[image: image1.wmf]L

L

I

I

S

S

T

T

O

O

F

F

F

F

I

I

G

G

U

U

R

R

E

E

S

S

Page

F

IGURE

1 A

CONVENTIONAL

CCTV

................................

................................

................

9

F

IGURE

2 A

PORTABLE

CCTV

................................

................................

........................

9

F

IGURE

3

I

S

IGHT CAMERA

................................

................................

............................

10

F

IGURE

4

I

S

IGHT CAMERA MOUNTED

ON A LAPTOP

................................

........................

10

F

IGURE

5 M

AC

OS X

AS LAYERS OF SYSTEM

SOFTWARE

................................

..................

16

F

IGURE

6 R

ELATIONSHIP AMONG A

Q

UI

CK

T

IME APPLICATION AND

SEQUENCE GRABBER

COMPONENTS

................................

................................

................................

.......

20

F

IGURE

7 F

LOWCHART FOR IMPLEME

NTING POLARITY FEATU

RE

................................

....

22

F

IGURE

8 S

TRUCTURE OF

I

V

IEW AT PREVIEW PHASE

................................

......................

28

F

IGURE

9 S

CREENSHOT OF I

V

IEW AT GRAPHIC EDITI

NG STAGE

................................

.......

29

F

IGURE

10 S

TRUCTURE OF I

V

IEW AT GRAPHIC EDITI

NG S

TAGE

................................

.......

30

F

IGURE

11 S

CREENSHOT OF I

V

IEW AT RECORD PHASE

................................

...................

32

F

IGURE

12 S

TRUCTURE OF I

V

IEW AT RECORD PHASE

................................

.....................

33

F

IGURE

13 S

CREENSHOT OF I

V

IEW AT CAPTIONING PH

ASE

................................

.............

35

F

IGURE

14 S

TRUCTURE OF I

V

IEW AT CAPTIONING PH

ASE

................................

...............

36

F

IGURE

15 C

OMPARISON OF CAPTION

 AND OVERLAYED TEXT

IN A ZOOMED

-

IN IMAGE

......

37

F

IGURE

16 S

CREENSHOT OF I

V

IEW AT ZOOM PHASE

(4

X ZOOM

)

................................

.....

39

F

IGURE

17 S

TRUCTURE OF I

V

IEW AT

Z

OOMING PHASE

................................

..................

40

F

IGURE

18 G

ANTT CHART FOR PROJE

CT PLAN

................................

...............................

46

[image: image2.png]=

ssa UM
vep wus
ssouy B

SUGISBIN

wapfs fesano 5o
swovadunoesian
oeatny

auasei

fubtngog
uogeoon

pappu sojesodory

outnp 03 bupso |

fupoy
opepauapu|

‘SousInba: Buddan
Swouninbes anmps
sndno 3 sindu g
Jeussojaiyoprson
weagl

e

suaseIm

fusno0y
Buwooz
buday
oneinduouaBay
‘soBownamdey
w51 bus|

o
anpeny
240
x50 9w
i csuenmRy
ABojous2) apeb oy
yamasay

A T T A A P

ez e o

(5720 [0 22 75 S O W UL SE [T 9 ST S

A

[ber b ERZ 7 T T BT

S

Ay

[image: image3.png]Applicaion Sarvicss QuickTima

GoreServies |

Final Year Thesis

2004
iView

A Classroom Aid for the Visually Impaired

By

Wei Sheng Yong

11029122

Supervisor: Mr. Iain Murray

A thesis submitted for the degree of

Bachelor of Engineering in Electrical Engineering

Department of Electrical and Computer Engineering

Curtin University of Technology

November 2004

 [image: image4.png]Curtin

University of Technology

[image: image5.wmf]L

L

I

I

S

S

T

T

O

O

F

F

F

F

I

I

G

G

U

U

R

R

E

E

S

S

Page

F

IGURE

1 A

CONVENTIONAL

CCTV

................................

................................

................

9

F

IGURE

2 A

PORTABLE

CCTV

................................

................................

........................

9

F

IGURE

3

I

S

IGHT CAMERA

................................

................................

............................

10

F

IGURE

4

I

S

IGHT CAMERA MOUNTED

ON A LAPTOP

................................

........................

10

F

IGURE

5 M

AC

OS X

AS LAYERS OF SYSTEM

SOFTWARE

................................

..................

16

F

IGURE

6 R

ELATIONSHIP AMONG A

Q

UI

CK

T

IME APPLICATION AND

SEQUENCE GRABBER

COMPONENTS

................................

................................

................................

.......

20

F

IGURE

7 F

LOWCHART FOR IMPLEME

NTING POLARITY FEATU

RE

................................

....

22

F

IGURE

8 S

TRUCTURE OF

I

V

IEW AT PREVIEW PHASE

................................

......................

28

F

IGURE

9 S

CREENSHOT OF I

V

IEW AT GRAPHIC EDITI

NG STAGE

................................

.......

29

F

IGURE

10 S

TRUCTURE OF I

V

IEW AT GRAPHIC EDITI

NG S

TAGE

................................

.......

30

F

IGURE

11 S

CREENSHOT OF I

V

IEW AT RECORD PHASE

................................

...................

32

F

IGURE

12 S

TRUCTURE OF I

V

IEW AT RECORD PHASE

................................

.....................

33

F

IGURE

13 S

CREENSHOT OF I

V

IEW AT CAPTIONING PH

ASE

................................

.............

35

F

IGURE

14 S

TRUCTURE OF I

V

IEW AT CAPTIONING PH

ASE

................................

...............

36

F

IGURE

15 C

OMPARISON OF CAPTION

 AND OVERLAYED TEXT

IN A ZOOMED

-

IN IMAGE

......

37

F

IGURE

16 S

CREENSHOT OF I

V

IEW AT ZOOM PHASE

(4

X ZOOM

)

................................

.....

39

F

IGURE

17 S

TRUCTURE OF I

V

IEW AT

Z

OOMING PHASE

................................

..................

40

F

IGURE

18 G

ANTT CHART FOR PROJE

CT PLAN

................................

...............................

46

[image: image6.jpg]

[image: image7.jpg]

[image: image8.png]

[image: image9.png]

[image: image10.jpg]

[image: image11.jpg]

[image: image12.png]

[image: image13.png]s

[image: image14.png]

[image: image15.png]

[image: image16.png]

[image: image17.png]iView

type your caption here.

[image: image18.png]

[image: image19.png]s: 30.0
this is a demo

[image: image20.png]iView

[cXaXs)
. E E EQ Now 'tnln\’l'H

SPE(

DEAN

[image: image21.png]

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

4th November 2004

Wei Sheng Yong

3, Wooltana Street,

Como, WA 6152.

Professor Syed Islam

Head of Department

Department of Electrical and Computer Engineering

Curtin University of Technology

Kent Street

Perth WA 6001

Dear Professor Syed Islam,

To satisfy the requirements for the degree of Bachelor of Engineering (Electrical), I hereby submit this thesis titled “iView – a classroom aid for the visually impaired” for your perusal.

Yours Sincerely,

Wei Sheng Yong (11029122)

Synopsis

This thesis outlines the design, development and testing of iView, a software-based classroom aid for the visually impaired. The software is targeted for the Macintosh operating system, Mac OS X. Included are a review of existing aids that are available for people with low vision and some of the accessibility options offered by both Apple and Windows operating systems, followed by the design and implementation of iView. iView is software that is specifically designed for use by visually impaired students in a classroom situation. iView uses the iSight camera for previewing and video recording. It is also capable of captioning (taking notes) and real time zooming.

Acknowledgements

Many thanks extend to the people who played a major role in the development and progress of this project.

I wish to thank first and foremost my supervisor Iain Murray for his supervision and help throughout the year. His generosity with his time, patience and attention is second to none.

In addition I would like to thank the technical staff, Alison Smith, Alex Wong and Mark Fowler, for their assistance in providing access to the facilities within the department.

Last but not least, I would like to thank the developers on Apple’s mailing list for sharing the ideas and solutions with me.

Table of Contents

Page

11
Introduction

11.1
Statement

21.2
Proposed Solution and its Significance

41.3
Thesis Outline

52
Existing Aids for the Visually Impaired

52.1
Overview

52.2
Screen Reader

62.3
Text Reader

62.4
Reading Pen

62.5
Touch Screen

72.6
Speech Recogniser

72.7
CCTV (screen magnifier)

82.8
Summary

113
Development Platform and Environment

113.1
Platform Choice

113.1.1
Video Quality

113.1.2
Accessibility Technologies

133.1.3
Conclusion

143.2
Development Tools

143.2.1
Xcode

143.2.2
Interface Builder

153.3
Frameworks – Carbon and Cocoa

173.4
Objective-C

184
Design of iView

184.1
Design Overview

184.2
Frame Capturing Phase

204.3
Previewing Phase

214.4
Recording Phase

214.5
Graphic Editing Phase

224.6
Captioning Phase

234.7
Zooming Phase

265
Implementation of iView

265.1
Implementation Overview

265.2
Frame Capturing and Previewing Phases

285.3
Graphic Editing Phase

315.4
Recording Phase

345.5
Captioning Phase

385.6
Zooming Phase

416
Conclusions

416.1
Summary

426.2
Future Work

426.2.1
Image Polarisation

426.2.2
Audio Recording

436.2.3
Video Enhancement for Zoom

44References

46Appendix A – Project Plan

47Appendix B – Programming Environment

48Appendix C – Source Code

48C.1
main.m

48C.2
MyObject.h

49C.3
MyObject.m

54C.4
MyQuickDrawView.h

55C.5
MyQuickDrawView.m

67C.6
MyVideo.h

68C.7
MyVideo.m

74C.8
MyMovieText.h

75C.9
MyMovieText.m

82C.10
UserText.h

82C.11
UserText.m

List of Equations

Page

23Equation 1 A point transformed by a 3-by-3 matrix

24Equation 2 A translation matrix

25Equation 3 A scaling matrix

1 Introduction

1.1 Statement

Over the past few decades, the personal computer has evolved from being expensive and slow to being affordable and extremely fast. As the use of personal computers becomes increasingly popular, it is clear that the society will continue to use technology in daily activities. In fact, they are employed in virtually all aspects of everyday life, from military to business, and education to entertainment.

Information and communication technologies (ICTs) are rapidly expanding in all fields and are becoming important tools in the economy. Consequently, computer-related knowledge has become critical to secure employment. The challenge is to ensure that these opportunities are both physically and technologically accessible to all learners, including those with various impairments. Unless this requirement is met, people with disabilities face a real danger of being rendered technologically illiterate and, thus, unattractive to the labour market of tomorrow.

Individuals who are blind typically use specialised software that reads to them what is on the screen. Some also use a special hardware/software combination that takes a line of text on the screen and converts it into a line of text on a Braille display. People with low vision can also use a variety of specialised software as well as built-in features of popular commercially available software packages to change the contrast and enlarge and otherwise make text, cursors, and other visual elements more visible on the screen.

Students with hearing impairments use the accessibility features built into the operating system of conventional software, such as visual clues instead of sounds, captions and subtitles for the user interface of a program. Students with mobility and neuromuscular impairments use a variety of ergonomic adaptations, dictation programs and voice control software that allows hands free dictation and control of menus as well as software based keyboard adaptations, software or hardware that allows for one handed typing, along with a variety of alternative mice and input devices.

This thesis focuses on addressing the problems faced by people with low vision or visually impaired in a learning environment. It is estimated that there are about 380,000 people living in Australia with legal blindness or vision impairment. This number is expected to double in the next two decades, as a result of the aging population. 24,900 of them are believed to live in Western Australia. This is approximately 1.36% of the Western Australian population (Statistics on eye health in Australia 2004). Although there are numerous aids available on the market to assist the visually impaired, they are either too bulky or not designed to be used in a classroom situation. For that reason, it is desirable to design a new product – iView, using off the shelf components.

1.2 Proposed Solution and its Significance

The goal of the project was to develop a tool to enhance the learning experience of a visually impaired student in a classroom situation. These students often make use of closed circuit television systems (CCTVs) to enlarge and enhance textbooks and display them on a TV screen or monitor. Whilst of great benefit, these systems have several drawbacks. Firstly they are not truly portable. The camera system requires a TV or monitor for display. That is usually heavy and not easily moved as the TV or monitor needs to be quite large so that the text can be magnified. Additionally there is a space requirement for the CCTV system, writing material, books and often a laptop computer with screen enlargement software for note taking.

To overcome the shortcomings of existing technologies, iView was designed with flexibility in mind. It is a modified camera system for use by vision-impaired students in a classroom situation. iView offers a portable system based on an iSight camera coupled with a 17-inch Apple PowerBook. The large display area is necessary for low vision users so that they may use zoom features. Custom software is to be developed to leverage QuickTime technology to enhance and enlarge text, as well as video recording and captioning.

One advantage of this system is that the user may point the iSight at the whiteboard and read the text or swivel the camera toward the desktop and read a textbook or take notes by handwriting. In addition, users have the option of recording the entire lecture for playback at a later time. The captioning capability allows users to type in notes while recording and the notes will appear as captions in the recorded movie. Captioning eliminates the space requirement for notebook and may be preferable especially for users who have mastered touch typing. These features are not commonly available in current CCTV systems. With iView, they will have all their study needs incorporated into a single package, CCTV and computer. This will reduce costs to the vision-impaired student as current CCTVs alone cost in excess of USD3500 with screen enlargement software costing USD2000 whereas iView will cost less than USD3000.
1.3 Thesis Outline

Chapter 2 describes some of the existing aids that are available on the market for the visually impaired while chapter 3 investigates the accessibility options supported by both Apple and Microsoft operating systems. The design of iView is presented in chapter 4. Chapter 5 discusses the implementation of the system in different stages. Finally, some conclusions and possible directions for future work are described in Chapter 7.

2 Existing Aids for the Visually Impaired

2.1 Overview

Low vision is a term commonly used to mean partial sight, or sight that is not fully correctable with surgery, pharmaceuticals, contact lenses or glasses. Low vision can range from moderate vision impairment, such as tunnel vision or blind spots, to "legal blindness," and total blindness. Low vision has a variety of causes, including eye injury, diseases and heredity. Sometimes low vision involves a lack of acuity, meaning that objects do not come into focus. More than 80 percent of vision loss in Australia is caused by just five conditions: refractive error (53%), age-related macular degeneration (13%), cataract (9%), glaucoma (5%) and diabetic retinopathy (3%) (Statistics on eye health in Australia 2004).

However, there are many low vision devices available that can make reading easier and less painful for people suffering some level of visual impairment. They range from inexpensive handheld magnifiers and reading glasses to high-end video magnifiers such as closed circuit television (CCTV). The following sections outline some of the more commonly used visual aids.

2.2 Screen Reader

A Screen Reader is a software application that reads aloud information displayed on a computer monitor screen. The screen reader reads aloud text within a document, as well as information within dialog boxes and error messages. Screen Readers also read aloud and menu selections, graphical icons on the desktop.

2.3 Text Reader

Text Reader applications (text-to-speech) should not be confused with screen readers. Text readers primarily read aloud text as it is typed, and reads aloud text within documents such as e-mails, word processing documents, and other electronic text format. These types of software applications are more likely to be used by people with learning disabilities and people with poor reading abilities.

2.4 Reading Pen

A reading pen is a tool designed for users with reading or learning disabilities or those learning a foreign language. It assists users by providing a definition of the scanned word or line of text. Its miniaturised text-to-speech technology enables reading both the words and definition aloud. Individual words are enlarged on the display and may be spelled out, or broken into syllables. The small size of the reading pen makes it completely portable.

2.5 Touch Screen

Touch screens are a clear sheet of plastic with tiny sensors that detect pressure from either a fingertip or a pointing device. When these sensors are pressed, they perform the functions found with the traditional mouse; single click, double click and drag. A software utility needs to be installed on the computer hard drive to further customise the different settings (Introduction to Touch Screen Systems 2004).

2.6 Speech Recogniser

There are two uses for speech recognition systems:

· Dictation-- translation of the spoken word into written text,

· Computer Control-- control of the computer, and software applications by speaking commands.

Speech recognition is one of the desired assistive technology systems. People believe speech recognition is a natural and easy method of accessing the computer. However, there are several drawbacks with a speech recognition system. The first challenge in speech recognition is to identify what is speech and what is just noise. People can filter out noise fairly easily. Unlike people, computers need help separating speech sounds from other sounds. A second challenge is to recognize speech from more than one speaker. Speech-recognition software works best when the computer has a chance to adjust to each new speaker. Therefore the user is often required to “train” the computer to recognise his or her voice and accent.

2.7 CCTV (screen magnifier)

A CCTV is a highly customisable versatile magnification system designed to enlarge and enhance images and print material using video camera technology. A CCTV is used most often to provide magnification for reading activities. It can also be used for providing the magnification necessary to complete many other tasks including drawing, writing and some craft activities as well as viewing labels, maps and other small technologies such as a hand held calculator. Additional features, such as a colour camera with direct connection capabilities to a computer, are available with specific CCTV models.

2.8 Summary

The discussion above has provided an overview of existing visual aids that enhance the reading and learning experience of visually impaired people. However, these assistive devices fail to meet the need of a student in a typical classroom environment.

In a classroom situation, a student not only wants to read his or her textbook and take notes, but also wants to read the content that is written on the whiteboard, as well as the body gestures and facial expressions of the speaker, if possible. Most conventional aids are able to meet the first requirement, but are inadequate or completely hopeless for the next two requirements.

Of all the aids mentioned above, CCTVs are the closest thing to iView in terms of functionality. CCTVs are perfect for reading text and writing. However, they are inflexible in the sense that users cannot use them to read the whiteboard from a distance. They are either too bulky because they need a monitor or television for the video output, or too small to be useful in a classroom. Therefore, the system to be designed and implemented must be able to address all three requirements and be affordable at the same time. Figures 1 and 2 show a conventional CCTV and a portable CCTV, respectively.

Using an iSight camera (see Figure 1) the capture the video input, and custom built software for previewing and zooming, iView allows the users to read books and take notes by pointing the camera at a textbook or notepad. The video captured by iSight will be displayed on the screen and can be zoomed in and out to facilitate reading and writing. To read the content of the whiteboard, the users can mount the camera on the laptop, as shown in Figure 2, and point the camera at the whiteboard. The users can then swivel the camera to point at the speaker, who is usually just next to the whiteboard, to capture speaker’s facial expressions and body gestures and have them enlarged on the screen.

Furthermore, iView is equipped with video recording and captioning capabilities. Users can record the lecture as a movie and playback at a later time. Instead of keeping a notebook, users can type the notes while recording the video. Any notes entered by the user will be converted into captions and synchronised with the recorded movie. In other words, if a user types in some text t seconds after the recording starts, the caption containing the same text will appear t seconds after the movie starts playing. The recorded movie is saved in QuickTime format and can be played by any movie player that supports QuickTime format.

3 Development Platform and Environment

3.1 Platform Choice

This section investigates and compares some of the features offered by two popular operating systems in the desktop personal computer (PC) market – Apple’s Mac OS X and Microsoft’s Windows.

3.1.1 Video Quality

The input to iView comes from an iSight camera, which provides a continuous stream of video frames. iSight was chosen for this project because it delivers high quality audio and video at a reasonable price. However, the use of iSight is not limited to iView. When combined with Apple’s iChat software, users can video conference with their family, friends or even business partners. This technology has also been embraced by the deaf community as it produces video signals that are clear enough to communicate in sign language over the internet (Accessibility in Education: iChat AV 2004). Hence, it is likely that the owner of a PowerBook laptop also owns an iSight camera, especially if the person is deaf or hearing impaired. This means that the student does not have to invest in additional hardware to use iView.

3.1.2 Accessibility Technologies

Computer accessibility can be described as the level of usefulness of a computer system by people with disabilities. The goal of accessibility technologies is to make computers as user friendly as possible to this particular group of community (Computer accessibility 2004). One way of achieving this goal is to allow users to change system settings to suit their needs. For example, people with visual impairment may prefer to read light-coloured text on a dark background. People who suffer from motor or dexterity disability such as paralysis may have to use a speech recogniser instead of a keyboard and a mouse.

The following discussion applies only to Mac OS X and Windows XP as they are the newest operating systems offered by the vendors Apple and Microsoft respectively. The set of accessibility features that are natively supported by both operating systems is listed below (Apple - Accessibility 2004; Windows XP Accessibility Resources 2004):

· Zooming / Magnification

· Full Keyboard Navigation

· Keyboard and mouse customisations

· Screen and display adjustments

· Visual and/or audio alerts

· Text-to-speech

The built-in accessibility features outlined below are exclusive to Mac OS X.

· Speech recognition

· Closed captioning in QuickTime

All the accessibility features listed above are bundled with the operating system itself and some of them provide only a minimal level of accessibility. There are many third-party applications that offer a more comprehensive set of features for both operating systems, especially for the Windows operating system.

The feature set above is not an exhaustive list of all accessibility options available in both operating systems. However, it does point out that Mac OS X has two attractive built-in features that are not found in Windows XP – speech recognition and closed captioning. Mac OS X applications that support speech recognition can carry out voice commands, allowing disabled people to use software without having to use a keyboard or mouse. Closed captions are captions that are embedded in a video signal and remain invisible unless a special decoder is used (On television, how does closed captioning work? 2004). Hence, the captions in a video can be turned off by viewers with normal vision, and turned on by viewers with hearing or visual impairment.

3.1.3 Conclusion

As discussed above, the built-in support for computer accessibility in Mac OS X is better than that of Windows. Besides that, video performance is of paramount importance for iView and iSight produces video quality that is superior to others available on the market. Therefore Mac OS X was chosen as the development platform for iView. Also, since iView features video recording and captioning, it can take advantage of QuickTime’s closed captioning.

3.2 Development Tools

3.2.1 Xcode

Xcode is Apple’s newest Integrated Development Environment (IDE) for Mac OS X version 10.3 or higher. It provides support for all types of software projects in Mac OS X, including applications, tools, frameworks, libraries, plug-in bundles, kernel extensions, and device drivers.

Xcode provides a graphical front end to the GNU Compiler Collection (GCC) and the GNU Project Debugger (GDB). It supports software development in many programming languages, such as C, C++, Objective-C, Objective-C++ and Java. Its graphical front end for GDB is also more polished and user friendlier than Data Display Debugger, which is a more popular front end for GDB. Xcode allows all of the source files and other resources, such as icons and images, to be collected in a single program and accessed quickly and easily through its graphical user interface (GUI). It also supports remote debugging, distributed builds, subversion source code control system and many other features (Xcode - The ultimate toolbox 2004), but these advanced features were not used in this project.

3.2.2 Interface Builder

Interface builder is a complementary program to Xcode that facilitates the process of designing and building a fully functional graphical user interface in Mac OS X. It offers a comprehensive set of controls that allows developers to manage practically every aspect of the user interface that complies with the Aqua Human Interface Guidelines (Interface Builder 2004). Adhering to the guidelines ensures all GUI in the operating system has the same look and feel, making it easier for users because they do not have to learn to use a new interface for every Mac OS X application.

3.3 Frameworks – Carbon and Cocoa

Currently there are three application frameworks or environments under Mac OS X, Classic, Carbon and Cocoa. Classic is viewed as a “software compatibility” environment because it allows applications targeted at Mac OS 9 or earlier to run on the Mac OS X operating system (Mac OS X: System Overview 2004). It exists so that a user can run applications that have not yet been ported to run natively on Mac OS X. iView is designed from scratch for Mac OS X and therefore does not use the Classic environment.

Being the primary application environment of Mac OS X, Cocoa is an advanced object-oriented API for developing application written in Java and Objective‑C. The Cocoa application environment is based on two object-oriented frameworks: Foundation and the Application Kit. These frameworks offer both Java and Objective-C API, with most Java classes simply “bridging” to their Objective-C implementation.

Foundation and the Application Kit are similar in some respects to the Core Services and Application Services layers, respectively. The classes in the Foundation framework provide objects and functionality that have no impact on the user interface. Foundation is directly based on Core Foundation. The classes of the Application Kit furnish all the objects and behavior that affect what users see in the user interface, such as windows and buttons, and responsiveness to their mouse clicks and key presses. The Application Kit directly depends on Foundation. Figure 3 depicts the different layers of libraries, frameworks and services within the Mac OS X system software architecture (Mac OS X: System Overview 2004).

Figure 5 Mac OS X as layers of system software

iView uses the application programming interface (API) offered by both Cocoa and Carbon because it requires many low level function calls that are only available in Carbon, but not Cocoa. Most of these low level functions are also part of the QuickTime APIs. Carbon is an adaptation of the Mac OS 9 API and libraries for Mac OS X. It carries over most of the prior API and includes some API and services specifically developed for Mac OS X. Carbon is a set of procedural APIs that are based on legacy Mac OS APIs that have been modified to work with Mac OS X.

In iView, all QuickTime features are Carbon-based as this is the only way to deploy advanced QuickTime functions. On the other hand, the GUI of iView was constructed using Cocoa widgets to ensure that they are fully accessible to external assistive applications.

3.4 Objective-C

Objective-C is a superset of the C language that supports the object-oriented programming paradigm such as encapsulation, inheritance and polymorphism (Pinson & Wiener 1991). It was chosen as the primary language for the development of iView because it is the predominant language for the Cocoa framework. This design decision is important for a number of reasons.

Firstly, most tutorials and sample code available on the Apple Developer Connection website are written in Objective-C. Thus coding in Objective-C shortens development time and efforts, particularly in terms of code reuse. Secondly, it allows seamless integration with the existing GUI components under the Cocoa application environment.

4 Design of iView

4.1 Design Overview

This chapter proposes the design for iView. The design of iView is broken into six stages:

· Frame capturing

· Previewing

· Recording

· Graphic editing

· Captioning

· Zooming

The incremental design methodology was adopted for the development of iView. One of the advantages of this approach is that there will be a usable product at the end of each iteration. For example, as soon as the previewing feature is implemented, it can be released to the user while the recording feature is being developed. As such, it also minimises the impact of late design changes because they can always be implemented in the next iteration.

4.2 Frame Capturing Phase

The first step to designing iView involves acquiring video frames from iSight. The process of obtaining digitised data from the camera can be very complex as it involves compressing and decompressing the video data as well as having a good understanding of FireWire’s underlying communication protocol. Fortunately, developers are shielded from the complexity of accessing these data by using QuickTime’s sequence grabber components (Sequence Grabber Components 2002).

Sequence grabber components allow applications to obtain digitised video and audio data from external sources, such as a webcam. Developers can use high-level functions to acquire the data without concerning the underlying implementation. The following diagram illustrates the relationships among a QuickTime application, a sequence grabber component, and channel components (The Sequence Grabber 2004).

Figure 6 Relationship among a QuickTime application and sequence grabber components

4.3 Previewing Phase

Previewing refers to the process of displaying data that is to be captured. Once the data has been captured and stored in memory, iView decompresses the video frames by using Sequence Grabber APIs and displays them to the user. However, it does not use the preview function provided by Sequence Grabber to preview video data (please refer to Section 4.4 for further explanation).

4.4 Recording Phase

The process of saving captured data in a movie file is called recording. Whilst sequence grabber components provide functions for recording, this technique was not used in iView even though it would reduce the development time and effort significantly. This is because doing so would not allow the captured data to be modified (such as overlaying text) before it is saved in a movie file. As such, the decompressed frames are first transferred to an offscreen Graphic World or GWorld. Once the frames are in a GWorld, any manipulation such as overlaying text can be performed on the frames before they are saved and displayed to the screen. Since manipulating video frames was essential to iView, ease of implementation was sacrificed for flexibility.

4.5 Graphic Editing Phase

Graphic manipulation can be performed on the data once they are in a GWorld. In the case of iView, it writes the frame per second information on every frame to indicate the speed of frame capturing. The major drawback of overlaying text in GWorld is that the text does not scale well when the video is zoomed in. This is why captions are used for storing text data instead.

A useful feature that could be implemented at this stage would be to convert the video data to a two-colour image, also known as positive and negative image. Being able to change the polarity can be very handy especially when a large amount of brightness causes eye strain. This feature, however, was not implemented in iView due to the higher priority of other features. Nonetheless, it can be implemented using a simple algorithm, as shown in the flowchart below.

Figure 7 Flowchart for implementing polarity feature

4.6 Captioning Phase

Captioning is provided so that users can type and store their notes in a movie file instead of keeping a notebook. This eliminates additional space for a notebook on a desk that is already cluttered with a PowerBook (for iView) and some textbooks. While a text string drawn in a GWorld is stored as an image, captions are stored as objects in a QuickTime movie. Thus the clarity and sharpness of captions are not affected by zoom.

4.7 Zooming Phase

Since the lens of iSight are autofocused, the only way to provide zoom feature in iView was to implement digital zoom. The drawback of digital zoom is that the image quality as the zoom level is increased.

Zooming can be achieved by making use of a transformation matrix. In QuickTime Movie Toolbox, transformation matrices are used to perform graphical operations on individual movie frame before it is displayed (The Transformation Matrix 1997). A transformation matrix defines the mapping of points from one coordinate space to another. Graphical operations such as scaling, flipping and rotation can be performed by modifying the contents of a transformation matrix. A 3-by-3 matrix can be used to perform two-dimensional transformations. Equation 1 shows the transformation of a point (x, y) by a 3-by-3 transformation matrix.

Equation 1 A point transformed by a 3-by-3 matrix

Following the operation above, the coordinate (x’, y’) is given by

x’ = ax + cy + tx
y’ = bx + dy + ty
To move an image by an offset, one can define a transformation matrix similar to the one shown below. Such a matrix is called a translation matrix.

Equation 2 A translation matrix

By performing a scaling operation, one can enlarge or shrink an image. This is achieved by multiplying the x and y coordinates by some factor. The size of the new image is dictated by the magnitude of the factor. If the factor is greater than 1, the new image will be larger. To shrink an image, the factor must be between 0 and 1. If the x factor is negative, the image is flipped about the x-axis; similarly, the image can be flipped horizontally by setting the y factor to a negative value. Equation 3 shows a scaling matrix that enlarges the original image by a factor of four (2 x 2 = 4).

Equation 3 A scaling matrix

5 Implementation of iView

5.1 Implementation Overview

This chapter is broken several sections and each section describes a major feature of the system. The design of iView was implemented on Mac OS X version 10.3 using Apple’s newest IDE – Xcode. Interface Builder was used to construct the GUI. iView is a Cocoa based application that uses Carbon API to access QuickTime’s Movie Toolbox and Sequence Grabber components. As a result, the source code was written in three programming languages: Objective-C for Cocoa API, C for QuickTime API and Pascal for legacy QuickTime API.

5.2 Frame Capturing and Previewing Phases

During the implementation phase, the development of frame capturing of previewing was grouped together because these two features were very closely linked. Previewing depends on the data obtained by frame capturing, while the output of frame capturing can be verified using previewing.

The implementation of these two features are based on a sample code obtained from Apple Developer Connection website (Cocoa - SGDataProc 2003). When the application is run, it creates a sequence grabber video channel to obtain video data from an iSight camera through a FireWire connection. It then uses a Sequence Grabber data function to simulate a preview operation, instead of calling the more straightforward function SGStartPreview, for reasons stated in Section 4.4. Alternatively, one can set up a video bottleneck to manipulate individual video frames. However, this technique is less efficient than using a Sequence Grabber data function.

When a data function is specified for a sequence grabber channel, this function is called just before the channel writes any movie data to the designated destination, which is usually a movie file. The data function must be implemented by the developer and can be specified by calling the SGSetDataProc function. In iView, this data function is named mySGDataProc.

To simulate preview, iView instructs Sequence Grabber to perform a fake record operation by calling SGStartRecord, without specifying an output file. Just before Sequence Grabber attempts to write to the output file (even though none was specified), it calls mySGDataProc. mySGDataProc first draws this data into an offscreen GWorld using a decompression sequence, where any additional manipulations, such as overlaying text, can be performed on the data. Finally, another decompression sequence is used to draw the data from the GWorld to an NSQuickDrawView window. NSQuickDrawView window was chosen because it provides the “qdPort” method that makes copying images from a GWorld to its window relatively easy. Preview mode is started automatically when iView is run.

Figure 8 shows the structure of iView at preview stage. Video frames are captured from an iSight camera and then displayed on a screen.

Figure 8 Structure of iView at preview phase

5.3 Graphic Editing Phase

iView does not perform any sophisticated editing the frames before they are displayed, other than overlaying frame per second information over the frames. As mentioned earlier, it would very handy to be able to convert the frames to a polarised image. This feature will be included in a future release. Figures 9 and 10 show the screenshot and structure of iView at graphic editing stage.

Figure 9 Screenshot of iView at graphic editing stage

Figure 10 Structure of iView at graphic editing stage

5.4 Recording Phase

Unlike preview, a user must initiate the record operation manually by pressing the record button. Figure 11 is a screenshot of iView at record phase. Once the record button is pressed, iView prompts for the filename of the movie to be saved and creates a video track to store video data. Each captured frame is then compressed using JPEG algorithm and added to the video track. Each compressed frame is similar to an I-frame in a normal MPEG-encoded movie. This technique does not take advantage of the MPEG algorithm, which only records information that changes from frame to frame. Instead, each frame is JPEG-encoded and thus creating a larger file. The justification for this approach is that simpler compression technique results in faster processing. As such, the application is less likely to drop any frames when it is busy compressing other frames. Also, the cost of a hard disk is much lower than that of a microprocessor. Therefore, it makes sense to save the processing power for other tasks that are more computationally intensive, such as displaying movie on the screen and zooming.

The pause operation has no effect on preview and affects the record operation. When the pause button is pressed, the frames shown on the preview window are not saved into the movie file. The user can resume the record operation by pressing the record button. To stop and finalise the movie, the user can press the stop button.

Figure 11 Screenshot of iView at record phase

Figure 12 Structure of iView at record phase
Figure 12 depicts the structure of iView at record stage. Sequence Grabber captures video frames from iSight and passes them to Gworld. Frame per second information is overlayed on the each frame. The frames are then compressed and added to a video track. At the same time, they are also displayed to the screen.

5.5 Captioning Phase

Figure 13 shows the caption text box in iView. The text box is only enabled while iView is in record mode. When a user enters some text in the text box and presses the Enter key, the text is stored in an internal structure together with a timestamp. When the user stops recording, a text track (as opposed to a video track that stores video data) containing all the text strings is created and added to the movie file. The timestamp is used to determine the time at which the caption should appear in the movie. Each caption lasts for exactly one second. This value is defined in the header file and can be made user configurable in a future release. The structure of iView at this stage is illustrated in Figure 14.

Figure 13 Screenshot of iView at captioning phase
Figure 14 Structure of iView at captioning phase

Figure 15 Comparison of caption and overlayed text in a zoomed-in image

Figure 15 illustrates the advantage of using caption over overlayed text. The bottom image of Figure 15 clearly shows that the overlayed text (“fps: 30.0”) loses its quality when the image is zoomed in while the caption (“this is a demo”) remains crisp and sharp.

5.6 Zooming Phase

Zooming affects only the frames displayed on the preview window and has no effect on the movie’s video data. The size of the image becomes four times bigger than the original image when the zoom in button is pressed. This can be achieved by multiplying both the width and height of the frame by a factor two. This value of this factor is defined in the header file and can be made user configurable in a future release.

Knowing the sizes of the new and old frames, one can use the RectMatrix function to calculate the transformation matrix. The function SetDSequenceMatrix is then called, with the transformation matrix passed in as a parameter, to scale the image before it is decompressed and drawn from GWorld to the preview window.

Figure 16 Screenshot of iView at zoom phase (4x zoom)

Figure 17 Structure of iView at Zooming phase

6 Conclusions

6.1 Summary

People with low vision are usually disadvantaged in many circumstances, whether they are in a workplace environment or a classroom situation. However, their lives can be made easier by utilising visual aids that are available to them. This thesis addresses the issues faced by many visually impaired students and attempts to solve them by proposing and implementing a new aid for use in a classroom situation – iView.

iView’s greatest strengths lie in portability and flexibility. Consisting of only an iSight camera and a PowerBook, students will have no difficulty bringing them to school on a daily basis. It not only can magnify text for reading and writing, it can also captures the whiteboard contents and the facial expressions of the teacher. Such flexibility is not found on current CCTV systems.

According to Australian Bureau of Statistics (Australian Social Trends: Family and Community Support for people with a disability 2004), more than half (53%) of those with disabilities were receiving a government cash pension or allowance. And for most of them, this was their principal source of income. Given the fact that a large number of them are dependent on social benefits, it is crucial that the price of iView must be affordable. This goal was achieved by making use of off the shelf components that were selected carefully so that the quality would not be compromised.

Due to time constraints and the fact that there was no previous work for iView to build upon, the system lacks some features (see Section 6.2) that make it far from being a mature product. Although considered a prototype, iView is totally usable, not just by people with low vision, but also by people with normal vision.

6.2 Future Work

Although the system implemented is fully working, it is by no means a mature product. In order to improve the system and better serve the vision-impaired community, some recommendations for future development of iView are highlighted in the following sections.

6.2.1 Image Polarisation

Polarity is the ability to display dark-coloured text on a white background or vice versa. Some people with low vision prefer reading white text on a dark background because doing so reduces the brightness and is more comfortable to the eyes. Although this feature has not been implemented, an algorithm for it was proposed in section 4.5 (see Figure 7).

6.2.2 Audio Recording

The major goal of this project was to create a tool to enhance the learning experience of visually impaired people in a classroom situation. iView was designed to help people with low vision to see better but not hear. Hence audio recording was not given a high priority as it was assumed that the users of iView suffered little or no hearing loss. Having said that, iView would be more complete and might reach a wider audience if audio support was implemented.

6.2.3 Video Enhancement for Zoom

As discussed in section 4.7, the zoom feature implemented is a form of digital zoom. In other words, the image quality deteriorates as the zoom level increases. It is very difficult to provide optical zoom with iSight as its lens are autofocused. The only way to do it is to modify the firmware of iSight. However, doing so may void the hardware warranty. Future work may look into enhancing the video quality using techniques such as super resolution (Cristani et al. 2004).

References

Accessibility in Education: iChat AV 2004, Available: [http://www.apple.com/education/accessibility/technology/ichat_av.html] (2004/3/11).

Apple - Accessibility 2004, Available: [http://www.apple.com/accessibility/] (2004/5/3).

Australian Social Trends: Family and Community Support for people with a disability 2004, Available: [http://www.abs.gov.au/Ausstats/abs@.nsf/0/3677d940e9d1c8d9ca256e9e0027a5cd?OpenDocument] (2004/6/18).

Berger, S., Accessibility Options, Available: [http://www.aarp.org/computers-howto/Articles/a2004-07-01-accessibility.html] (2004/4/2).

Cocoa - SGDataProc 2003, Available: [http://developer.apple.com/samplecode/Cocoa_-_SGDataProc/Cocoa_-_SGDataProc.html] (2004/4/10).

Computer accessibility 2004, Available: [http://en.wikipedia.org/wiki/Computer_accessibility].

Cristani, M., Cheng, D. S., Murino, V. & Pannullo, D. 2004, 'Distilling information with super-resolution for video surveillance', in Proceedings of the ACM 2nd international workshop on Video surveillance & sensor networks, ACM Press, New York, pp. 2-11.

Interface Builder 2004, Available: [http://developer.apple.com/tools/interfacebuilder/] (2004/4/3).

Introduction to Touch Screen Systems 2004, Available: [http://www.touchscreens.com/introduction.html].

Mac OS X: System Overview 2004, Available: [http://developer.apple.com/documentation/MacOSX/Conceptual/SystemOverview/index.html] (2004/4/23).

On television, how does closed captioning work? 2004, Available: [http://entertainment.howstuffworks.com/question427.htm] (2004/4/5).

Pinson, L. J. & Wiener, R. S. 1991, Objective C: Object Oriented Programming Techniques, Addison-Wesley, Massachusetts.

The Sequence Grabber 2004, Available: [http://developer.apple.com/quicktime/qttutorial/seqgrab.html] (2004/3/11).

Sequence Grabber Components 2002, Available: [http://developer.apple.com/documentation/QuickTime/RM/CreatingMovies/SeqGrabComp/rmSeqGrabComp/chapter_1_section_1.html] (2004/3/2).

Statistics on eye health in Australia 2004, Available: [http://www.visionaustralia.org.au/index.asp?inc=&parentnav=vision&childnav=stats&subsection=intro&topnav=&float=] (2004/3/22).

The Transformation Matrix 1997, Available: [http://developer.apple.com/documentation/QuickTime/INMAC/INTROS/xxIntroductions.17.htm] (2004/5/3).

Windows XP Accessibility Resources 2004, Available: [http://www.microsoft.com/enable/products/windowsxp/default.aspx].

Xcode - The ultimate toolbox 2004, Available: [http://www.apple.com/macosx/features/xcode/] (2004/5/6).

Appendix A – Project Plan

Figure 18 Gantt chart for project plan

Appendix B – Programming Environment

The application iView was developed on the Mac OS X operating system, version 10.3 (Panther). The IDE used was Xcode version 1.5. Xcode uses the GCC 3.3 and GDB build 330.1.

Appendix C – Source Code

C.1 main.m

//

// FILE: main.m

// PROJECT: iView

//

#import <Cocoa/Cocoa.h>

int main(int argc, const char *argv[])

{

 return NSApplicationMain(argc, argv);

}

C.2 MyObject.h

//////////

//

//
File:

MyObject.h

// Project: iView

//
Contains:
Interface file for our MyObject class.

//

//////////

#import <Cocoa/Cocoa.h>

#import "MyVideo.h"

#import "MyMovieText.h"

#import "UserText.h"

// An error code not defined by Apple to indicate errors specific to my program

#define kMyErrorCode -22222

// Every time zoom is clicked, the image is enlarge/reduced by this factor

#define kZoomFactor

2.0

@interface MyObject : NSObject

{

 IBOutlet id view;

// a MyQuickDrawView object

 IBOutlet id window;

 IBOutlet NSButton *pauseButton;

// pause button

 IBOutlet NSButton *recordButton;
// record button

 IBOutlet NSButton *stopButton;

// play button

IBOutlet NSButton *zoomInButton;
// zoom in button

IBOutlet NSButton *zoomOutButton; // zoom out button

 IBOutlet NSTextField *textInput;
// user text input field

 NSDate *gStopTime;

// recording stop time

NSDate *gLastInsertTime;

// last text-insertion time

 NSString *gMovieFilename;

// movie filename

 NSMutableArray *gCaption;

// array for storing text inputs and time info

 MyVideo *gMyVideo;

// object for recording and adding text

 BOOL gRecording;

// YES if application is in recording movie

}

-(IBAction)record: (id)sender;

-(IBAction)pause: (id)sender;

-(IBAction)stop: (id)sender;

-(IBAction)zoomIn: (id)sender;

-(IBAction)zoomOut: (id)sender;

-(IBAction)inputText: (id)sender;

-(OSErr)addTextToMovie;

- (id)init;

- (void)awakeFromNib;

- (void)applicationWillTerminate:(NSNotification *)notification;

@end

C.3 MyObject.m

//////////

//

//
File:

MyObject.m

// Project: iView

//
Contains:
Implementation file for the MyObject class.

//

//////////

#import <QuickTime/QuickTime.h>

#import <Carbon/Carbon.h>

#import "MyObject.h"

#import "MyQuickDrawView.h"

NSTimer *theTimer;

@implementation MyObject

#define BailErr(x) {err = x; if(err != noErr) goto bail;}

/**

* FUNCTION: init

* PURPOSE : Our controller's initialization method. Well

* add our self as an observer for application

* termination notifications, so we can perform

* cleanup when the application quits

***/

- (id)init

{

 /* we'll want to be called when the application

 quits so we can do any cleanup */

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(applicationWillTerminate:)

 name:@"NSApplicationWillTerminateNotification" object:NSApp];

 return self;

}

/**

* FUNCTION: record

* PURPOSE : Prompts for the movie filename and records movie

***/

-(IBAction)record: (id)sender;

{

 OSErr err = noErr;

 // Create and initialise gCaption

 gCaption = [[NSMutableArray alloc] init];

 if (!gCaption)

BailErr(kMyErrorCode);

 // Create and initialise gMyVideo

 gMyVideo = [[MyVideo alloc] init];

 if (!gMyVideo)

BailErr(kMyErrorCode);

 // Pass gMyVideo object to MyQuickDrawViewClass because

 // we need to use the same MyVideo object over there for recording

 [view setMyMovie:gMyVideo];

 // Get the filename from user, but we must first relinquish the old one

 [gMovieFilename release];

 gMovieFilename = [[gMyVideo promptMovieFilename] retain];

 if (!gMovieFilename)

BailErr(kMyErrorCode);

 // Create the movie file

 err = [gMyVideo createMovie:[view boundsRect] gWorld:[view gworld]

 filename:gMovieFilename];

 BailErr(err);

 // Configure the user interface accordingly

 [recordButton setEnabled:NO];
// disable record button

 [pauseButton setEnabled:YES];
// enable pause button

 [stopButton setEnabled:YES];
// enable stop button

 [textInput setEnabled:YES];

// enable text input

 [view setRecording:YES];

// start recording

// start time of recording, used in addTextToMovie()

 gLastInsertTime = [[NSDate date] retain];

if (!gLastInsertTime)

BailErr(kMyErrorCode);

bail:

 // Cleanup code if something goes wrong

 if (err != noErr)

 {

if (gCaption)

[gCaption release];

if (gMyVideo)

{

[gMyVideo closeMovie];

[gMyVideo release];

}

 }

}

/**

* FUNCTION: pause

* PURPOSE : Pauses/resumes movie recording

***/

-(IBAction)pause: (id)sender;

{

 BOOL recording;

// previous state of record operation

 // If the application is recording, pause it

 // if the record operation is being paused, resumes recording

 recording = [view recording];

// If it was in record mode previously, we want to pause the movie

// and disable the text box

if (recording == YES)

[textInput setEnabled:NO];

else

[textInput setEnabled:YES];

 [view setRecording:!recording];

}

/**

* FUNCTION: stop

* PURPOSE : Stops movie recording and adds caption to movie

***/

-(IBAction)stop: (id)sender;

{

 [view setRecording:NO];

// stop recording

 [gMyVideo closeMovie];

// close movie file

 [gMyVideo release];

// free resources used by gMyVideo

[stopButton setEnabled:NO];

// disable stop button

 [recordButton setEnabled:YES];
// enable record button

 [pauseButton setEnabled:NO];
// disable pause button

 gStopTime = [NSDate date];

// stop time of recording

// Add caption to movie (if we have any)

if ([gCaption count] > 0)

[self addTextToMovie];

[gCaption release];

}

/**

* FUNCTION: zoomOut

* PURPOSE : Enlarge the image by a factor 'kZoomFactor'

***/

-(IBAction)zoomIn: (id)sender

{

NSSize oldSize, newSize;

[[view superview] setNeedsDisplayInRect:[view frame]];

oldSize = [view frame].size;

newSize.width = oldSize.width * kZoomFactor;

newSize.height = oldSize.height * kZoomFactor;

[view setFrameSize:newSize];

[view setNeedsDisplay:YES];

}

/**

* FUNCTION: zoomOut

* PURPOSE : Reduce the image by a factor 'kZoomFactor'

***/

-(IBAction)zoomOut: (id)sender

{

NSSize oldSize, newSize;

[[view superview] setNeedsDisplayInRect:[view frame]];

oldSize = [view frame].size;

newSize.width = oldSize.width / kZoomFactor;

newSize.height = oldSize.height / kZoomFactor;

[view setFrameSize:newSize];

[view setNeedsDisplay:YES];

}

/**

* FUNCTION: inputText

* PURPOSE : Retrieves user text from the NSTextField,

* saves it in an array together with the pause duration

***/

-(IBAction)inputText: (id)sender

{

 NSString *inputStr = [textInput stringValue];

 if (![inputStr isEqualToString:@""])

 {

NSTimeInterval pauseDuration;

UserText *textData;

// lastInsertTime will always be earlier than current time

// we take the absolute value because the result of timeIntervalSinceNow

// will always be negative

pauseDuration = fabs([gLastInsertTime timeIntervalSinceNow]);

// Create a UserText object and add it to the gCaption array

textData = [[UserText alloc] init];

if (textData)

{

[textData setDuration:pauseDuration];

[textData setText:inputStr];

[gCaption addObject:textData];

[textData release];

}

[gLastInsertTime release];

gLastInsertTime = [[NSDate date] retain];

// Set lastInsertTime to now

 }

 // Make the text field active again after user hitting Enter

 [window makeFirstResponder: textInput];

}

/**

* FUNCTION: addTextToMovie

* PURPOSE : Adds user text to movie when recording is done

***/

-(OSErr)addTextToMovie

{

 MyMovieText *movieText = nil;

 OSErr err = noErr;

movieText = [[MyMovieText alloc] init];

NSAssert(movieText, @"movieText couldn't not be created");

err = [movieText addCaptionToMovie:gCaption filename:gMovieFilename];

if (err != noErr)

{

NSRunAlertPanel(@"Error", @"addCaptionToMovie failed", @"OK", nil, nil);

return err;

}

return err;

}

/**

* FUNCTION: awakeFromNib

* PURPOSE : Called after all our objects are unarchived and

* connected but just before the interface is made visible

* to the user. We will do custom initialization of our

* objects here

***/

- (void)awakeFromNib

{

 NSDictionary
*dict;

 NSString

*windowTitle;

 OSErr

err;

 /* grab the name string for our window */

 NSString *filePath
= [[NSBundle mainBundle] pathForResource:@"InfoPlist" ofType:@"strings"];

 dict

= [NSDictionary dictionaryWithContentsOfFile:filePath];

 windowTitle

= [dict objectForKey:@"MiniMungWindowTitleString"];

 // disable stop button, pause button and text field

 [pauseButton setEnabled:NO];

 [stopButton setEnabled:NO];

 [textInput setEnabled:NO];

 /* set the window title */

 [window setTitle:windowTitle];

 /* pass our view object to our MyQuickDrawView class so we can access methods

 in this class from our C code routines */

 saveQDViewObjectForCallback(view);

 /* now lets create a window and display the video data passed to us by the sequence grabber */

 err = [view doSeqGrab:[view bounds]];

 /* put up an error dialog to display any errors */

 if (err != noErr)

 {

 NSString *errorStr = [[NSString alloc] initWithFormat:@"%d" , err];

 int choice;

 /* now display error dialog and quit */

 choice = NSRunAlertPanel(@"Error", errorStr, @"OK", nil, nil);

 [errorStr release];

 }

}

/**

* FUNCTION: applicationWillTerminate

* PURPOSE : Releases any objects we initialized

* in our init method.

***/

- (void)applicationWillTerminate:(NSNotification *)notification

{

 [view endGrab];

[gLastInsertTime release];

 [gMovieFilename release];

}

@end
C.4 MyQuickDrawView.h

//////////

//

//
File:

MyQuickDrawView.h

// Project: iView

//
Contains:
Interface file for our MyQuickDrawView class.

//

//////////

#import <Cocoa/Cocoa.h>

#import <QuickTime/QuickTime.h>

#import "MyVideo.h"

@interface MyQuickDrawView : NSQuickDrawView

{

 NSTimer

*gMyTimer;

// our timer for idling the sequence grabber

 SeqGrabComponent
gSeqGrab;

// the sequence grabber component

 SGChannel

gSGChanVideo;

// the sequence grabber channel component

 GWorldPtr

gPGWorld;

// gworld used for decompression

 Rect

gBoundsRect;

// rect we are drawing into

 ImageSequence
gDecomSeq;

// unique identifier for our decompression sequence

 ImageSequence
gDrawSeq;

// unique identifier for our draw sequence

 long

gImageSize;

// size of the image in our buffer to draw

 MyVideo

*gMyVideo;

// object used to create and record movie

 BOOL

gRecording;

// YES if application is in recording movie

}

-(id)init;

-(ComponentResult)setupDecomp;

-(ComponentResult)decompToWindow;

-(void)doDecomp:(NSRect)rect;

-(void)drawRect:(NSRect)rect;

-(void) sgIdleTimer:(id)sender;

-(OSErr) doSeqGrab:(NSRect)grabRect;

-(GWorldPtr)gworld;

-(ImageSequence)decomSeq;

-(ImageSequence)drawSeq;

-(SGChannel)sgChanVideo;

-(Rect)boundsRect;

-(void)endGrab;

-(MyVideo *)myMovie;

-(void)setMyMovie:(MyVideo *)myMovie;

-(void)setRecording:(BOOL)value;

-(BOOL)recording;

@end

// Non Objective-C function declarations

pascal OSErr mySGDataProc(SGChannel c,

 Ptr p,

 long len,

 long *offset,

 long chRefCon,

 TimeValue time,

 short writeType,

 long refCon);

void saveQDViewObjectForCallback(void *theObject);

C.5 MyQuickDrawView.m

//////////

//

//
File:

MyQuickDrawView.m

// Project: iView

//
Contains:
Implementation file for the MyQuickDrawView class

//

//////////

#import <QuickTime/QuickTime.h>

#import <Carbon/Carbon.h>

#import "MyQuickDrawView.h"

#import "MyObject.h"

static MyQuickDrawView

*myQDViewObject;
// our MyQuickDrawView object

static TimeScale

gTimeScale;

// time scale for our grabbed video

static TimeValue

gLastTime;

// time value when a frame was last given to us

@implementation MyQuickDrawView

#define BailErr(x) {err = x; if(err != noErr) goto bail;}

#define BailIfNull(x) {gSeqGrab = x; if(gSeqGrab == nil) goto bail;}

-(id)init

{

 NSLog(@"inside init");

 return self;

}

/***

*

* FUNCTION: recording

* PURPOSE : Returns the state of the record operation.

* The state can either be YES (recording), or

* NO (not recording)

*

**/

-(BOOL)recording

{

 return gRecording;

}

/***

*

* FUNCTION: setRecording

* PURPOSE : Sets the state of record operation to 'value'

* if 'value' is YES -> record movie

* if 'value' is NO -> pause movie

*

**/

-(void)setRecording:(BOOL)value

{

 gRecording = value;

}

/***

*

* FUNCTION: setMyMovie

* PURPOSE : Initialises 'gMyVideo' for later use

*

**/

-(void)setMyMovie:(MyVideo *)myMovie

{

 gMyVideo = myMovie;

}

/***

*

* FUNCTION: setupDecomp

* PURPOSE : Code to setup our decompresion sequences. We make

* two, one to decompress to a gworld, and the other

* to decompress to the window

*

**/

-(ComponentResult)setupDecomp

{

ComponentResult

err = noErr;

 Rect

sourceRect = { 0, 0 }, bounds;

 MatrixRecord

scaleMatrix;

 ImageDescriptionHandle
imageDesc = (ImageDescriptionHandle)NewHandle(0);

 PixMapHandle

hPixMap;

 /* Set up getting grabbed data into the GWorld */

 // retrieve a channelÕs current sample description, the channel returns a sample description that is

 // appropriate to the type of data being captured

 err = SGGetChannelSampleDescription(gSGChanVideo,(Handle)imageDesc);

 BailErr(err);

 /***** IMPORTANT NOTE *****

 Previous versions of this sample code made an incorrect decompression

 request. Intending to draw the DV frame at quarter-size into a quarter-size

 offscreen GWorld, it made the call

 err = DecompressSequenceBegin(..., &rect, nil, ...);

 passing a quarter-size rectangle as the source rectangle. The correct

 interpretation of this request is to draw the top-left corner of the DV

 frame cropped at normal size. Unfortunately, a DV-specific bug in QuickTime

 5 caused it to misinterpret this request and scale the frame to fit.

 This bug will be fixed in QuickTime 6. If your code behaves as intended

 because of the bug, you should fix your code to pass a matrix scaling the

 frame to fit the offscreen gworld:

 RectMatrix(& scaleMatrix, &dvFrameRect, &gworldBounds);

 err = DecompressSequenceBegin(..., nil, &scaleMatrix, ...);

 This approach will work in all versions of QuickTime.

 **************************/

 // make a scaling matrix for the sequence

 sourceRect.right = (**imageDesc).width;

 sourceRect.bottom = (**imageDesc).height;

 RectMatrix(&scaleMatrix, &sourceRect, &gBoundsRect);

 // begin the process of decompressing a sequence of frames

 // this is a set-up call and is only called once for the sequence - the ICM will interrogate different codecs

 // and construct a suitable decompression chain, as this is a time consuming process we don't want to do this

 // once per frame (eg. by using DecompressImage)

 // for more information see Ice Floe #8 http://developer.apple.com/quicktime/icefloe/dispatch008.html

 // the destination is specified as the GWorld

 err = DecompressSequenceBegin(&gDecomSeq,
// pointer to field to receive unique ID for sequence

 imageDesc,

// handle to image description structure

 gPGWorld,

// port for the DESTINATION image

 NULL,

// graphics device handle, if port is set, set to NULL

 NULL,

// source rectangle defining the portion of the image to decompress

 &scaleMatrix,
// transformation matrix

 srcCopy,

// transfer mode specifier

 NULL,

// clipping region in dest. coordinate system to use as a mask

 0,

// flags

 codecNormalQuality,

// accuracy in decompression

 bestSpeedCodec);

// compressor identifier or special identifiers ie. bestSpeedCodec

 BailErr(err);

 DisposeHandle((Handle)imageDesc);

 imageDesc = NULL;

 /* Set up getting grabbed data into the Window */

 hPixMap = GetGWorldPixMap(gPGWorld);

 GetPixBounds(hPixMap,&bounds);

 gDrawSeq = 0;

 // returns an image description for the GWorlds PixMap

 // on entry the imageDesc is NULL, on return it is correctly filled out

 // you are responsible for disposing it

 err = MakeImageDescriptionForPixMap(hPixMap, &imageDesc);

 BailErr(err);

 gImageSize = (GetPixRowBytes(hPixMap) * (*imageDesc)->height); // ((**hPixMap).rowBytes & 0x3fff) * (*desc)->height;

 // begin the process of decompressing a sequence of frames - see above notes on this call.

 // destination is specified as the QuickDraw port for our NSView

 err = DecompressSequenceBegin(&gDrawSeq,

 imageDesc,

 [self qdPort],
// Use the QuickDraw port for our NSView as destination!

 NULL,

 &bounds,

 NULL,

 ditherCopy,

 NULL,

 0,

 codecNormalQuality,

 anyCodec);

 BailErr(err);

bail:

 if (imageDesc)

 DisposeHandle((Handle)imageDesc);

 return (err);

}

/***

*

* FUNCTION: decompToWindow

* PURPOSE : Decompress an image to our window (the QuickDraw port for

* our NSView). Enlarge/Shrink the image accordingly

*

**/

-(ComponentResult)decompToWindow

{

ComponentResult err = noErr;

 CodecFlags

ignore;

// Make a scaling matrix to make the image fit into MyQuickDrawView

Rect

sourceRect = { 0, 0 }, destRect;

NSRect

qdViewRect;

MatrixRecord

scaleMatrix;

qdViewRect

= [myQDViewObject bounds];

destRect.top

= 0;

 destRect.left

= 0;

 destRect.bottom
= qdViewRect.size.height;

destRect.right

= qdViewRect.size.width;

err = SGGetChannelBounds(gSGChanVideo, &sourceRect);

 BailErr(err);

 // Calculate the scaling matrix

 RectMatrix(&scaleMatrix, &sourceRect, &destRect);

// Use the scaling matrix to scale up/down the image

SetDSequenceMatrix(gDrawSeq, &scaleMatrix);

GrafPtr
savedPort = nil;

Rect
viewBounds;

GrafPtr
 viewPort = (GrafPtr)[self qdPort];

RgnHandle
oldClip = NewRgn();

GetPort(&savedPort);

SetPort(viewPort);

GetClip(oldClip);

viewBounds.top = 0;

viewBounds.left = 0;

viewBounds.bottom = [[self superview] bounds].size.height;

viewBounds.right = [[self superview] bounds].size.width;

ClipRect(&viewBounds);

// your drawing goes in here

err = DecompressSequenceFrameS(gDrawSeq,

// sequence ID returned by DecompressSequenceBegin

 GetPixBaseAddr(GetGWorldPixMap(gPGWorld)),
// pointer to compressed image data

 gImageSize,

// size of the buffer

 0,

// in flags

 &ignore,

// out flags

 NULL);

// async completion proc

SetClip(oldClip);

DisposeRgn(oldClip);

SetPort(savedPort);

bail:

 return err;

}

/***

*

* FUNCTION: doDecomp

* PURPOSE : Setup and run our decompression sequence, plus display

* frames-per-second data to our window

*

**/

-(void)doDecomp:(NSRect)rect

{

 if(gPGWorld)

 {

 if (gDecomSeq == 0)

 {

 [self setupDecomp];

 }

 else

 {

 [self decompToWindow];

 }

 }

}

/***

*

* FUNCTION: drawRect

* PURPOSE : Overridden by subclasses of NSView to draw the receiver's

* image within aRect. It's here we decompress our frames

* to the window for display

*

**/

-(void)drawRect:(NSRect)rect

{

 [self doDecomp:rect];

}

/***

*

* FUNCTION: sgIdleTimer

* PURPOSE : A timer whose purpose is to call the SGIdle function

* to provide processing time for our sequence grabber component

*

**/

-(void) sgIdleTimer:(id)sender

{

 OSErr err;

 err = SGIdle(gSeqGrab);

 /* put up an error dialog to display any errors */

 if (err != noErr)

 {

 NSString *errorStr = [[NSString alloc] initWithFormat:@"%d" , err];

 int choice;

 // some error specific to SGIdle occurred - any errors returned from the

 // data proc will also show up here and we don't want to write over them

 // in QT 4 you would always encounter a cDepthErr error after a user drags

 // the window, this failure condition has been greatly relaxed in QT 5

 // it may still occur but should only apply to vDigs that really control

 // the screen

 // you don't always know where these errors originate from, some may come

 // from the VDig...

 /* now display error dialog and quit */

 choice = NSRunAlertPanel(@"Error", errorStr, @"OK", nil, nil);

 [errorStr release];

 // ...to fix this we simply call SGStop and SGStartRecord again

 // calling stop allows the SG to release and re-prepare for grabbing

 // hopefully fixing any problems, this is obviously a very relaxed

 // approach

 SGStop(gSeqGrab);

 SGStartRecord(gSeqGrab);

 }

}

/***

*

* FUNCTION: doSeqGrab

* PURPOSE : Initialize the Sequence Grabber, create a new sequence grabber

* channel, create an offscreen GWorld for use with our

* decompression sequence, then begin recording. We also setup a

* timer to idle the sequence grabber

*

**/

-(OSErr) doSeqGrab:(NSRect)grabRect

{

 OSErr
err = noErr;

 gTimeScale
= 0;

 gLastTime
= 0;

 /* initialize the movie toolbox */

 err = EnterMovies();

 BailErr(err);

 // open the sequence grabber component and initialize it

 gSeqGrab = OpenDefaultComponent(SeqGrabComponentType, 0);

 BailIfNull(gSeqGrab);

 err = SGInitialize(gSeqGrab);

 BailErr(err);

// specify the destination data reference for a record operation

// tell it we're not making a movie

// if the flag seqGrabDontMakeMovie is used, the sequence grabber still calls

// your data function, but does not write any data to the movie file

// writeType will always be set to seqGrabWriteAppend

 err = SGSetDataRef(gSeqGrab, 0, 0, seqGrabDontMakeMovie);

 BailErr(err);

 // create a new sequence grabber video channel

 err = SGNewChannel(gSeqGrab, VideoMediaType, &gSGChanVideo);

 BailErr(err);

 gBoundsRect.top
= grabRect.origin.y;

 gBoundsRect.left
= grabRect.origin.x;

 gBoundsRect.bottom
= grabRect.size.height;

 gBoundsRect.right
= grabRect.size.width;

 err = SGSetChannelBounds(gSeqGrab, &gBoundsRect);

 // create the GWorld

 err = QTNewGWorld(&gPGWorld,
// returned GWorld

 k32ARGBPixelFormat,

// pixel format

 &gBoundsRect,

// bounding rectangle

 0,

// color table

 NULL,

// graphic device handle

 0);

// flags

 BailErr(err);

 // lock the pixmap and make sure it's locked because

 // we can't decompress into an unlocked PixMap

 if(!LockPixels(GetPortPixMap(gPGWorld)))

 {

BailErr(-1);

 }

 err = SGSetGWorld(gSeqGrab, gPGWorld, GetMainDevice());

 BailErr(err);

 // set the bounds for the channel

 err = SGSetChannelBounds(gSGChanVideo, &gBoundsRect);

 BailErr(err);

 // set the usage for our new video channel to avoid playthrough

 // note: we do not set seqGrabPlayDuringRecord because if you set this flag

 // the data from the channel may be played during the record operation,

 // if the destination buffer is onscreen. However, playing the

 // data may affect the quality of the recorded sequence by causing frames

 // to be dropped...something we definitely want to avoid

 err = SGSetChannelUsage(gSGChanVideo, seqGrabRecord);

 BailErr(err);

 // specify a data function for use by the sequence grabber

 // whenever any channel assigned to the sequence grabber writes data,

 // this data function is called and may then write the data to another destination

 err = SGSetDataProc(gSeqGrab,NewSGDataUPP(&mySGDataProc),NULL);

 BailErr(err);

 /* lights...camera... */

 err = SGPrepare(gSeqGrab,false,true);

 BailErr(err);

 // start recording!!

 err = SGStartRecord(gSeqGrab);

 BailErr(err);

 /* setup a timer to idle the sequence grabber */

 gMyTimer = [[NSTimer scheduledTimerWithTimeInterval:0.1

// interval, 0.1 seconds

 target:self

 selector:@selector(sgIdleTimer:)

// call this method

 userInfo:nil

 repeats:YES] retain];

// repeat until we cancel it

bail:

return err;

}

/***

*

* FUNCTION: gworld

* PURPOSE : Accessor method for the gPGWorld class variable

*

**/

-(GWorldPtr)gworld

{

 return gPGWorld;

}

/***

*

* FUNCTION: decomSeq

* PURPOSE : Accessor method for the gDecomSeq class variable

*

**/

-(ImageSequence)decomSeq

{

 return gDecomSeq;

}

/***

*

* FUNCTION: drawSeq

* PURPOSE : Accessor method for the gDrawSeq class variable

*

**/

-(ImageSequence)drawSeq

{

 return gDrawSeq;

}

/***

*

* FUNCTION: sgChanVideo

* PURPOSE : Accessor method for the gSGChanVideo class variable

*

**/

-(SGChannel)sgChanVideo

{

 return gSGChanVideo;

}

/***

*

* FUNCTION: boundsRect

* PURPOSE : Accessor method for the boundsRect class variable

*

**/

-(Rect)boundsRect

{

 return gBoundsRect;

}

/***

*

* FUNCTION: boundsRect

* PURPOSE : Accessor method for the myVideo class variable

*

**/

-(MyVideo *)myMovie

{

 return gMyVideo;

}

/***

*

* FUNCTION: endGrab

* PURPOSE : Perform clean-up when we are finished recording

*

**/

-(void)endGrab

{

 ComponentResult result;

 OSErr

err;

 // kill our sequence grabber idle timer first

 [gMyTimer invalidate];

 [gMyTimer release];

 // stop recording

 SGStop(gSeqGrab);

 // end our decompression sequences

 err = CDSequenceEnd(gDecomSeq);

 err = CDSequenceEnd(gDrawSeq);

 // finally, close our sequence grabber component

 result = CloseComponent(gSeqGrab);

 // get rid of our gworld

 DisposeGWorld(gPGWorld);

}

@end

/* -- */

/* sequence grabber data procedure - this is where the work is done */

/* -- */

/* mySGDataProc - the sequence grabber calls the data function whenever

 any of the grabberÕs channels write digitized data to the destination movie file.

 NOTE: We really mean any, if you have an audio and video channel then the DataProc will

 be called for either channel whenever data has been captured. Be sure to check which

 channel is being passed in. In this example we never create an audio channel so we know

 we're always dealing with video.

 This data function decompresses captured video data into an offscreen GWorld,

 then transfers the frame to an onscreen window.

 For more information refer to Inside Macintosh: QuickTime Components, page 5-120

 c - the channel component that is writing the digitized data.

 p - a pointer to the digitized data.

 len - the number of bytes of digitized data.

 offset - a pointer to a field that may specify where you are to write the digitized data,

and that is to receive a value indicating where you wrote the data.

 chRefCon - per channel reference constant specified using SGSetChannelRefCon.

 time
- the starting time of the data, in the channelÕs time scale.

 writeType - the type of write operation being performed.

seqGrabWriteAppend - Append new data.

seqGrabWriteReserve - Do not write data. Instead, reserve space for the amount of data

 specified in the len parameter.

seqGrabWriteFill - Write data into the location specified by offset. Used to fill the space

 previously reserved with seqGrabWriteReserve. The Sequence Grabber may

 call the DataProc several times to fill a single reserved location.

 refCon - the reference constant you specified when you assigned your data function to the sequence grabber.

*/

pascal OSErr mySGDataProc(SGChannel c,

 Ptr p,

 long len,

 long *offset,

 long chRefCon,

 TimeValue time,

 short writeType,

 long refCon)

{

#pragma unused(offset,chRefCon,time,writeType)

 CodecFlags

ignore;

ComponentResult err = noErr;

 CGrafPtr

theSavedPort;

 GDHandle
theSavedDevice;

 char

status[64];

 Str255

theString;

 Rect

bounds;

 float

fps;

 /* grab the time scale for use with our fps calculations - but this

 needs to be done only once */

 if (gTimeScale == 0)

 {

 err = SGGetChannelTimeScale([myQDViewObject sgChanVideo], &gTimeScale);

 BailErr(err);

 }

 if([myQDViewObject gworld])

 {

 // decompress a frame into the GWorld - can queue a frame for async decompression when passed in a completion proc

 // once the image is in the GWorld it can be manipulated at will

 err = DecompressSequenceFrameS([myQDViewObject decomSeq],
// sequence ID returned by DecompressSequenceBegin

p,

// pointer to compressed image data

len,

// size of the buffer

0,

// in flags

&ignore,

// out flags

NULL);

// async completion proc

 BailErr(err);

 // ****** IMAGE IS NOW IN THE GWORLD ****** //

 }

 /* compute and display frames-per-second */

 GetGWorld(&theSavedPort, &theSavedDevice);

 SetGWorld([myQDViewObject gworld], NULL);

 TextSize(12);

 TextMode(srcCopy);

 bounds = [myQDViewObject boundsRect];

 MoveTo(bounds.left, bounds.bottom-3);

 fps = (float)((float)gTimeScale / (float)(time - gLastTime));

 sprintf(status, "fps:%5.1f", fps);

 CopyCStringToPascal(status, theString);

 DrawString(theString);

 SetGWorld(theSavedPort, theSavedDevice);

 /* remember current time, so next time this routine is called

 we can compute the frames-per-second */

 gLastTime = time;

 if ([myQDViewObject recording])

 {

// Save GWorld into movie file

[[myQDViewObject myMovie] addGWorldToMedia:[myQDViewObject gworld]];

 }

 /* calling the display method will invoke this NSView's lockFocus, drawRect and unlockFocus methods as necessary.

 Our drawRect method (above) is used to decompress one of a sequence of frames. This method draws the image

 back to the window from the GWorld and could be used as a "preview" */

 [myQDViewObject display];

bail:

return err;

}

/***

*

* FUNCTION: saveQDViewObjectForCallback

* PURPOSE : This routine stores a reference to our MyQuickDrawView object.

* We'll need this so we can call into methods in this class from

* outside the implementation of the class methods (specifically,

* from our SGDataProc C routine above)

*

**/

void saveQDViewObjectForCallback(void *theObject)

{

 myQDViewObject = (MyQuickDrawView *)theObject;

}
C.6 MyVideo.h

//

// FILE: MyVideo.h

// PROJECT: iView

//

// Created by wilson on Tue Aug 10 2004.

//

#import <Cocoa/Cocoa.h>

#import <Quicktime/QuickTime.h>

#import <AppKit/AppKit.h>

#import <Foundation/Foundation.h>

#import <CoreServices/CoreServices.h>

#import <ApplicationServices/ApplicationServices.h>

@interface MyVideo : NSObject {

 Movie gTheMovie;

 short gResRefNum;

 Track gTheTrack;

 Media gTheMedia;

 Rect gTrackFrame;

 // For compression use

 long gMaxCompressedSize;

 Handle gCompressedData;

 Ptr gCompressedDataPtr;

 ImageDescriptionHandle gImageDesc;

}

-(id)init;

-(NSString *)promptMovieFilename;

-(OSErr)createMovie:(Rect)trackFrame gWorld:(GWorldPtr)theGWorld

 filename:(NSString *)myFilename;

-(OSErr)initCompression:(GWorldPtr)theGWorld;

-(void)addGWorldToMedia:(GWorldPtr)theGWorld;

-(void)closeMovie;

-(OSStatus)myMakeFSSpec:(FSSpec *)myFSSpecPtr fromPath:(NSString *)inPath;

-(void)checkError:(OSErr)error message:(NSString *)msg;

@end
C.7 MyVideo.m

//

// MyMovie.m

// Cocoa - SGDataProc

//

// Created by wilson on Tue Aug 10 2004.

// Copyright (c) 2004 __MyCompanyName__. All rights reserved.

//

#import "MyVideo.h"

@implementation MyVideo

#define BailErr(x) {err = x; if(err != noErr) return err;}

///

//

// Constants

//

///

#define kMyCreatorType

FOUR_CHAR_CODE('TVOD')

#define kMyErrorCode

-22222

#define
kVideoTimeScale

600

#define

kNumVideoFrames
70

#define

kPixelDepth

8
/* use 8-bit depth */

#define

kNoOffset

0

#define

kMgrChoose

0

#define

kSyncSample

0

#define

kAddOneVideoSample
1

#define

kSampleDuration
20
/* frame duration = 1/20 sec */

#define

kTrackStart

0

#define

kMediaStart

0

/**

*

* FUNCTION: init

* PURPOSE : initialise this object

*

***/

-(id)init

{

 if (self = [super init])

 {

 gTheMovie = nil;

 gResRefNum = 0;

 }

 return self;

}

/***

* FUNCTION: promptMovieFilename

* PURPOSE : Gets the filename of the movie to be saved

* OUTPUT : Returns the full path of the file in NSString, OR

*
 nil on error

**/

- (NSString *)promptMovieFilename

{

 NSSavePanel *sp;

 int runResult;

 NSString *movieFilename = nil;

 /* create or get the shared instance of NSSavePanel */

 sp = [NSSavePanel savePanel];

 /* display the NSSavePanel */

 runResult = [sp runModalForDirectory:NSHomeDirectory() file:@"file"];

 /* if successful, save file under designated name */

 if (runResult == NSOKButton)

 {

 movieFilename = [sp filename];

 }

 return movieFilename;

}

/***

* FUNCTION: createMovie

* PURPOSE : Creates a movie, a video track and a media

**/

- (OSErr)createMovie:(Rect)trackFrame gWorld:(GWorldPtr)theGWorld

 filename:(NSString *)myFilename

{

 OSErr err = noErr;

 FSSpec mySpec;

 // Get FSSpec representation of the entered filename

 err = [self myMakeFSSpec: &mySpec fromPath: myFilename];

 [self checkError:err message:@"myMakeFSSpec failed"];

 BailErr(err);

 // 1.

 // Create and open the movie file, this call creates an empty movie which

 // references the file, and opens the movie file with write permission

 err = CreateMovieFile(&mySpec,

// FSSpec specifier

 kMyCreatorType,

// file creator type

 smCurrentScript,

 createMovieFileDeleteCurFile |

 createMovieFileDontCreateResFile |

 newMovieActive,

// movie file creation flags

 &gResRefNum,

// file ref num

 &gTheMovie);

// field to receive movie specification

 [self checkError:err message:@"Could not create movie file"];

 BailErr(err);

 // 2.

 // Create the movie track

 gTrackFrame = trackFrame;

 gTheTrack = NewMovieTrack(gTheMovie,

// movie specifier

 FixRatio(gTrackFrame.right, 1),
// width

 FixRatio(gTrackFrame.bottom, 1),
// height

 kNoVolume);

// track volume

 err = GetMoviesError();

 [self checkError:err message:@"NewMovieTrack failed"];

 BailErr(err);

 // 3.

 // Create the media for the track

 gTheMedia = NewTrackMedia(gTheTrack,

// track identifier

 VideoMediaType,

// type of media

 kVideoTimeScale,

// time coordinate system

 nil,

// data reference, use the file associated with the movie

 0);

// data reference type

 err = GetMoviesError();

 [self checkError:err message:@"NewTrackMedia failed"];

 BailErr(err);

 // 4.

 // Establish a media-editing session

 err = BeginMediaEdits(gTheMedia);

 [self checkError:err message:@"BeginMediaEdits failed"];

 BailErr(err);

 // 5.

 // Set up the environment for movie compression

 err = [self initCompression:theGWorld];

 [self checkError:err message:@"initCompression failed"];

 return err;

}

/***

* FUNCTION: closeMovie

* PURPOSE : End media editing session and close the movie file

***/

-(void)closeMovie

{

 OSErr err = noErr;

 short resId = movieInDataForkResID;

 // 1. Clean up resources used by compression

 // Dealocate our previously alocated handles

 if (gImageDesc)

 {

 DisposeHandle ((Handle)gImageDesc);

 }

 if (gCompressedData)

 {

 DisposeHandle (gCompressedData);

 }

 if (gResRefNum)

 {

 // 2. End media editing session

 err = EndMediaEdits(gTheMedia);

 [self checkError:err message:@"EndMediaEdits failed"];

 // 3. Add Media into track and close movie file

 err = InsertMediaIntoTrack(gTheTrack,

 kTrackStart,

 kMediaStart,

 GetMediaDuration(gTheMedia),

 fixed1);

 [self checkError:err message:@"InsertMediaIntoTrack failed"];

 err = AddMovieResource(gTheMovie,

 gResRefNum,

 &resId,

 nil);

 [self checkError:err message:@"AddMovieResource failed"];

 // Close the movie file

 err = CloseMovieFile(gResRefNum);

 [self checkError:err message:@"CloseMovieFile failed"];

 // Free any memory being used by a movie, including the

 // memory used by the movie's tracks and media structures.

 DisposeMovie(gTheMovie);

 err = GetMoviesError();

 [self checkError:err message:@"DisposeMovie() failed"];

 }

}

/**

* FUNCTION: initCompression

* PURPOSE : Initialises and sets up the environment for movie compression

***/

-(OSErr)initCompression:(GWorldPtr)theGWorld

{

 OSErr err = noErr;

 // Calculate the max size after compression

 err = GetMaxCompressionSize(GetPortPixMap(theGWorld),
// Handle to the source image

&gTrackFrame,

// bounds

kMgrChoose,

// Let ICM choose color depth

codecNormalQuality,

// desired image quality

kJPEGCodecType,

// compressor type

(CompressorComponent)anyCodec,
// compressor identifier

&gMaxCompressedSize);

// returned size

 [self checkError:err message:@"GetMaxCompression failed"];

 // Create a new handle of the right size for our compressed image data

 gCompressedData = NewHandle(gMaxCompressedSize);

 err = MemError();

 [self checkError:err message:@"NewHandle error"];

 MoveHHi(gCompressedData);

 HLock(gCompressedData);

 gCompressedDataPtr = *gCompressedData;

 // Create a handle for the Image Description Structure

 gImageDesc = (ImageDescriptionHandle)NewHandle(4);

 err = MemError();

 [self checkError:err message:@"NewHandle error"];

 return err;

}

/**

* FUNCTION: endCompression

* PURPOSE : Frees resources used by compression

***/

-(void)endCompression

{

 // Dealocate our previously alocated handles

 if (gImageDesc)

 {

 DisposeHandle ((Handle)gImageDesc);

 }

 if (gCompressedData)

 {

 DisposeHandle (gCompressedData);

 }

}

/**

* FUNCTION: addGWorldToMedia

* PURPOSE : Compresses the image in 'theGWorld' and adds it to the media

***/

-(void)addGWorldToMedia:(GWorldPtr)theGWorld

{

 OSErr err = noErr;

 // Use the ICM to compress the image

 err = CompressImage(GetPortPixMap(theGWorld), /* source image to compress */

&gTrackFrame,

 /* bounds */

codecNormalQuality,
 /* desired image quality */

kJPEGCodecType,
 /* compressor identifier */

gImageDesc,

 /* handle to Image Description Structure; will be resized by call */

gCompressedDataPtr);
 /* pointer to a location to recieve the compressed image data */

 [self checkError:err message:@"CompressImage error"];

 // Add sample data and a description to a media

 err = AddMediaSample(gTheMedia,

 /* media specifier */

gCompressedData,
 /* handle to sample data - dataIn */

kNoOffset,

 /* specifies offset into data reffered to by dataIn handle */

(**gImageDesc).dataSize, /* number of bytes of sample data to be added */

kSampleDuration,
 /* frame duration = 1/10 sec */

(SampleDescriptionHandle)gImageDesc,
/* sample description handle */

kAddOneVideoSample,
/* number of samples */

kSyncSample,

/* control flag indicating self-contained samples */

nil);

/* returns a time value where sample was insterted */

 [self checkError:err message:@"AddMediaSample error"];

}

/***

*

* FUNCTION: myMakeFSSpec

* (http://developer.apple.com/documentation/Cocoa/Conceptual/

*
 CarbonCocoaDoc/Articles/CarbonInCocoa.html#//apple_ref/doc/

*
 uid/20002403/CJBHBAII)

*

* PURPOSE: Converts filename in (NSString *) into FSSpec structure

*

***/

- (OSStatus) myMakeFSSpec:(FSSpec *) myFSSpecPtr fromPath:(NSString *)inPath

{

 FSRef myFSRef;

 OSStatus status = noErr;

 NSFileManager *fileManager;

 BOOL result = YES;

 fileManager = [NSFileManager defaultManager];

 if ([fileManager fileExistsAtPath:inPath] == NO)

 {

 // Create an empty if the file does not exist

 result = [fileManager createFileAtPath:inPath contents:nil attributes:nil];

 }

 if (result)

 {

 status = FSPathMakeRef ([inPath fileSystemRepresentation],

 &myFSRef,

 NULL);

 if (status == noErr)

 status = FSGetCatalogInfo (&myFSRef,

 kFSCatInfoNone,

 NULL,

 NULL,

 myFSSpecPtr,

 NULL);

 }

 return status;

}

/***

*

* FUNCTION: checkError

* PURPOSE : Reports errors, if any

*

**/

-(void) checkError:(OSErr)error message:(NSString *)msg

{

 if (error != noErr)

 {

 NSLog(@"Error code = %d", error);

 NSRunAlertPanel(@"Error", msg , @"OK", nil, nil);

 }

}

@end
C.8 MyMovieText.h

//

// MyMovieText.h

// Project: iView

//

// Created by wilson on Fri Aug 27 2004.

//

#import <Cocoa/Cocoa.h>

#import <Quicktime/QuickTime.h>

#import <CoreServices/CoreServices.h>

#import <ApplicationServices/ApplicationServices.h>

#import <AppKit/AppKit.h>

#import <Foundation/Foundation.h>

// My own header files

#import "MyVideo.h"

#import "UserText.h"

@interface MyMovieText : NSObject {

}

-(OSErr)myOpenMovie:(Movie *)theMovie filename:(NSString *)movieFilename refNum:(short *)theRefNum;

-(OSErr)myCloseMovie:(Movie *)theMovie refNum:(short)theRefNum;

-(OSErr)myCreateVideoTrack:(Movie)theMovie caption:(NSMutableArray *)theCaption;

-(OSErr)addCaptionToMovie:(NSMutableArray *)theCaption filename:(NSString *)movieFilename;

-(OSErr)myAddTextSample:(Movie *)theMovie media:(Media *)theMedia bounds:(Rect *)theBounds

 text:(NSString *)theText duration:(TimeScale)theDuration;

-(void)QTText_CopyCStringToPascal:(const char *)theSrc dest:(Str255)theDst;

-(void) checkError:(OSErr)error message:(NSString *)msg;

@end

C.9 MyMovieText.m

//

// FILE: MyMovieText.m

// PROJECT: iView

//

// Created by wilson on Fri Aug 27 2004.

//

#import "MyMovieText.h"

@implementation MyMovieText

#define BailErr(x) {err = x; if(err != noErr) return err;}

#define kMyErrorCode

-22222

#define kCaptionDuration
1

// duration of caption in seconds

#define kInvalidFileRefNum
-1

// an invalid file reference number

#define kGetFirstMovie

0

#define kGetFirstTrack

1

#define kTextTrackHeight
20

// default height for text track (in pixels)

#define kTrackOffset

0

#define kMediaOffset

0

/***

*

* FUNCTION: addCaptionToMovie

* PURPOSE : Calls approriate functions to

* 1. Open a movie

* 2. Create a text track for adding captions

* 3. Close the movie when done

*

**/

-(OSErr)addCaptionToMovie:(NSMutableArray *)theCaption filename:(NSString *)movieFilename

{

 Movie theMovie;

 short myRefNum = kInvalidFileRefNum;

 OSErr err;

 if(!movieFilename)

 NSLog(@"movieFilename is nil");

 // Open the movie specified by 'movieFilename'

 err = [self myOpenMovie:&theMovie filename:movieFilename refNum:&myRefNum];

 [self checkError:err message:@"myOpenMovie failed"];

 if (err == noErr)

 {

 // Create a text track for captions

 err = [self myCreateVideoTrack:theMovie caption:theCaption];

 [self checkError:err message:@"myCreateVideoTrack failed"];

 }

 // Done with adding captions, close the movie

 err = [self myCloseMovie:&theMovie refNum:myRefNum];

 [self checkError:err message:@"myCloseMovie failed"];

 return err;

}

/***

*

* FUNCTION: myOpenMovie

* PURPOSE : Opens a movie and handles the errors accordingly

*

**/

-(OSErr)myOpenMovie:(Movie *)theMovie filename:(NSString *)movieFilename refNum:(short *)theRefNum

{

 MyVideo *myVideo;

 FSSpec myFSSpec;

 OSErr err;

 short myResID = movieInDataForkResID;

 myVideo = [[MyVideo alloc] init];

 if (!myVideo)

 {

 NSRunAlertPanel(@"Error", @"MyVideo not created", @"OK", nil, nil);

 BailErr(kMyErrorCode);

 }

 // Convert the filename from an NSString to a FSSpec structure

 // because this structure is required by OpenMovieFile

 err = [myVideo myMakeFSSpec:&myFSSpec fromPath:movieFilename];

 [self checkError:err message:@"myMakeFSSpec failed"];

 BailErr(err);

 // Open file with exclusive read & write permission

 err = OpenMovieFile(&myFSSpec, theRefNum, fsRdWrPerm);

 [self checkError:err message:@"OpenMovieFile failed"];

 BailErr(err);

 // Create a new movie from the movie file we just opened

 err = NewMovieFromFile(theMovie, *theRefNum, &myResID, NULL, newMovieActive, NULL);

 [self checkError:err message:@"NewMovieFromFile failed"];

 BailErr(err);

 return err;

}

/***

*

* FUNCTION: myCloseMovie

* PURPOSE : Updates and closes the movie, frees any allocated resources

*

**/

-(OSErr)myCloseMovie:(Movie *)theMovie refNum:(short)theRefNum

{

 short resId = movieInDataForkResID;

 OSErr err = noErr;

 if (theRefNum != kInvalidFileRefNum)

 {

 // We've added captions to the movie that we just opened

 // so update it or the captions won't appear in the movie

 err = UpdateMovieResource(*theMovie, theRefNum, resId, nil);

 [self checkError:err message:@"AddMovieResource failed"];

 // Close the movie file

 err = CloseMovieFile(theRefNum);

 [self checkError:err message:@"CloseMovieFile failed"];

 // Free resources held by the movie

 // If DisposeMovie() is not called, the application may cause error

 // when trying to overwrite an existing file

 DisposeMovie(*theMovie);

 err = GetMoviesError();

 [self checkError:err message:@"DisposeMovie failed"];

 }

 return err;

}

/***

*

* FUNCTION: myCreateVideoTrack

* PURPOSE : Creates a text track and adds text samples to a movie

* INPUT : 1. theMovie

- The movie for which the text track is created

*

2. theCaption - Contains the text samples to be added to the movie

* NOTE : This function is based on qttext, which can be found at

*

http://developer.apple.com/samplecode/qttext/qttext.html

*

**/

-(OSErr)myCreateVideoTrack:(Movie)theMovie caption:(NSMutableArray *)theCaption

{

 OSErr

err = noErr;

 Track

myVideoTrack = NULL;

 Track

myTextTrack = NULL;

 Media

myMedia = NULL;

 Fixed

myWidth;

 Fixed

myHeight;

 TimeScale

myTimeScale;

 MatrixRecord
myMatrix;

 // Get the first track of the type Video

 myVideoTrack = GetMovieIndTrackType(theMovie,

kGetFirstTrack,

// Get the first track

VideoMediaType,

// of the type VIDEO

movieTrackMediaType);
// look for media type only

 if (myVideoTrack == NULL)

goto bail;

 GetTrackDimensions(myVideoTrack, &myWidth, &myHeight);

 myTimeScale = GetMediaTimeScale(GetTrackMedia(myVideoTrack));

 /***

 *

 * Create the text track and media

 *

 **/

 myTextTrack = NewMovieTrack(theMovie, myWidth, FixRatio(kTextTrackHeight, 1), kNoVolume);

 if (myTextTrack == NULL)

goto bail;

 myMedia = NewTrackMedia(myTextTrack, TextMediaType, myTimeScale, NULL, 0);

 if (myMedia == NULL)

goto bail;

 // Figure out the text track geometry

 GetTrackMatrix(myTextTrack, &myMatrix);

 TranslateMatrix(&myMatrix, 0, myHeight);

 SetTrackMatrix(myTextTrack, &myMatrix);

 SetTrackEnabled(myTextTrack, TRUE);

 // We're gonna start editing the media now

 err = BeginMediaEdits(myMedia);

 if (err == noErr)

 {

Rect

myBounds;

myBounds.top = 0;

myBounds.left = 0;

myBounds.right = Fix2Long(myWidth);

myBounds.bottom = Fix2Long(myHeight);

unsigned arrayLength = 0;

unsigned i;

arrayLength = [theCaption count];

for (i = 0; i < arrayLength; i++)

{

TimeValue

myTextSampleDuration;

NSTimeInterval
pauseDuration = 0.0;

UserText *textData = (UserText *)[theCaption objectAtIndex:i];

pauseDuration = [textData duration] - (NSTimeInterval)kCaptionDuration;

 // If there's no text from user,

 // we add empty strings to the caption

if (pauseDuration > 0)

{

 // Calculate the sample duration for the caption

myTextSampleDuration = (TimeValue)(pauseDuration * (NSTimeInterval)myTimeScale);

// Add a text containing only spaces to create the effect of pauses

[self myAddTextSample:&theMovie media:&myMedia bounds:&myBounds

 text:@" " duration:myTextSampleDuration];

}

myTextSampleDuration = kCaptionDuration * myTimeScale;

// Add user-typed text into movie

[self myAddTextSample:&theMovie media:&myMedia bounds:&myBounds

text:[textData text] duration:myTextSampleDuration];

}

 }

// We're done with media editing

 err = EndMediaEdits(myMedia);

 [self checkError:err message:@"EndMediaEdits failed"];

 if (err != noErr)

goto bail;

 // Insert text media into the text track

 err = InsertMediaIntoTrack(myTextTrack,

 kTrackOffset,

 kMediaOffset,

 GetMediaDuration(myMedia),

 fixed1);

 [self checkError:err message:@"InsertMediaIntoTrack failed"];

 if (err != noErr)

goto bail;

bail:

return err;

}

/***

*

* FUNCTION: myAddTextSample

* PURPOSE : Adds a text sample to the media

*

**/

-(OSErr)myAddTextSample:(Movie *)theMovie media:(Media *)theMedia bounds:(Rect *)theBounds

 text:(NSString *)theText duration:(TimeScale)theDuration

{

MediaHandler
myHandler = NULL;

TimeRecord

myTimeRecord;

TimeScale

mediaTimeScale;

Str255

myPascalStr;

TimeValue

myTextSampleDuration;

OSErr

err = noErr;

 myHandler = GetMediaHandler(*theMedia);

 if (myHandler == NULL)

{

err = kMyErrorCode;

goto bail;

}

 // Calculate the sample duration for the text using the media's timescale

mediaTimeScale = GetMediaTimeScale(*theMedia);

myTimeRecord.value.lo = theDuration;

myTimeRecord.value.hi = 0;

myTimeRecord.scale = GetMovieTimeScale(*theMovie);

ConvertTimeScale(&myTimeRecord, mediaTimeScale);

myTextSampleDuration = myTimeRecord.value.lo;

 // Convert a CString to a Pascal string

[self QTText_CopyCStringToPascal:[theText UTF8String] dest:myPascalStr];

 // Add the text sample into the media

err = TextMediaAddTextSample(myHandler,

 (Ptr)(&myPascalStr[1]),

 myPascalStr[0],
// first element of a Pascal str specifies its length

 0,

 0,

 0,

 NULL,

 NULL,

 teCenter,

 theBounds,

 dfClipToTextBox,

 0,

 0,

 0,

 NULL,

 myTextSampleDuration,

 NULL);

[self checkError:err message:@"TextMediaAddTextSample failed"];

bail:

return err;

}

//////////

//

// FUNCTION: QTText_CopyCStringToPascal

// PURPOSE : Converts the source C string to a destination Pascal

// string as it's copied.

//

// NOTE : The destination string will be truncated to fit into

// a Str255 if necessary. If the C string pointer is NULL,

// the Pascal string's length is set to zero.

//

// REFERENCE: This routine is borrowed from CGlue.c, by Nick Kledzik.

//

//////////

-(void)QTText_CopyCStringToPascal:(const char *)theSrc dest:(Str255)theDst

{

 short
myLength = 0;

 // handle case of overlapping strings

 if ((void *)theSrc == (void *)theDst)

 {

 unsigned char

*myCurDst = &theDst[1];

 unsigned char

myChar;

 myChar = *(const unsigned char *)theSrc++;

 while (myChar != '\0')

 {

 unsigned char
myNextChar;

 // use myNextChar so we don't overwrite what we are about to read

 myNextChar = *(const unsigned char *)theSrc++;

 *myCurDst++ = myChar;

 myChar = myNextChar;

 if (++myLength >= 255)

 break;

 }

 }

 else if (theSrc != NULL)

 {

 unsigned char

*myCurDst = &theDst[1];

 short

myOverflow = 255;

// count down, so test it loop is faster

 register char

myTemp;

 // we can't do the K&R C thing of â€œwhile (*s++ = *t++)â€� because it will copy the trailing zero,

 // which might overrun the Pascal buffer; instead, we use a temp variable

 while ((myTemp = *theSrc++) != 0)

 {

 *(char *)myCurDst++ = myTemp;

 if (--myOverflow <= 0)

 break;

 }

 myLength = 255 - myOverflow;

 }

 // set the length of the destination Pascal string

 theDst[0] = myLength;

}

/***

*

* FUNCTION: checkError

* PURPOSE : Reports errors, if any

*

**/

-(void) checkError:(OSErr)error message:(NSString *)msg

{

 if (error != noErr)

 {

 NSLog(@"Error code = %d", error);

 NSRunAlertPanel(@"Error", msg , @"OK", nil, nil);

 }

}

@end

C.10 UserText.h

//

// FILE: UserText.h

// PROJECT: iView

//

// Created by wsyong on Thu Sep 02 2004.

//

#import <Foundation/Foundation.h>

@interface UserText : NSObject {

 NSTimeInterval _duration;

 NSString *_text;

}

-(void)setDuration:(NSTimeInterval)newDuration;

-(NSTimeInterval)duration;

-(void)setText:(NSString *)newText;

-(NSString *)text;

@end

C.11 UserText.m

//

// FILE: UserText.m

// PROJECT: iView

//

// Created by wsyong on Thu Sep 02 2004.

//

#import "UserText.h"

@implementation UserText

-(void)setDuration:(NSTimeInterval)newDuration

{

// NSTimeInterval is just a double

_duration = newDuration;

}

-(NSTimeInterval)duration

{

 return _duration;

}

-(void)setText:(NSString *)newText

{

if (_text != newText)

{

[_text release];

_text = [newText retain];

}

}

-(NSString *)text

{

 return [[_text retain] autorelease];

}

-(void)dealloc

{

[_text release];

[super dealloc];

}

@end

Figure � SEQ Figure * ARABIC �3� iSight camera

Figure � SEQ Figure * ARABIC �1� A conventional CCTV

INDEXING TERMS

TECHNICAL WORK

REPORT PRESENTATION

CO-EXAMINER

EXAMINER

POOR

Department Of Electrical And Computer Engineering

Visual Aids, classroom aids, vision impaired, Mac OS X�
�

This thesis outlines the design, development and testing of iView, a software-based classroom aid for the visually impaired. The software is targeted for the Macintosh operating system, Mac OS X. Included is a review of existing aids that are available for people with low vision and some of the accessibility options offered by both Apple and Windows operating systems. iView is software that is specifically designed for use by visually impaired students in a classroom situation. iView uses the iSight camera for previewing and video recording. It is also capable of captioning (taking notes) and real time zooming.

Bachelor of Engineering (Honours)

Electrical

Iain Murray

4th November 2004

Wei Sheng

� EMBED Word.Document.8 \s ���

Department Of Electrical And Computer Engineering

Yong

iView – A classroom aid for the visually impaired

Department Of Electrical And Computer Engineering

AVERAGE

GOOD

ABSTRACT

Figure � SEQ Figure * ARABIC �2� A portable CCTV

Figure � SEQ Figure * ARABIC �4� iSight camera mounted on a laptop

OPTION

DEGREE

SUPERVISOR

DATE

AUTHOR:

FAMILY NAME:

GIVEN NAME:

TITLE:

Overlayed text

Application

Control Flow

Digital Audio

Equipment

Video Digitiser

Equipment

Sound Input

Device

Video Digitiser

Component

Sound Channel

Component

Video Channel

Component

Sequence Grabber Component

Data Flow

Get the value of the current pixel

If value < threshold

Yes

Set pixel value to black

Set pixel value to white

No

[x y 1]

 a b u

 c d v

 tx ty w

X

=

[x’ y’ 1]

 1 0 0

 0 1 0

 tx ty 1

 2 0 0

 0 2 0

 0 0 1

Capture

Display

Stop Button

Capture

Display

Overlay text

Pause Button

Record

Overlay text

Display

Display

Capture

Record Button

Record

Caption text box

Overlay text

Display

Add caption

Capture

Zoom buttons

Caption

Overlayed text

Record

Overlay text

Display

Add caption

Capture

Zoom

PAGE

_1161015685.doc
List of Figures

Page

Figure 1 A conventional CCTV
9

Figure 2 A portable CCTV
9

Figure 3 iSight camera
10

Figure 4 iSight camera mounted on a laptop
10

16Figure 5 Mac OS X as layers of system software

20Figure 6 Relationship among a QuickTime application and sequence grabber components

22Figure 7 Flowchart for implementing polarity feature

28Figure 8 Structure of iView at preview phase

29Figure 9 Screenshot of iView at graphic editing stage

30Figure 10 Structure of iView at graphic editing stage

32Figure 11 Screenshot of iView at record phase

33Figure 12 Structure of iView at record phase

35Figure 13 Screenshot of iView at captioning phase

36Figure 14 Structure of iView at captioning phase

37Figure 15 Comparison of caption and overlayed text in a zoomed-in image

39Figure 16 Screenshot of iView at zoom phase (4x zoom)

40Figure 17 Structure of iView at Zooming phase

46Figure 18 Gantt chart for project plan

