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This article describes the software portion of the research work that developed a prototype portable 
device for optically scanning embossed Braille and conversion of the scanned text to binary Braille 
representation. The hardware development was reported in Part I of this paper [8]. An application to 
convert the literary Braille code to expanded text has also been implemented. The system developed 
utilises a hand held scanner that captures the embossed Braille image, in real time, via a linear 128-
pixel CCD array. A Texas Instruments Digital Signal Processor performs recognition processing. 
 

1 Introduction 
Part one of this two-part article provides a brief 
introduction to the Braille system and the issues 
involved in optically recognizing a tactile me-
dium [8]. In this paper a description of the soft-
ware development is given.  

2 Software Design  

2.1 Host Computer Interface 

The communications between host and DSP 
Starter Kit (DSK) are necessary for Braille de-
code from the binary Braille representation to 
fully expanded text. The routines to achieve this 
are detailed in this section. These functions (table 
1) are called from Blenkhorns original code and 
were not significantly altered in this work [2,3]. 

Table 1: Significant host routines 
Used In Function Name Description 
STAND ALONE HEXDUMP.C Dumps the contents of 

a binary Braille file to 
screen. 

STAND ALONE TEXTTOBRL.
C 

Converts an ASCII 
file to binary Braille. 
Test purposes only. 

CONVERT.C CONVERT_T
O_USSBC 

Converts raw data to 
US standard Braille 
code 

CONVERT.C READ_LINE Reads a line from the 
Braille input stream. 

CONVERT.C ADD_TO_ 
OUTPUT 

Outputs a converted 
character 

2.2 Host and DSK Interface Routines 

Texas Instruments supply a library of routines 
that allow communications between the DSK and 
a host computer [5]. The DSK and host computer 

communicate serially through an RS-232 cable 
with the host computer transmitting data from 
serial communications port. The host transmits 
and receives through its on-board UART. How-
ever, the DSK does not have a UART and there-
fore must simulate one. This is achieved by the 
use of two hardware pins known as the External 
Flag output (XF) and the Branch control Input 
(BIO). The XF line is connected to the communi-
cations port receive pin and the BIO pin is con-
nected to communications port transmit line with 
the host’s DTR line connected to the 
TMS320C50 reset pin, which remains high unless 
resetting the DSP [4]. 
 
An application must be executed on the host to 
begin DSK communications, with the program 
running on the host initiating all of the communi-
cation processes [4]. The communications kernel 
residing in the DSP responds to the hosts re-
quests. To initiate data transfers the first word 
that must be sent to the DSK is a control word. 
After the control word has been sent, the ad-
dresses of the desired data value(s) followed by 
the length of the data block to transfer are trans-
mitted. After each word has been received by the 
DSK, the DSK responds by sending an echo of 
the received data back to the host. In all commu-
nications used in this work, the echoed character 
is ignored [6]. Receiving data from the DSK re-
quires reading the host RS-232 registers. How-
ever, transmission of data back to the host is ac-
complished by simulating an RS-232 UART as 
mentioned above. The data to be sent to the PC is 
assumed to be in the accumulator at this point. 
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2.3 Grade-2 Decompression 

To achieve the translation of compressed Braille 
to expanded text, several programs were devel-
oped. They are an application to create a file to 
simulate the output from the scanner, a program 
to check the created file and finally the conver-
sion program itself [7,8]. 
 
To simulate decoding of Braille, a utility was cre-
ated to read a text file and convert the input to the 
format that is output by the scanner. The format 
from the scanner uses the high order byte of a 16 
bit word with a set bit representing a dot being 
present and a zero as no dot present. For example, 
the code 10101000 in the high byte indicates that 
dot 1, dot 3 and dot 5 are set which is lower case 
o. To check the conversion is done correctly, a 
hex dump routine was also written that read the 
binary file and dumped the hex representation to 
screen. 
 
The conversion routine uses much of the code 
developed by Blenkhorn, 1995 [2,3]. The main 
difference lies in the way Braille is presented to 
the conversion program. The original format in 
[3] was used to decode a file of USBC characters 
and create a file of ASCII text. In the prototype a 
single character representing dot positions is ac-
cepted by the convert application, decoded if pos-
sible, and sent to the output stream. If it is unable 
to be decoded, such as the case of a contraction or 
format sign, the code is stored and then decoded 
when the context has been determined. The modi-
fied algorithm for the conversion routine is de-
tailed in Appendix A. 

2.4 DSP Algorithms 

The algorithms used to capture and convert the 
image are described here. The steps involved 
were specified as the real time schedule, initiali-
sation routines, image slice capture, recognition 
and data transmission. The relevant routines are 
presented in Table 2. The flowchart depicted in 
figure 1 illustrates the program flow for the image 
capture and recognition routines. 

2.5 Image Slice Capture 

Illustrated in figure 2 is a CCD signal of the 
bright areas illuminated as the CCD first ap-
proaches the column of Braille dots (at bottom) 
followed by the shadow cast as the CCD and lens 
passes over the said column. It may be noted 
from this diagram that an average level is ob-
tained at the reference points in this figure. 

Table 2: Significant DSP routines 

Initialise DSP and
AIC

INT3 (linear
movement
detected)

Read 22 Samples
from AIC int DSP

Average Regions
and truncate

Compare to
Reference

Write to scanword

Match to
template Cell No

Look up Binary
Braille Code

Send binary Braille
Code

Clear Scanword
Buffer

Yes

 Figure 1: Program flow chart 
 
One major concern in this work was the fact that 
Braille is embossed on many forms of material, 
i.e. high quality paper, plastic thermoform (beige 
coloured) and standard 80 GSM paper. CCD 
voltages obtained from these mediums differ 
quite markedly. By obtaining an averaged refer-
ence level from areas that should contain only 
reflection from blank paper (2), automatic con-

Used In Function Name Description 
MAIN RECOGNISE Performs the recognition of 

the scan word array. 
SLICERD AICINIT Initialise AIC on DSK board. 
AICINIT AIC_2ND Serial port enables and sends 

AIC parameters. 
MAIN LOADSLICE Reads one CCD sample and 

determines dot positions. 
MAIN RECOGNISE Performs correlation of Cell 

maps to scan word array. 
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trast, with respect to the backing medium, may be 
obtained. This will then yield a reference level to 
threshold the incoming signal. 
 
From the fact samples are captured, from the time 
of the SI pulse, at 100µs intervals,[6] samples 1 
through 4 may be discarded as they lie off the 
lens area. The same applies to samples over num-
ber 22. Samples 5, 6 and 20,21 should, if the de-
vice is correctly aligned, provide the reference 
level. This has the added advantage that as the 
reference level is obtained for every slice taken, 
dirt appearing in the image should, in all but the 
most extreme cases, be compensated for. These 
samples, when averaged, also overcome the dis-
crepancy in CCD array sections. Dot positions are 
obtained by averaging and saving the relevant 
samples for those positions. Figure 3 illustrates a 
captured slice over the illuminated section of the 
Braille cell. There appears in the image a step 
where the second 64 pixel array commences.  
 

 
Figure 2: Image slice signals 

 

 
Figure 3: Si pulse and the image of three raised dots 

It is worth noting the overlap as an attempt to 
overcome positional errors. This method is infe-
rior to the application of fuzzy logic. By the use 
of membership functions, a far more intelligent 
decision as to dot location may be made. This 
concept will be marked for further investigation. 
 

It must be mentioned at this point that for inter-
point Braille to be read, it is necessary to know 
the order of bright and shadow. If an interpoint 
dot is scanned, the bright/dark order is reversed. 
As the interpoint dot is a dip in the paper, CCD 
signals showed that the dot appeared as a shadow 
followed by a bright (low CCD level followed by 
high CCD level). In the context of Braille OCR 
this is an important point of consideration. 
 
Once the image of each vertical scan is captured, 
averaged and compared to the reference level 
they are stored as depicted in table 3. 

Table 3: Dot position within the scan word 

Sample  Number 
Dot Position 

7,8,9,10,11 dot one 
11,12,13,14,15 dot two 
14,15,16,17,18,19 dot three 

 
Vertical slices are stored in a single byte, position 
oriented (table 4). That is 3 pairs of 2 bits repre-
senting whether that position is bright, shadow or 
reference. Two bits are reserved for either 8 dot 
Braille or status. These results are captured in a 
first in first out (FIFO) buffer of 50 vertical 
slices, or scanwords. As slices come into this ar-
ray, the old slices are rolled off the storage area 
and the new slice is placed on the top of the stack. 
The circular buffer used in conjunction with the 
data move abilities of the TMS320C50 allows the 
FIFO buffer to be maintained with very few 
overheads. The code fragment detailed below il-
lustrates that just 2 instructions are required to 
maintain the FIFO buffer and safeguard against 
overflow and underflow of that buffer. 
 
After each slice capture an attempt to recognise 
the image in the FIFO buffer is made. This is 
achieved by a bit mask comparison with ideal 
masks 

Table 4 : Scan word storage 

 
On a successful match, the binary Braille code is 
transmitted to the host for decoding into ex-
panded text and the buffer is cleared. Otherwise 
the system waits for the next vertical slice to see 
if that completes the cell. With this method 50 
slices equates to 6.35mm and as Braille cells are 
4mm edge to edge allows a slight overlap.  

Bright Shadow Reference Status 
10 01 00 XX 
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3 Device Testing 

3.1 Image Capture and Scanner Testing 

For testing purposes, test patterns of Braille dot 
combinations were produced. These patterns are 
ideals, in that the embossing is not degraded by 
use and they are produced on a Perkins Brailler in 
good condition, yielding high quality dots. 
 
All alignment of scanner and illumination as well 
as parts of the recognition process was performed 
using these ideal sheets. To simulate marks, ink 
and pencils were used. “Flattening” a test sheet, 
achieved by placing it under several books, cre-
ated worn Braille. This last aspect closely resem-
bles the way stored Braille degrades. The overall 
image capture was clear and well defined. Ade-
quate voltage levels for comparisons were 
achieved even on worn and thermoform Braille. 

3.2 Recognition Algorithm Testing 

For testing purposes, two reference cells were 
developed for the correlation routine matching 
the incoming scan words. The first had all dots 
set, that is dots 1,2,3,4,5,6 are raised, and the sec-
ond with dots 1,4,5,6 raised. This was considered 
sufficient for testing and evaluation of the recog-
nition algorithm.  

3.3 Braille Decode Software Testing 

Several applications, as described previously, 
were constructed to simulate the Braille decode 
section of this project. Under the test conditions a 
limited number of exceptions were incorporated. 
It was not expected that all contractions will de-
code correctly, in particular the syllable boundary 
rule. Simulations indicated that on implemented 
rules and contractions, the convert program func-
tioned as intended. 

4 Conclusions 

4.1 Achievements 

A device that optically scanned Braille and rec-
ognised the cell was successfully developed. The 
scanner assembly provided signals of a suitable 
quality and level to enable processing of the rela-
tive dot positions with a high degree of reliability 
and flexibility. The process of decoding literary 
Braille [1] to text was achieved, although not all 
contractions in English Braille were imple-
mented. This is of little consequence, as alternate 
rules will be required in the near future when the 

new standard for universal Braille code is re-
leased. 
 
Partial implementation of the cell recognition was 
completed. This section requires storage of cell 
patterns to correlate with the stored data in “scan 
word”. This was a major task in itself and was not 
given a high priority, as proving the approach 
required only some sample cell maps. Addition-
ally, the cell maps are dependant on the linear 
rate of movement or slice captures per inch. As it 
is intended to alter this specification in future 
work (detailed in section 4.3), few cell maps were 
generated. The storage of these maps had an in-
fluence on the slice rate capture, at 200 slice cap-
tures per inch, 2048 words are needed for storage. 
This reduces to 756 words at 75 slice captures per 
inch. 

4.2 Significant Achievements 

The most significant achievements of this work 
can be separated into two areas. They are image 
capture of a tactile medium and the digital signal 
processing recognition system. 
 
As stated earlier, the capture of a tactile written 
medium has unique demands. The method of cap-
turing the image of an embossed cell by selfoc 
lens, oblique illumination and linear CCD array 
provided excellent imaging and allowed for a 
much reduced level of processing when compared 
to area arrays and commercial flatbed scanners. It 
must be stated, however that this style of scanner 
has a major disadvantage. It is difficult to keep 
vertical with respect to the Braille line and tends 
to wander off the ideal alignment. 

4.3 Recommendations for Future Work 

There are several aspects of the prototype that 
require further development to bring this device 
to a point that it is of practical use. 
4.3.1 Storage of Cell Maps 
For testing purposes, each cell map contains 32 
words, covering column one, the column break 
and column two. This method was simple to im-
plement but also inefficient. The most obvious 
inefficiency is in the column break. This area 
should contain all zeros, i.e. at reference level, for 
sixteen samples (scan words). Therefore there is 
no need to store a zero array. A check to see if 
sixteen consecutive words are all zero would per-
form the same function. As the pattern necessary 
for each column combination is 23, or eight pos-
sible variants, and column one possibilities are 
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identical to column two possible dot patterns, 
there is no need to store both. A check of column 
one or two will yield an octal number for that 
column. The result being a two digit octal number 
corresponds to the unique dot pattern of that cell. 
Some examples are shown in Table 5. 

Table 5: Improved cell map 

Column one 
(Dots set) 

Column two 
(Dots set) 

Result 
Octal Number 

--- 5-- 04 
1-- --- 40 
--3 --6 11 
--- 4,5,6 07 
1,2,3 --- 70 
1,2,3 4,5,6 77 

 
A look up table using the octal reference may be 
used to transmit the assigned binary Braille code 
to the host. 
 
By this method, cell maps would be an array of 
eight words. Just seven of each would be re-
quired, as a cleared column is not required to be 
stored, i.e. one that has no dots set could be 
checked for zero contents as described for column 
spacing. This requires 64 words of cell map stor-
age compared to 2048 words as implemented in 
the prototype. 
4.3.2 Recognition of Dot Position 
The use of fuzzy logic in determining dot position 
may allow for positional errors within each verti-
cal slice better than a crisp decision as used in the 
prototype. The dot position could be determined 
by the strength of its membership in a fuzzy set, 
thereby allowing a greater degree of positional 
flexibility. 
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Appendix A : Modified algorithm for 
the conversion routine 
       initialise and load tables 
       while not end of input do 
       begin 
         input text is read in 
         while still converting do 
           begin 
           start at rule defined by current character 
           match = FALSE 
           do 
             if focus matches 
                  and state is ok 
                  and right context is ok 
                  and left context is ok 
               begin 
               output right hand side of rule 
               set new state 
               match = TRUE 
               move along input buffer 
               end 
             else go to next rule 
           until match 
           end 
       end 
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