
A Portable Device for Optically Recognizing Braille – Part II:
Software Development

I Murray and T Dias
School of Electrical and Computer Engineering

Curtin University of Technology
Kent Street, Bentley, Western Australia 6102

Australia
i.murray@ece.curtin.edu.au | rdiast@curtin.edu.au

This article describes the software portion of the research work that developed a prototype portable
device for optically scanning embossed Braille and conversion of the scanned text to binary Braille
representation. The hardware development was reported in Part I of this paper [8]. An application to
convert the literary Braille code to expanded text has also been implemented. The system developed
utilises a hand held scanner that captures the embossed Braille image, in real time, via a linear 128-
pixel CCD array. A Texas Instruments Digital Signal Processor performs recognition processing.

1 Introduction
Part one of this two-part article provides a brief
introduction to the Braille system and the issues
involved in optically recognizing a tactile me-
dium [8]. In this paper a description of the soft-
ware development is given.

2 Software Design

2.1 Host Computer Interface

The communications between host and DSP
Starter Kit (DSK) are necessary for Braille de-
code from the binary Braille representation to
fully expanded text. The routines to achieve this
are detailed in this section. These functions (table
1) are called from Blenkhorns original code and
were not significantly altered in this work [2,3].

Table 1: Significant host routines
Used In Function Name Description
STAND ALONE HEXDUMP.C Dumps the contents of

a binary Braille file to
screen.

STAND ALONE TEXTTOBRL.
C

Converts an ASCII
file to binary Braille.
Test purposes only.

CONVERT.C CONVERT_T
O_USSBC

Converts raw data to
US standard Braille
code

CONVERT.C READ_LINE Reads a line from the
Braille input stream.

CONVERT.C ADD_TO_
OUTPUT

Outputs a converted
character

2.2 Host and DSK Interface Routines

Texas Instruments supply a library of routines
that allow communications between the DSK and
a host computer [5]. The DSK and host computer

communicate serially through an RS-232 cable
with the host computer transmitting data from
serial communications port. The host transmits
and receives through its on-board UART. How-
ever, the DSK does not have a UART and there-
fore must simulate one. This is achieved by the
use of two hardware pins known as the External
Flag output (XF) and the Branch control Input
(BIO). The XF line is connected to the communi-
cations port receive pin and the BIO pin is con-
nected to communications port transmit line with
the host’s DTR line connected to the
TMS320C50 reset pin, which remains high unless
resetting the DSP [4].

An application must be executed on the host to
begin DSK communications, with the program
running on the host initiating all of the communi-
cation processes [4]. The communications kernel
residing in the DSP responds to the hosts re-
quests. To initiate data transfers the first word
that must be sent to the DSK is a control word.
After the control word has been sent, the ad-
dresses of the desired data value(s) followed by
the length of the data block to transfer are trans-
mitted. After each word has been received by the
DSK, the DSK responds by sending an echo of
the received data back to the host. In all commu-
nications used in this work, the echoed character
is ignored [6]. Receiving data from the DSK re-
quires reading the host RS-232 registers. How-
ever, transmission of data back to the host is ac-
complished by simulating an RS-232 UART as
mentioned above. The data to be sent to the PC is
assumed to be in the accumulator at this point.

141
Seventh Australian and New Zealand Intelligent Information Systems Conference, 18–21 November 2001, Perth, Western Australia

2.3 Grade-2 Decompression

To achieve the translation of compressed Braille
to expanded text, several programs were devel-
oped. They are an application to create a file to
simulate the output from the scanner, a program
to check the created file and finally the conver-
sion program itself [7,8].

To simulate decoding of Braille, a utility was cre-
ated to read a text file and convert the input to the
format that is output by the scanner. The format
from the scanner uses the high order byte of a 16
bit word with a set bit representing a dot being
present and a zero as no dot present. For example,
the code 10101000 in the high byte indicates that
dot 1, dot 3 and dot 5 are set which is lower case
o. To check the conversion is done correctly, a
hex dump routine was also written that read the
binary file and dumped the hex representation to
screen.

The conversion routine uses much of the code
developed by Blenkhorn, 1995 [2,3]. The main
difference lies in the way Braille is presented to
the conversion program. The original format in
[3] was used to decode a file of USBC characters
and create a file of ASCII text. In the prototype a
single character representing dot positions is ac-
cepted by the convert application, decoded if pos-
sible, and sent to the output stream. If it is unable
to be decoded, such as the case of a contraction or
format sign, the code is stored and then decoded
when the context has been determined. The modi-
fied algorithm for the conversion routine is de-
tailed in Appendix A.

2.4 DSP Algorithms

The algorithms used to capture and convert the
image are described here. The steps involved
were specified as the real time schedule, initiali-
sation routines, image slice capture, recognition
and data transmission. The relevant routines are
presented in Table 2. The flowchart depicted in
figure 1 illustrates the program flow for the image
capture and recognition routines.

2.5 Image Slice Capture

Illustrated in figure 2 is a CCD signal of the
bright areas illuminated as the CCD first ap-
proaches the column of Braille dots (at bottom)
followed by the shadow cast as the CCD and lens
passes over the said column. It may be noted
from this diagram that an average level is ob-
tained at the reference points in this figure.

Table 2: Significant DSP routines

Initialise DSP and
AIC

INT3 (linear
movement
detected)

Read 22 Samples
from AIC int DSP

Average Regions
and truncate

Compare to
Reference

Write to scanword

Match to
template Cell No

Look up Binary
Braille Code

Send binary Braille
Code

Clear Scanword
Buffer

Yes

 Figure 1: Program flow chart

One major concern in this work was the fact that
Braille is embossed on many forms of material,
i.e. high quality paper, plastic thermoform (beige
coloured) and standard 80 GSM paper. CCD
voltages obtained from these mediums differ
quite markedly. By obtaining an averaged refer-
ence level from areas that should contain only
reflection from blank paper (2), automatic con-

Used In Function Name Description
MAIN RECOGNISE Performs the recognition of

the scan word array.
SLICERD AICINIT Initialise AIC on DSK board.
AICINIT AIC_2ND Serial port enables and sends

AIC parameters.
MAIN LOADSLICE Reads one CCD sample and

determines dot positions.
MAIN RECOGNISE Performs correlation of Cell

maps to scan word array.

142
Seventh Australian and New Zealand Intelligent Information Systems Conference, 18–21 November 2001, Perth, Western Australia

trast, with respect to the backing medium, may be
obtained. This will then yield a reference level to
threshold the incoming signal.

From the fact samples are captured, from the time
of the SI pulse, at 100µs intervals,[6] samples 1
through 4 may be discarded as they lie off the
lens area. The same applies to samples over num-
ber 22. Samples 5, 6 and 20,21 should, if the de-
vice is correctly aligned, provide the reference
level. This has the added advantage that as the
reference level is obtained for every slice taken,
dirt appearing in the image should, in all but the
most extreme cases, be compensated for. These
samples, when averaged, also overcome the dis-
crepancy in CCD array sections. Dot positions are
obtained by averaging and saving the relevant
samples for those positions. Figure 3 illustrates a
captured slice over the illuminated section of the
Braille cell. There appears in the image a step
where the second 64 pixel array commences.

Figure 2: Image slice signals

Figure 3: Si pulse and the image of three raised dots

It is worth noting the overlap as an attempt to
overcome positional errors. This method is infe-
rior to the application of fuzzy logic. By the use
of membership functions, a far more intelligent
decision as to dot location may be made. This
concept will be marked for further investigation.

It must be mentioned at this point that for inter-
point Braille to be read, it is necessary to know
the order of bright and shadow. If an interpoint
dot is scanned, the bright/dark order is reversed.
As the interpoint dot is a dip in the paper, CCD
signals showed that the dot appeared as a shadow
followed by a bright (low CCD level followed by
high CCD level). In the context of Braille OCR
this is an important point of consideration.

Once the image of each vertical scan is captured,
averaged and compared to the reference level
they are stored as depicted in table 3.

Table 3: Dot position within the scan word

Sample Number
Dot Position

7,8,9,10,11 dot one
11,12,13,14,15 dot two
14,15,16,17,18,19 dot three

Vertical slices are stored in a single byte, position
oriented (table 4). That is 3 pairs of 2 bits repre-
senting whether that position is bright, shadow or
reference. Two bits are reserved for either 8 dot
Braille or status. These results are captured in a
first in first out (FIFO) buffer of 50 vertical
slices, or scanwords. As slices come into this ar-
ray, the old slices are rolled off the storage area
and the new slice is placed on the top of the stack.
The circular buffer used in conjunction with the
data move abilities of the TMS320C50 allows the
FIFO buffer to be maintained with very few
overheads. The code fragment detailed below il-
lustrates that just 2 instructions are required to
maintain the FIFO buffer and safeguard against
overflow and underflow of that buffer.

After each slice capture an attempt to recognise
the image in the FIFO buffer is made. This is
achieved by a bit mask comparison with ideal
masks

Table 4 : Scan word storage

On a successful match, the binary Braille code is
transmitted to the host for decoding into ex-
panded text and the buffer is cleared. Otherwise
the system waits for the next vertical slice to see
if that completes the cell. With this method 50
slices equates to 6.35mm and as Braille cells are
4mm edge to edge allows a slight overlap.

Bright Shadow Reference Status
10 01 00 XX

143
Seventh Australian and New Zealand Intelligent Information Systems Conference, 18–21 November 2001, Perth, Western Australia

3 Device Testing

3.1 Image Capture and Scanner Testing

For testing purposes, test patterns of Braille dot
combinations were produced. These patterns are
ideals, in that the embossing is not degraded by
use and they are produced on a Perkins Brailler in
good condition, yielding high quality dots.

All alignment of scanner and illumination as well
as parts of the recognition process was performed
using these ideal sheets. To simulate marks, ink
and pencils were used. “Flattening” a test sheet,
achieved by placing it under several books, cre-
ated worn Braille. This last aspect closely resem-
bles the way stored Braille degrades. The overall
image capture was clear and well defined. Ade-
quate voltage levels for comparisons were
achieved even on worn and thermoform Braille.

3.2 Recognition Algorithm Testing

For testing purposes, two reference cells were
developed for the correlation routine matching
the incoming scan words. The first had all dots
set, that is dots 1,2,3,4,5,6 are raised, and the sec-
ond with dots 1,4,5,6 raised. This was considered
sufficient for testing and evaluation of the recog-
nition algorithm.

3.3 Braille Decode Software Testing

Several applications, as described previously,
were constructed to simulate the Braille decode
section of this project. Under the test conditions a
limited number of exceptions were incorporated.
It was not expected that all contractions will de-
code correctly, in particular the syllable boundary
rule. Simulations indicated that on implemented
rules and contractions, the convert program func-
tioned as intended.

4 Conclusions

4.1 Achievements

A device that optically scanned Braille and rec-
ognised the cell was successfully developed. The
scanner assembly provided signals of a suitable
quality and level to enable processing of the rela-
tive dot positions with a high degree of reliability
and flexibility. The process of decoding literary
Braille [1] to text was achieved, although not all
contractions in English Braille were imple-
mented. This is of little consequence, as alternate
rules will be required in the near future when the

new standard for universal Braille code is re-
leased.

Partial implementation of the cell recognition was
completed. This section requires storage of cell
patterns to correlate with the stored data in “scan
word”. This was a major task in itself and was not
given a high priority, as proving the approach
required only some sample cell maps. Addition-
ally, the cell maps are dependant on the linear
rate of movement or slice captures per inch. As it
is intended to alter this specification in future
work (detailed in section 4.3), few cell maps were
generated. The storage of these maps had an in-
fluence on the slice rate capture, at 200 slice cap-
tures per inch, 2048 words are needed for storage.
This reduces to 756 words at 75 slice captures per
inch.

4.2 Significant Achievements

The most significant achievements of this work
can be separated into two areas. They are image
capture of a tactile medium and the digital signal
processing recognition system.

As stated earlier, the capture of a tactile written
medium has unique demands. The method of cap-
turing the image of an embossed cell by selfoc
lens, oblique illumination and linear CCD array
provided excellent imaging and allowed for a
much reduced level of processing when compared
to area arrays and commercial flatbed scanners. It
must be stated, however that this style of scanner
has a major disadvantage. It is difficult to keep
vertical with respect to the Braille line and tends
to wander off the ideal alignment.

4.3 Recommendations for Future Work

There are several aspects of the prototype that
require further development to bring this device
to a point that it is of practical use.
4.3.1 Storage of Cell Maps
For testing purposes, each cell map contains 32
words, covering column one, the column break
and column two. This method was simple to im-
plement but also inefficient. The most obvious
inefficiency is in the column break. This area
should contain all zeros, i.e. at reference level, for
sixteen samples (scan words). Therefore there is
no need to store a zero array. A check to see if
sixteen consecutive words are all zero would per-
form the same function. As the pattern necessary
for each column combination is 23, or eight pos-
sible variants, and column one possibilities are

144
Seventh Australian and New Zealand Intelligent Information Systems Conference, 18–21 November 2001, Perth, Western Australia

identical to column two possible dot patterns,
there is no need to store both. A check of column
one or two will yield an octal number for that
column. The result being a two digit octal number
corresponds to the unique dot pattern of that cell.
Some examples are shown in Table 5.

Table 5: Improved cell map

Column one
(Dots set)

Column two
(Dots set)

Result
Octal Number

--- 5-- 04
1-- --- 40
--3 --6 11
--- 4,5,6 07
1,2,3 --- 70
1,2,3 4,5,6 77

A look up table using the octal reference may be
used to transmit the assigned binary Braille code
to the host.

By this method, cell maps would be an array of
eight words. Just seven of each would be re-
quired, as a cleared column is not required to be
stored, i.e. one that has no dots set could be
checked for zero contents as described for column
spacing. This requires 64 words of cell map stor-
age compared to 2048 words as implemented in
the prototype.
4.3.2 Recognition of Dot Position
The use of fuzzy logic in determining dot position
may allow for positional errors within each verti-
cal slice better than a crisp decision as used in the
prototype. The dot position could be determined
by the strength of its membership in a fuzzy set,
thereby allowing a greater degree of positional
flexibility.

5 References
[1] Bledsoe W, “Braille: A Success Story,

Evaluation of Sensory Aids for the Visually
Handicapped”, National Academy of Sci-
ences, Washington U.S.A. pp 3-36, 1972

[2] Blenkhorn P.L, Personal Transcription Sys-
tems, Computerised Braille Production, The
Proceedings of the 5th Annual Workshop,
Winterthur October 30-November 1,1985

[3] Blenkhorn P L, “A system for converting
Braille into print”, IEEE Transactions on
Rehabilitation Engineering, vol. 3 no. 2, pp.
215-221, 1995

[4] Texas Instruments, TMS320 DSP Designers
Notebook, Volume one, Texas Instruments,
USA, 1996.

[5] Texas Instruments, TMS320C5X DSP Start-
ers Kit Users Guide, Texas Instruments,
USA, 1996

[6] Texas Instruments, TMS320C5X Users
Guide, Texas Instruments, USA, 1997

[7] Murray, I, A Portable Device for the Recog-
nition of Braille, Thesis, School of Electrical
and Computer Engineering, Curtin Univer-
sity of Technology, 1998

[8] Murray, I. and Dias T, A portable device for
Optically Recognizing Braille – Part I:
Hardware development” submitted to
ANZIIS 2001

Appendix A : Modified algorithm for
the conversion routine
 initialise and load tables
 while not end of input do
 begin
 input text is read in
 while still converting do
 begin
 start at rule defined by current character
 match = FALSE
 do
 if focus matches
 and state is ok
 and right context is ok
 and left context is ok
 begin
 output right hand side of rule
 set new state
 match = TRUE
 move along input buffer
 end
 else go to next rule
 until match
 end
 end

145
Seventh Australian and New Zealand Intelligent Information Systems Conference, 18–21 November 2001, Perth, Western Australia

	Welcome
	Next Paper by Session
	Previous Paper by Session
	Index

