

2
[@EN]=@EN
-

2
[@ER]=@ER
-

2
[@ED]=@ED
-

2
[@O]NG=@O
-

2
[@AR]=@AR
-

1
[@]=@
-

5
[@]=@
-

2
~[A];#=;A
-

2
#[A]=;A
-

1
~[A];#=;A
-

1
#[A]=;A
-

2
[ARIGHT]=A"R
-

2
[AR]=>
-

2
~[AND]THE~=&
-

2
~[AND]A~=&
-

2
~[AND]OF~=&
-

2
~[AND]WITH~=&
-

	2
~[AND]FOR~=&
-

2
[AND]=&
-

2
~[ANTEA]TER=ANT1
-

2
[ANTEN]NA=ANT5
-

2
[ANTER]IOR=ANT]
-

2
~[ANTE]=ANTE
-

2
[ANTIN]OM=ANT9
-

2
~[ANTI]=ANTI
-
2
![ANCE]=.E
-

2
[ANEMONE]=ANEMONE
-
2
![ATION]=,N
-

2
~[AS]~=Z
-

2
[ABOUT]=AB
-

2
[ABOVE]=ABV
-

2
[AGAIN]=AG
-

2
[AFTERNOON]=AFN
-

2
[AFTERWARD]=AFW
-

2
~[AFTER]E=AFT
-

2
~[AFTER]I=AFT
-

2
[AFTER]=AF
-

2
![ALLY]=,Y
-

2
~[ALWAYS]~=ALW
-

2
~[ALSO]~=AL
-

2
~[ALMOST]~=ALM
-

2
~[ALREADY]~=ALR
-

2
~[ALTHOUGH]~=AL?
-

2
~[ALTOGETHER]=ALT
-

2
~[ACROSS]~=ACR
-

2
~[ACCORDING]=AC
-

2
[AUND]ER=AUND
-

2
[AINES]S=A9ES
-

2
![AED]~=A$
-

2
[AE]D=AE
-

2
[AE]A=AE
-

2
[AERO]=A]O
-

2
![AER]=AER
-

2
~[AENE]AS=AENE
-

2
[AE]N=AE
-

1
[A]=A
-

5
[A]=A
-

2
~[B];#=;B
3

2
#[B]=;B
3

1
~[B];#=;B
4

1
#[B]=;B
4

2
[BRO']=BRO'
-

2
~[BUT]~=B
-

2
[BBLE]=B#
-

2
![BB]!=2
-

2
 |[BE] =2
-

2
~[BEATI]F=2ATI
-

2
~[BEATI]T=2ATI
-

2
~[B]EA=B
-

2
~[BECAUSE]=2C
-

2
~[BECK]=BECK
-

2
~[BEC]=2C
-

2
~[BED]A=2D
-
	2
~[BED]E=2D
-

2
~[BED]I=2D
-

2
~[BEDRA]G=2DRA
-

2
~[BED]=B$
-

2
~[BEET]HOVEN=BEET
-

2
~[BE]E=BE
-

2
~[BEFORE]=2F
-

2
~[BE]F=2
-

2
~[BEG]A=2G
-

2
~[BEG]E=2G
-

2
~[BEG]I=2G
-

2
~[BEG]O=2G
-

2
~[BEG]R=2G
-

2
~[BEG]U=2G
-

2
~[BE]G=BE
-

2
~[BEHIND]=2H
-

2
~[BEH]=2H
-

2
~[BEING]=2+
-

2
~[BEIN']=2IN
-

2
~[BE]I=BE
-

2
~[BEJ]=2J
-

2
~[BEL]A=2L
-

2
~[BEL]E=2L
-

2
~[BE]LE=2
-

2
~[BELOW]=2L
-

2
~[BEL]O=2L
-

2
~[BEL]Y=2L
-

2
~[BE]L=BE
-

2
~[BE]M=2
-

2
~[BENEATH]=2N
-

2
~[BEN]IGN=B5
-

2
~[BEN]I=2N
-

2
~[BEN]U=2N
-

2
~[BEN]=B5
-

2
~[BEQU]=2QU
-

2
~[BERET]=B]ET
-

2
~[BERG]=B]G
-

2
~[BERK]=B]K
-

2
~[BERL]=B]L
-

2
~[BERM]=B]M
-

2
~[BERN]=B]N
-

2
~[BERR]=B]R
-

2
~[BERS]=B]S
-

2
~[BER]T=B]
-

2
~[BER]W=B]
-

2
~[BERYL]=B]YL
-

2
~[BER]BECK=B]
-

2
~[BE]R=2
-
2
~[BESIDE]=2S
-

2
~[BESS]=BESS
-

2
~[BESTEA]D=BE/1
-

2
~[BESTI]A=BE/I
-

2
~[BESTING]=BE/+
-

2
~[BESTI]=2/I
-

2
~[BEST]O=2/
-

2
~[BESTR]=2/R
-

	2
~[BEST]=BE/
-

2
~[BE]S=2
-

2
~[BET]A=2T
-

2
~[BETEL]=2TEL
-

2
~[BETH]I=2?
-

2
~[BETH]O=2?
-

2
~[BET]I=2T
-

2
~[BET]O=2T
-

2
~[BETR]=2TR
-

2
~[BETWEEN]=2T
-

2
~[BETW]=2TW
-

2
~[BEW]=2W
-

2
~[BEYOND]=2Y
-

2
~[BEZ]=2Z
-

2
~[BE']=2'
-

2
[BLESS]=B.S
-

2
[BLEN]D=BL5
-

2
[BLEED]=BLE$
-

2
![BLEU]=BL1U
-

2
![BLE]=#
-

2
[BLIN]DE=BL9
-

2
[BLIN]DI=BL9
-

2
[BLIND]=BL
-

2
~[BLUE]=BLUE
-

2
~[BY AND BY]~=BY & BY
-

2
~[BY AND] =BY &
-

2
~[BY] AT =BY
-

2
~[BY BUT] =BY B
-

2
~[BY IN] =BY 9
-

2
~[BY]ON =BY
-

2
~[BY THE B]Y=0! B
-

2
~[BY] TO =BY
-

2
~[BY] WAS =BY
-

2
~[BY] WITH~=BY
-

2
~[BY] WITHOUT=BY
-

2
~[BY HIS] =0HIS
-

2
~[BY ENOUGH]=05\<
-

2
~[BY =]==0
-

2
~[BY]!=0
-

2
~[BY]#=0
-
2
~[BRAILLE]=BRL
-

1
 [B].~=B
-

1
.[B]=B
-

1
[B].!=B
-

1
~[B]~=;B
-

1
[B]=B
-

5
[B]=B
-

2
~[C];#=;C
3

2
#[C]=;C
3

1
~[C];#=;C
4

1
#[C]=;C
4

2
[CHILDREN]=*N
-

2
~[CHILD]~=*
-

2
[CHARACTER]="*
-

2
[CH]RISTO=*
-

2
[CHRIST]="C
-

2
[CH]=*
-

2
~[COMIN']=-IN'
-
	2
~[COMMON]EST=-MON
-

2
~[COM]!=-
-

2
~[C]ONE=C
-

2
~[CONO]=CONO
-

2
~[CON]NED=CON
-

2
~[CO]NA=CO
-

2
[CONY]=CONY
-

2
~[CONKER]=3K]
-

2
[CONK]=CONK
-

2
~[CONCEIVING]=3CVG
-

2
~[CONCEIVE]=3CV
-

2
~[CONCH]~=CON*
-

2
~[CONS]~=CONS
-

2
~[CON]!=3
-

2
[COULD]=CD
-

2
[COEN]ZYME=CO5
-

2
[CANNOT]=_C
-

2
~[CAN]~=C
-

2
~[CATI]ON=CATI
-

2
~[CENT]=C5T
-

2
[CCH]=C*
-

2
![CC]!=3
-

1
 [C].~=C
-

1
.[C]=C
-

1
[C].!=C
-

1
~[C]~=;C
-
1
[C]=C
-

5
[C]=C
-

2
~[D];#=;D
3

2
#[D]=;D
3

1
~[D];#=;D
4

1
#[D]=;D
4

2
[D'YOU]=D'Y\
-

2
~[DAFT]ER=DAFT
-

2
[DAY]="D
-

2
~[DO']=DO@
-

2
~[DO]~=D
-

2
~[DIS]HEA=4
-

2
~[DIS]HA=4
-

2
~[DIS]HO=4
-

2
~[DISH]=DI%
-

2
~[DISK]S=DISK
-

2
~[DIS]~=DISK
-

2
~[DISC]S~=DISC
-

2
~[DISC]~=DISC
-

2
[DISPIRIT]=DI_S
-

2
~[DI]SULPH=DI
-

2
~[DIS]!=4
-

2
~[DINGH]=D9<
-

2
![DDAU]GHTER=DDAU
-

2
[DDAY]=D"D
-

2
![DD]!=4
-

2
[DECEIVE]=DCV
-

2
[DECEIVING]=DCVG
-

2
[DECLARING]=DCLG
-

2
[DECLARE]=DCL
-

2
~[DE]NAT=DE
-

2
~[DESH]ABILLE=DESH
-

	2
[DEAW]=DEAW
-

2
~[DEAC]T=DEAC
-

1
 [D].~=D
-

1
.[D]=D
-

1
[D].!=D
-

1
~[D]~=;D
-

1
[D]=D
-

5
[D]=D
-

2
~[E];#=;E
3

2
#[E]=;E
3

1
~[E];#=;E
4

1
#[E]=;E
4

2
 |[ENOUGH] =5
-

2
![EDISH]=EDI%
-

2
![ED]OOM=ED
-

2
![ED]OM=ED
-

2
![ED]OVE=ED
-

2
![ED]OWN=ED
-

2
![ED]EEP=ED
-

2
![ED]REAM=ED
-

2
![ED]ROP=ED
-

2
![ED]RUM=ED
-

2
![EDD]FO=E4
-

2
![EDAL]E=EDAL
-

2
[ED]=$
-

2
[EDREAG]H=ER1<
-

2
[EROO]M=EROO
-

2
[ER]=]
-

2
[ELECTRO]=ELECTRO
-

2
[E]NAME=E
-

2
[ENCED]=5C$
-

2
[ENCEA]=5C1
-

2
[ENCER]=5C]
-

2
![ENCE]=;E
-

2
[ENESS]=E;S
-

2
![ENOO]K=ENOO
-

2
~[ENOUGH'S]=5'S
-

2
~[EN]~=EN
-

2
[EN]=5
-

2
![EAR]=E>
-

2
![EALLY]=E,Y
-

2
![EALO]GY=EALO
-

2
![EADE]~=EADE
-

2
![EADD]=1DD
-

2
![EAX]=EAX
-

2
![EAPP]=EAPP
-

2
![EANCE]=E.E
-

2
![EAND]=E&
-

2
![EATION]=E,N
-

2
![E]AWAY=E
-

2
![EA]BLE=AE
-

2
![EA]!=1
-

2
[EEVER]=EEV]
-
2
~[EVERY]~=E
-
2
~[EVERTO]N="ETO
-

2
~[EVERT]=EV]T
-

2
[EVERD]I~=EV]D
-

2
[EVER]="E
-

2
[EITHER]=EI
-
	2
[ETHER]E=E!R
-

1
 [E].~=E
-

1
.[E]=E
-

1
[E].!=E
-

1
~[E]~=;E
-

1
[E]=E
-

5
[E]=E
-

2
~[F];#=;F
3

2
#[F]=;F
3

1
~[F];#=;F
4

1
#[F]=;F
4

2
~[FOR]THE~==
-

2
~[FOR]A~==
-

2
~[FOREVER]=="E
-

2
~[FOR]ENS==
-

2
~[FORE]==E
-

2
[FOR]==
-

2
[FRUI]T=FRUI
-

2
[FRIEN]DE=FRI5
-

2
[FRIEN]DI=FRI5
-

2
[FRIEND]=FR
-

2
~[FROM]~=F
-

2
[FIRST]=F/
-

2
~[FIAN]C!=FIAN
-

2
[FLEAR]IDD=FL1R
-

2
![FULLE]=;LLE
-

2
![FULLY]=;LLY
-

2
![FULL]=FULL
-

2
![FUL]=;L
-

2
[FFOR]=F=
-

2
![FF]!=6
-

2
[FATHER]="F
-

2
~[FAERY]=FA]Y
-

1
 [F].~=F
-

1
.[F]=F
-

1
[F].!=F
-

1
~[F]~=;F
-

1
[F]=F
-

5
[F]=F
-

2
~[G];#=;G
3

2
#[G]=;G
3

1
~[G];#=;G
4
1
#[G]=;G
4

2
![GHAI]=GHAI
-

2
![GHEAD]=GH1D
-

2
![GHEAP]=GH1P
-

2
![GHIL]=GHIL
-

2
![GHOL]E=GHOL
-
2
![GHOR]N=GHOR
-
2
![GHOUS]E=GH\S
-

2
![GHUN]T=GHUN
-

2
[GH]=<
-

2
[GOOD]=GD
-

2
[GOVERN]ESS=GOV]N
-

2
~[GO]~=G
-

2
![GG]!=7
-

2
[GREAT]=GRT
-

1
 [G].~=G
-

1
.[G]=G
-

	1
[G].!=G
-

1
~[G]~=;G
-

1
[G]=G
-

5
[G]=G
-

2
~[H];#=;H
3

2
#[H]=;H
3

1
~[H];#=;H
4

1
#[H]=;H
4

2
 |[HIS] =8
-

2
[HADD]!=HA4
-

2
~[HADE]=HADE
-

2
~[HADR]IAN]=HADR
-

2
~[HAD]=_H
-

2
~[HAVE]~=H
-

2
~[HIMSELF]=HMF
-

2
~[HIM]~=HM
-

2
[HEDGE]ROW=H$GE
-

2
[HER]ESY=H]
-

2
[HERI]SI=H]E
-

2
[HERE]TI=H]E
-

2
[HERE]R=H]]
-

2
[HER]EN=H]
-

2
[HER]ED=H]
-

2
[HER]EF=H]
-

2
[HERE]="H
-

2
~[HERSELF]=H]F
-

2
[HYDRO]=HYDRO
-

2
~[HM]~=H'M
-

1
 [H].~=H
-

1
.[H]=H
-

1
[H].!=H
-

1
~[H]~=;H
-

1
[H]=H
-

5
[H]=H
-

2
~[I];#=;I
3

2
#[I]=;I
3

1
~[I];#=;I
4

1
#[I]=;I
4

2
 |[IN] =9
-

2
~[INTO] AND =9TO
-

2
~[INTO] AT =9TO
-

2
~[INTO] BUT =9TO
-

2
~[INTO] IF =9TO
-

2
~[INTO] IN =9TO
-
2
~[INTO] IS =9TO
-

2
~[INTO] WAS =9TO
-

2
~[INTO] WHEN =9TO
-

2
~[INTO] FOR =9TO
-

2
~[INTO] OF =9TO
-

2
~[INTO] OR =9TO
-

2
~[INTO] TO =9TO
-

2
~[INTO HI]S =96HI
-

2
~[INTO ENOU]GH=965\
-

2
~[INTO]_=96
-

2
~[INTO]!=96
-

2
~[INTO]#=96
-
2
[INDIA]RUB=9DIA
-

2
![INGRA]=9GRA
-
	2
![ING]=+
-

2
![INESS]=I;S
-

2
~[IN]-=9
-

2
~[IN] =IN
-

2
~[IN]~=IN
-

2
![IN]=9
-

2
[IN]!=9
-

2
![ITY]=;Y
-

2
~[ITSELF]~=XF
-

2
~[ITS]~=XS
-

2
~[IT]~=X
-

2
[IRRE]VERS=IRRE
-

2
[IEVER]=IEV]
-

2
[IETN]AMESE=IETN
-

2
~[IMMEDIATE]=IMM
-

2
[IO]NE=IO
-

2
~[ISOM]ER=ISOM
-

1
 [IV]~=;IV
-

1
 [II]~=;II
-

1
 [III]~=;III
-

1
[I]=I
-

5
[I]=I
-

2
~[J];#=;J
3

2
#[J]=;J
3

1
~[J];#=;J
4

1
#[J]=;J
4

2
~[JUST]~=J
-

1
 [J].~=J
-

1
.[J]=J
-

1
[J].!=J
-

1
~[J]~=;J
-

1
[J]=J
-

5
[J]=J
-

2
~[K];#=;K
3

2
#[K]=;K
3

1
~[K];#=;K
4

1
#[K]=;K
4

2
~[KNOWLEDGE]~=K
-

2
[KNOW]="K
-

2
~[KILO]=KILO
-

1
 [K].~=K
-

1
.[K]=K
-

1
[K].!=K
-

1
~[K]~=;K
-
1
[K]=K
-

5
[K]=K
-

2
~[L];#=;L
3

2
#[L]=;L
3

1
~[L];#=;L
4

1
#[L]=;L
4

2
~[LATI]MER=LATE
-

2
[LAERT]ES=LA]T
-

2
![LESS]=.S
-

2
[LETTER]=LR
-

2
~[LIKE]~=L
-

2
[LITTLE]=LL
-

2
[LORD]="L
-

2
[LAHAD]=LA_H
-

	2
~[LLAN]D=LLAN
-

1
 [L].~=L
-

1
.[L]=L
-

1
[L].!=L
-

1
~[L]~=;L
-

1
[L]=L
-

5
[L]=L
-

1
~[M]C`~=;M
-

2
~[M];#=;M
3

2
#[M]=;M
3

1
~[M];#=;M
4

1
#[M]=;M
4

2
![MENT]=;T
-

2
~[MAHA]=MAHA
-

2
[MANY]=_M
-

2
[MONTRE]AL=MONTRE
-

2
~[MORE]'N=MORE
-

2
~[MORE]~=M
-

2
~[MORT]IMER=MORT
-

2
[MOTHEA]TEN=MO?1
-

2
[MOTHER]APY=MO!R
-

2
[MOTHER]="M
-

2
~[MIS]TI=MIS
-

2
~[MIST]RIAL=MIST
-

2
~[MIST]REA=MIST
-

2
~[MIST]RU=MIST
-

2
~[MIST]RANS=MIST
-

2
~[MIS]TH=MIS
-

2
[MIST]=MI/
-

2
~[MIS]=MIS
-

2
[MICRO]=MICRO
-

2
[MUCH]=M*
-

2
[MUST]AFA=MU/
-

2
~[MUSTA]NG=MU/A
-

2
~[MUSTAR]D=MU/>
-

2
~[MUSTER]=MU/]
-

2
[MUST]=M/
-

2
~[MYSELF]~=MYF
-

2
~[MC]=MC
-

1
 [M].~=M
-

1
.[M]=M
-

1
[M].!=M
-

1
~[M]~=;M
-
1
[M]=M
-

5
[M]=M
-

1
~`[ND]~=4ND
-

1
#[ND]~=ND
-

1
.[ND]~=ND
-

2
~[N];#=;N
3

2
#[N]=;N
3

1
~[N];#=;N
4

1
#[N]=;N
4

2
~[NIGHT]=NI<T
-

2
~[NOBLES]SE=NO#S
-

2
~[NOT]~=N
-

2
~[NONE]~=N"O
-
2
~[NONES]~=N"OS
-

2
~[NON]ESS=NON
-
	2
~[N]ONES=N
-

2
~[NONE]THE=N"O
-

2
~[NON]=NON
-

2
[NOWI]SE=NOWI
-

2
[NOWA]Y=NOWA
-

2
[NO]WHERE=NO
-

2
[NA]MENT=NA
-

2
[NAME]="N
-

2
![NESS]=;S
-

2
[NECESSARY]=NEC
-

2
[NCRE]A=NCRE
-

1
 [N].~=N
-

1
.[N]=N
-

1
[N].!=N
-

1
~[N]~=;N
-

1
[N]=N
-

5
[N]=N
-

2
~[O];#=;O
3

2
#[O]=;O
3

1
~[O];#=;O
4

1
#[O]=;O
4

2
~[OF]THE~=(
-

2
~[OF]A~=(
-

2
[OFOR]=O=
-

2
[OF]=(
-

2
~[OUT]HELD=\T
-

2
~[OUT]~=\
-

2
![OUND]=.D
-

2
![OUNT]=.T
-

2
[OUGHT]="\
-

2
~[OURSELVES]~=\RVS
-

2
[OU]=\
-

2
[OWORK]=O"W
-

2
[OW]=[
-

2
![ONG]=;G
-

2
[ONEA]=ON1
-

2
[ONEC]K=ONEC
-

2
[ONENESS]="O;S
-

2
[ON]EN=ON
-

2
[ONER]=ON]
-

2
[ONED]=ON$
-

2
[ONES]IA=ONES
-

2
[ONES]IM=ONES
-

2
[ONES]S~=ONES
-

2
~[ONESELF]~="OF
-

2
[ONES]E~=ONES
-

2
[ONEST]="O/
-

2
[ONE]E=ONE
-

2
[ONEOU]S=ONE\
-

2
[ONEO]=ONEO
-

2
[ONEY]~="OY
-

2
[ONEU]M=ONEU
-

2
[ONE]UR=ONE
-

2
[ONET]ED=ONET
-

2
[ONET]S=ONET
-

2
[ONET]CY=ONET
-

2
[ONET]~=ONET
-

2
[ONET]TE=ONET
-

	2
[ONEL]S=ONEL
-

2
![O]NEL~=O
-

2
[ONE]="O
-

2
[O]IN=O
-

2
[OI]=OI
-

2
[OEN]=OEN
-

2
[OED]!=OED
-

2
~[OVEREA]T=OV]1
-

2
~[OVER]=OV]
-

2
~[O'CLOCK]~=O'C
-

2
[ORSE]RADISH=ORSE
-

2
[OON]E=OON
-

2
~[OLE]A=OLE
-

2
~[O]~MY=O
-

1
~[O]~DEAR=O
-

1
 [O].~=O
-

1
.[O]=O
-

1
[O].!=O
-

1
~[O]~=;O
-

1
[O]=O
-

5
[O]=O
-

2
~[P];#=;P
3

2
#[P]=;P
3

1
~[P];#=;P
4

1
#[P]=;P
4

2
~[PH]ONEY=PH
-

2
[PHONES]S=PH"O
-

2
[PHONETI]=PHONETI
-

2
[PHONE]~=PH"O
-

2
~[PAR]TH=P>
-

2
[PART]="P
-

2
[PAID]=PD
-

2
[PAINS]TAK=PA9S
-

2
[PAGODA]=PAGODA
-

2
~[PEOPLE]~=P
-

2
~[PERHAPS]=P]H
-

2
[PERCEIVE]=P]CV
-

2
[PERCEIVIN]G=P]CV
-

2
[PERSE]VER=P]SE
-

2
[PEACH]=PR1*
-

2
[PRED]AC=PR$A
-

2
[PREDA]TOR=PR$A
-

2
[PRED]ECES=PR$
-

2
[PREDI]L=PR$I
-

2
[PREDI]C=PR$I
-

2
[PRENT]ICE=PR5T
-

2
[PRERO]G=PR]O
-

2
~[PRE]=PRE
-

2
[POST]H=PO/
-

1
 [P].~=P
-

1
.[P]=P
-

1
[P].!=P
-
1
~[P]~=;P
-

1
[P]=P
-

5
[P]=P
-

2
~[Q];#=;Q
3

2
#[Q]=;Q
3

1
~[Q];#=;Q
4
	1
#[Q]=;Q
4

2
[QUICK]=QK
-

2
~[QUITE]~=Q
-

2
[QUESTION]="Q
-

1
 [Q].~=Q
-

1
.[Q]=Q
-

1
[Q].!=Q
-

1
~[Q]~=;Q
-

1
[Q]=Q
-

5
[Q]=Q
-

1
~'[RD]~=4RD
-

1
#[RD]~=RD
-

1
.[RD]~=RD
-

2
~[R];#=;R
3

2
#[R]=;R
3

1
~[R];#=;R
4

1
#[R]=;R
4

2
[RIGHT]="R
-

2
~[RATHER]~=R
-

2
[RAFT]ER=RAFT
-

2
[RARED]~=RAR$
-

2
~[RANS]OME=RANS
-

2
[RAR]ENAL=RAR
-

2
~[REA]B=REA
-

2
[REACHING]=R1*+
-

2
~[REACH]I=REA*
-

2
~[REACH]=R1*
-

2
~[RE]AC=RE
-

2
~[READ]AP=READ
-

2
~[REA]DD=REA
-

2
~[READ]J=READ
-

2
~[READ]M=READ
-

2
~[READ]O=READ
-

2
~[READ]V=READ
-

2
~[REA]F=REA
-

2
~[REA]G=REA
-

2
~[REAL]IG=REAL
-

2
~[REAL]IN=REAL
-

2
~[RE]ALL=RE
-

2
~[REAN]=REAN
-

2
~[REAP]P=REAP
-

2
~[REAS]C=REAS
-

2
~[REAS]S=REAS
-

2
~[REAT]T=REAT
-

2
[REAW]AKE=REAW
-

2
~[REDEE]M=R$EE
-

2
~[RED]EMPT=R$
-

2
~[RED]E=RED
-

2
~[RED]I=RED
-

2
~[REDOUB]T=R$\B
-

2
~[REDOUND]=R$.D
-

2
~[RE]DO=RE
-
2
~[REDR]AW=REDR
-

2
~[REDU]C=R$U
-

2
~[REDU]ND=R$U
-

2
~[REDU]=REDU
-

2
~[RE]NAM=RE
-

2
~[RENA]V=RENA
-

	2
~[RENO]M=RENO
-

2
~[RENU]M=RENU
-

2
~[REREDO]S=R]$O
-

2
~[RE]R=RE
-

2
[REVER]EN=R"E
-

2
[REVER]IE=R"E
-

2
~[REVER]=REV]
-

2
[REJOICE]=RJC
-

2
[REJOICING]=RJCG
-

2
[RECEIVE]=RCV
-

2
[RECEIVING]=RCVG
-

1
 [R].~=R
-

1
.[R]=R
-

1
[R].!=R
-

1
~[R]~=;R
-

1
[R]=R
-

5
[R]=R
-

1
#[S]~='S
-

2
~[S];#=;S
3

2
#[S]=;S
3

1
~[S];#=;S
4

1
#[S]=;S
4

2
~[STILL]~=/
-

2
![STID]E=STID
-

2
![STION]=S;N
-

2
![STIME]=S"T
-

2
![STHEAD]=/H1D
-

2
![ST]HOOD=/
-

2
![S]TH=S
-

2
![ST]OWN=ST
-

1
~'[ST]~=4/
-

2
~[ST].~=ST
-

2
[ST]=/
-

2
~[SHALL]~=%
-

2
![SHART]=SH>T
-

2
![SHAW]K=SHAW
-

2
[SHOULD]ER=%\LD
-

2
[SHOULD]=%D
-

2
![SHOUS]E=SH\S
-

2
![SHOO]D=SHOO
-

2
![SHOR]N=SHOR
-

2
![SHOR]SE=SHOR
-

2
![SHOUND]=SH.D
-

2
![SHIL]L=SHIL
-

2
![SHEAR]T=SHE>
-
2
![SHEAD]=SH1D
-

2
![SHUN]D~=SHUN
-

2
~[SH]'=%
-

2
~[SH]~=SH
-

2
[SH]=%
-

2
![SION]=.N
-

2
![SINGH]=S9<
-

2
[SAID]=SD
-

2
![SOFAR]=SOF>
-

2
![SOMED]~=SOM$
-

2
![SOME]TRY=SOME
-

2
![SOME]TRIC=SOME
-

2
![SOME]TER=SOME
-
	2
[SOMER]!=SOM]
-

2
[SOME]="S
-

2
~[SO]~=S
-

2
[SEVERED]=S"E$
-

2
[SEVER]E=SEV]
-

2
[SEVER]ITY=SEV]
-

2
[SED]ATIV=S$
-

2
[SPHER]=SPH]
-

2
[SPIRIT]=_S
-

2
~[SUB]=SUB
-

2
[SUCH]=S*
-

2
~[SSH]~=S%
-

2
[SS]H=SS
-

2
[SWED]ISH=SW$
-

2
~[SWOR]D=SWOR
-

2
[SQUA]LLY=SQUA
-

1
[S'']~=SO'
-

1
[S']~=S'
-

1
 [S].~=S
-

1
.[S]=S
-

1
[S].!=S
-

1
~[S]~=;S
-

1
[S]=S
-

5
[S]=S
-

1
~'[TH]~=4?
-

1
#[TH]~=?
-

1
.[TH]~=?
-

2
~[T];#=;T
3

2
#[T]=;T
3

1
~[T];#=;T
4

1
#[T]=;T
4

2
![THAND]=TH&
-

2
![THART]=TH>T
-

2
~[THAT]~=T
-

2
[THERER]=!R]
-

2
[THERED]=!R$
-

2
[THERE]SA=!RE
-

2
[THERE]TT=!RE
-

2
[THEREEN]=!RE5
-

2
[THERE]="!
-

2
![THERD]=TH]D
-

2
~[THEIR]=_!
-
2
[THESE]~=^!
-

2
~[THEMSELVES]=!MVS
-

2
[THENCE]=?;E
-

2
[THEND]=?5D
-

2
[THEAST]=?1/
-

2
![THEAD]=TH1D
-

2
![THEART]T=THE>
-

2
[THE]=!
-

2
~[THIS]~=?
-

2
![THIL]L=THIL
-

2
[THRO']=?RO'
-

2
[THROUGH]="?
-

2
~[THOSE]=^?
-

2
![THOO]D=THOO
-

2
![THOO]K=THOO
-

2
![THOR]SE=THOR
-

	2
![THOUS]E=TH\S
-

2
![THOL]E=THOL
-

2
![THOL]D=THOL
-

2
~[THYSELF]=?YF
-

2
[TH]=?
-

2
~[TO] AND~=TO
-

2
~[TO] AT =TO
-

2
~[TO BE]~=6BE
-

2
~[TO] BUT=TO
-

2
~[TO BY]!=TO 0
-

2
~[TO] IF =TO
-

2
~[TO] IN =TO
-

2
~[TO] IS =TO
-

2
~[TO] WAS =TO
-

2
~[TO] WERE =TO
-

2
~[TO] WHERE =TO
-

2
~[TO] WITH =TO
-

2
~[TO] FOR =TO
-

2
~[TO] OF =TO
-

2
~[TO] OR =TO
-

2
~[TO] TO =TO
-

2
~[TO HIS]=6HIS
-

2
~[TO ENOUGH] =65\<
-

2
~[TO _BE]=6.BE
-

2
~[TO _]=6.
-

2
~[TO =]=6
-

2
~[TO]!=6
-

2
~[TO]#=6
-

2
~[TOGETHER]=TGR
-

2
~[TODAY]=TD
-

2
~[TOMORROW]=TM
-

2
~[TONIGHT]=TN
-

2
~[TO-DAY]=TD
-

2
~[TO-MORROW]=TM
-

2
~[TO-NIGHT]=TN
-

2
~[TORE]ADOR=TORE
-

2
![TION]=;N
-

2
![TI]MEN=TI
-

2
![TIME]TER=TIME
-

2
[TIME]="T
-

2
[TEAROOM]=T1ROOM
-

2
[TWOULD]=TWD
-

2
~[TWO]=TWO
-

2
[TLDE]DG=TLED
-

2
![TLE]D!=TLE
-

2
![TTLE]N=TTLE
-

1
 [T].~=T
-

1
.[T]=T
-

1
[T].!=T
-

1
~[T]~=;T
-

1
[T]=T
-

5
[T]=T
-

2
~[U];#=;U
3

2
#[U]=;U
3

1
~[U];#=;U
4
1
#[U]=;U
4

2
~[UNDER]I=UND]
-

2
~[UNDER]O=UND]
-
	2
~[UNFUL]F=UNFUL
-

2
[UNDER]="U
-

2
~[UNEAS]=UN1S
-

2
~[UNEAR]=UNE>
-

2
~[UNLESS]~=UN.S
-

2
~[UNITY]=UN;Y
-

2
~[UN]=UN
-

2
[USEA]GE=USEA
-

2
~[US]~=U
-

2
[UPON]=^U
-

1
 [U].~=U
-

1
.[U]=U
-

1
[U].!=U
-

1
~[U]~=;U
-

1
[U]=U
-

5
[U]=U
-

2
~[V];#=;V
3

2
#[V]=;V
3

1
~[V];#=;V
4

1
#[V]=;V
4

2
~[VERY]~=V
-

2
~[VICEN]=VIC5
-

2
~[VICE]=VICE
-

1
 [V].~=V
-

1
 [V].TH=;V
-

1
.[V]=V
-

1
[V].!=V
-

1
~[V]~=;V
-

1
~[VI]~=;VI
-

1
~[VII]~=;VI
-

1
~[VIII]~=;VI
-

1
[V]=V
-

5
[V]=V
-

2
~[W];#=;W
3

2
#[W]=;W
3

1
~[W];#=;W
4

1
#[W]=;W
4

2
 |[WAS]-=WAS
-

2
 |[WAS] =0
-

2
 |[WERE]-=WERE
-

2
 |[WERE] =7
-

2
[WA]F=WA
-

2
~[WITH]THE~=)
-

2
~[WITH]A~=)
-

2
[WITH]=)
-
2
~[WIIL]~=W
-

2
~[WHICH']=:I*'
-

2
~[WHICH]~=:
-

2
![WHID]E=WHID
-

2
![WHERE]D=WH]D
-

2
[WHEREVER]=:]"E
-

2
[WHERE']ER=:]E'
-

2
[WHERE]=":
-
2
~[WHOSE]~=^:
-

2
![WHOUS]E=WH\S
-

2
[WH]=:
-

2
[WOULD]=WD
-

2
[WORK]="W
-

	2
[WORD]=^W
-

2
[WORLD]=_W
-

1
 [W].~=W
-

1
.[W]=W
-

1
[W].!=W
-

1
~[W]~=;W
-

1
[W]=W
-

5
[W]=W
-

2
~[X];#=;X
3

2
#[X]=;X
3

1
~[X];#=;X
4

1
#[X]=;X
4

1
[X]:~=;X
-

1
 [X].~=X
-

1
.[X]=X
-

1
[X].!=X
-

1
~[X]~=;X
-

1
[X]=X
-

5
[X]=X
-

2
~[Y];#=;Y
3

2
#[Y]=;Y
3

1
~[Y];#=;Y
4

1
#[Y]=;Y
4

2
[YOUNG]="Y
-

2
~[YOURSELF]=YRF
-

2
~[YOURSELVES]=YRVS
-

2
[YOUR]=YR
-
2
~[YOU']M=Y\'
-

2
~[YOU]~=Y
-

1
 [Y].~=Y
-

1
.[Y]=Y
-

1
[Y].!=Y
-

1
~[Y]~=;Y
-

1
[Y]=Y
-

5
[Y]=Y
-

2
~[Z];#=;Z
3

2
#[Z]=;Z
3

1
~[Z];#=;Z
4

1
#[Z]=;Z
4
	1
 [Z].~=Z
-
1
.[Z]=Z
-

1
[Z].!=Z
-

1
~[Z]~=;Z
-

1
[Z]=Z
-

5
[Z]=Z
-

1
[[]=,7
-

5
[[]=[
-

1
[\]=/
-

5
[\]=\
-

1
[]]=7'
-

5
[]]=]
-

1
[^]=,
-

5
[^]=^
-

1
[__]#=--#
-

1
[__]=..
-

2
~[_EN]~=.EN
-

2
[_ENOUGH]=.5
-

2
[_TO]_=.6
-

2
[_IN] =.9
-

2
[_INTO]_=.96
-

2
[_WAS] =.0
-

2
[_WERE] =.7
-

2
[_HIS] =.8
-

2
[_BE] =.2
-

2
[_BY]_=.0
-

1
[_/]=
-

5
[_]=_
-

1
[_]=
-

1
[`]=^
-

5
[`]=`
-

1
[{]=,7
-

5
[{]={
-

1
[|]=^
-

5
[|]=|
-

1
[}]=7'
-

5
[}]=}
-

1
[~]=^
-

5
[~]=~
-

Appendix D – Rules for Backward Translation

	1
[]=
1

6
[]=
1

1
[!MVS]=themselves
3

3
[!]!: =the
5

5
[!]= the
5

1
[!]=the
3

3
["1] ="
1

1
["D]=day
3

1
["E]=ever
3

1
["F]=father
3

1
["HAF]=hereafter
3

1
["H]=here
3

1
["K]=know
3

1
["L]=lord
3

1
["M]=mother
3

1
["N]=name
3

1
["OF]=oneself
3

1
["O]=one
3

1
["P]=part
3

1
["Q]=question
3

1
["R]=right
3

1
["S]=some
3

1
["T]=time
3

1
["U]=under
3

1
["W]=work
3

1
["Y]=young
3

1
["!]=there
3

1
["*]=character
3

1
["?]=through
3

1
[":]=where
3

1
["\]=ought
3

1
["]="
1

7
[#]=:
4

6
[#]=
4

4
[#]=ble
3

1
[#']='
4

1
[#]=
4

6
[$]=ed
3

1
[$]=ed
3

1
[%D]=should
3

3
[%]: =shall
3

6
[%]=sh
3

1
[%]=sh
3

1
[&/OR]=and/or
3

1
[,,&/,,OR] =AND/OR
3
3
[&]!: =and
5

5
[&]= and
5

6
[&]=and
3

1
[&]=and
3

1
['''0]:
=..."
3

1
['''8]:
=...?
3

1
[''']=...
2
6
['S]='s
2

3
[']='
2
	7
['S]='s
2

7
[']: ='
4

7
[']=,
4

6
[']='
2

4
[']='
3

3
[']='
2

1
[']='
2

1
[`]=`
2

3
[(]!: =of
5

5
[(]= of
5

1
[(]=of
3

3
[)]!: =with
5

5
[)]= with
5

1
[)]=with
3

3
[*N]=children
3

3
[*]: =child
3

1
[*]=ch
3

1
[+]=ing
3

7
[,]=
1

6
[,,]=<SHIFT_WORD>
6

6
[,]=<SHIFT_CHAR>
6

3
[,,]=<SHIFT_WORD>
1

3
[,]=<SHIFT_CHAR>
1

4
[,N]=ation
3

4
[,Y]=ally
3

6
[,8]='
2

3
[,8]='
2

3
[,7]=[
1

7
[,G]: = grammes
3

3
[,G]: =grammes
3

3
[,G]#=grammes
3

7
[,M]: =metres
3

3
[,M]: =metres
3

3
[,M]#=metres
3

7
[,L]: =litres
3

3
[,L]: =litres
3

3
[,L]#=litres
3

1
[,,]=^^
1

1
[,]=^
1

7
[--]=-
2

6
[--]=-
2

1
[----]=----
3

1
[--]= --
2
7
[-]=-
4

6
[-]~: =-
6

4
[-]=-
2

3
[-]=com
3

1
[-]=-
2

4
[.D]=ound
3

4
[.E]=ance
3

4
[.N]=sion
3

4
[.S]=less
3
4
[.T]=ount
3

1
[.1]=>
3

	1
[.]=_
1

7
[/]#=/
4

7
[/]: =st
3

3
[/]: =still
3

6
[/;]=/
6

6
[/]=st
3

1
[/]=st
3

4
[0']='
3

2
[0]_=was
3

3
[0]=by
1

6
[0]="
3

1
[0]: ="
3

1
[0]="
1

7
[1] =,
4

7
[1]=.
4

1
[1]: =,
3

6
[1]=,
3

4
[1]=ea
3

1
[1]=,
1

3
[2C]: =because
3

3
[2F]H=before
3

3
[2F]: =before
3

3
[2H]H=behind
3

3
[2H]: =behind
3

3
[2LL]: =belittle
3

3
[2L]: =below
3

3
[2N]: =beneath
3

3
[2SS]: =besides
3

3
[2S]: =beside
3

3
[2T]: =between
3

3
[2Y]: =beyond
3

3
[2]=be
3

6
[2]=;
3

1
[2]: =;
3

4
[2]=bb
3

1
[2]=;
1

1
[3CVG]=conceiving
3

1
[3CV]=conceive
3

1
[3P#]=per cent
4

7
[3P]= per cent
4

1
[3P]=per cent
3

1
[3#]=:
4

6
[3]=:
3

1
[3]: =:
3

4
[3]=cc
3

3
[3]=con
3
1
[3]=:
1

3
[4#]=dollars
4

7
[4] =.
3

6
[4]=.
6

1
[4]: =.
3

4
[4]=dd
3

3
[4]=dis
3

1
[4]=.
1

3
[5]: =enough
3
6
[5]=en
3

1
[5]=en
3

3
[6]=to
1
	1
[6]: =!
3

4
[6]=ff
3

6
[6]=!
1

1
[6]=!
1

1
[7']=]
3

6
[7']=]
3

2
[7]_=were
3

3
[7]=(
2

1
[7]: =)
3

6
[7]: =)
3

6
[7]=(
2

4
[7]=gg
3

1
[7]=(
1

1
[8''']="...
2

6
[8']='
3

1
[8']: ='
3

2
[8] =his
3

3
[8]="
2

6
[8]: =?
3

1
[8]: =?
3

6
[8]="
1

1
[8]="
1

6
[99]=*
1

1
[99]=*
1

3
[96]=into
1

6
[9]=in
3

1
[9]=in
3

3
[:]: =which
3

6
[:]=wh
3

1
[:]=wh
3

1
[;6]=+
1

1
[;_]="
1

1
[;8]=*
1

1
[;4]=/
1

1
[;7]==
1

4
[;E]=ence
3

4
[;G]=ong
3

4
[;L]=ful
3

4
[;N]=tion
3

4
[;S]=ness
3

4
[;T]=ment
3

4
[;Y]=ity
3

6
[;]=
6

1
[;]=
6

6
[<]=gh
3
1
[<]=gh
3

6
[>]=ar
3

1
[>]=ar
3

1
[?YF]=thyself
3

3
[?]: =this
3

6
[?]=th
3

1
[?]=th
3

1
[@4]!=$
3

6
[@]='
1

1
[@]='
1

7
[A]=1
4

6
[A]=a
6
3
[ABV]=above
3

	3
[AB]: =about
3

1
[ACLY]=accordingly
3

3
[AC]: =according
3

3
[ACR]: =across
3

3
[AF]B=after
3

3
[AF]G=after
3

3
[AF-]=lafter-
1

3
[AFN]=afternoon
3

3
[AFW]=afterward
3

3
[AF]?=after
3

3
[AF]M=after
3

3
[AF]D=after
3

1
[AF]: =after
3

3
[AG/]=against
3

3
[AG]: =again
3

3
[ALM]: =almost
3

3
[ALR]: =already
3

3
[AL]: =also
3

3
[AL?]: =although
3

3
[ALT]: =altogether
3

3
[ALW]: =always
3

1
[A4M4]=a.m.
3

3
[A]!: =a
5

5
[A]= a
5

1
[A]=a
3

7
[B]=2
4

6
[B]=b
6

3
[BLLY]: =blindly
3

3
[BL]F=blind
3

3
[BL;S]: =blindness
3

1
[BL]M=blind
3

3
[BL]: =blind
3

1
[BRL]=braille
3

3
[B]: =but
3

1
[B]=b
3

7
[C]=3
4

6
[C]=c
6

1
[C/O]=c/o
3

3
[CW#]=hundredweight
4

7
[CW]: = hundredweight
3

3
[CW]: =hundredweight
3

3
[CD]=could
3

3
[C#]=cents
4

3
[C]: =can
3
1
[C]=c
3

7
[D]=4
4

6
[D]=d
6

1
[DCVG]=deceiving
3

1
[DCV]=deceive
3

1
[DCLG]=declaring
3

3
[DCL]=declare
3

3
[DM#]=dm
4

3
[DM]: =dm
3

7
[DM]: = dm
3

3
[DG#]=degrees
4

7
[DG]: = degrees
3

3
[DG]: =degrees
3
3
[D#]=pence
4
	3
[D]: =do
3

1
[D]=d
3

7
[E]=5
4

6
[E]=e
6

3
[EI]: =either
3

3
[EX#]=ex
4

7
[EX]: = example
3

3
[EX]-=ex
3

3
[EX]: =example
3

7
[EXS]: = examples
3

3
[EXS]: =examples
3

1
[E4G4]=e.g.
3

3
[E]: =every
3

1
[E]=e
3

7
[F]=6
4

6
[F]=f
6

3
[F/]=first
3

1
[FRS]=friends
3

1
[FR]L=friend
3

1
[FR]: =friend
3

3
[FT#]=feet
4

7
[FT]: = feet
3

3
[FT]: =feet
3

3
[F#]=francs
4

3
[F]: =from
3

1
[F]=f
3

7
[G]=7
4

6
[G]=g
6

3
[GD]=good
3

1
[GRT]=great
3

3
[GL#]=gallons
4

7
[GL]: = gallons
3

3
[GL]: =gallons
3

3
[G#]=guineas
4

3
[G]: =go
3

1
[G]=g
3

7
[H]=8
4

6
[H]=h
6

3
[H}F]=herself
3

3
[HMF]=himself
3

3
[HMM]=hmm
3

3
[HM]=him
3

3
[HR#]=hours
4

3
[HR]: =hours
3

3
[H]: =have
3

1
[H]=h
3

7
[I]=9
4

6
[I]=i
6

1
[IMM;S]=immediateness
3

1
[IMMLY]=immediately
3

3
[IMM] =immeiate
3

1
[I4E4]=i.e.
3

3
[I#]=inches
4
1
[I]=i
3

7
[J]=0
4

6
[J]=j
6

3
[J]: =just
3

1
[J]=j
3

	6
[K]=k
6

3
[KC/S#]=kilocycles per second
4

7
[KC/S]: = kilocycles per second
3

3
[KC/S]: =kilocycles per second
3

1
[KC#]=kilocycles
4

7
[KC]: = kilocycles
3

3
[KC]: =kilocycles
3

3
[KW#]=kilowatts
4

7
[KW]: = kilowatts
3

3
[KW]: =kilowatts
3

3
[K]: =knowledge
3

1
[K]=k
3

6
[L]=l
6

3
[LR]=letter
3

3
[LL]A=ll
3

3
[LL]E=ll
3

3
[LL]I=ll
3

3
[LL]O=ll
3

3
[LL]U=ll
3

3
[LL]=little
3

3
[LB#]=pounds
4

7
[LB]: = pounds
3

3
[LB]: =pounds
3

3
[L]: =like
3

1
[L]=l
3

6
[M]=m
6

1
[M*]=much
3

1
[M/]=must
3

1
[MYF]=myself
3

3
[MN#]=minutes
4

3
[MN]: =minutes
3

3
[MC/S#]=megacycles per second
4

7
[MC/S]: = megacycles per second
3

3
[MC/S]: =megacycles per second
3

3
[MC#]=megacycles
3

7
[MC]: = megacycles
3

3
[MC]: =megacycles
3

3
[M#]=miles
4

3
[M]: =more
3

1
[M]=m
3

6
[N]=n
6

1
[NEC]: =necessary
3

3
[NEI]: =neither
3

1
[NEWSLR]=newsletter
3

3
[N]: =not
3

1
[N]=n
3

6
[O]=o
6

3
[OZ#]=ounces
4

7
[OZ]: =ounces
3

3
[OZ]: = ounces
3

3
[O'C]=o'clock
3

1
[O]=o
3

6
[P]=p
6

1
[PD]: =paid 3

1
[P}CVG]=perceiving
3

1
[P}CV]=perceive
3

1
[P}H]=perhaps
3
3
[PT#]=pt
4
	3
[PT]: =pt
3

3
[P>#]=paragraph
4

7
[P>]: = paragraph
3

3
[P>]: =paragraph
3

1
[P4M4]=p.m.
3

3
[P#]=p.
4

3
[P]: =people
3

1
[P]=p
3

6
[Q]=q
6

1
[QT#]=quarts
4

7
[QT]: = quarts
3

3
[QT]: =quarts
3

1
[QR#]=quaters
4

7
[QR]: = quaters
3

3
[QR]: =quaters
3

1
[QK]=quick
3

3
[Q]: =quite
3

1
[Q]=q
3

6
[R]=r
6

1
[R4I4P4]=r.i.p
3

1
[RCVG]=receiving
3

1
[RCV]=receive
3

1
[RJCG]=rejoicing
3

1
[RJC]=rejoice
3

3
[R#]=rupees
4

3
[R]: =rather
3

1
[R]=r
3

6
[S]=s
6

1
[SD]: =said
3

1
[S*]: =such
3

3
[ST#]=stones
4

7
[ST]: = stones
3

3
[SE#]=seconds
4

3
[SE]: =seconds
3

3
[S#]=shillings
4

3
[S'#]=section
4

3
[S]: =so
3

1
[S]=s
3

6
[T]=t
6

3
[TD]=today
3

3
[TGR]=together
3

3
[TM]=tomorrow
3

3
[TN]=tonight
3

3
[T#]=tons
4

3
[T]:=that
3

1
[T]=t
3

3
[U4K4]=U.K.
6

6
[U]=u
6

3
[U]: =us
3

1
[U]=u
3

6
[V]=v
6

3
[V]: =very
3

1
[V]=v
3

6
[W]=w
6

3
[WD]=would
3

3
[W]: =will
3

1
[W]=w
3

6
[X]=x
6

	3
[XS]: =its
3

1
[XF]=itself
3

3
[X]:=it
3

1
[X]=x
3

6
[Y]=y
6

1
[YRF]=yourself
3

1
[YRVS]=yourselves
3

3
[YR]=your
3

3
[YD#]=yards
4

7
[YD]: = yards
3

3
[YD]: =yards
3

3
[Y]:=you
3

1
[Y]=y
3

6
[Z]=z
6

3
[Z]: =as
3

1
[Z]=z
3

1
[\RVS]=ourselves
3

3
[\]: =out
3

6
[\]=ou
3

1
[\]=ou
3

1
[^U]=upon
3
1
[^W]=word
3
	1
[^!]=these
3

1
[^?]=those
3

1
[^:]=whose
3

1
[^]=`
1

1
[_C]=cannot
3

1
[_H]=had
3

1
[_M]=many
3

1
[_S]=spirit
3

1
[_W]=world
3

1
[_!]=their
3

6
[_]=_
1

1
[_]=_
1

1
[{O]=.
3

6
[[]=ow
3

1
[[]=ow
3

3
[=]!: =for
5

5
[=]= for 5

6
[=]=for
3

1
[=]=for
3

6
[]]=er
3

1
[]]=er
3

Appendix E – Source Code for Forward Translation
/*Program written by Shannon Thrower

* This version v8 date 01-11-05

* program translates a print file to braille according to

* the translation algorithm developed by Paul Blenkhorn

Capital WORD signs ",," will be inserted if the first two letters of a word are upper case irrelevant

of any other letters in the word.

left and right context checking has be nseperated out into functions.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

/**/

/***********************
Constant Macros

***/

#define RULESIZE 50

// maximum length of a rule

#define FOCUSSIZE 20

// maximum length of a rule's focus

#define CONTEXTSIZE 10

// maximum length of a rule's right context

#define OUTSIZE 25

// maximum length of a rule's output

#define NO_RIGHT_CONTEXT "]="

// used to determine when there is no right context

#define OUTPUT_SIZE 200

// max length of a translated word

#define INPUT_SIZE 200

// max length of a braille input word to be translated

// path definitions for linux (operating over Network File System)

#define RULES_PATH "/opt/P2B rules.txt"

#define IN_PATH "/opt/print input.txt"

#define OUT_PATH "/opt/Braille output.brf"

// path definitions for windows
//#define RULES_PATH "c:/P2B rules.txt"

//#define IN_PATH "c:/wind.txt"

//#define OUT_PATH "c:/braille output.brf"

typedef struct myRule {

int input_class;

char left_context[CONTEXTSIZE];

// structure holds all the information

char focus[FOCUSSIZE];

// about a particular rule. This struct

char right_context[CONTEXTSIZE];
// is used in a linked list hence the

char output[OUTSIZE];

// last component is a link to the next

int next_state;

// rule in the list.

struct myRule *next;

}rule_t;

/**/

/*******************
Function Prototypes

***/

int HashFunction(char key);

void ConstructRules(char *location);

void TranslateLine(char print_line[], char braille_line[]);

void PrintRule(rule_t *rule);

int CheckLeftCtxt (char left_ctxt[], char left_of_focus[]);

int CheckRightCtxt (char right_ctxt[], char right_of_focus[]);

/**/

/*******************
Global Variables

***/

rule_t *list_array[27]=NULL;//stores the head of each linked list where there is one list for each letter and another for all other characters

/**/

/*******************
main()

***/

int main(void)

{

rule_t *current_rule;

char output_string[OUTPUT_SIZE]="\0";

char input_string[INPUT_SIZE];

ConstructRules(RULES_PATH);

FILE *infile, *outfile;

infile = fopen(IN_PATH, "r");

outfile = fopen(OUT_PATH, "w");

if (infile == NULL){

printf("**************************************\n* Cannot open the input file. *\n* The input file should be stored at *\n* %s\n**************************************\n",IN_PATH);

return(0);

}else{

while(fgets(input_string, 1000, infile)!=NULL){

//perform translation for each line of the input file

TranslateLine(input_string, output_string);

printf("The output is:%s\n", output_string);

fprintf(outfile, "%s\n", output_string);

}

}

fclose(infile);

fclose(outfile);

return(0);

}

/**/

/**/

/*******************
TranslateLine()

this is the function responsible for translating a braille word to a print word*/

void TranslateLine(char print_line[], char braille_line[]){

int current_state = 1, array_index, match_flag=0, focus_length;

int focus_match, state_match,

lctxt_match, rctxt_match;

// used as flags to represent a match occuring

char right_of_focus[INPUT_SIZE],
// stores the braille input to the right of the current focus

 left_of_focus[INPUT_SIZE]="\0";
// stores the braille input to the left of the current focus

char current_character = braille_line[0];

char focus[FOCUSSIZE], temp_focus[FOCUSSIZE], print_line_copy[INPUT_SIZE];

rule_t *current_rule;

int decision_table [5][6]={{1,1,0,0,0,0},
//row represents the current state

 {1,0,0,0,0,0},
//column represents the current input class

 {1,0,1,0,0,0},
//rule fires if there is a 1 corresponding to

 {1,0,0,1,0,0},
//current state and input class

 {0,0,0,0,1,0}};

int new_word=1; //flag used to indicate the beginning of a new word

//initialise variables

strcpy(print_line_copy, print_line);

strcpy(right_of_focus, "\0");

strcpy(braille_line, "\0");

//remove misc chars. tabs new lines etc

for (int i=0; i<strlen(print_line);i++){ //for all char in the input string

if ((int)print_line[i]<32){

 //delete the chars that are misc ie less than 32

print_line[i]=' ';//note this line actually converts misc chars to space chars

}

}

while(print_line[0] !='\0' && print_line[0] !='\n'){

match_flag=0;

//check if capital signs are needed.

if(new_word && !isspace(print_line[0])){

if(isalpha(print_line[0])){

new_word = 0;

}

if(isupper(print_line[0])){

braille_line = strcat(braille_line, ",");

if(isupper(print_line[1])){

braille_line = strcat(braille_line, ",");

}

}

}

//convert the char to upper case for comparison.

current_character = toupper((int)print_line[0]);

array_index = (int)current_character-(int)'A';

if(array_index<0 || array_index>25){

array_index = 26;

}

//search linked list corresponding to array_index for a match

current_rule = list_array[array_index];

while(!match_flag && current_rule != NULL){

strcpy(focus, current_rule->focus); //ie
focus = current_rule->focus

focus_length = strlen(focus);

//check the focus for a match irrelevant of case. Note that windows and linux use different

//comands to do this.

//returns 0 if the rule's focus matches the braille word (up to the lengh of the focus)

//focus_match = strnicmp(focus, print_line, focus_length);

//windows function

focus_match = strncasecmp(focus, print_line, focus_length);
//linux function

if (focus_match == 0){

// the focus has been matched. Now check the state

// use the rule's state and current input class to check the decision table

state_match = decision_table[current_state-1][current_rule->input_class-1];

if (state_match){

// the state has been matched. now check the left context

//strncpy(left_of_focus,print_line, position_of_focus);

lctxt_match = CheckLeftCtxt(current_rule->left_context, left_of_focus);

if (lctxt_match){

// the left context has been matched. now check the right context

strcpy(right_of_focus, &print_line[strlen(current_rule->focus)]);

// ie. right_of_focus = braille_line from the end of the current focus

rctxt_match = CheckRightCtxt(current_rule->right_context, right_of_focus);

if (rctxt_match){

match_flag=1;

}

}

}

}

if(!match_flag){

//if a match has not been found move to the next rule in the linked list

current_rule = current_rule->next;

}

}

//a rule has been matched OR the end of the linked list has been reached

if (match_flag){

// a match has been found the rule should fire.

// update the output, the new state and remove the focus from the input braille word

//update new word flag

if(!isalpha((int)current_rule->focus[0])){

new_word=1;

}

//update the state

if (current_rule->next_state != 99){

current_state = current_rule->next_state;

}

//concatenate the output of the rule to the translated word

//braille_line = strcat(braille_line, current_rule->output);

strcpy(braille_line, strcat(braille_line, current_rule->output));

//remove the focus from the input print line and attach it to the left of the focus

strcpy(print_line, &print_line[focus_length]);

strcat(left_of_focus, current_rule->focus);

}else{

//commented text may be used for debugging new rules

//printf("!!\n");

//printf("!!!The translation has exited without a match being found!!!\n");

//printf("!!\n");

//printf("the print input was:%s.\n", print_line);

//printf("The right of focus was:%s.\n", right_of_focus);

// Print "ERROR" to the output file

strcpy(braille_line, strcat(braille_line, "\n\n\nERRORe\n\n\n"));

// remove character from the input

for (int i=0; i<=strlen(print_line); i++){

print_line[i]=print_line[i+1];

}

}

}

}

/**/

/**/

/*******************
CheckLeftCtxt()
**/

int CheckLeftCtxt (char left_ctxt[], char left_of_focus[]){

int ctxt_match = 0,

char_ctxt_match;
// used as a flag when matching a single character of a rules right context;

int n;

// used to process each char of a rule's right context

int lof_len;

// length of the left of focus string

char left_focus_cpy[INPUT_SIZE];
//function manipulates a COPY of the left of focus string since manipulation

//of the left of focus string would alter the string being passed in as the argument.

strcpy(left_focus_cpy, left_of_focus);

//get the length of the left of focus string

if (strlen(left_focus_cpy) == 0){

lof_len = 0;

} else {

lof_len = strlen(left_focus_cpy)-1;

}

if(left_ctxt[strlen(left_ctxt)-1] == '\0'){

//this rule does not have a right context. hence it is a match

ctxt_match=1;

}else{ /* a right context exists for the rule, check the braille input

* left of the focus to see if a match occurs.*/

/* match each right context character of the rule. if any one of the chars

 in the right context does not match then rule can not fire */

char_ctxt_match = 1;

for (n=strlen(left_ctxt); n>0; n--){

/* wild cards "!"= a letter

 "#"= a number

 "~"= a space or punctuation

 " "= a space char only

 "|"= zero or mote capital signs

 "`"= one or more roman numerals

 ";"= zero or more letters

 "+"= one or more digits

*/

int i; //used for looping in some of the case statements

switch (left_ctxt[n-1]){

case '!': // a letter

if(!isalpha((int)left_focus_cpy[lof_len])){

char_ctxt_match = 0;

} else {//remove the letter char from input to the right of the focus

//strcpy(right_of_focus, &right_of_focus[1]);

left_focus_cpy[lof_len]='\0';

}

break;

case '#': // a number

if((left_focus_cpy[lof_len]<48) || (left_focus_cpy[lof_len]>57)){

// note these are the asci values of 0 and 9. ie if right_of_focus

// is not a number then set the match to false.

char_ctxt_match = 0;

} else {//remove the white space char from input to the right of the focus

left_focus_cpy[lof_len]='\0';

}

break;

case '~': // a space or punct char

/* if the frist character to the right of the focus is not a white space character

 or a punctuation char then set the chat_ctxt_match to false */

if(isspace((int)left_focus_cpy[lof_len]) || ispunct((int)left_focus_cpy[lof_len]) || (left_focus_cpy[lof_len] == '\0')){

//remove the space/punct char from the input to the right of the focus

left_focus_cpy[lof_len]='\0';

} else {

char_ctxt_match = 0;

}

break;

case ' ': // a space only

/* if the frist character to the right of the focus is not a white space character

 then set the chat_ctxt_match to false */

if(isspace((int)left_focus_cpy[lof_len]) || (left_focus_cpy[lof_len]=='\0')){

//remove the white space char from input to the right of the focus

left_focus_cpy[lof_len]='\0';

} else {

char_ctxt_match = 0;

}

break;

case '|': //zero or more capital signs

if(left_focus_cpy[lof_len] == ','){

left_focus_cpy[lof_len]='\0';

} else {

char_ctxt_match = 0;

}

break;

case '`': //one or more roman letters (I, V, M, C)

if (left_focus_cpy[lof_len]!='I' && left_focus_cpy[lof_len]!='V' && left_focus_cpy[lof_len]!='M' && left_focus_cpy[lof_len]!='C'){

char_ctxt_match = 0;

} else {//remove the roman letter for the input to the right of the focus

int i=lof_len;

while (left_focus_cpy[i]=='I' || left_focus_cpy[i]=='V' || left_focus_cpy[i]=='M' || left_focus_cpy[i]=='C'){

left_focus_cpy[i]='\0';

--i;

}

}

break;

case ';': //zero or more letters

/* do not change the value of char_ctxt_match since there will always be

 zero or more. the vale of char_ctxt_match must be preserved.*/

//if there are punctuation characters remove them from the right of focus

i=lof_len;

while (isalpha((int)left_focus_cpy[i])){//is ture if char is an alpha/letter char.

left_focus_cpy[i]='\0';

--i;

}

//strcpy(right_of_focus, &right_of_focus[i]);

break;

case '+': //one or more digits

/* note there must be at least one digit. */

if(!isdigit((int)left_focus_cpy[lof_len])){

char_ctxt_match = 0;

} else {//remove the space/punct char from the input to the right of the focus

int i=lof_len;

while (isalpha((int)left_focus_cpy[i])){//is ture if char is a punctuation char.

left_focus_cpy[i]='\0';

--i;

}

}

break;

default:

//left context character is not a wild card. it must be tested as it is. ie the ctxt

//char must be the next char in the left of focus string.

if (toupper((int)left_focus_cpy[lof_len]) == left_ctxt[n-1]){

//left context matches rule for a particular char. then remove it.

left_focus_cpy[lof_len]='\0';

} else {

char_ctxt_match = 0;

}

}

}// end FOR statement...for each char of rule's right context

if (char_ctxt_match == 1){

ctxt_match = 1;

}else{

ctxt_match = 0;

}

}

return ctxt_match;

}

/**/

/**/

/*******************
CheckRightCtxt()
**/

int CheckRightCtxt (char right_ctxt[], char right_of_focus[]){

int ctxt_match = 0,

char_ctxt_match;
// used as a flag when matching a single character of a rules right context;

int n;

// used to process each char of a rule's right context

if(right_ctxt[0] == '\0'){

//this rule does not have a right context. hence it is a match

ctxt_match=1;

}else{ /* a right context exists for the rule, check the braille input

* right of the focus to see if a match occurs.*/

/* match each right context character of the rule. if any one of the chars

 in the right context does not match then rule can not fire */

char_ctxt_match = 1;

for (n=0; n<strlen(right_ctxt); n++){

/* wild cards "!"= a letter

 "#"= a number

 "~"= a space or punctuation

 " "= a space char only

 "`"= one or more roman numerals

 ";"= zero or more letters

 "+"= one or more digits

*/

int i; //used for looping in some of the case statements

switch (right_ctxt[n]){

case '!': // a letter

if(!isalpha((int)right_of_focus[0])){

char_ctxt_match = 0;

} else {//remove the letter char from input to the right of the focus

strcpy(right_of_focus, &right_of_focus[1]);

}

break;

case '#': // a number

if((right_of_focus[0]<48) || (right_of_focus[0]>57)){

// note these are the asci values of 0 and 9. ie if right_of_focus

// is not a number then set the match to false.

char_ctxt_match = 0;

} else {//remove the white space char from input to the right of the focus

strcpy(right_of_focus, &right_of_focus[1]);

}

break;

case '~': // a space or punct char

/* if the frist character to the right of the focus is not a white space character

 or a punctuation char then set the chat_ctxt_match to false */

if(isspace((int)right_of_focus[0]) || ispunct((int)right_of_focus[0]) || (right_of_focus[0] == '\0')){

//remove the space/punct char from the input to the right of the focus

strcpy(right_of_focus, &right_of_focus[1]);

} else {

char_ctxt_match = 0;

}

break;

case ' ': // a space only

/* if the frist character to the right of the focus is not a white space character

 then set the chat_ctxt_match to false */

if(isspace((int)right_of_focus[0]) || (right_of_focus[0]=='\0')){

//remove the white space char from input to the right of the focus

strcpy(right_of_focus, &right_of_focus[1]);

} else {

char_ctxt_match = 0;

}

break;

case '`': //one or more roman letters (I, V, M, C)

if (right_of_focus[0]!='I' && right_of_focus[0]!='V' && right_of_focus[0]!='M' && right_of_focus[0]!='C'){

char_ctxt_match = 0;

} else {//remove the roman letter for the input to the right of the focus

i=0;

while (right_of_focus[i]=='I' || right_of_focus[i]=='V' || right_of_focus[i]=='M' || right_of_focus[i]=='C'){

++i;

}

strcpy(right_of_focus, &right_of_focus[i]);

}

break;

case ';': //zero or more letters

/* do not change the value of char_ctxt_match since there will always be

 zero or more. the vale of char_ctxt_match must be preserved.*/

//if there are punctuation characters remove them from the right of focus

i=0;

while (isalpha((int)right_of_focus[i])){//is ture if char is a punctuation char.

++i;

}

strcpy(right_of_focus, &right_of_focus[i]);

break;

case '+': //one or more digits

/* note there must be at least one digit. */

if(!isdigit((int)right_of_focus[0])){

char_ctxt_match = 0;

} else {//remove the space/punct char from the input to the right of the focus

int i=0;

while (isalpha((int)right_of_focus[i])){//is ture if char is a punctuation char.

++i;

}

strcpy(right_of_focus, &right_of_focus[i]);

}

break;

default:

if (toupper((int)right_of_focus[0]) == right_ctxt[n]){

//right context matches rule for a particular char. then remove it.

strcpy(right_of_focus, &right_of_focus[1]);

} else {

char_ctxt_match = 0;

}

}

}// end for statement...for each char of rule's right context

if (char_ctxt_match == 1){

ctxt_match = 1;

}else{

ctxt_match = 0;

}

}

return ctxt_match;

}

/**/

/**/

/*******************
ConstructRules()

function reads the file as defined by constant macro RULES_FILE and develops an array of linked lists.

Each array element contains the head of a linked list where one linked lists exists for each letter

of the alphabet (plus another element for non-alpha characters). In this way, when searching for a

rule, only small portion of all rules must be traversed corresponding to the particular letter of interest

*/

void ConstructRules(char *location){

/*variable declarations*/

char rule[RULESIZE], tempRule[RULESIZE];

int array_index;

rule_t *current_rule, *last_rule=NULL, *next_rule;

char *pch;

/*open the rules input file as defined by RULES_PATH so that a linked list of rules can be constructed*/

FILE *rulesfile;

rulesfile = fopen(location,"r");

if (rulesfile == NULL)

{

printf("**************************************\n* Cannot open the rules file *\n* The rules file should be stored at *\n* %s\n**************************************\n",RULES_PATH);

}

else

{

/*for each rule go through the input file and split the rule into its various components to be stored

in the rule_t data structure*/

while(fgets(rule, 1000, rulesfile)!=NULL){

current_rule = malloc(sizeof(rule_t));

current_rule->next = NULL;

/*set the input class of the rule*/

current_rule->input_class = (int)rule[0]-48;//must subtract 48 for the integer typecast

/*set the focus parameter of the rule*/

strcpy(tempRule, rule);

if(strstr(tempRule, "[]]")){

strcpy(current_rule->focus, "]");

} else {

pch = strtok (tempRule,"[");

pch = strtok (NULL, "]");

strcpy(current_rule->focus, pch);

}

/*set the output field of the rule*/

/* the tokenising of the output is complex due to some rule using multiple equal signs

hence tokensing at an equal sign creates ambiguity as to which of the multiple equal signs

to tokenise from. the majority of rules that contain multiple equal signs are those with an

equal sign in the focus and those translation "for" to the equal sign and hence have an equal

sign in the output. */

strcpy(tempRule, rule);

// check if there are multiple equal signs in the rule

int counta=0;

for (int temp=0; temp<strlen(tempRule); temp++){

if (tempRule[temp]=='='){

++counta;

}

}

if(counta==1){

/* there is only one equal sign in the rule. this should be the majority of rules. the only

 complication occurs in some rules that may have no output. these rules are used only to

 change the state of program. eg the number sign. */

if (!strstr(tempRule, "=\t")){

// an output exists

pch = strtok (tempRule,"=");

pch = strtok (NULL, "\t");

strcpy(current_rule->output, pch);

} else {

// an output does not exist

strcpy(current_rule->output, "\0"); // note "\0" is the null character

}

} else {

/*the rule contains multiple equal signs.

remove anything before the first equal sign AFTER the end of the focus ie after ']' */

int index=0;

//move index to the end of the focus

while (tempRule[index] !=']'){

++index;

}

//move index to the fist equal sign

while (tempRule[index] !='='){

++index;

}

//remove anything before this index

strcpy(tempRule, &tempRule[index+1]);

pch = strtok (tempRule, "\t");

strcpy(current_rule->output, pch);

}

/*set the next state field of the rule*/

if (rule[strlen(rule)-2] == '-'){
//if the rule has a next state of - then set the next state field

current_rule->next_state = 99; //to 99. then when updating state do not change if the next state is 99

}else{

current_rule->next_state = (int)rule[strlen(rule)-2]-48;//must subtract 48 for the integer typecast

}

/*if there is no right context the strtok command has some problems hence

 some we need to check if "]=" occurs in the rule. ie if there is no right context./

strcpy(tempRule, rule);

if (!strstr(tempRule, NO_RIGHT_CONTEXT)){

// a right context exists

pch = strtok (rule,"]");

pch = strtok (NULL, "=");

strcpy(current_rule->right_context, pch);

}else{

// a right context does not exist

strcpy(current_rule->right_context, "\0"); // note "\0" is the null character

}

/*set the left context field of the rule*/

strcpy(tempRule, rule);

if (!strstr(tempRule, "\t[")){

pch = strtok (rule,"\t");

pch = strtok (NULL, "[");

strcpy(current_rule->left_context, pch);

}else{

// a left context does not exist

strcpy(current_rule->left_context, "\0");

}

/*determine the list index to according to the first char of the focus*/

array_index = HashFunction(current_rule->focus[0]);

if (list_array[array_index] == NULL){

//Nothing entered in array yet for this focus

//Add current record into array

list_array[array_index] = current_rule;

}else{ //Array entry contains records, go to the end to add this one

next_rule = list_array[array_index];

 while (next_rule->next != NULL){

next_rule = next_rule->next;

 }

//When we get here nextRecord contains the last entry

//Now just point it to the new entry

next_rule->next = current_rule;

}

}

}

fclose(rulesfile);

}

/**/

/**/

/*******************
HashFunction()

This function determines the index of the hash table list_array[] to which a rule should be applied.

It compares the first letter of the rule's focus to the letter A and typecasts the result to an

integer thus defining the index.

*/

int HashFunction(char key){

int index = (int)key-(int)'A';

if(index<0 || index>25){

index = 26;

}

return index;

}

/**/

//print rule function may be useful in debugging

void PrintRule(rule_t *rule){

printf("%d\t%s[%s]%s=%s\t%d\n", rule->input_class, rule->left_context, rule->focus, rule->right_context, rule->output, rule->next_state);

}

Appendix F – Source Code for Backward Translation
/*Program writen by Shannon Thrower

* this version is v1.17 date 01-11-05

* program translates a braille file to print according to

* the translation algorithm developed by Paul Blenkhorn

The rules are read from a text file at a location defiened by RULES_PATH

The input is defined by IN_PATH and the output by OUT_PATH

note that the size of the input line defined by INPUT_SIZE. if this is insufficent

it may cause the program to crash. it would be desirable to checking to make sure

the input line is not bigger than this.

the use of the strlen command returns different values for files edited in window

and linux. this may cause problems when setting a rule's next state field

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

/***/

/***********************
Constant Macros

**/

#define RULESIZE 40

// maximum length of a rule

#define FOCUSSIZE 10

// maximum length of a rule's focus

#define CONTEXTSIZE 4

// maximum length of a rule's right context

#define OUTSIZE 25

// maximum length of a rule's output

#define NO_RIGHT_CONTEXT "]="

// used to determine when there is no right context

#define OUTPUT_SIZE 200

// max length of a translated word

#define INPUT_SIZE 200

// max length of a braille input word to be translated

// path definitions for linux (operating over Network File System)

#define RULES_PATH "/opt/B2P rules.txt"

#define IN_PATH "/opt/text.brf"

#define OUT_PATH "/opt/output.txt"

// path definitions for windows

//#define RULES_PATH "C:/B2P rules.txt"

//#define IN_PATH "C:/braille input.brf"

//#define OUT_PATH "C:/print output.txt"

typedef struct myRule {

int input_class;

// structure holds all the information

char focus[FOCUSSIZE];

// about a particular rule. This struct

char right_context[CONTEXTSIZE];
// is used in a linked list hence the

char output[OUTSIZE];

// last component is a link to the next

int next_state;

// rule in the list.

struct myRule *next;

}rule_t;

/***/

/*******************
Function Prototypes

**/

int HashFunction(char key);

void ConstructRules(char *location);

void TranslateLine(char braille_line[], char print_line[]);

void PrintRule(rule_t *rule);

/***/

/*******************
Global Variables

**/

//stores the head of each linked list where there is one list for each letter and another for all other characters

rule_t *list_array[27];

/***/

/*******************
main()

**/

int main(void)

{

char output_string[OUTPUT_SIZE];

char input_string[INPUT_SIZE];

// read rules from file and generate linked list of data structures

ConstructRules(RULES_PATH);

FILE *infile, *outfile;

infile = fopen(IN_PATH, "r");

outfile = fopen(OUT_PATH, "w");

if (infile == NULL){

printf("**************************************\n* Cannot open the input file. *\n* The input file should be stored at *\n* %s\n**************************************\n",IN_PATH);

return(0);

}else{

while(fgets(input_string, 1000, infile)!=NULL){ //get a line of input from the input file

TranslateLine(input_string, output_string); //translate that line

printf("%s", output_string);

fprintf(outfile, "%s", output_string);

}

}

fclose(infile);

fclose(outfile);

return(0);

}

/***/

/***/

/*******************
TranslateLine()

**

this is the function responsible for translating a full line of braille into a

corresponding line of print

*/

void TranslateLine(char braille_line[], char print_line[]){

//char print_line[OUTPUT_SIZE];

int current_state = 1, array_index, match_flag=0, focus_length;

int focus_match, state_match; // used as flags to represent a match occuring

int char_ctxt_match; // used as a flag when matching a single character of a rules right context

int shift_char=0, shift_word=0; //used as flags to capitalise a char or a word

int n; //used to process each char of a rule's right context

char right_of_focus[INPUT_SIZE]; //stores the braille input to the right of the current focus

char current_character = braille_line[0]; //the first char of the braille input

char focus[FOCUSSIZE], braille_line_copy[INPUT_SIZE];

char new_out[OUTSIZE]; //temporarily holds a rules output while capitalizing may be done

rule_t *current_rule;

int decision_table [6][7]={{1,1,1,0,0,0,0},

 {1,0,1,0,0,0,0},
//row represents the current state

 {1,0,0,1,0,0,0},
//column represents the current input class

 {1,0,0,0,0,0,1},
//rule fires if there is a 1 corresponding to

 {1,0,0,0,1,0,0},
//current state and input class

 {0,0,0,0,0,1,0}};

//initialise variables

strcpy(braille_line_copy, braille_line);

strcpy(right_of_focus, "\0");

strcpy(print_line, "\0");

while(braille_line[0] !='\0' && braille_line[0] !='\n'){

match_flag=0;

/*ASCII char 12 is the form feed or new page char.

for now just remove it and ignore it*/

if((int)braille_line[0]==12){

strcpy(braille_line, &braille_line[1]);

}

//determine which linked list needs to be searched

current_character = braille_line[0];

array_index = (int)current_character-(int)'A';

if(array_index<0 || array_index>25){

array_index = 26;

}

//search linked list corresponding to array_index for a match

current_rule = list_array[array_index];

while(!match_flag && current_rule != NULL){

strcpy(focus, current_rule->focus); //ie
focus = current_rule->focus

focus_length = strlen(focus);

/*strnicmp returns 0 if the rule's focus matches the

braille word (up to the lengh of the focus)*/

focus_match = strncasecmp(focus, braille_line, focus_length);
/*linux command*/

//focus_match = strnicmp(focus, braille_line, focus_length);

/*windows command*/

if (focus_match == 0){

// the focus has been matched. Now check the state

// use the rule's state and current input class to check the decision table

state_match = decision_table[current_state-1][current_rule->input_class-1];

if (state_match){

// the state has been matched. now check the right context

if(current_rule->right_context[0] == '\0'){

match_flag=1;

}else{ /* a right context exists for the rule, check the braille input

* right of the focus to see if a match occurs.*/

strcpy(right_of_focus, "\0"); //initialise right_of_focus to NULL

// ie. right_of_focus = braille_line from the end of the current focus

strcpy(right_of_focus, &braille_line[strlen(current_rule->focus)]);

/* match each right context character of the rule. if any one of the chars

 in the right context does not match then rule can not fire */

char_ctxt_match = 1;

for (n=0; n<strlen(current_rule->right_context); n++){

/* wild cards "!"= one or more of the set "&!(A)."

 " "= anywhite space char (space \t \n...)

 "~"= one or more roman letters (I, V, M, C)

 ":"= zero or more punctuation chars

 "-"= a space char

*/

int i=0; // used for counting and removing characters

switch (current_rule->right_context[n]){

case '!': // one or more of the set "&!(A)."

if (right_of_focus[0]=='&' || right_of_focus[0]=='!' || right_of_focus[0]=='(' || right_of_focus[0]=='A' || right_of_focus[0]==')'){

while (right_of_focus[i]=='&' || right_of_focus[i]=='!' || right_of_focus[i]=='(' || right_of_focus[i]=='A' || right_of_focus[i]==')'){

++i;

}

strcpy(right_of_focus, &right_of_focus[i]);

} else {

char_ctxt_match = 0;

}

break;

case ' ': // anywhite space char (space \t \n...)

/* if the frist character to the right of the focus is not a white space character

 then set the chat_ctxt_match to false */

if(isspace((int)right_of_focus[0]) || right_of_focus[0]=='\0'){

// if there is white space or nothing to the right of the focus

strcpy(right_of_focus, &right_of_focus[1]);

// then remove the white space char from input to the right of the focus

}else{

char_ctxt_match = 0;

}

break;

case '~': //one or more roman letters (I, V, M, C)

if (right_of_focus[0]!='I' && right_of_focus[0]!='V' && right_of_focus[0]!='M' && right_of_focus[0]!='C'){

char_ctxt_match = 0;

}else{//remove the roman letter for the input to the right of the focus

while (right_of_focus[i]=='I' || right_of_focus[i]=='V' || right_of_focus[i]=='M' || right_of_focus[i]=='C'){

++i;

}

strcpy(right_of_focus, &right_of_focus[i]);

}

break;

case ':': //zero or more punctuation chars

/* do not change the value of char_ctxt_match since there will always be

 zero or more. the vale of char_ctxt_match must be preserved.*/

//if there are punctuation characters remove them from the right of focus

while (((ispunct((int)right_of_focus[i])|| isdigit((int)right_of_focus[i])))

 && (right_of_focus[i] != '5')

 && (right_of_focus[i] != ']')

 && (right_of_focus[i] != '[')){

++i;

}

strcpy(right_of_focus, &right_of_focus[i]);

break;

case '_': //a space char

//set char_ctxt_match to false if the char immediately right of the focus is not a space

if(right_of_focus[0] != ' '){

char_ctxt_match = 0;

}else{//remove the space char from input to the right of the focus

strcpy(right_of_focus, &right_of_focus[1]);

}

break;

default: // right context may be a particular letter

if (current_rule->right_context[n]>='A' && current_rule->right_context[n]<='Z'){

// char is an alpha and hence requires a literal match

if (right_of_focus[0] == current_rule->right_context[n]){

//right context matches rule for a particular alpha char

strcpy(right_of_focus, &right_of_focus[1]);

} else {

char_ctxt_match = 0;

}

} else {

char_ctxt_match = 0;

}

}

}// end for statement...for each char of rule's right context

if (char_ctxt_match == 1){

// the right context has been matched so set the match flag

match_flag = 1;

}

}

}

}

if(!match_flag){

//if a match has not been found move to the next rule in the linked list

current_rule = current_rule->next;

}

}

//a rule has been matched OR the end of the linked list has been reached

if (match_flag){

// a match has been found the rule should fire.

// update the output, the new state and remove the focus from the input braille word

//update the state

current_state = current_rule->next_state;

//copy the rules output to another string so that it can be capitalised etc

strcpy(new_out, current_rule->output);

// if the output is not an alpha letter then we are at the end of a

// word and must set the shift_word flag to false.

if(!isalpha(current_rule->output[0])){

shift_word=0;

}

//capitalise the first letter or the whole word depending on the flags

if(shift_char && isalpha(current_rule->output[0])){

new_out[0]=new_out[0]-32; //subtract 32 from a letter to capitalise it

shift_char=0; //set flag to false

} else if (shift_word){

//capitalise all letters in the output

int j=0;

for (j=0; j<strlen(new_out); j++){ //for all letters in the new output

if(isalpha(new_out[j])){

new_out[j]=new_out[j]-32; //subtract 32 from a letter to capitalise it

}

}

}

//set capitalisation flags or append new output to translated line

if(!strcmp(current_rule->output, "<SHIFT_CHAR>")){

shift_char=1;

}else if(!strcmp(current_rule->output, "<SHIFT_WORD>")){

shift_word=1;

}else{

//concatenate the new output to the translated line

strcpy(print_line, strcat(print_line, new_out));

}

//remove the focus from the input braille word

int i=0;

for (i=0; i<=strlen(braille_line); i++){

braille_line[i]=braille_line[focus_length+i];

}

}else{

/**/

//commented text may be used for debugging new rules

//printf("!!\n");

//printf("!!!The translation has exited without a match being found!!!\n");

//printf("!!\n");

//printf("the input was:%s.\n", braille_line);

//printf("the state was:%d.\n", current_state);

//strcpy(print_line, strcat(print_line, "\n\n\n\n\n!!!!!!!!!!!!!!!\n!!!!!!!!!!!!!!!\n\n\n\n\n"));

/*append ERROR to the output. this may be changed to append the character which

is causing the error to the output. ie strcat(print_line, braille_line[0])*/

strcpy(print_line, strcat(print_line, "\n\n\nERROR\n\n\n"));

//remove the first character from the input

int i=0;

for (i=0; i<=strlen(braille_line); i++){

braille_line[i]=braille_line[i+1];

}

}

}

//append a new line char to the end of the line.

strcpy(print_line, strcat(print_line, "\n"));

}

/***/

/***/

/*******************
ConstructRules()
**

function reads the file as defined by constant macro RULES_FILE and develops an array of linked lists.

Each array element contains the head of a linked list where one linked lists exists for each letter

of the alphabet (plus another element for non-alpha characters). In this way, when searching for a

rule, only small portion of all rules must be traversed corresponding to the particular letter of interest

*/

void ConstructRules(char *location){

/*variable declarations*/

char rule[RULESIZE], tempRule[RULESIZE];

int array_index;

rule_t *current_rule, *next_rule;

char *pch;

/*open the rules input file as defined by RULES_PATH so that a linked list of rules can be constructed*/

FILE *rulesfile;

rulesfile = fopen(location,"r");

if (rulesfile == NULL)

{

printf("**************************************\n* Cannot open the rules file *\n* The rules file should be stored at *\n* %s\n**************************************\n",RULES_PATH);

}

else

{

/*for each rule go through the input file and split the rule into its various components to be stored

in the rule_t data structure*/

while(fgets(rule, 100, rulesfile)!=NULL){

//reserve memeory for the new rule

current_rule = malloc(sizeof(rule_t));

//initialise the next rule pointer

current_rule->next = NULL;

/*set the input class of the rule*/

current_rule->input_class = (int)rule[0]-48;//must subtract 48 for the integer typecast

/*set the focus parameter of the rule*/

strcpy(tempRule, rule);

if(strstr(tempRule, "[]]")){

strcpy(current_rule->focus, "]");

} else {

pch = strtok (tempRule,"[");

pch = strtok (NULL, "]");

strcpy(current_rule->focus, pch);

}

/*set the output field of the rule*/

strcpy(tempRule, rule);

if (!strstr(tempRule, "=\t")){

/* an output exists (some may not have an output they

are used to change the state of the program*/

/*this section is all very dodgy. basically it finds if there are

multiple occurences of the equal sign in a rule and if there is

it replaces the first occurence with an F. then tokenising can

be applied as normal.*/

int count=0, index=0;

int temp=0;

for (temp=0; temp<strlen(tempRule); temp++){

if (tempRule[temp]=='='){

++count;

if (count==1){

index=temp;

}

}

}

if(count==2){

tempRule[index]='F';

}

//now we can tokenise as normal

pch = strtok (tempRule,"=");

pch = strtok (NULL, "\t");

strcpy(current_rule->output, pch);

}else{

// an output does not exist. some rules such as the letter sign do not have an output.

// These are used to change the state of the program.

strcpy(current_rule->output, "\0"); // note "\0" is the null character

}

/*set the next state field of the rule*/

current_rule->next_state = (int)rule[strlen(rule)-3]-48;//must subtract 48 for the integer typecast

/*note: the value subtracted from strlen() may be platform dependent.

 when using a file edited in windows the newline char is not included in this strlen count

 but the newline char is included in a linux strlen count.

 for windows this value should be 2 but for linux this file should be 3.*/

/*if there is no right context the strtok command has some problems hence

 * we need to check if "]=" occurs in the rule. ie if there is no right context.*/

strcpy(tempRule, rule);

if (!strstr(tempRule, NO_RIGHT_CONTEXT)){

// a right context exists

pch = strtok (tempRule,"]");

pch = strtok (NULL, "=");

strcpy(current_rule->right_context, pch);

}else{

// a right context does not exist

strcpy(current_rule->right_context, "\0"); // note "\0" is the null character

}

/*determine the list index to according to the first char of the focus*/

array_index = HashFunction(current_rule->focus[0]);

if (list_array[array_index] == NULL){

//Nothing entered in array yet for this focus

//Add current record into array

list_array[array_index] = current_rule;

}else{ //Array entry contains records, go to the end to add this one

next_rule = list_array[array_index];

 while (next_rule->next != NULL){

next_rule = next_rule->next;

 }

//When we get here nextRecord contains the last entry

//Now just point it to the new entry

next_rule->next = current_rule;

}

}

printf("\n");

}

fclose(rulesfile);

}

/***/

/***/

/*******************
HashFunction()
**

This function determines the index of the hash table list_array[] to which a rule should be applied.

It compares the first letter of the rule's focus to the letter A and typecasts the result to an

integer thus defining the index.

*/

int HashFunction(char key){

int index = (int)key-(int)'A';

if(index<0 || index>25){

index = 26;

}

return index;

}

/***/

/***/

/*******************
PrintRule()
**

not used in program but may be helpful during debugging*/

void PrintRule(rule_t *rule){

printf("%d\t[%s]%s=%s\t%d\n", rule->input_class, rule->focus, rule->right_context, rule->output, rule->next_state);

}

6

3

5

2

4

1

Figure � STYLEREF 1 \s �2�.� SEQ Figure * ARABIC \s 1 �1� - Braille Cell Numbering

Figure � STYLEREF 1 \s �2�.� SEQ Figure * ARABIC \s 1 �2� - Braille Cell for the Letter M

INDEXING TERMS

CO-EXAMINER

EXAMINER

TECHNICAL WORK

REPORT PRESENTATION

POOR

AVERAGE

GOOD

ABSTRACT

OPTION		Computer Systems

DEGREE		Bachelor of Engineering

SUPERVISOR	Mr Iain Murray	

DATE		4th November, 2005

AUTHOR

FAMILY NAME:		Thrower

GIVEN NAMES:	Shannon Wade

TITLE:	Grade 2 Braille-Print Translation on the OMAP Microprocessor

Table � STYLEREF 1 \s �2�.� SEQ Table * ARABIC \s 1 �1� - Relationship between Print, Braille and Computer Braille

Output

Rules

Input

“K

…

“KL

“KL$

“KL$G

“KL$GE

“KL$GEA

“KL$GEA#

[knew] =KN

[know]~ = K

[know] = “K

…

[l] = L

[ed] = $

[g] = G

[e] = E

[a] = A

[ble] = #

knowledgeable

knowledgeable

knowledgeable

…

ledgeable

edgeable

geable

eable

able

ble

Figure � STYLEREF 1 \s �2�.� SEQ Figure * ARABIC \s 1 �3� - A Generic Translation

Read rules into data structure

Get input

While (input not null)

	Set match flag false

	While (match flag is false)

	Get next rule

		Match focus

		Else repeat loop

			Match decision table

			Else repeat loop

				Match left context

				Else repeat loop

					Match right context

						Set match flag true

					Else repeat loop

Remove rule’s focus field from input

Append rule’s output field to output

Update state variable

Translation complete

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �1� – Pseudo code for the Translation Algorithms

Input = disappear

Rule 1 focus = dis		(window = [dis]appear		(may match

Rule 2 focus = di			(window = [di]sappear		(may match

Rule 3 focus = dud		(window = [dis]appear		(does not match

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �2� – Example of the Changing Window Size

Table � STYLEREF 1 \s �4�.� SEQ Table * ARABIC \s 1 �1� – Decision Table for Forward Translation

Table � STYLEREF 1 \s �4�.� SEQ Table * ARABIC \s 1 �2� – Decision Table for Backward Translation

Table � STYLEREF 1 \s �4�.� SEQ Table * ARABIC \s 1 �3� – Context Wildcards for Forward Translation

Table � STYLEREF 1 \s �4�.� SEQ Table * ARABIC \s 1 �4� – Context Wildcards for Backward Translation

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �5� – Block Diagram of the OMAP Microprocessor

(OMAP5912 Processor Device Diagram 2005)

 OSK5912

Ethernet

Serial

Network

Hub/switch

Ethernet

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �6� – Block Diagram of the OSK5912 Development Board

(OSK5912 Users Guide)

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �7� – Host/OSK5912 Configuration for ARM Development

Host Computer

typedef struct myRule {

		int input_class;

		char left_context[CONTEXTSIZE];

char focus[FOCUSSIZE];

		char right_context[CONTEXTSIZE];	

		char output[OUTSIZE];	

		int next_state;

		struct myRule *next;

	}rule_t;

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �9� – Data Structure for Forward Translation

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �10� – Representation of Linked Lists Accessed through an Array

Declare current_rule

Declare next_rule

For (each rule in input file)

	Read string from input file

	Tokenize string and set fields for current_rule

	

	array_index = hash_function(focus)

	if (element at this index is null)

		set element at array_index to current_rule

	else

		the head of this linked list already exists

		let next_rule = head of linked list

		while (next_rule.next != null)

			next_rule = next_rule.next

		now at end of linked list

		next_rule.next = current_rule

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �11� - Pseudo Code for Generating the Rules Linked Lists

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �8� - High Level Memory Map of the OMAP

(Restoring the Factory Configuration 2004)

Actual Timeline Followed

Planned Timeline

This thesis details the development of software to perform the translation of Grade 2 Braille to and from print and the implementation of this software on the OMAP microprocessor which will be used to control a Braille Typewriter. The Rehabilitative Engineering and Assistive Technologies Laboratory has been awarded a grant to produce this typewriter which is aimed at assisting the communication between blind and non-Braille fluent people. The software developed is essentially a translation engine which can be used with a variety of input and output devices that the Braille Typewriter may use.

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �3� - Activity Diagram for Translation Programs

3	[2C]: =because	3

3	[2F]: =before		3

3	[2F]H=before		3

7	[H]=8			4

1	[H]=h			3

3	[&]!: =and		5

1	[&]=and		3

Figure � STYLEREF 1 \s �4�.� SEQ Figure * ARABIC \s 1 �4� - A Subset of Rules for Backwards Translation

Table � STYLEREF 1 \s �5�.� SEQ Table * ARABIC \s 1 �1� - Translation Accuracy for Three Texts

Computerized Braille Translation, Assistive technology, Blindness

Linked lists

….

….

Focus MISC

Rule 4

Focus MISC

Rule 3

Focus MISC

Rule 2

Focus

B

Rule 4

Focus

B

Rule 3

Focus

B

Rule 2

Focus A

Rule 4

Focus A

Rule 3

Focus A

Rule 2

Focus

C

Rule 4

Focus

C

Rule 3

Focus

C

Rule 2

0

1

2

Focus

C

Rule 1

Focus

B

Rule 1

Focus A

Rule 1

26

Array Index

….

Focus MISC

Rule 1

….

list_array

PAGE

