[image: image1.jpg]C u r t i n Project Documentation Sheet

(UNIVERSITY OF TECHNOLOGY)

A
iy, &

Colour Sensor for the Blind

By

Chee-Yiau Vincent HAU

A Thesis Submitted for the Degree of:

Bachelor of Engineering

(Electronic and Communications Engineering)

 [image: image37.wmf]

[image: image30.png]-
C u I‘ t 1 I) School of Electrical
and Computer Engineering

[image: image31.wmf]

[image: image32.png]-
C u I‘ t 1 I) School of Electrical
and Computer Engineering

[image: image33.png]1/ N\

eow2|

-
200 500 600 700 300
Wavelength nm

[image: image34.png]Yellow

Red
Green

Magenta Cyan

Blue

[image: image35.png]Reflects
YELLOW

Absorbs BLUE

[image: image36.png]AD Converter
ON

Convert
Analogue INPUT

to
DIGITAL

AD Converter

OFF

- set the START flag to

- A-D convert input signal
and store in a register.

- set the START flag to "

SYNOPSIS

A prototype of a colour sensor device which has the capabilities to recognize and speak out at least 64 different colours has been designed. The design uses a Red-Green-Blue LED to illuminate a surface. The level of reflected light from each of these primary colours is measured with a photodiode. The output current of the photodiode is amplified to a suitable range using a current-voltage operational amplifier. The operation of the system is controlled by a Mitsubishi M16C/62 microcontroller and the determined colour is spoken through a ISD2548 chipcorder speech chip. This colour sensor device is suitable to vision-impaired people as it allows them to perform basic colour recognition tasks.

7 Tremont Gardens

Canning Vale, Western Australia 6155

AUSTRALIA

10th November 2004

Professor Syed Islam

Head of Department

Department of Electrical and Computer Engineering

Curtin University of Technology

Kent Street

Bentley, Western Australia 6102

AUSTRALIA

Dear Sir,

I hereby offer this thesis titled “Colour Sensor for the Blind” as a partial satisfaction of the requirements of the degree, Bachelor of Engineering in Electronic and Communications Engineering. I declare that this thesis is entirely my own work except where due reference are made.

Yours Sincerely,

Chee-Yiau Vincent HAU

ACKNOWLEDGEMENTS

Firstly, to my supervisor Iain Murray, thanks for your guidance and patience throughout the year. This project would not have progressed without your aid.

Secondly, to Chris, for his knowledge on the Mitsubishi M16C/62 microcontroller and supplying the compatible software required.

Thanks to the Department of Electrical and Computer Engineering and its technical staff for providing the necessary resources for this project.

NOMENCLATURE

VF

Forward Voltage

IF

Forward Current

VS

Supply Voltage

R

Resistance

Vp

Photodiode Voltage

Ip

Photodiode Current

RGB

Red-Green-Blue

LED

Light Emitting Diode

FET

Field Effect Transistor

VO or Vout

Output Voltage

Vin

Input Voltage

A/D

Analogue to Digital

I/O

Input/Ouput

Vref

Reference Voltage

M16C/62

Mitsubishi M16C/62 Microcontroller

TABLE OF CONTENTS
11.
INTRODUCTION

11.1.
RATIONALE

21.2.
PROJECT OBJECTIVES

31.3.
THESIS OUTLINE

52.
Aspects of colour

52.1.
COLOUR

62.2.
COLOUR ADDITION

72.3.
COLOUR SUBTRACTION

82.4.
COLOUR RATIO

92.5.
COLOUR SENSING

102.6.
PREVIOUS CIRCUIT DESIGN

102.6.1.
INTRODUCTION

102.6.2.
LED SWITCHING CIRCUIT

122.6.3.
OPERATIONAL AMPLIFIER CIRCUIT

133.
HOUSING DESIGN

133.1.
INTRODUCTION

133.2.
CURRENT DESIGN

133.3.
ALTERNATIVE DESIGN ONE

143.4.
ALTERNATIVE DESIGN TWO

143.5.
DESIGN COMPARISON

153.6.
HOUSING MODIFICATION

164.
LIGHT SENSOR

164.1.
INTRODUCTION

164.2.
THE PHOTODIODE

194.3.
THE BPW21 PHOTODIODE

225.
Light source

225.1.
Light source selection

225.2.
THE RGB LED

266.
RGB LED Operation

266.1.
introduction

276.2.
Transistor characteristics

286.3.
RGB LED SWITching results

286.4.
RGB led switching conclusion

296.5.
Rgb led switch control

307.
Signal conditioning

307.1.
introduction

317.2.
Previous work design

327.3.
Previous Design Flaws

337.4.
Signal Conditioning re-design

358.
Microcontroller

358.1.
Introduction

358.2.
The M16c/62 microcontroller

368.3.
power

368.4.
Analogue to digital converter (A-D)

368.4.1.
A-d overview

378.4.2.
A-D converter modes

388.4.3.
One-shot mode

408.5.
I/O ports

429.
Speech chip

429.1.
introduction

429.2.
Isd2548 chipcorder

449.3.
Microcontroller Interface

449.3.1.
Introduction

459.3.2.
Direct Address method

4810.
Software

4810.1.
introduction

4810.2.
Development environment

4910.3.
Software Behaviour

4910.4.
Development process and issues

5110.5.
I/O port addressing

5110.6.
Colour Derivation

5210.7.
Key functions overview

5411.
conclusion

5512.
Bibliography

5613.
Appendix A – Project plan

5714.
Appendix B – Modified Sect30.inc Header File

6215.
Appendix C – Sensor Program Source Code

LIST OF FIGURES

6Figure 2.1: Primary Colours Combination

7Figure 2.2: Colour Subtraction

15Figure 3.1: Resized Housing

17Figure 4.1: Response of Photodiode

18Figure 4.2: Relative Spectral Sensitivity

21Figure 4.3: Photodiode Output Voltage vs. Intensity

23Figure 5.1: Specifications of RGB LED

23Figure 5.2: Dimensions of RGB LED

23Figure 5.3: Pin Allocation

24Figure 5.4: Pin Configuration

26Figure 6.1: LED Switch Circuit

31Figure 7.1: Previous Op-Amp

31Figure 7.2: TLC251 Pin Configuration

32Figure 7.3: Power Supply Regulators

33Figure 7.4: 4-Stage Op-Amp

36Figure 8.1: M16C/62 Starter Kit

37Figure 8.2: Pins Related to A/D Convertor

39Figure 8.3: Flow Diagram of A-D Converter

40Figure 8.4: A-D Control Register 0

40Figure 8.5: A-D Control Register 1

41Figure 8.6: M16C/62 I/O Ports

41Figure 8.7: Direction Registers of I/O Ports

43Figure 9.1: Pin Configuration of ISD2548

44Figure 9.2: Operational Modes of ISD2548

45Figure 9.3: Message Addressing Scheme

47Figure 9.4: Direct Addressing Circuit

49Figure 10.1: Software Behavious Flowchart

50Figure 10.2: Flow Chart of Sensor Program

52Figure 10.3: Colour Decision Tree

LIST OF TABLES

5Table 2.1: Wavelengths of Distinct Colours

8Table 2.2: RGB Ratios

20Table 4.1: Characteristics of BPW 21

25Table 5.1: RGB LED Resistor Table

28Table 6.1: Derived RB Values from Collector Resistance and Voltage

29Table 6.2: Finalized Base Resistances

38Table 8.1: Specifications of One-shot mode

46Table 9.1: Recorded Messages

48Table 10.1 Software Tools

51Table 10.2: Pin Application

53Table 10.3: LED Control Comands

1. INTRODUCTION

1.1. RATIONALE

The world is full of colour. Colour is what gives objects their physique and beauty. Such beauty is utilised by peacocks when they display their colourful tails to attract their mates. Colour has many applications as it can be used to express moods and emotions or even a method of communication. Yellow coloured signs in factories are used to warn us of danger and on a spiritual level, the colour blue can symbolize peace. For sight-able people, basic colour related tasks such as colour coordination of clothing are taken for granted. For the vision impaired, these tasks can be difficult and frustrating. Colour sensing device would be of much aid for their independence.

By having a colour sensor device, the problem may be solved but cost and reliability is an issue. In today’s market, these devices are quite expensive and range around AUD$500. This is unaffordable to many and so the possession of such a device is considered a luxury. In the case of reliability, the device must accurately identify each colour on different types of surfaces. With inconsistent readings and inaccurate identification, the device would be useless.

This thesis examines different designs of colour sensing devices to achieve a low cost and reliable prototype.

1.2. PROJECT OBJECTIVES

This project is to design a prototype of a colour sensor device, which can recognize at least 64 different colours and speak the recognized colour. The device should be suitable for use by vision-impaired people to allow them to perform basic colour recognition tasks. The development process followed is as shown below:

· The previous design was examined for any flaws and possible modifications that would result in a more reliable and low cost prototype was noted down.

· The previous source code was examined for any flaws and possible modifications that could be made were noted down.

· An understanding and knowledge of the Mitsubishi M16C/62 microcontroller was achieved through online tutorials, manuals and sample programs.

· An understanding and knowledge of the ISD2548 chipcorder speech chip was acquired through manuals.

· Alternative designs were explored and compared with to see which one was closest to achieving the desired goal.

· A small, cost effective and easy to use prototype which can accurately recognize 64 colours was designed.

1.3. THESIS OUTLINE

Chapter 2: Background – The necessary aspects of colour are explored in this chapter to gain adequate knowledge to proceed.

Chapter 3: Housing design – This chapter analyses different types of design and compares to find the most suitable design to achieve the desired goal

Chapter 4: Light sensor – This chapter discusses the different types of light sensor and gives reasoning for the chosen.

Chapter 5: Light source – Different type of light sources are analysed in this chapter and reasoning are given for the chosen.

Chapter 6: RGB LED Control – This chapter discuss how the RGB LED are sequentially turned on and off. The configuration to achieve this is discussed.

Chapter 7: Signal Condition - Discusses the design to deal with the small output current produced from the photodiode.

Chapter 8: Mitsubishi M16c/62 Microcontroller – Discusses the operations of the microcontroller and its characteristics.

Chapter 9: Speech Chip – This chapter discusses the characteristics of the speech chip and the possible modes it can operate in.

Chapter 10: Software – Discusses what programming language is used and how the software is incorporated with the microcontroller.

Chapter 11: Conclusion – Future considerations and achievements are discussed in this chapter.

2. Aspects of colour

2.1. COLOUR

Colour is the sensation resulting from the stimulation of the retina of the eye by light waves of particular wavelengths. These wavelengths are of the visible spectrum. Multiple wavelengths are perceived and combined to distinguish a colour. The distinct colours of the spectrum can be tabulated as below:

	COLOUR
	WAVELENGTH (nanometers)

	Violet
	400-430

	Indigo
	430-450

	Blue
	450-500

	Green
	500-570

	Yellow
	570-590

	Orange
	590-610

	Red
	610-700

Table 2.1: Wavelengths of Distinct Colours
2.2. COLOUR ADDITION

Colour addition is as the name states. Colours are added or combined together to form other colours. White light is an example of this. The combination of the seven distinct colours, red, orange, yellow, green, blue, indigo and violet, forms the colour white. Combining three different wavelengths such as red, green and blue (RGB) can also form white light on the condition that the three different wavelengths must be widely spread on the visible spectrum. The three colours are called primary colours or an additive set. Below shows how these primary colours can be combined to form other colours.

Figure 2.1: Primary Colours Combination
Some applications of colour addition are in colour televisions, colour monitors and on-stage lighting at theatres. The technique of mixing and combining colours are to give desired effect or appearance.

2.3. COLOUR SUBTRACTION

As colour can be added, it can also be subtracted to form other colours. Colour subtraction is a result of pigments on surfaces. These pigments are chemicals which have the ability to absorb one or more frequencies. Below shows the result of a surface which absorbs blue light when illuminated by white light:

Figure 2.2: Colour Subtraction

Applications of where colour subtraction is used are in paints. From the other above figure it is logical that yellow paints absorb blue light. Other examples are magenta and cyan paints absorbing green and red lights respectively. When combining yellow, magenta and cyan, the colour black is produced. This is known as a subtractive set.

2.4. COLOUR RATIO

A particular colour can be represented as one or more frequencies. This can be shown from the methods of colour addition or colour subtraction. As there are many shades of a colour, there are also a number of colour combinations possible. A light red colour would represent a different frequency and intensity to that of the colour red. When considering a particular colour, it can be treated as a ratio of the primary colours, red green and blue. Some generalized RGB ratios can be tabulated as below:

	
	RGB RATIOS

	Colour
	R
	G
	B

	Black
	0
	0
	0

	Grey
	0.5
	0.5
	0.5

	White
	1
	1
	1

	Red
	1
	0
	0

	Yellow
	1
	1
	0

	Green
	0
	1
	0

	Cyan
	0
	1
	1

	Blue
	0
	0
	1

	Magenta
	1
	0
	1

Table 2.2: RGB Ratios
2.5. COLOUR SENSING

A particular colour can be represented as combination of other colours. The seven distinct colours of the visible spectrum, red, orange, yellow, green, blue, indigo and violet can represent the colour white. As it made of all the colours of the visible spectrum, it is a good reference. Due to this fact, there are two methods of detecting colour of a surface. First method is to illuminate the surface with white light and measure the reflected light intensity passing through a variety of coloured filters. These coloured filters may prove to be a negative aspect as the sensor will receive a weaker intensity than with no filters. A higher intensity of white light will have to be used resulting in a less power efficient device.

The colour white can also be represented by the three primary colours or additive set. The second method of colour sensing utilises three light sources, the primary colours, and one sensor. Each colour takes turn in illuminating the surface and the reflected light intensity is measured. Using light emitting diodes (LED) as the light sources is advantageous as the actual wavelengths of the light sources are known.

With light intensity measurements take from either method, these measurements are compared with a pre-determined table to conclude the resulting colour of the surface. This pre-determined table is produced from a number of testing.

2.6. PREVIOUS CIRCUIT DESIGN

2.6.1. INTRODUCTION

This section details the outcomes of the previous design attempt of the colour sensor for the blind. A RGB LED and a photodiode were used in the 2003’s colour sensor design to determine the colour of the tested surface. A chipcorder speech chip was chosen to speak out the determined colour.

2.6.2. LED SWITCHING CIRCUIT

A RGB LED illuminated the tested surface in sequence of red, green and blue light.

The switching circuit is as shown below:

[image: image2.wmf]

Figure 2.3: LED Switching Circuit

From the above it can be seen that NPN transistors were used to perform the switching. Two 5 V power supplies were required for this circuit to give a ‘LIVE’ and ‘ACTIVE’ signal. This was due to blue and green LED segments sharing a common cathode. As red and green LEDs did not share a common cathode, one power supply sourced power to the red and green LEDs while the other sourced the blue LED. LED control logic is as shown below:

	LR/G
	LB
	AR
	AG
	AB
	

	1
	0
	1
	0
	0
	Red LED

	1
	0
	0
	1
	0
	Green LED

	0
	1
	0
	0
	1
	Blue LED

Table 2.3: LED Control Logic
The following is a table of the derived resistor values. The brightness of the LEDs was determined by the RC resistor values.

	RGB LED
	RB(
	RC(

	Red
	20k
	306

	Green
	18k
	297

	Blue
	220k
	1114

Table 2.4 LED Circuit Resistor Values

The reflected light intensities of each colour are measured with a photodiode. This photodiode is encased with the RGB LED in a small clay mould.

[image: image3.png]Photodiode

RGB LED Dark

Environment

Target Surface

Figure 2.4 Clay Mould Housing

2.6.3. OPERATIONAL AMPLIFIER CIRCUIT

A 2-stage operational amplifier (Op-Amp) was used to amplify the photodiode current to a suitable level. The circuit is as below:

[image: image4.emf]

Figure 2.5: Photodiode Amplifier Circuit

3. HOUSING DESIGN

3.1. INTRODUCTION

The housing contains the components of the light source and the sensor. There are several methods of sensing colour and hence several designs for the housing. Housing design will be chosen so it achieves the desired goal as close as possible, this being small, low cost and simple.

3.2. CURRENT DESIGN

This housing design incorporated a RGB LED with a photodiode. Red, green and blue lights are turned on sequentially with the photodiode measuring the brightness of each. The cost incurred for this housing design is as below:

- Photodiode

$25.40

- RGB LED

$13.30

- Total

$38.70

3.3. ALTERNATIVE DESIGN ONE

This design is similar to the current design of the housing. The RGB LED is replaced with a separate red, green and blue LED. Each LED is turned on sequentially with the photodiode taking the necessary measurements. Cost incurred is as below:

- Photodiode

$25.40

- Red LED

$00.80

- Green LED

$00.27

- Blue LED

$04.37

- Total

$30.85

3.4. ALTERNATIVE DESIGN TWO

This design utilized a white LED as its light source. A white LED resulted in the design having three filtered photodiodes where filtered photodiodes could not purchased. To filter photodiodes, the use cellophane paper was required. The following shows the cost for this design:

- White LED

$09.95

- 3 x Photodiode
$76.20

- Cellophane Paper
$02.00

- Total

$88.15

3.5. DESIGN COMPARISON

The desired design is to fulfil the requirements of being small, low cost and simple. For the alternative design two, the three photodiodes that it requires has dramatically increased the cost when compared with the other two designs. The number of components it possesses also requires a larger housing. With a larger housing, portability is compromised. To achieve a low cost and small device, this design has been discarded. Comparing the cost of the two remaining designs, the alternative design one is slightly lower though this design requires the use of three LEDs which again results in a larger housing. With size and simplicity as a factor, a higher price was chosen over more electronic components in housing. The current design was implemented.

3.6. HOUSING MODIFICATION

The housing encasing the RGB LED and the sensor was made from a small clay mould. With its current size, the device illuminated a test surface covering a diameter of 6 cm. One of the objectives of this project was to make a small and accurate colour sensor device. With a 6 cm diameter of test surface, the readings from the photodiode were inaccurate when the test object covered a significantly smaller area. Unnecessary colour intensities were being measured by the photodiode which influenced the end result. A smaller housing with a diameter of 3cm was made to refine this.

[image: image5.png]

Figure 3.1: Resized Housing
4. LIGHT SENSOR

4.1. INTRODUCTION

The light sensor has the purpose of measuring the intensity/brightness of the reflected light from the test surface after it has been illuminated. There are a number of different light sensors available for this application such as the photodarlington, photodiode and phototransistor. The current conducted in these sensors vary accordingly to the level of intensity of light exposed onto them. The sensors differ by their biasness towards certain wavelengths of the visible spectrum and are chosen for certain applications depending on the conditions.

4.2. THE PHOTODIODE

The photodiode light sensor was chosen for this design of the colour sensor primarily due to its linear characteristic between illumination intensity and photo-voltage. This linearity property is a critical factor for detecting light intensities. The photodiode operates by inducing a current when exposed to light. The amount of current induced is proportional to the light intensity and a small leakage current is produced when the component is reverse biased. Without the linearity property of the photodiode, a change in light intensity results in an unpredictable change in induced current making any measurement analysis nearly impossible.

[image: image6.png]Vp

X = linear range

Lux

Figure 4.1: Response of Photodiode

Other advantages the photodiode possess over the other two light sensors include, fast response times, low leakage currents, high efficiency and low noise levels. These properties are all desirable especially fast response times. Fast response times leads to faster processing time which is important requirement in digital applications.

Light sensors have different sensitivities towards different wavelengths of the visible spectrum. For colour sensing, a sensor with similar spectral responses with the human eye would be an accurate sensor. The following shows the spectral responses of the chosen photodiode (BPW 21) and the human eye.

Figure 4.2: Relative Spectral Sensitivity
The plot shows the close similarities between the two spectral sensitivities of the photodiode and the human eye. The photodiode is therefore suitable for the desired application. At a wavelength of 550nm, the spectral sensitivities are exactly the same. From table 2.1, this wavelength lies in the green colour range. This gives a possibility of not scaling the reading of green light intensity when doing the data analysis.

One small negative aspect of the photodiode is the low current output it produces when low level of light intensity is incident on the component. This can be corrected with a low-noise operational amplifier, amplifying the small current to a suitable useful level.

4.3. THE BPW21 PHOTODIODE

The chosen light sensor for the design is the BPW 21, manufactured by Centronic and supplied by RS Components. The light sensor is a hermetically sealed photodiode which has a flat window with a built-in colour correction filter for light in the visible spectrum. This built-in colour correction filter gives a close approximation to the spectral response of the human eye. The photodiode is designed for high precision linear applications and can operated in a photovoltaic cell set up. Some applications where the photodiode may be used include colour sensors, light monitoring and control, exposure control and other optical instrumentation control. The dimensions (in mm) of the BPW 21 photodiode is as below:

[image: image7.png]00 DIA
WINDOW
59DIA
I | 127 MIN

00
osom—>H<l-

9-00DIA

CATHODE -VE

Figure 4.3 Photodiode Dimensions

The technical specifications of the BPW 21 photodiode is as follows:

	CHARACTERISTIC
	VALUE

	Peak Spectral Response
	560 nm

	Wavelength (min.)
	460 nm

	Wavelength (max.)
	750 nm

	Power Dissipation (max.)
	250 mW

	Sensitivity (short circuit)
	7 nA/lux

	Open Circuit Volts
(E = 1 k lux)
	280 mV

	Dark Current (VR = 5V)
	2 nA

	Rise Time
(I = 100 µA, RL = 1 kΩ)
	3.5 μs

	Junction Capacitance
(VR = 5V)
	170 pF

	S.S.M
	1

Table 4.1: Characteristics of BPW 21
The previous year students derived the linear region of operation of the BPW 21 photodiode through a number of tests. The tests involved increasing the intensity of the white light produced at certain increments and measuring the output voltage of the photodiode in parallel with a 5.6 M(resistor. The linear region existed where a change in intensity lead to a significant change in the output. The following graph was produced:

[image: image8.emf]

Linear Range

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

Intensity (lx)

Vp (mV)

Figure 4.3: Photodiode Output Voltage vs. Intensity

The graph shows that the linear range is between the intensity levels of 10 – 50 Ix and a photodiode output voltage of 50 – 150 mV. A 5.6 M(resistor used with the photodiode would require 112 mV for a current output of 20 nA. This is a significant small value and would possibly be require to be amplified for it to be useful.

5. Light source

5.1. Light source selection

From chapter 3, the three light source considered were the white LED, the RGB LED and three individual coloured LEDs. All designs incorporated LEDs as the light source in the housing. This was primarily due to LEDs having low power consumption, long life expectancy and for its small size when compared to normal filament or incandescent lamps. Incandescent lamps were also found to give off a yellow tinge light which influenced the end results. With the above properties of a LED, a small, portable, power efficient and durable colour sensor is produced.

5.2. THE RGB LED

The RGB LED was chosen as the light source for this project. The RGB LED used was the LF59EMBGMBC, manufactured by Kingbright and supplied by RS Components. This LED features two blue, one green and one red chip on a T-1 ¾ (5mm) plastic package with water clear lens. With this configuration, any colour of the visible spectrum can be produced at high intensities. The characteristics of this RGB LED can be tabulated as on the next page:

	CHARACTERISTIC
	Red
	Green
	Blue
	Units

	Lens Type: Water Clear
	
	
	
	

	IF (max.)
	30
	25
	30
	mA

	VF (typical)
	2
	2.2
	4.5
	V

	Intensity (min.)
	90
	50
	12.5
	mcd

	Intensity (max.)
	200
	150
	40
	mcd

	View Angle
	15
	15
	15
	°

	Peak Wavelength
	625
	565
	430
	nm

	IF (typical)
	20
	20
	20
	mA

	VF (max.)
	5
	5
	5
	V

	Temp. (min.)
	-40
	-40
	-40
	°C

	Temp. (max.)
	85
	85
	85
	°C

	S.S.M
	1
	1
	1
	

Figure 5.1: Specifications of RGB LED

The dimension of the RGB LED are given as:

	DIMENSIONS
	VALUE

	Length
	8.6 mm

	Diameter
	5 mm

	Lead Pitch
	2.54 mm

	Leads
	0.5 mm2

Figure 5.2: Dimensions of RGB LED

[image: image9.png]1,4

56
23
1,3- BLUE anode
4 RED anode
2 GREEN anode
5-cathade 1 82
6-cathode 38 4

Figure 5.3: Pin Allocation

From the above, it is evident that the RGB LED possesses six pins. Four of these pins are the anodes of the colours it can produce. Note that there is two chips for the colour blue hence two anode pins. Pin 5 is the cathode pin for colours blue1 and green. Pin 6 is the cathode pin for the colours blue2 and red.

As there are two chips for the colour blue, only one of these needs to be utilised. With only one blue LED being operated, the device is more efficient and simple. The following configuration is applied for the prototype:

[image: image10.png]PHOTODIODE RGB LED
Cathode

(ve)

Anode
(+ ve)

" ’JE‘

HoT USED

Figure 5.4: Pin Configuration
The brightness of the LEDs is controlled via a variable resistor in a series arrangement. Ohms law is used to calculate the minimum resistance for each LED. The following equation was used:

[image: image11.wmf]F

F

S

I

V

V

R

-

=

min

The resistance calculated from this equation are only minimum values to avoid any damage. The variable resistors are adjusted to give the sensor an equal response to each colour. The housing is placed over white paper and values for each resistance are recorded. Below are values of the minimum resistance for each LED and the actual resistance. The actual values are the same as the previous year’s as they were found to be suitable for the configuration. A common 5 V power supply was used.

	LED
	Calculated RMIN Ω
	Actual R Ω

	Red
	100
	306

	Green
	112
	297

	Blue
	16.67
	1114

Table 5.1: RGB LED Resistor Table

6. RGB LED Operation

6.1. introduction

The purpose of RGB LED is to illuminate the test surface of each colour as the photodiode takes a reading. The red, green and blue lights are therefore turned on and off sequentially. This is achieved by switching via the use of three NPN transistors. One NPN transistor is allocated for each LED operation and in a common-emitter configuration, with no bias voltage and connected to the base through a resistor. Resistor RB is connected in series with the base and then to a microcontroller output line. The resistor RC is also connected to one of the microcontroller output lines. This is as two 5 V power supplies are required due to two colour LEDs sharing cathodes.

[image: image12.wmf]

Figure 6.1: LED Switch Circuit

A transistor can act as either an amplifier or a switch. For it to operate as a switch it must be operated in saturation mode. The 5 V input signal supplied from the microcontroller is to be used to saturate the transistor. To achieve this, the resistance values of RB and RC are specifically chosen to allow enough base current to flow through and saturate the transistor.

6.2. Transistor characteristics

The transistor used for this design is the 2N2222A. It possesses the following features:

· High speed switching applications, at collector current up to 500 mA

· Low leakage currents

· Low saturation voltage

· Useful current gain over a wide range of collector current

Operating the transistor in saturation results in VBE = 0.8 volts and VCE = 0.2 volts.

Some important assumptions needed to be included into the switching design are as follows:

· VCE = 0V (saturation)

· Vcc = 5V

· IC(sat) = (Vcc – Vd)/Rc

· (Vd is voltage drop, also known as VF)

· IB = (Vin – VBE)/RB
· IB(min) = Ic(sat)/(
6.3. RGB LED SWITching results

With the aid of the assumptions, the following values are calculated. The base resistance is calculated using the values for the voltage drop across each LED and relative resistances, found previously.

	
	Ic (sat) mA
	IB (min) mA
	RB 
	RB (equiv.) k

	RED
	19.1
	0.191
	21980
	22

	GREEN
	21.4
	0.214
	19460
	20

	BLUE
	1.83
	0.0183
	228951
	230

Table 6.1: Derived RB Values from Collector Resistance and Voltage

The base resistance can also be calculated using the values for the collector current.

	
	Ic (sat) mA
	IB (min) mA
	RB 
	RB (equiv.) k

	RED
	17.95
	0.1795
	23398
	23

	GREEN
	19.8
	0.198
	21212
	21

	BLUE
	1.8
	0.018
	233333
	230

6.4. RGB led switching conclusion

Comparing the two tables, the values for the base resistance are similar. The base resistance chosen must be lower than what is calculated to ensure that sufficient base current is entering the transistor. A lower base resistance is desirable making the device more power efficient. The following are the final values concluded for sufficient current to operate each LED.

	
	RB (equiv.) k

	RED
	20

	GREEN
	18

	BLUE
	220

Table 6.2: Finalized Base Resistances

6.5. Rgb led switch control

From the design of the RGB LED, the blue LED shares a cathode with the green LED. With one power supply, both LEDs would be turned on simultaneously. A second power supply is introduced to correct this. With the red LED not sharing a cathode with either blue or green, it could share a power supply with either one of them. A 5 V power supply was then designated to source the red and green LEDs and another to source the blue LED. The control circuit and logic can be found in chapter 2.

7. Signal conditioning

7.1. introduction

With the BPW 21 photodiode set up to operate in its linear region, from previous years testing it was found that the induced current would range between 0 – 20 nA. This current is then processed by the microcontroller to derive the resultant colour. With a maximum photodiode output current of 20 nA, this current must be amplified to suitable level before being processed. From the specifications of the microcontroller, a suitable voltage range is between 0 – 5 V. This is achieved using a low noise operational amplifier. There are different types of amplifiers available but the operational amplifier was chosen due to the following features:

· High gain

· High input impedance

· Low power requirements

· Simple and easily modified configuration

With a significant low output current, high input impedance is most desirable as it results in a high gain in the correct configuration.

7.2. Previous work design

The previous op-amp circuit is as shown below. The signal conditioning design utilises two Texas Instruments TLC251 op-amps in a cascading formation. The purpose of the capacitors used in the design was to discard any unwanted AC frequencies interfering with the DC measurements.

[image: image13.emf]

Figure 7.1: Previous Op-Amp

The Texas Instruments TLC251 op-amp utilizes LinCMOS technology and has characteristic of low noise, high gain and high impedance inputs. It has the following pin configuration:

[image: image14.png]OFFSETN1 [| 1 s[1 BiAs sELECT
N-[l2 7[Ivoo
N+ [[3 sfjouT
Vpp_/GND [|a 5[lOFFSET N2

Figure 7.2: TLC251 Pin Configuration

The signal conditioning design also included a power supply regulator. The power supply regulator was built with the use of LM7805CT IC’s. Its purpose was to provide a stable power supply to the colour sensor. A +5 V and –5 V rail was sourced with the following circuits:

[image: image15.emf]

Figure 7.3: Power Supply Regulators

7.3. Previous Design Flaws

There were some issues with the op-amp design for signal conditioning. The op-amp was found to operate at its maximum capacity, leaving no room for alterations if required. The gain of each of the stages was also found to be significantly high. A slight change in the input would hence result in a dramatic change in the output and give inaccurate measurements.

For the power supply regulator, in theory was to source out a steady (5 V rail. With the use of voltmeters, this was found to be not the case. Output voltage varied under the 4 V range. With insufficient voltage being sourced to the colour sensor prototype, it would not operate as desired. Voice of the speech chip was slowed and LEDs did not have the sufficient power to be turned on.

7.4. Signal Conditioning re-design

Given the problems stated, a 4-stage operational amplifier was designed. Four Texas Instruments TLC 251 op-amps were utilised in a cascading layout. The op-amps are designed in a non-inverting configuration, resulting in high input impedance. The closed loop gain of this non-inverting op-amp is dependent on the values of external resistors. Capacitors were used again in a negative feedback loop to neglect any AC frequencies present. The following circuit was designed:

Figure 7.4: 4-Stage Op-Amp

For the power supply regulator, the circuit for it was discarded. With the re-designed op-amp, the laboratory DC power supply was sufficient and could be checked with a voltmeter.

8. Microcontroller

8.1. Introduction

The microcontroller is the most important component of the colour sensor. It is what controls the operations of this colour sensor. The following is a list of operation it was required to perform:

· Supply power to the light source

· LED switching control

· Analogue to digital conversion of values from signal conditioning

· Process digital values and derive resultant colour

· Speech chip control

Control applications and colour derivation are achieved by programming the chip of the microcontroller. This is discussed in later chapters.

8.2. The M16c/62 microcontroller

The Mitsubishi M16C/62 microcontroller was chosen for this prototype. The M16C/62 microcontroller are built using the high-performance CMOS technology and with 1 M bytes of address space, they are capable of executing instructions at high speed. The microcontroller is ideal in applications of audio, cameras, office equipment, communications equipment and portable equipment. For the development of the prototype, the M16C/62 Starter Kit was used. The kit provides a board which contains a surface mounted M16C/62, 96-pin I/O connector, two 7-segment displays, 3 external interrupt switches, reset switch, serial port, power supply connecter and a external crystal connecter. The layout is as follows:

[image: image16.png]Network

Commact Variable 50z LED1 LED2

| oo

BY-12V — g g é’ E

Power Supply

Resistor (sw3) 1)
I
C

E Mcu

o _—BEEe

B E

Input/Output Pins

Figure 8.1: M16C/62 Starter Kit

8.3. power

One role of the microcontroller was to provide power to external components. By supplying the M16C/62 with 5 V from the laboratory DC power supply, individual components could also be sourced via the output pins. The “Active” and “Live” control lines made to source the RGB LED is an example of this.

8.4. Analogue to digital converter (A-D)

8.4.1. A-d overview

The photodiode takes measurements of colour intensities from the reflected light and is amplified to a suitable range for analogue to digital conversion. The M16C/62 microcontroller uses the following pins for A/D conversion:

	AN0 pin through AN7 pin
	Input pins of the A-D converter

	AVcc pin
	Power source pin of the analog section

	VREF pin
	Input pin of reference voltage

	AVss pin
	GND pin of the analog section

	ANEX0 pin, ANEX1 pin
	Expanded input pins of the A-D converter

	ADTRG pin
	Trigger input pin of the A-D converter

Figure 8.2: Pins Related to A/D Convertor

8.4.2. A-D converter modes

There are five modes of operation for the analogue to digital converter. These are listed below:

· One-shot mode - The pin selected by the analog input pin select bit is used for one A-D conversion.
· Repetition mode - The pin selected by the analog input pin select bit is used for repeated A-D conversion.
· One-shot sweep mode - The pins selected by the A-D sweep pin select bit are used for the one-by-one A-D conversion.
· Repeated sweep mode 0 - The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion.
· Repeated sweep mode 1 - All pins perform repeat sweep A-D conversion, with emphasis on the pin or pins selected by the A-D sweep pin select bit.
8.4.3. One-shot mode

The A-D conversion mode used in this project was the one-shot mode. The output of the operational amplifier was inputted to a selected pin and the A-D conversion was performed when required. That is the selected pin would only be active when taking the desired readings. This was the reason for the choice of the one-shot mode. If the selected pin was active continuously, unnecessary readings would be taken and therefore increasing the processing time or even produce inaccurate results. The one-shot mode has the following specifications:

	Item
	Specification

	Function
	The pin selected by the analog input pin select bit is used for one A-D conversion

	Start condition
	Writing “1 ” to A--D conversion start flag

	Stop condition
	•End of A-D conversion (A-D conversion start flag changes to “0 ”,except

when external trigger is selected)

•Writing “0 ” to A--D conversion start flag

	Interrupt request generation timing
	End of A-D conversion

	Input pin
	One of AN0 to AN7,as selected

	Reading of result of A-D converter
	Read A-D register corresponding to selected pin

Table 8.1: Specifications of One-shot mode

From these specifications, the operation of the one-shot mode can be illustrated with the following flow diagram:

Figure 8.3: Flow Diagram of A-D Converter

From this flow diagram, the A-D converter commences when the START flag is set to “1” and is ended when the flag is “0”. A sample and hold function is utilized when A-D conversion starts. The function samples and digitizes the input voltage and then stores it in a register. The sample and hold function is set up by setting bit 0 of the register to bit 1 and setting the operation clock to 1 MHz or higher. The following are diagrams of the A-D control register 0 and 1:

[image: image17.png]b7 bo

AD control register 0 [Address 03D616]
ADCONO

Analog input pin select bit (Note)
0201 60
000 AN is selected
ANt is selected
AN2is selected
AN3 s selected
AN s selected
AN s selected
AN s selected
AN7is selected

One-shot mode is selected (Note)

L Tiigger select bit

0 Software trigger

L ADconversion star flag

0: A-D conversion disabled

Frequency select bit 0
0 fAD/d s selected
1:fAD2is selected

Figure 8.4: A-D Control Register 0

[image: image18.png]b7

0

A-D control register 1 [Address 0307 15]
ADCON1

Invalid in one-shot mode

A-D operation mode select bit 1 (Note)
0 (Must ahways be 0" in one-shot mode

8/10-bit mode select bit
0 8-bit mode
12 10-bit mode

Frequency select bit 1
0 AD/2 or fAD/4 is selected
11 fa0 is selected

Vref connect bit
1: Viref connected

Extemal op-amp connection mode bit
b7 t6
00: ANEX0 and ANEX1 are not used

Figure 8.5: A-D Control Register 1

As one-shot mode is utilized in the project, the forth and fifth bits of register 0 and the third bit of register 1 must be zero. The seventh bit of register 0 determines if A-D conversion is being commenced or ended. The sixth bit for register 0 corresponds to a software trigger and is set to 0. This allows the code programmed into the M16C/62 to activate the A-D conversion. The seventh and eighth bit of register is for external op-amp connection mode bit and is set to zero as ANEX0 and ANEX1 are not used.

8.5. I/O ports

The Mitsubishi M16C/62 has 9 I/O ports where most of them can act as either an input or output port. This is achieved by configuring the port’s direction register to give the desire result.

The below shows the I/O ports and their direction registers:

[image: image19.png]Port

Internal peripheral device 1/0 pins

P15 to P17 Input pins for external interrupt

P6 /O pins for serial /O communication

P70 1/0 pins for serial /O communication/Timer A /O pin

P71 /O pins for serial /O communication/Timer A 1/0 pins/Timer B input pin

P72t0 P73 1/0 pins for serial /O communication/Timer A I/O pins/Three-phase motor
control output pins

P74to P75 Timer A /O pins/Three-phase motor control output pins

P76to P77 Timer A /O pins

P80, P81 Timer A /O pins

P82 to P84 Input pins for external interrupt

P86, P87 Sub-clock oscillation circuit 1/O pins

P90 to P92 Timer B input pins

P93, P94 D-A converter output pins

P95, P96 A-D converter extended input pins

P97 A-D trigger input pin

P100 to P103
P104 to P107

A-D converter input pins
A-D converter input pins / key-input interrupt function input pins

Figure 8.6: M16C/62 I/O Ports

[image: image20.png]Port Pi direction register (Note)

Symbo Address
PDI(1=0% 10, exceptd) 03210, 03E31, 03EE e, O3ET e, 03EATS
O3ER10, 03EE S, 03EF 16, 03F 316, 03F6le
B sy Btname Fungion |
P00 e o9
1 direction register Input,
oL ForPid = (Functons a5 an nput port) [2.0)
P52 | FonPzarscionregiter | 1 oupitmoos o9
P03 [PonPi dracton gt | (Ferctens 3s amouputor) (67
P54 [FonPudmcionregser | (1=0t0 0 crcepts) oo
& Port PR deecton egister 9]
PO [ForPi arecionregter o9
P07 [FonPi orechonregsts oo
Note: Sel b 2 of prtect regster (adaress D00A16) o 1" before rewring o
e port PO direction register.

Figure 8.7: Direction Registers of I/O Ports

9. Speech chip

9.1. introduction

With the M16C/62 microcontroller converting the output voltages of the op-amp from analogue to digital values, it is then compared to a pre-determined table to derive the resultant colour. This resultant colour is outputted via a synthesized voice with the use of a speech chip. Voices are pre-recorded onto the chip and are called up after readings have been processed

9.2. Isd2548 chipcorder

The chosen speech chip for this project is the ISD 2548 chipcorder by WINBOND. This CMOS device includes an on-chip oscillator, microphone preamplifier, automatic gain control, anti-aliasing filter, smoothing filter, speaker amplifier and high density multi-level storage array. The WINBOND ISD2500 chipcorder series also has the following features:

· Easy-to-use single-chip, voice record/playback solution

· High-quality, natural voice/audio reproduction

· Manual switch or microcontroller compatible

· Playback can be edge- or level-activated

· Automatic Power-Down – standby current 1μA

· Zero-power message storage

· Fully addressable to handle multiple messages

· 100-year message retention

· 100,000 record cycles

The pin configuration of the ISD2548 speech chip is as follows:

[image: image21.png]15D2532140/48/64
o1 @

A

e

nsms

Aama

nss]

|
=N 21 [awonr
==} 0 [man
e 19 [sec

P 18 [micrer
Veo T 12 [H=xvs
Ve 16 0 Ve

e =S

Figure 9.1: Pin Configuration of ISD2548

The ISD2500 series is designed with several built-in operational modes to provide maximum functionality. From the above pin configuration, A7 and A8 are the most significant bits (MSBs). These bits determine whether the chip is operating in addressing mode or operational mode. With either or both of the MSBs being low, the inputs are interpreted as address bits and determines where record/playback cycle. If both MSBs are high, the other bits are referred to as mode bits. The six operational modes available are as follows:

[image: image22.png]Chode Function Typical Use Jointly Compatible®

Vo Vessoge cueng FosHomara Ihough messoges o, N, Me

i Delete EOMmarkers | Postion EOM mater ot the endof the ost | M3, Vi, M5, M6

mesiage

e Not applcave Reseved NA

v Looping Contuous payback rom Address O M5, M6

wa Consecive addressing | RecordPlay mulfiple consecutive messages | MO, M1 5

Ve T ieveroctiote ‘Alows message pausing VO, M1, M3, M2

V6 Push buffon confol Smpified device eracs Vo M1 M3

Indicates addtional operational modes which can be used simulianeously with the given mode.

Figure 9.2: Operational Modes of ISD2548

9.3. Microcontroller Interface

9.3.1. Introduction

The microcontroller digitized output voltages from the op-amp, compared the three values with a predetermined table and controls the speech chip to playback a pre-recorded word of the resultant colour. To achieve this there are two methods of interfacing the M16C/62 with the ISD 2548. These include the message cueing method and the direct address method. With the message cueing method, messages could be skipped without knowing its physical address. From previous years work this method was found to be unreliable as messages were passed when they should not have. The direct address method was then implemented.

9.3.2. Direct Address method
 For the direct address method to be set up, the MSBs A7 and A8 are required to be low. This sets the pins of A0 to A8 to be interpreted as address pins. Addresses then can be allocated to messages via jumper wires. The pins are set high or low according to that address.

With the ISD2548 having an addressable space of 320 rows, with each row corresponding to a record time of 150 ms, the time duration is significantly small and any accurate message allocation is close to impossible. For known start addresses, one method is to divide each start address eight rolls apart, giving a recording time of 1.2 seconds for each message. Satisfying the condition of recording each segment before the next start address will result in a known start location of each message.

[image: image23.png]

Figure 9.3: Message Addressing Scheme

To playback a recorded message, the start address of a message must be known. By setting the address pins to the address and making pin [image: image24.wmf]E

C

low, the audio will play from the start address to the next EOM flag. The following are words that have been pre-recorded into the ISD 2548 chipcorder:

	No.
	Word
	Address
	A7
	A6
	A5
	A4
	A3
	A2
	A1
	A0

	0
	Light
	0x00
	0
	0
	0
	0
	0
	0
	0
	0

	1
	Dark
	0x08
	0
	0
	0
	0
	1
	0
	0
	0

	2
	Very
	0x10
	0
	0
	0
	1
	0
	0
	0
	0

	3
	Medium
	0x18
	0
	0
	0
	1
	1
	0
	0
	0

	4
	White
	0x20
	0
	0
	1
	0
	0
	0
	0
	0

	5
	Black
	0x28
	0
	0
	1
	0
	1
	0
	0
	0

	6
	Blue
	0x30
	0
	0
	1
	1
	0
	0
	0
	0

	7
	Green
	0x38
	0
	0
	1
	1
	1
	0
	0
	0

	8
	Yellow
	0x40
	0
	1
	0
	0
	0
	0
	0
	0

	9
	Orange
	0x48
	0
	1
	0
	0
	1
	0
	0
	0

	10
	Red
	0x50
	0
	1
	0
	1
	0
	0
	0
	0

	11
	Purple
	0x58
	0
	1
	0
	1
	1
	0
	0
	0

	12
	Pink
	0x60
	0
	1
	1
	0
	0
	0
	0
	0

	13
	Brown
	0x68
	0
	1
	1
	0
	1
	0
	0
	0

	14
	Grey
	0x70
	0
	1
	1
	1
	0
	0
	0
	0

	15
	Pastel
	0x78
	0
	1
	1
	1
	1
	0
	0
	0

	16
	Hot
	0x80
	1
	0
	0
	0
	0
	0
	0
	0

	17
	Lavender
	0x88
	1
	0
	0
	0
	1
	0
	0
	0

	18
	Maroon
	0x90
	1
	0
	0
	1
	0
	0
	0
	0

	19
	Aqua
	0x98
	1
	0
	0
	1
	1
	0
	0
	0

Table 9.1: Recorded Messages

The schematic of the ISD 2548 chipcorder used is as follows. To avoid any dmange to the microctroller, 100 kΩ resistors were connected to each pin of the ISD 2548 where a connection to the M16C/62 was made. This limited I/O lines to an output current of 50mA. Port connections to the M16C/62 are indicated with number 2.x.

[image: image25.png]Vee

Vee

R
1000

20
START/PAUSE

22 0——
STOP/RESET

RE-R12 ISD2532/40/48/64
l00ka
1[0 Veco
2l a Veea
S cs
= " A2 224F
23 a3 Veso
24 ot 51 A4 Vssa
25 o 146
e o 7| ns P
s 15
9] a7 AUXIN 11 EAKE
27 o——2
10| A8 ANAIN |20 s
e
2| cE ANACUT 2L AAA,
PD
PR MIC ReF 18 (Nofo)
EOM mc iz
OvF
XCLK Acc |12 —~6
w0 ()
1Ko ioka T
H R2 c
wol S TR

ELECTRET
ca MICRGPHONE Re
T 2204F

o

Figure 9.4: Direct Addressing Circuit

10. Software

10.1. introduction

A software code was written to program the chip of the M16C/62 microcontroller for the control of the LED switching, processing of the A-D converted values and control of the speech chip. The M16C/62 supports both C language and the conventional assembly language without any compromise on memory.

10.2. Development environment

A number of Microsoft Windows based software was utilised with the M16C/62 microcontroller to aid software development. The following is a table of the tool’s name, function and version which was utilised:

	Name
	Function
	Version

	NC30WA
	C Compiler
	V5.00 Release 1

	Tool Manager
	Integrated Development Environment
	V3.20

	KD30
	Debugger
	V3.00 Release 1

	Flash Start
	Flash Programmer
	V2.00.0

	Monitor
	Monitor Program
	V2.00

Table 10.1 Software Tools

The version of the above tools is slightly different to what was used last years. These versions were installed as described in the M16C/62 Starter Kit 2 User Manual and found to give best results.

10.3. Software Behaviour

The software behaviour can be illustrated in the following flow chart. The code written for the sensor program initialises interrupt priorities and started timer A1 as the main. The INT0 interrupt commenced the colour sensor process.

Figure 10.1: Software Behavious Flowchart
10.4. Development process and issues

Using the versions of tools as last year, it was found that the KD30 debugger did not function properly. This resulted in the prototype to not operate at all. Without a debugger, the task of refining a code is made more tedious. The newest versions of the tools were also tested and gave also an undesirable outcome. This could be due to the incompatibility of the software. This problem wasted much time as older versions of the tools was not readily available. The working of set of tools mentioned before had to be found from fellow colleagues. With proper working tools, the M16C/62 could be familiar with the sample provided sample programs. One tasks of the sample program was the enabling of interrupts. This was vital for the operation of the code to be successful. The modified sect30.int file done by previous students for the colour sensor can be found in Appendix B.

The development of the program for the colour sensor was based on last year’s code. Last year code was based on the sample program 5. This program was modified to switch each LED on sequentially and take a voltage reading of each. This was achieved by making the A-D to be software triggered. An external interrupt INT0 would call up functions in the code to trigger the A-D three times. The code was further modified to compare the three A-D values with a predetermined table and then output the resultant colour via the speech chip.

[image: image26.png]Start | ————]

Play Sound Clip of
Colour Name

l—

!

Red Component
Measurement

v

Process RGB
Values to
Determine Colour

Green Component — f——i{
Measurement

Blue Component
Measurement

Normalize Values

Figure 10.2: Flow Chart of Sensor Program

This sensor program was only capable of recognising a maximum of 27 colours. This year code is modified to have the capabilities of detecting 64 colours.

10.5. I/O port addressing

13 I/O pins were used for the design of the colour sensor. All pins were used as outputs except for the A-D pin. The sfr62.h header file allowed the use of custom made names for various ports. The following pins application can be tabulated:

	Pin Use
	Pin Description
	Pin No.
	Pin Location

	Speech Chip [image: image27.wmf]E

C

	P2.0
	72
	11C

	Speech Chip PD
	P2.2
	70
	11A

	Speech Chip A3
	P2.3
	69
	12C

	Speech Chip A4
	P2.4
	68
	12B

	Speech Chip A5
	P2.5
	67
	12A

	Speech Chip A6
	P2.6
	66
	13C

	Speech Chip A7
	P2.7
	65
	13B

	LED Red LIVE
	P3.0
	63
	13A

	LED Blue/Green LIVE
	P3.1
	61
	14C

	LED Red ON
	P3.2
	60
	14B

	LED Green ON
	P3.3
	59
	14A

	LED Blue ON
	P3.4
	58
	15C

	A/D Input
	A/D
	97
	2A

Table 10.2: Pin Application

Seven pins have been allocated to control the speech chip and five for the LED switching control. These seven pins plus one other, makes up port 2. From previous chapter it was noted that the first five pins determined the address of the message, therefore it is the five pins of port 2 which determines the address of a message for the speech chip.

10.6. Colour Derivation

An expert system was used to derive the resultant colour from the amplified values of the photodiode. Like last year, an IF statement tree was implemented. With colour range split in three resulting in a maximum of 27 colours, it was furthered split in four to give a maximum of 64 possible colours. The process of derivation is as follows:

[image: image28.png]RED RED RED RED
viow Low = HaH
= GREEN | [GREEN GREEN
Viow Low DM HGH
BLE [BLOE [BLUE BLLE
viow lLow = ot
LiGHT BROAN GREY LAVENDER

BROAN

Figure 10.3: Colour Decision Tree

10.7. Key functions overview

The following is a list of the key functions and there description:

Initport(void) – sets the direction of the I/O port. Is declared at start of code.

 pd2 = 0 x FF makes all port 2 pins as outputs.

RedOn() – Performs bitwise OR on port 3. If red LED’s live pin is connected

to pin 0 on port 3 and the red LED’s ON pin is connected to pin 3, port 3, both P3.0 and P3.3 must be high for red to be switched on. For red LED, a bitwise OR is performed with the value 0x05

Values used for the LEDs are tabulated below:

	Function
	Value (hex)
	Value (binary)

	Red ON
	0x05
	0000 0101

	Green ON
	0x0A
	0000 1010

	Blue ON
	0x12
	0001 0010

	All OFF
	0xE0
	1110 0000

Table 10.3: LED Control Comands

Sayword() – Controls Speech chip. Upper five bits of port 2 determines word

 spoken.

Int0() – External interrupt. Commences the colour sensor process.

The final code of the colour sensor can be found in Appendix C.

11. conclusion

A colour sensor for the blind which is small, easy to use, cost efficient and can accurately recognise at least 64 colours has been designed. There have been some positive developments though there are also some issues to be concerned with.

For the hardware aspects of the prototype, a small and power efficient housing has been successfully constructed to illuminate and take reading from a test surface. An op-amp has been redesigned to give better flexibility and performance in its signal-conditioning task. In terms of software control, the LED switching and speech chip are successfully controlled through the use of the Mitsubishi M16C/62 microcontroller.

The outstanding issue which exists in this project is the accuracy of the prototype. Surfaces tested so far have been on pieces of card or normal paper. With different types of test surfaces such as glossy paper and clothing, the reflected light intensities are surely to be altered. One future proposal is to make the system be able to recognise the type of the test surface and to compensate for it if necessary.

12. Bibliography

EasyRGB - Color calculator and chromatic space converter

Retrieved 4 April 2004 from:

http://www.easyrgb.com/calculator.php
Horowitz, P., Hill, W., (1995), The Art of Electronics, 2nd Edition. Chap. 4. pp 175 -261. Cambridge University Press, Melbourne, Australia

ISD Chipcorder ISD2500 Series Datasheet

Retrieved 13 April 2003 from:

http://www.winbond.com
Mitsubishi Electric Australia M16C Web Site - Home Page

Retrieved 12 March 2004 from:

http://www.m16canz.com/
Mitsubishi M16C MCU Help Page

Retrieved 12 March 2004 from:

http://murray.newcastle.edu.au/users/staff/pturner/Mitsubishi.html
Named Colours with RGB and Hex Values

Retrieved 21 March 2004 from:

http://www.cloford.com/resources/colours/namedcol.htm
Data Sheet Search System

Retrieved 5 May 2004 from:

http://www.datasheetarchive.com/
Seah, G. & Seal, A., (2002), Colour Sensor for the Blind,

Curtin University of Technology, Perth, Australia.

Sedra, A., Smith, K., (1998), Microelectronic Circuits 4th Edition,

Oxford University Press, Melbourne.

13. Appendix A – Project plan

This project is to design a prototype of a colour sensor device, which can recognize at least 64 different colours and speak the recognized colour. The device should be suitable for use by vision-impaired people to allow them to perform basic colour recognition tasks.

The prototype uses a Red-Green-Blue LED to illuminate a surface. The level of reflected light from each colour is measured with a photodiode. The operation of the system is controlled by a Mitsubishi M16C/62 microcontroller. The determined colour is spoken through a ISD2548 chipcorder speech chip.
Given the time restriction of 12 weeks for the first semester unit, the following Gantt chart is produced.

[image: image29.png]Defining Flaws

Research

Design Review

Implementation

Testing

Modification

WEEKS

0

2

1

By 2nd April, a final design should be produced and ready for implementation. Implementation phase is given the time duration of 4 weeks where by the hardware should be completed by 30th April. The Alpha version of the source code should also be completed by 14th May finishing off the implementation phase. Given 3 weeks for testing and modification, the final prototype of the colour sensor should be completed by 4th June.

With the second semester unit also restricted to 12 weeks, the following time allocation results.

1. Writing the thesis and editing it

5 weeks

2. Draft review by Supervisor

1 week

3. Correction of the draft

1 week

4. Final production of the draft, including drawings

1 week

5. Oral preparations

4 weeks

Hence the desired date for the conclusion of this project is 5th November.

14. Appendix B – Modified Sect30.inc Header File

;***

;

; C Compiler for M16C/60,20

; Copyright 2001 MITSUBISHI ELECTRIC CORPORATION

; AND MITSUBISHI ELECTRIC SEMICONDUCTOR APPLICATION ENGINEERING CORPORATION

; All Rights Reserved.

;

; Written by T.Aoyama, modified for use in Colour Sensor by Craig Treeby

; & Mark Chiam

;

; sect30.inc : section definition

; This program is applicable when using the basic I/O library

;

; $Id: sect30.inc,v 1.11 2001/11/12 04:06:53 muranaka Exp $

;

;**

;---

;

;
Arrangement of section

;

;---

; Near RAM data area

;---

; SBDATA area

.section
data_SE,DATA

.org
400H

data_SE_top:

.section
bss_SE,DATA,ALIGN

bss_SE_top:

.section
data_SO,DATA

data_SO_top:

.section
bss_SO,DATA

bss_SO_top:

; near RAM area

.section
data_NE,DATA,ALIGN

data_NE_top:

.section
bss_NE,DATA,ALIGN

bss_NE_top:

.section
data_NO,DATA

data_NO_top:

.section
bss_NO,DATA

bss_NO_top:

;---

; Stack area

;---

.section
stack,DATA

.blkb
STACKSIZE

stack_top:

.blkb
ISTACKSIZE

istack_top:

;---

;
heap section

;---

.section
heap,DATA

heap_top:

.blkb
HEAPSIZE

;---

; Near ROM data area

;---

.section
rom_NE,ROMDATA,ALIGN

rom_NE_top:

.section
rom_NO,ROMDATA

rom_NO_top:

;---

; Far RAM data area

;---

.section
data_FE,DATA

.org

10000H

data_FE_top:

.section
bss_FE,DATA,ALIGN

bss_FE_top:

.section
data_FO,DATA

data_FO_top:

.section
bss_FO,DATA

bss_FO_top:

;---

; Far ROM data area

;---

.section
rom_FE,ROMDATA

.org

0F0000H

rom_FE_top:

.section
rom_FO,ROMDATA

rom_FO_top:

;---

; Initial data of 'data' section

;---

.section
data_SEI,ROMDATA

data_SEI_top:

.section
data_SOI,ROMDATA

data_SOI_top:

.section
data_NEI,ROMDATA

data_NEI_top:

.section
data_NOI,ROMDATA

data_NOI_top:

.section
data_FEI,ROMDATA

data_FEI_top:

.section
data_FOI,ROMDATA

data_FOI_top:

;---

; Switch Table Section

;---

.section switch_table,ROMDATA

switch_table_top:

;---

; code area

;---

.section
program

.section
interrupt

;.org
;must be set internal ROM area

.section
program_S

;---

; variable vector section

;---

.section
vector

; variable vector table

.org
VECTOR_ADR

.if
M62TYPE==1

.lword
dummy_int

; BRK
(vector 0)

.lword
dummy_int

;
(vector 1)

.lword
dummy_int

;
(vector 2)

.lword
dummy_int

;
(vector 3)

.lword
dummy_int

; int3(for user)(vector 4)

.lword
dummy_int

; timerB5(for user)(vector 5)

.lword
dummy_int

; timerB4(for user)(vector 6)

.lword
dummy_int

; timerB3(for user)(vector 7)

.lword
dummy_int

; si/o4 /int5(for user)(vector 8)

.lword
dummy_int

; si/o3 /int4(for user)(vector 9)

.lword
dummy_int

; Bus collision detection(for user)(v10)

.lword
dummy_int

; DMA0(for user)(vector 11)

.lword
dummy_int

; DMA1(for user)(vector 12)

.lword
dummy_int

; Key input interrupt(for user)(vect 13)

.glb
 _ADCint

.lword _ADCint

; A-D(for user)(vector 14)

;
.lword
dummy_int

; A-D(for user)(vector 14)

.lword
dummy_int

; uart2 transmit(for user)(vector 15)

.lword
dummy_int

; uart2 receive(for user)(vector 16)

.lword
dummy_int

; uart0 transmit(for user)(vector 17)

.lword
dummy_int

; uart0 receive(for user)(vector 18)

.lword 0FF900H

; uart1 transmit - Monitor V2

;
.lword
dummy_int

; uart1 transmit(for user)(vector 19)

.lword 0FF900H

; uart1 receive - Monitor V2

;
.lword
dummy_int

; uart1 receive(for user)(vector 20)

;
.glb
 _TimerA0int

;
.lword _TimerA0int

; timer A0(for user)(vector 21)

.lword
 dummy_int

; timer A0(for user)(vector 21)

.glb
 _TimerA1int

.lword _TimerA1int

; timer A1(for user)(vector 22)

;
.lword
dummy_int

; timer A1(for user)(vector 22)

.lword
dummy_int

; timer A2(for user)(vector 23)

.lword
dummy_int

; timer A3(for user)(vector 24)

.lword
dummy_int

; timer A4(for user)(vector 25)

.lword
dummy_int

; timer B0(for user)(vector 26)

.lword
dummy_int

; timer B1(for user)(vector 27)

.lword
dummy_int

; timer B2(for user)(vector 28)

.glb
 _INT0int

.lword
 _INT0int

; int0 (for user)(vector 29)

;
.lword
dummy_int

; int0 (for user)(vector 29)

.lword
dummy_int

; int1 (for user)(vector 30)

.lword
dummy_int

; int2 (for user)(vector 31)

.else

.lword
dummy_int

; vector 0 (BRK)

.lword
dummy_int

; vector 1

.lword
dummy_int

; vector 2

.lword
dummy_int

; vector 3

.lword
dummy_int

; vector 4

.lword
dummy_int

; vector 5

.lword
dummy_int

; vector 6

.lword
dummy_int

; vector 7

.lword
dummy_int

; vector 8

.lword
dummy_int

; vector 9

.lword
dummy_int

; vector 10

.lword
dummy_int

; DMA0 (for user) (vector 11)

.lword
dummy_int

; DMA1 2 (for user) (vector 12)

.lword
dummy_int

; input key (for user) (vector 13)

.glb
 _ADCint

.lword _ADCint

; A-D(for user)(vector 14)

;
.lword
dummy_int

; A-D(for user)(vector 14)

.lword
dummy_int

; vector 15

.lword
dummy_int

; vector 16

.lword
dummy_int

; uart0 trance (for user) (vector 17)

.lword
dummy_int

; uart0 receive (for user) (vector 18)

.lword 0FF900H

; uart1 transmit - Monitor V2

;
.lword
dummy_int

; uart1 transmit(for user)(vector 19)

.lword 0FF900H

; uart1 receive - Monitor V2

;
.lword
dummy_int

; uart1 receive(for user)(vector 20)

;
.glb
 _TimerA0int

;
.lword _TimerA0int

; timer A0(for user)(vector 21)

.lword
 dummy_int

; timer A0(for user)(vector 21)

.glb
 _TimerA1int

.lword _TimerA1int

; timer A1(for user)(vector 22)

;
.lword
dummy_int

; timer A1(for user)(vector 22)

.lword
dummy_int

; TIMER A2 (for user) (vector 23)

.lword
dummy_int

; TIMER A3 (for user) (vector 24)

.lword dummy_int

; TIMER A4 (for user) (vector 25)

.lword
dummy_int

; TIMER B0 (for user) (vector 26)

.lword
dummy_int

; TIMER B1 (for user) (vector 27)

.lword
dummy_int

; TIMER B2 (for user) (vector 28)

.glb
 _INT0int

.lword
 _INT0int

; int0 (for user)(vector 29)

;
.lword
dummy_int

; int0 (for user)(vector 29)

.lword
dummy_int

; INT1 (for user) (vector 30)

.lword
dummy_int

; INT2 (for user) (vector 31)

.endif

.lword
dummy_int

; vector 32 (for user or MR30)

.lword
dummy_int

; vector 33 (for user or MR30)

.lword
dummy_int

; vector 34 (for user or MR30)

.lword
dummy_int

; vector 35 (for user or MR30)

.lword
dummy_int

; vector 36 (for user or MR30)

.lword
dummy_int

; vector 37 (for user or MR30)

.lword
dummy_int

; vector 38 (for user or MR30)

.lword
dummy_int

; vector 39 (for user or MR30)

.lword
dummy_int

; vector 40 (for user or MR30)

.lword
dummy_int

; vector 41 (for user or MR30)

.lword
dummy_int

; vector 42 (for user or MR30)

.lword
dummy_int

; vector 43 (for user or MR30)

.lword dummy_int

; vector 44 (for user or MR30)

.lword
dummy_int

; vector 45 (for user or MR30)

.lword
dummy_int

; vector 46 (for user or MR30)

.lword
dummy_int

; vector 47 (for user or MR30)

.lword
dummy_int

; vector 48

.lword
dummy_int

; vector 49

.lword
dummy_int

; vector 50

.lword
dummy_int

; vector 51

.lword
dummy_int

; vector 52

.lword
dummy_int

; vector 53

.lword
dummy_int

; vector 54

.lword
dummy_int

; vector 55

.lword
dummy_int

; vector 56

.lword
dummy_int

; vector 57

.lword
dummy_int

; vector 58

.lword
dummy_int

; vector 59

.lword
dummy_int

; vector 60

.lword
dummy_int

; vector 61

.lword
dummy_int

; vector 62

.lword
dummy_int

; vector 63

;===

; fixed vector section

;---

.section
fvector

; fixed vector table

;===

; special page defination

;---

;
macro is defined in ncrt0.a30

;
Format: SPECIAL number

;

;---

;
SPECIAL 255

;
SPECIAL 254

;
SPECIAL 253

;
SPECIAL 252

;
SPECIAL 251

;
SPECIAL 250

;
SPECIAL 249

;
SPECIAL 248

;
SPECIAL 247

;
SPECIAL 246

;
SPECIAL 245

;
SPECIAL 244

;
SPECIAL 243

;

;
Note! Due to space considerations, this section has been shortened. However

;
the actual sect30.inc file continues from SPECIAL 243 through to SPECIAL 23

;

;
SPECIAL 24

;
SPECIAL 23

;
SPECIAL 22

;
SPECIAL 21

;
SPECIAL 20

;
SPECIAL 19

;
SPECIAL 18

;

;===

; fixed vector section

;---

.org
0fffdch

UDI:

.lword
dummy_int

OVER_FLOW:

.lword
dummy_int

BRKI:

.lword
dummy_int

ADDRESS_MATCH:

.lword
dummy_int

SINGLE_STEP:

.lword
dummy_int

WDT:

.lword
dummy_int

DBC:

.lword
dummy_int

NMI:

.lword
dummy_int

RESET:

.lword
start

;

;***

;

;
C Compiler for M16C/60,20

; Copyright 2001 MITSUBISHI ELECTRIC CORPORATION

; AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

; All Rights Reserved.

;

;***

15. Appendix C – Sensor Program Source Code

/**/

/*
COLOUR SENSOR FOR MSA0654-MEAUST BOARD

*/

/*
FILENAME: sensor.c

*/

/*
WRITTEN BY: Craig Treeby & Mark Chiam 2003,

*/

/* Modified by Vincent Hau
2004
*/

/*
DESCRIPTION:

*/

/*
-- Use INT0# line to start conversion.

*/

/*
-- Uses Timer A1 to multiplex refresh of LED1
*/

/*
and LED2.

*/

/*

*/

/**/

#include "sfr62.h"

#include "leddata.h"

void main(void);

void initport(void);

void initADC(void);

void setADCint(void);

void ADCint(void);

void initTimerA1(void);

void startTimerA1(void);

void setTimerA1int(void);

void TimerA1int(void);

void redon(void);

void greenon(void);

void blueon(void);

void alloff(void);

void sayword(int);

void delaytime(int);

void INT0int(void);

void setINT0int(void);

#pragma INTERRUPT ADCint

#pragma INTERRUPT TimerA1int

#pragma INTERRUPT INT0int

#define LIGHT (0x00)

#define DARK (0x08)

#define VERY (0x10)

#define MEDIUM (0x18)

#define WHITE (0x20)

#define BLACK (0x28)

#define BLUE (0x30)

#define GREEN (0x38)

#define YELLOW (0x40)

#define ORANGE (0x48)

#define RED (0x50)

#define PURPLE (0x58)

#define PINK (0x60)

#define BROWN (0x68)

#define GREY (0x70)

#define PASTEL (0x78)

#define HOT (0x80)

#define LAVENDER (0x88)

#define MAROON (0x90)

#define AQUA (0x98)

unsigned char pot_rdg = 0;

unsigned char red,green,blue, ad_reading;

unsigned int colour = 0;

unsigned int i,j,k,l,delaylength, low, mid, high;

unsigned int wordnumber = 0;

void main(void)

{

initport();

initADC();

initTimerA1();

setADCint();

setTimerA1int();

setINT0int();

startTimerA1();

while(1);
// endless loop

}

void initport(void)

{

pd0 = 0xFF;
// output mode

pd1 = 0xFF;
// output mode

pd3 = 0xFF; // output mode

pd2 = 0xFF; // Port 2_0 to 2_2 output mode, 2_3 input

pu00 = 0;
// no pull up for P0_0 to P0_3

pu01 = 0;
// no pull up for P0_4 to P0_7

pu02 = 0;
// no pull up for P1_0 to P1_3

p1 = 0xFD;
// enable LED2 and disable LED1

p0 = 0xFF;
// turn off all segments

p2 = 0x05; // initialise voice chip

}

void initADC(void)

{

 adcon2 = 0x01; // ---- ---X

 // +- 0: without sample and hold

 // 1: with sample and hold

 adcon0 = 0x00; // X0X0 0000- AN0 SELECTED

 // |||| +---- must be fixed to 0 in one shot mode

 // |||+------ must be fixed to 0 in one shot mode

 // ||+------- trigger select bit

 // || 0: software trigger

 // || 1: external trigger (ADtrg, P10.0)

 // |+-------- 0: A-D conversion disabled

// | 1: A-D conversion enabled

 // +--------- frequency select bit 0:

 // 0: fad/4 is selected

 // 1: fad/2 is selected

 // please look at bit 4 of ADCON1

 // (ADCON1.4) also)

 adcon1 = 0x30; // XX1X X0--

 // |||| |+--- must be fixed to 0 in one shot mode

 // |||| +---- 0: 8-bit mode

 // |||| 1: 10-bit mode

 // |||+------ frequency select bit 1

 // ||| 0: fad/2 or fad/4 is selected

 // ||| please look at bit 7 of ADCON0

 // ||| 1: fad is selected

 // ||+------- 1: Vref connected (must be fixed to

 // || 1 if A-D conversion is used)

 // |+-------- ext. op amp connection mode bits

 // +--------- ext. op amp connection mode bits

 // 00: ANEX0 and ANEX1 are not used

 // 01: ANEX0 input is A-D converted

 // 10: ANEX1 input is A-D converted

 // 11: external op amp connection mode

}

void setADCint(void)

{

 adic = 0x03; // ---- XXXX

 // ||||

 // |||+-- Interupt priority level select bit

 // ||+--- Interupt priority level select bit

 // |+---- Interupt priority level select bit

 // | 000: Level 0 (interrupt disabled)

 // | 001: Level 1

 // | 010: Level 2

 // | 011: Level 3

 // | 100: Level 4

 // | 101: Level 5

 // | 110: Level 6

 // | 111: Level 7

 // +----- Interupt request bit

 // 0: Interrupt not requested

 // 1: Interrupt requested

}

void ADCint(void)

// A/D interrupt function

{

asm("fset I");

ad_reading = ad0l;

}

void setINT0int(void)

{

 int0ic = 0x01; // --0X XXXX

 // || ||||

 // || |||+-- Interupt priority level select bit

 // || ||+--- Interupt priority level select bit

 // || |+---- Interupt priority level select bit

 // || | 000: Level 0 (interrupt disabled)

 // || | 001: Level 1

 // || | 010: Level 2

 // || | 011: Level 3

 // || | 100: Level 4

 // || | 101: Level 5

 // || | 110: Level 6

 // || | 111: Level 7

 // || +----- Interupt request bit

 // || 0: Interrupt not requested

 // || 1: Interrupt requested

 // |+------- Polarity select bit

 // | 0: Selects falling edge

 // | 1: Selects rising edge

 // +-------- Reserved bit - always set to "0"

}

void INT0int(void)

{

asm("fset I");

// enable interrupts

redon();

// turn on red LED

delaytime(2);

// delay to allow photodiode reading to stabilise

adst = 1;

// start AD conversion

while (adst == 1);
// wait till AD conversion is completed

red = (ad_reading);
// store reading

pot_rdg = red;

// set 7 segment display value to show red voltage

delaytime(10);

alloff();

// turn off all LEDs

greenon();

// turn on green LED

delaytime(2);

// delay to allow photodiode reading to stabilise

asm("fset I");

// enable interrupts

adst = 1;

// start AD conversion

while (adst == 1);
// wait till AD conversion is completed

green = (ad_reading); // store reading

pot_rdg = green;
// set 7 segment display value to show green voltage

delaytime(10);

alloff();

// turn off all LEDs

blueon();

//turn on blue LED

delaytime(2);

// delay to allow photodiode reading to stabilise

asm("fset I");

// enable interrupts

adst = 1;

// start AD conversion

while (adst == 1);
// wait till AD conversion is completed

blue = (ad_reading * 0.9); // store reading (scaled due to high readings

pot_rdg = blue;

// set 7 segment display value to show blue voltage

delaytime(10);

alloff();

// turn off all LEDs

vlow = 60;

// very low range 0 - 60

low = 120;

// low range 61 - 120

mid = 180;

// medium range 121 - 180

high = 255;

// high range 181 - 255

if (red <= low) // red minimum range

{

if (green <= low) // green minimum range

{

if (blue <= low)

{

colour = 1; // black

sayword(BLACK);

}

if (blue > low && blue <= mid)

{

colour = 2; // dark blue

sayword(DARK);

sayword(BLUE);

}

if (blue > mid && blue <= high)

{

colour = 3; // blue

sayword(BLUE);

}

}

if (green > low && green <= mid) // green mid range

{

if (blue <= low)

{

colour = 4; // dark green

sayword(DARK);

sayword(GREEN);

}

if (blue > low && blue <= mid)

{

colour = 5; // jade

sayword(GREEN);

}

if (blue > mid && blue <= high)

{

colour = 6; // sky blue

sayword(LIGHT);

sayword(BLUE);

}

}

if (green > mid && green <= high) // green high range

{

if (blue <= low)

{

colour = 7; // light green

sayword(LIGHT);

sayword(GREEN);

}

if (blue > low && blue <= mid)

{

colour = 8; // apple green

sayword(MEDIUM);

sayword(GREEN);

}

if (blue > mid && blue <= high)

{

colour = 9; // light blue

sayword(LIGHT);

sayword(BLUE);

}

}

}

///

if (red > low && red <= mid) // red mid range

{

if (green <= low) // green minimum range

{

if (blue <= low)

{

colour = 10; // maroon

sayword(MAROON);

}

if (blue > low && blue <= mid)

{

colour = 11; // dark purple

sayword(DARK);

sayword(PURPLE);

}

if (blue > mid && blue <= high)

{

colour = 12; // lavender

sayword(LAVENDER);

}

}

if (green > low && green <= mid) // green mid range

{

if (blue <= low)

{

colour = 13; // brown

sayword(BROWN);

}

if (blue > low && blue <= mid)

{

colour = 14; // mid grey

sayword(MEDIUM);

sayword(GREY);

}

if (blue > mid && blue <= high)

{

colour = 15; // lavender

sayword(LAVENDER);

}

}

if (green > mid && green <= high) // green high range

{

if (blue <= low)

{

colour = 16; // lime green

sayword(LIGHT);

sayword(GREEN);

}

if (blue > low && blue <= mid)

{

colour = 17; // pastel green

sayword(PASTEL);

delaytime(5);

sayword(GREEN);

}

if (blue > mid && blue <= high)

{

colour = 18; // pastel blue

sayword(PASTEL);

delaytime(5);

sayword(BLUE);

}

}

}

///

if (red > mid && red <= high) // red high range

{

if (green <= low) // green minimum range

{

if (blue <= low)

{

colour = 19; // red

sayword(RED);

}

if (blue > low && blue <= mid)

{

colour = 20; // hot pink

sayword(HOT);

sayword(PINK);

}

if (blue > mid && blue <= high)

{

colour = 21; // fushia pink

sayword(HOT);

sayword(LAVENDER);

}

}

if (green > low && green <= mid) // green mid range

{

if (blue <= low)

{

colour = 22; // orange

sayword(ORANGE);

}

if (blue > low && blue <= mid)

{

colour = 23; // light pink

sayword(LIGHT);

sayword(PINK);

}

if (blue > mid && blue <= high)

{

colour = 24; // light purple

sayword(LIGHT);

sayword(PURPLE);

}

}

if (green > mid && green <= high) // green high range

{

if (blue <= low)

{

colour = 25; // canary yellow

sayword(YELLOW);

}

if (blue > low && blue <= mid)

{

colour = 26; // pastel yellow

sayword(PASTEL);

delaytime(5);

sayword(YELLOW);

}

if (blue > mid && blue <= high)

{

colour = 27; // white

sayword(WHITE);

}

}

}

}

void initTimerA1(void)

{

ta1mr = 0x80; // XX0X XX00

 // |||| |||+- must always be 0 in timer mode

 // |||| ||+-- must always be 0 in timer mode

 // |||| |+--- 0: pulse is not output at pin TA1out

 // |||| | 1: pulse is output at pin TA1out

 // |||| | TA0out is automatically output

 // |||| +---- 0: gate function: timer counts only

 // |||| when TA0in is held "L"

 // |||| 1: gate function: timer counts only

 // |||| when TA0in is held "H"

 // |||+------ 0: gate function not available

 // ||| 1: gate function available

 // ||+------- must always be 0 in timer mode

 // |+-------- count source select bits:

 // +--------- count source select bits:

 // 00: f1

 // 01: f8

 // 10: f32

 // 11: fc32

ta1 = 0x1388;
 // Set up Timer A1 Reload Register for 10 msec interval

 // for a LED refresh rate of 100Hz

}

void startTimerA1(void)

{

 tabsr |= 0x02; //
1: start timer A1 (count flag)

}

void setTimerA1int(void)

{

 ta1ic = 0x02; // ---- XXXX

 // ||||

 // |||+-- Interupt priority level select bit

 // ||+--- Interupt priority level select bit

 // |+---- Interupt priority level select bit

 // | 000: Level 0 (interrupt disabled)

 // | 001: Level 1

 // | 010: Level 2

 // | 011: Level 3

 // | 100: Level 4

 // | 101: Level 5

 // | 110: Level 6

 // | 111: Level 7

 // +----- Interupt request bit

 // 0: Interrupt not requested

 // 1: Interrupt requested

}

void TimerA1int(void)

// interrupt function

{

static unsigned char led_select = 0;

unsigned char offset, pot_rdg_scaled;

asm("fset I");

// enable interrupts

/*
if (led_select == 0)

{

led_select = 1;

p1 = 0xFD;

offset = colour % 10;

p0 = leddigit[offset];

}

else

{

led_select = 0;

p1 = 0xFE;

offset = colour /10;

p0 = leddigit[offset];

}*/

if (led_select == 0)

{

led_select = 1;

p1 = 0xFD;

// enable LED2 and disable LED1

pot_rdg_scaled = (pot_rdg * 5 * 10)/255; // 5.0V full scale

offset = pot_rdg_scaled % 10;

p0 = leddigit[offset];
// display remainder

}

else

{

led_select = 0;

p1 = 0xFE;

// disable LED2 and enable LED1

pot_rdg_scaled = (pot_rdg * 5 * 10)/255; // 5.0V full scale

offset = pot_rdg_scaled / 10;

p0 = leddigit[offset];
// display quotient

p0 &= 0x7F;

// turn on DP segment

}

}

void redon(void)

{

p3 |= 0x05;

// Turn on Pin 3_0 and Pin 3_2

}

void greenon(void)

{

p3 |= 0x0A;

// Turn on Pin 3_3 and Pin 3_1

}

void blueon(void)

{

p3 |= 0x12;

// Turn on Pin 3_4 and Pin 3_1

}

void alloff(void)

{

p3 &= 0xE0;

}

void delaytime(delaylength)

{

for (i=0;i<255;i++)

{

for (j=0;j<255;j++)

{

for (k=0;k<delaylength;k++)

{

}

}

}

}

void sayword(wordnumber)

{

// XXXX XXXX

// |||| ||||

// |||| |||+-- CE pin

// |||| ||+--- NC

// |||| |+---- PD pin

// |||| +----- A3

// |||+------- A4

// ||+-------- A5

// |+--------- A6

// +---------- A7

p2 = 0x01; // PD cleared (0), CE = 1

p2 = (wordnumber | 0x01);

p2 = wordnumber;

p2 = (wordnumber | 0x01);

delaytime(18); // delay before power down, only needed to reduce power consumption

p2 = 0x05; // PD high, low power mode, stop playing

}

AUTHOR:

FAMILY NAME:

GIVEN NAME:

DATE

SUPERVISOR

Bachelor of Engineering (Elect. & Comms. Eng.)

GOOD

AVERAGE

POOR

EXAMINER

DEGREE

ABSTRACT

INDEXING TERMS

CO-EXAMINER

TECHNICAL WORK

REPORT PRESENTATION

TITLE:

HAU

Colour Sensor For The Blind

Chee-Yiau Vincent

Iain Murray

5 November 2004

A prototype of a colour sensor device which has the capabilities to recognize and speak out at least 64 different colours has been designed. The design uses a Red-Green-Blue LED to illuminate a surface. The level of reflected light from each of these primary colours is measured with a photodiode. The output current of the photodiode is amplified to a suitable range using a current-voltage operational amplifier. The operation of the system is controlled by a Mitsubishi M16C/62 microcontroller and the determined colour is spoken through a ISD2548 chipcorder speech chip. This colour sensor device is suitable to vision-impaired people as it allows them to perform basic colour recognition tasks.

Colour sensor, vision impaired, M16C/62, ISD2548 chipcorder

� EMBED Word.Picture.8 ���

White

Dark Environment

3cm

Photodiode

RGB LED

� EMBED Word.Picture.8 ���

sayWord()

Clear PD bit to power up speech chip

Send address of word to be spoken to speech chip

Delay to allow speech chip to finish current message

Pulse CE pin Low for one clock cycle

Set PD bit to power down speech chip

Main

Call sayWord() Function to Speak Colour

Use Nested IF Statement to Determine Colour

External Interrupt INT0

Take AD Sample

Turn RED LED ON

Take AD Sample

Turn GREEN LED ON

Take AD Sample

Turn RED LED ON

Endless While Loop

Initialise Interrupts & Program Variables

_1161050575.unknown

_1161163602

_1161110233.doc
[image: image1.png]b el
. sl
o el
2 4 OPAdP 5 3 7
L] orae .
" in?w?
w -
R2 iz
10k 1ok
[
e
o w3 whem R
- i © o
W W w S
0.1uF o
1 -
1 W

_1160948946

_1127151481

_1160766088.doc
[image: image1.png]NPUT

“active"

v
o
I
Re
e iy
T
Va(X) o
eyt)
Rp
08

_1141027968

_1127150498

_1058300510.doc
[image: image1.png]-
C u I‘ t 1 I) School of Electrical
and Computer Engineering

