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1.0 Introduction

1.1 Objectives of this project

In a world where computers are being used in almost every industry for the organisation and storage of information their interfaces for people are still very different from how people naturally interact with their natural environment.  Because computers have unnatural interfaces they are not very accessible to people who lack or have impaired senses like vision and limb mobility.  One of the senses that is being underutilised in current computer interfaces is the sense of touch.  At the moment the devices that allow the computer to generate a tactile virtual environment (VE) are limited in functionality and are not able to provide a tactile VE that allows a person to fully use their sense of touch as they do with the physical environment.  This thesis is concerned with a haptic device called the PHANTOM Omni™ created by SensAble Technologies, Inc. that gives the user a single point-of-contact in a VE.  The thesis also discusses the creation of an environment for testing how people respond to specific shapes using this device so that VEs created for it can be optimised to provide the most efficient interface.

1.2 The results of this project

A haptic view was created in Apple’s OS X Cocoa framework that allows shapes to be haptically rendered.  The haptic view was designed so that it can easily be integrated into a testing mechanism to allow the testing of users’ response to haptic shapes.  A number of 2D shapes were created for this haptic view using three (3) different representations.  These two creations provide the foundation of a testing platform to get test results from users.  The construction of a testing program was started but not completed to a useable state.  Towards the end of this thesis this testing program is discussed and a better solution to the storage and management of the collected data is also discussed.

1.3 Thesis outline

This thesis begins with background information that is important in understanding the context of this project and its outcomes.  It starts in chapter 2.0 with an overview of current computer interfaces.  This also speaks about future computer interfaces.  Chapter 3.0 specifically explains the body of study known as haptics, the principles of haptic interaction and the applications of haptics.  It also briefly covers some of the relevant history of haptics.  Chapter 4.0 covers in detail why shape recognition data is needed and goes into some detail about how it should be collected.

The next set of chapters cover the work that was completed.  Chapter 5.0 discusses the development environment.  Chapter 6.0 discusses the solution pursued for creating an environment to display haptic shapes and the creation of haptic shapes.  Chapter 7.0 then discusses the storage of data in the testing program that was started and how it could be improved.

Chapter 8.0 concludes this thesis with an overview of what was completed, what could be improved and what needs to be done next to see the created environment used to collect real data.


2.0 
3.0 Human computer interaction

3.1 Traditional and futuristic HCI

In order for computers to perform useful tasks there needs to exist some form of interface that allows the computer to be controlled via commands issued by the user.  In early computing machines this was done via punch cards and toggle switches.  In order for the output, or results, generated by the computer to be useful to the user they need to be conveyed to the user via some method of output.  Human computer interaction (HCI) is about the approach used to facilitate this interaction between the user and the computer.  HCI interfaces are often classified by the modalities that they use for input and output.  The modality refers to the sense that is used for either input or output of information to or from the computer.  HCI devices traditionally operate with a single modality to provide input and/or output for the HCI interface they are a part of.  As technology advances, though, multi-modal devices, such as keyboards with built-in displays, are becoming available.

There are two widely used ways of interacting with computers.  They are text-based computer interfaces and Windows, Icons, Menus and Pointer (WIMP) based computer interfaces.  Each of these is discussed in the sections that follow.  Both of these HCI interfaces operate with a visual output modality and tactile input modality. Usually the computer cannot change the tactile properties of their input devices.  An example of this type of tactile input device is a standard keyboard.  The visual output device used is most commonly either a Cathode Ray Tube (CRT) monitor or a Liquid Crystal Display (LCD).  Both types of these output devices can display millions of colours, have high resolutions and are capable of displaying realistic still and moving images.  One of the problems with these traditional HCI interfaces is that they require good vision and able kinesthetic mobility.

Andy van Dam (2000) speculates that the next generation of HCI interfaces, dubbed “post-WIMP interfaces”, will allow the user to interact with computers in a more natural manner.  This would be achieved by allowing the user to use more of their senses to interact with the system.  To do this computers would need to use advanced multimodal HCI interfaces that involve gesture and speech recognition, body-part tracking and haptic force input and output.  The HCI devices that are required for this type of HCI need to continuously monitor the user’s input and generate output, thus they require a large amount of bandwidth for this information and processing power to make sense of it.

Interacting with a computer in a more natural way implies that data will be replicated across multiple senses.  For example, the location of objects in the real world can be ascertained by sight or by touch.  This further implies that not all senses need to be fully utilised, or fully able, to make use of these ‘post-WIMP’ multimodal HCI interfaces.  There is also the possibility of creating HCI interfaces that can provide assistive frameworks for a user and that are able to adapt to and work with the user’s abilities.

3.2 Text-based computer interfaces

Text-based computer interfaces display text and character symbols on a computer monitor.  This reduces all input and output data to character symbols.  The most common type of text-based computer interface is the command prompt.  The command prompt presents the user with a prompt where typed characters, from a keyboard, appear.  Once a command has finished being typed it is commonly executed by pressing the return key.  Many of the commands that exist on operating systems that employ this type of HCI interface are not represented with natural language expressions.  They are commonly obscure acronyms and abbreviations.  This makes it difficult to create an alternate HCI interface to act as an accessibility layer for people with impaired senses or mobility.  Nowadays, text-based computer interfaces are normally limited to servers, networking devices and advanced workstations.

3.3 WIMP-based computer interfaces

The most common HCI interfaces found on computer systems are WIMP-based.  These are the visual components that make up how the user sees the system.  WIMP interfaces are highly visual and can be very dynamic.  This takes full advantage of the user’s brain to process images.  These interfaces have been around for a number of years and, as such, have developed de-facto standards (ibid).  This means that widgets, user interface components and control mechanisms, are very similar across most WIMP implementations.  Despite these attributes that make WIMP-based computer interfaces useful, they are not ideal.  They do not scale well and pure WIMP implementations can be frustratingly slow (ibid) due to large and deep menu systems that can be slow to navigate.

The pointer in WIMP interfaces is where the focus of attention is normally directed.  The need to use this pointer for selecting objects and navigating around the interface means it cannot be done away with without causing a loss of functionality.  This presents a problem when creating alternative HCI interfaces to act as accessibility layers to a WIMP interface for people who are visually impaired.  When the mouse pointer cannot be seen its location and orientation in the interface can be very hard to ascertain.  Screen readers are able to let the user know what is under the pointer or happening in the current window, but they are not able to give an overview of all the windows that are displayed on the screen in the time that is possible by visual inspection.

WIMP-based computer interfaces are used to display textual and graphical data, such as graphs, 2D renders of 3D objects and images, on visual displays.  Current accessibility layers that are available on desktop computers are not able to represent this information in a way that is accessible to a person who has a visual impairment.  Possible solutions to these problems can be found in audial and haptic representations of this information.  An example of representing graphs with an audial representation is the graphing tool called MathTrax from the National Aeronautics and Space Administration (NASA) (National Aeronautics and Space Administration 2006).  This tool not only generates an audial representation with tones, noises and positioning, but it also generates a textual description of the graph that can be read aloud by a screen reader.  The answer to providing access to non-textual data for people with vision impairments lies in the use of multimodal representations of this data.

4.0 Haptics

4.1 An overview of haptics

“Haptic” is a descriptive term used to describe anything that pertains to the sense of touch.  ”Haptics”, however, is used to describe the field of knowledge that pertains to the study and application of haptic environments, haptic systems and haptic devices.  The study of haptics seeks to understand how to create more realistic VEs and simulations with which to interact (via touch).  “Haptic rendering” was defined by Salisbury, Brock, Massie, Swarup and Zilles (1995) as the process of displaying computer controlled forces on a user to make them sense the tactual feel of virtual objects (Wall 2004).  “Haptic HCI interface” refers to the VE created to act as an interface to computer software.  The interface is inclusive of the layout of objects, their shape, size, orientation, texture and associated forces and any other properties of the VE.  “Haptic HCI device” refers to the physical device that is under computer control on which the haptic HCI interface, or more generally the VE, is haptically rendered.

The human haptic system is a complex conglomerate of sensors and actuators that are tied together by the brain.  This system gives a person a tactile image of the environment they are in contact with.  A tactile image is made up of tactile and kinesthetic sensory information.  This is explained in the following paragraphs.

When a person touches an object forces are imposed on the skin (Biggs and Srinivasan 2002).  The spatial and temporal variations of the force distributions imposed on the skin within a contact area are conveyed to the brain as tactile information.  The temperature of the skin is also a part of this information, as it is directly related to the temperature of the object in question.  Tactile information is used to feel fine textures, small shapes, softness and the slipping of surfaces.  This is only one part of the sensory information that is interpreted by the brain.

The other is kinesthetic information.  This information comes from receptors in the body’s joints, tendons and muscles.  Kinesthetic information is used to determine the coarse properties of objects, such as large shapes and springlike compliances that require hand or arm motion in probing them. (ibid)
Further to these two sensory sources the human haptic system consists of motor functions, the actuators, that allow the active exploration or manipulation of the environment.  The sensory information and motor control is cognitively linked via the brain, which allows the person’s tactile image to be controlled by their intention. (ibid)
Haptic VEs are synthetic environments that can be explored and manipulated via the haptic senses.  These environments are controlled and managed by computer software that keeps track of objects in the environment and various elemental haptic effects, like friction and gravitational forces.  There are two parts to the algorithm that is used to render haptic VEs on a haptic HCI device: collision detection and collision response (Basdogan and Srinivasan 2002).  Collision detection is used to detect when the proxy (the virtual end-point of the haptic HCI device’s manipulandum) collides with a virtual object and calculate the other elemental forces that affect the proxy.  This determines the net force to be applied to the device’s manipulandum.  Collision response is the process of applying this calculated net force to the manipulandum.
Haptic HCI interfaces serve the role of providing a user with a tactile view of a VE and permitting exploration or manipulation of that environment.  This makes haptic HCI devices, the type of device needed to interact with a haptic VE, unique.  Haptic HCI devices are capable of sensing the motion and position of their manipulandum and exerting forces on it.  The forces a haptic HCI device exerts directly influence the forces applied by the user on the device’s manipulandum.  The majority of HCI devices either receive input or output information, not both, and these functions are typically not intrinsically linked to allow one to be directly influenced by the other in a way that is similar to a haptic HCI device.

Adams, Klowden and Hannaford (2000), in their discussion of stable haptic interaction, discuss two forms of haptic interaction.  One is based on control law and the other is based on VEs.  Control law can be used to control a haptic interface by enforcing a set of proportional feedback rules.  An example of a haptic interface that is governed by control law is an aeroplane’s flight stick, which proportionally reflects the loads of the aeroplane’s flight surfaces (Biggs and Srinivasan 2002).  Haptic interaction with a VE allows an environment that is constructed with shapes, textures, forces and time-dependence to be felt as if it really exists.  Having the VE translated to the haptic interface via a virtual coupler allows this to be realised.  This latter method of interaction is the type that is of concern in this thesis.
4.2 A brief history of haptic interfaces

The study of haptics originated from the creation of teleoperation systems that allowed objects to be remotely manipulated.  These systems were originally designed to facilitate the remote manipulation of radioactive materials with a “transparency” in operation.  This means that the operator should be able to experience interacting with the material as if they were working directly on it, rather than operating on it remotely.  (Wall 2004, p. 3)

In 1977 a design for a point interaction device was outlined by Atkinson, Bond, Tribble and Wilson (1997).  This system was oriented around a manipulandum that was to be controlled by forces applied through strings attached to it that could be tensed.  This device was known as the “touchy-feely” system.  Other devices described included one that was able to simulate the torques between two interacting 3D objects.  Atkinson et al. made the important observation that active manual exploration is very important in the process of touching.  This led to their ideas of a “magic glove” that would allow an entire hand to feel objects and an exoskeleton to guide the motion of individual body parts.  Despite their hyperbole, Atkinson et al. identified several applications for haptic HCI devices such as kinesthetic communication, Computer Aided Design (CAD), molecular modelling, medicine, perceptual studies, art and as a HCI tool for people who are visually impaired.  Many of these applications have been realised with technology that is now available.  (Wall 2004, p. 4)

Commercially available haptic HCI devices have been around for over a decade now.  The first commercial devices that were available include the Touch Master and SAFIRE Master (EXOS Inc. 1995), the PHANToM (Massie 1996) and the Impulse Engine (Jackson and Rosenberg 1995).  The PHANToM is one of the more popular devices that are still being used today and is the forefather of the device used in this project. (Wall 2004, p. 4)

4.3 Haptic HCI devices

There are two (2) major categories of haptic HCI devices, passive and active.  Passive haptic HCI devices only receive location information through sensors.  They do not present any forces that are under program control to the user (Biggs and Srinivasan 2002, p. 93).  The user only experiences haptic sensations caused by the physicality of interacting with the device.  Examples of devices from this category are keyboards, mice and touch-screens.  Active haptic HCI devices allow program control of the forces experienced by the user.  This is achieved through the use of sensors and actuators.

There are three (3) major categories of active haptic HCI devices: body-based, tactile displays and ground-based (ibid).  Body-based devices are worn or attached to the user.  The sensors and actuators in these devices normally interact with the joints of the user (for example, the user’s knuckles, wrist and elbow) influencing their kinesthetic sensory information.  Tactile display devices allow more detailed tactile information to be conveyed to the user’s tactile sensory system.  These devices are able to present texture and slip in a more realistic manner.  Ground-based devices include such devices as joysticks, pen-type devices and surgical simulators.  They present the user with an object to grasp (like a pen or scalpel) and the device is able to control the forces on that object.  Ground-based devices are often classified by the number of Degrees-Of-Freedom (DOF) they have.  The haptic device of concern in this thesis is a pen-type ground-based device with six (6) DOF, which is described in section 5.5.  These pen-type devices focus mainly on influencing the user’s kinesthetic sensory information and to a smaller degree their tactile sensory information.

In order for a haptic HCI device to accurately convey a VE to the user it must be capable of exerting forces that are able to convey the hardest surface in the environment to the user.  This means that if there is a solid surface the device should be able to oppose the force applied by the user against that surface and that this force should be applied very fast, in the order of milliseconds or quicker, when the manipulandum intersects the surface.
4.4 Applications of haptics

There are many places where the principles and actuality of haptics can be applied to create improved and entirely new domains of usage.  Srinivasan and Basdogan (1997, p. 393) give the following examples of application domains:

· Medicine: surgical simulators for medical training; manipulating micro and macro robots for minimally invasive surgery; remote diagnosis for telemedicine; aids for the disabled such as haptic interfaces for the blind.
· Entertainment: video games and simulators that enable the user to feel and manipulate virtual solids, fluids, tools and avatars.

· Education: giving students the feel of phenomena at nano, macro or astronomical scales; ‘what if’ scenarios for non-terrestrial physics; experiencing complex data sets.

· Industry: integration of haptics into CAD systems such that a designer can freely manipulate the mechanical components of an assembly in an immersive environment.

· Graphic Arts: visual art exhibits, concert rooms and museums in which the user can log in remotely to play the musical instruments and to touch and feel the haptic attributes of the displays; individual or co-operative virtual sculpturing across the internet.

These domains cover a wide range of applications, but the domain that is most relevant to this thesis is assistive technology, a component of the medical domain.  Assistive technology describes technology that is of benefit to people who have a physical impairment that can inhibit their use of standard devices.  Integrating assistive technology into future computer interfaces will allow the interfaces to be more accessible for people.

An application of statistics that could be gathered using the environment created in this project is the construction of haptic user interfaces for people who are blind.  An incidental benefit of creating haptic interfaces for people who are blind is that people who are nondisabled can also operate them.  The similar ability of users who are blind and sighted to learn via the haptic modality is shown (though not definitively) by Jones, Bokinsky, Tretter and Negishi (2005).  The implication, then, for users who are nondisabled is that interfaces created for people who are blind can be expanded to incorporate visual mode interfaces for an enriched, immersive and more natural user experience.

In a study by Scali, Wright and Shillito (2003) a need for ‘gestural’ interaction for CAD is identified and a haptic solution is explored and tested.  They compared the speed of 12 expert 3D Studio Max™ (a 3D graphics application) users completing simple 3D object alignment tasks via two different methods.  The first used a mouse HCI device with two (2) DOF within the 3D Studio Max™ application and the second used a device with six (6) DOF within a custom built haptic HCI interface.  It was found that the 3D studio Max™ experts were able to align the 3D objects much quicker using the device that had six (6) DOF.  The findings from this research show that haptic HCI interfaces will certainly have a strong future in this industry.  SensAble Technologies, Inc. (2006) released a CAD package called ClayTools™ that allows the creation of 3D models with a haptic HCI device in 2005.  The existence of this software shows that a commercial demand exists for haptic CAD solutions.

All of the example application domains listed in the beginning of this section have commercially available haptic products and solutions.  As the research into haptics continues the knowledge base of information will continue to grow and allow these application domains to be further penetrated by new and exemplary haptic solutions.

5.0 Collecting user haptic shape recognition data

5.1 The need for data

HCI devices are normally designed for the general public to be operated by people who are nondisabled.  This presents a problem for people who lack the sensory faculties to fully utilise these HCI devices.  They cannot operate them in an efficient manner to access many of the digital resources that exist today.

The reason that data needs to be collected on how well people recognise specific haptic shapes is to provide statistics that will allow haptic HCI interface designers to create VEs that will present the most easily recognisable shapes possible.  This will allow the interfaces to be more easily navigated by the user.  Current haptic HCI interfaces are designed in an ad-hoc fashion because there is currently very little research data on how well people haptically identify shapes and objects.  Some current research that has been completed includes how well people can differentiate between slightly different objects using visual and haptic modalities (Cooke, Wallraven & Heinrich 2005), with physical touch being used as the haptic medium.  There has also been research comparing learning with visual and haptic modalities (Jones et al. 2005), with a SensAble PHANTOM (a ground-based haptic interface similar to the PHANTOM Omni™ model) being used as the haptic interface.  This research provides an understanding of how people respond to various haptic environments, which is important, but it doesn’t give helpful information that directly guides the construction of haptic VEs.

Calle Sjöström (2001) outlines some guidelines for designing haptic computer interfaces for people who are blind.  These guidelines list a series of attributes to include in a haptic VE so that it can be haptically navigated with more efficiency.  Some of these attributes can be used for the representation of shapes, as seen in section 6.5.1, but they do not explicitly, or implicitly, state which shapes are most efficiently identified or how to best represent widgets in a haptic HCI interface.

Data on how people best identify haptic shapes is expected to have significant benefits for members of the community who are visually impaired.   People who are visually impaired currently have to use screen readers to navigate around computer interfaces and assimilate data from the interface.  Screen readers are not capable of conveying information to a user as fast as a visual display.  One reason for this is visual displays allow people who are not visually impaired to use their brains’ ability to process images very quickly, which can give the user a very quick and detailed overview of the display.  The haptic HCI device that was of concern in this project has only one point-of-contact with the generated VE, namely the haptic HCI interface.  Having only one point-of-contact means that a user’s kinesthetic sensory ability cannot be utilised to accurately determine the distance between multiple points in the VE, which will reduce the user’s ability to gain a quick overview of the VE and to accurately explore it.  Exploring a haptic VE with two or more points-of-contact would allow a user to use at least one point-of-contact as a non-static point-of-reference to guide the exploration.  Statistics on how easily people identify specific haptic shapes will allow the construction of efficient haptic HCI interfaces that use single point-of-contact haptic HCI devices.
The data that has been spoken about could also be used to design haptic icons and User Interface (UI) widgets.  These would serve the same purpose as their graphical equivalents, to form the controls of a haptic HCI interface.  The most easily recognisable shapes (including their representation) could be used to build haptic icons and widgets that, in turn, would be easily recognisable.

5.2 Collecting the data

In order to collect the statistics on how people respond to different haptic shapes it is proposed that testees are presented with unknown shapes to identify using a single point-of-contact haptic HCI device.  The times taken for the testee to identify the presented shapes would be recorded along with what they think the shapes are.  This will allow data to be collected on how fast a testee can recognise specific shapes and how accurately they can identify them.

Representing the same shape with different styles, or representations, could also affect the time taken by a testee to identify the shape.  These styles define how the shape is haptically represented.  For example, a 2D shape could be represented as a raised surface on a flat platform with gravitational forces attracting the manipulandum to the edge of the surface.  A style specifies how a shape should be constructed and what haptic properties should be attached to it.  Ergo the effect of varying the style with which shapes are presented should be studied.  It is proposed that this is achieved by including the style definition as part of the shapes’ identifiers, or names.  For example, instead of the presenting the user with a 2D square the user would be presented with a 2D square represented in a ridge style.

The scaling and orientation of shapes identified is also important data to be mindful of when assessing how easily a shape can be recognised.  When constructing haptic HCI interfaces with two- and three-dimensional shapes, or haptic icons and widgets, they need to be placed and oriented in the 3D workspace.  It is important to understand to what extent the placement and orientation affects the ability of the user to identify the shape so that a shape thought to be easily recognisable is not placed in a less recognisable orientation.  The shapes that are placed in the interface also need to be scaled to a size that is suitable for the interface.  Once again it is important to understand if the scale of a shape affects the ability of the user to identify the shape.  Manipulating the scale and orientation of shapes that are presented to testees can allow data to be collected that can be analysed to assess their effects.

An environment that allows this information to be collected is needed.  This project describes the design and construction of components that make up this environment.  The most important component is the haptic view that allows the haptic rendering of shapes.  This forms the foundation for the rendering and manipulation of shapes to be presented to testees.  An abstract shape class was designed as an integral part of the haptic view to serve as a container for the shapes created.  Although not completed, a testing program was partially constructed that allows the management of group and testee result data.  This testing program needs to be completed to allow control of the test procedure and to allow the presentation of shapes to the testee.

The data to be collected by the testing program was decided to be as follows:

· Test group name
· Testee name
· Time of test
· Actual shape
· Orientation of the shape
· Scale of the shape
· Guessed shape
· Time to guess
The inclusion of a group name was to facilitate the easy organisation of multiple test groups.  Storing the time of the test was chosen as a convenience because the start time had to be recorded so that the time to guess could be calculated.  The time to guess was decided to be at a resolution of one (1) second.  This is thought to be a sufficient resolution for the analysis of statistics that are to be collected (I Murray 2006, pers. comm., 10 May).  The rest of the information listed is the core information that is being sought as outlined in the preceding paragraphs.
6.0 The development environment

6.1 Overview

The software for this project was created using the following frameworks and device: OpenGL®, SensAble Open Haptics™ Toolkit, Cocoa and the SensAble PHANTOM OMNI™.  OpenGL® was used to provide the Open Haptics ™ toolkit with the geometric data for the shapes to be haptically rendered.  Open Haptics™ was used to manage the haptic VE and the Phantom OMNI™.  Cocoa was used to bind all of these together with the Objective-C programming language and provide the Graphical User Interface (GUI) to control it all.

One thing to note about the development environment is that although the software is able to run on any Apple OS X compatible computer it is best run on a computer with a powerful dual processor configuration.  This is because Open Haptics™ renders the haptic VE with a very high refresh rate to maintain its tactile integrity.  This is explained further in section 5.3 below.  The computer used for developing this software was an Apple Power Mac G5 dual 1.8GHz.

6.2 OpenGL®

OpenGL® is a software interface for graphics hardware (Silicon Graphics, Inc. 1994a).  Its main purpose is to render two- and three-dimensional objects into a frame buffer.  This buffer is then displayed on a computer screen or used in further imaging operations.  These objects are described as sequences of vertices or pixels.  The sequences of vertices are used to describe geometric shapes, which are made up of points, line segments and polygons.  Pixel objects are used to describe images that can be used as visual textures maps.  Pixel objects were not required in this project because only the shape and tactile texture are of concern when creating objects to stimulate the haptic senses.

OpenGL® was used to define the geometry of the shapes for the Open Haptics™ toolkit, which is described below.  The toolkit’s Haptic Library API (HLAPI) that was used reads geometric data from the OpenGL® feedback buffer (SensAble Technologies, Inc. 2005b).  The HLAPI is able to construct haptic feedback from geometric data created with OpenGL® via two buffers; the depth buffer and the feedback buffer.  OpenGL®’s depth buffer stores the depth information for each pixel that has been rendered, which is how far into the rendered view each pixel is located.  To use the feedback buffer OpenGL®’s rendering mode needs to be changed to feedback mode and a buffer needs to be created to store the feedback information.  This is done by the HLAPI.  Information about the primitives used to construct the geometry is stored in the assigned feedback buffer. (Silicon Graphics, Inc. 1994b)
6.3 SensAble Open Haptics™ Toolkit

The SensAble Open Haptics™ Toolkit is a virtual couple that allows VEs defined using OpenGL® and Open Haptics™ code to be experienced on a haptic HCI device.  The toolkit provides functions to apply friction, gravitational pull, stiffness and other haptic properties to geometric entities defined in OpenGL®.  It also provides an environment to configure the haptic HCI device in a generic sense.  For example, setting the workspace boundaries.

Another important role of the Open Haptics™ toolkit is the mapping of OpenGL®’s world coordinates to the haptic HCI device’s workspace coordinates (see section 6.2 and Figure 6.2 for more detail).  This allows the view created by the OpenGL® environment to be mapped to the touch coordinates, that is the virtual haptic workspace, and then mapped to the workspace coordinates, that is the physical haptic workspace.  These stages in converting the coordinates from the OpenGL® view to the device coordinates allows for the workspace coordinates to be independent of the touch coordinates.  This further allows haptic HCI devices with different physical workspaces to each have a specific mapping between the touch coordinates and their workspace coordinates.  This ensures there is a consistent experience between the use of different devices.
The Open Haptics™ toolkit provides two (2) APIs for creating haptic environments (SensAble Technologies, Inc. 2005b).  The first is the Haptic Device API (HDAPI).  This is the lower level API of the two and has two main components: the device and the scheduler.  The HDAPI allows for complete control over the haptic environment as every haptic frame is rendered with only the forces specified by the programmer.  The second is the Haptic Library API (HLAPI).  This API is a high-level C API that is modelled after the OpenGL® API.  As previously mentioned, it uses OpenGL® as the primary mechanism for specifying the geometry of shapes. The HDAPI is needed to initialise the device even when using the HLAPI.

The HLAPI has what is known as the “servo loop” to calculate the forces to send to the haptic HCI device.  This is a tight control loop that is run at a constant rate of 1kHz.  The servo loop needs to be run at this rate in order to render stable haptic feedback.  As such it is executed in a separate high-priority thread in the process and this thread uses a large amount of processing power.  The servo loop is managed by the HLAPI so that the developer doesn’t need to worry about implementing the force rendering algorithms, synchronisation of thread-safe data structures and state.  The HLAPI manages all this to haptically render OpenGL® geometry.  (SensAble Technologies, Inc. 2005b)
The HLAPI was chosen to control the haptic environment because of the ease of specifying shapes with OpenGL® and its simple OpenGL® like functions.  Specifying shapes in OpenGL® is easier than creating functions to determine if the manipulandum’s proxy has come in contact with the coordinates that make up the perimeter of the shape.  This allowed quicker development of the application code.

6.4 Cocoa

Cocoa is an object-oriented application environment designed specifically for developing Mac OS X-only native applications (Cocoa overview 2005).  Using this framework allows advantage to be taken of the GUI widgets provided by Apple.  These widgets provide a quick way to put together a GUI and the built-in accessibility tools of the OS X operating system are able to easily assimilate data from and interpret the interface.

The Cocoa framework has a Java™ and an Objective-C interface.  The Objective-C interface is used because of the ability to call OpenGL® and Open Haptics™ functions (which are constructed using the C programming language).  The Java interface is also only provided as a learning interface for developers familiar with java to become familiar with the Cocoa environment.

One important aspect of Cocoa is the emphasis on the Model-View-Controller (MVC) as a compound design pattern.  This design pattern is shown below.  It emphasises keeping the view and the model (which includes the data) separate and having a controller look after all communications between the two.  The software created during this project used this design pattern so that the code that controls the haptic view could be easily integrated into other pieces of software.  This meant that the haptic view could be developed in a separate test environment to the testing software, the view could also be easily integrated into the testing software and shapes that were developed independently from the testing software would still feel the same in the testing software.
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Figure 5.1: The MVC compound design pattern (Cocoa version of MVC as compound design pattern 2006)

Classes that are a part of Cocoa’s foundation and OS X’s application kit frameworks are prefixed with the initials ‘NS’.  This protects against name collisions between symbols (Code naming basics 2006).  All classes that are mentioned in this thesis that start with the ‘NS’ prefix are from Apple’s Cocoa frameworks.

Not an actual part of Cocoa, but still essential to its use, is Xcode and Interface Builder.  Xcode is an integrated development environment provided with Apple’s OS X operating system that allows the management of software projects, the building and compilation of source code and debugging of software.  Interface Builder is a program that works with Xcode to allow the visual creation of Cocoa GUIs in a ‘What You See Is What You Get’ (WYSIWYG) fashion.

The accessibility tools provided with Apple’s OS X operating system, which are able to assist people who are visually impaired use the operating system, allow the colours of the display to be inverted, for the display to zoom in to the focal area of the pointer and for the information on the screen to be read aloud by a built-in screen reader.  The tool that allows the speech to be read aloud is called Voice Over.  Voice Over benefits greatly from having a Cocoa-based GUI to interpret over other GUI implementations on the OS X operating system.  A Cocoa-based GUI can be simplified by the accessibility protocols that are associated with each widget.  The accessibility protocol enables Voice Over to ignore widgets that are not relevant to the operation of the software (Enabling accessibility in your cocoa application 2006).

6.5 SensAble PHANTOM Omni™

The SensAble PHANTOM Omni™ (Figure 5.2 below) is the haptic HCI device that was used in this project.  It is also the device that is expected to be used if the haptic view that was created in this project is used as part of a testing program for user testing.  Though other devices from SensAble that are compatible with the Open Haptics™ toolkit should work with the software created in this project.  The PHANTOM Omni™ is a ground-based device that takes the form of a stylus connected to an arm.  It has the ability to sense the location of the stylus’ tip with six (6) DOF: x-axis, y-axis, z-axis, pitch, roll and yaw.  The device provides three (3) actuators that allow force to be generated along the x-axis, y-axis and z-axis.  The haptic workspace that is available from the Omni is 160mm wide, 120mm high and 70mm deep.  Because of the mapping between the view coordinates and the workspace coordinates this cannot be fully utilised.  This is explained later in section 6.2 of this thesis.
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Figure 5.2: The SensAble PHANTOM® Omni™ haptic interface device (PHANTOM® Omni™ Haptic Device 2003)
7.0 Displaying haptic shapes

7.1 Overview

This chapter discusses the creation of the software to display haptic shapes and the creation of some haptic shapes.  The software that was developed to display haptic shapes was created and tested with a simple development GUI.  This simple development environment was also used to test the haptic shapes that were created.  Any reference to a GUI in this chapter refers to this simple development GUI.  This GUI can be seen in Appendix B.
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Figure 6.1: Object organisation and message paths
Seen above in Figure 6.1 is the layout of the objects that are the major components of the software that forms a significant part of this project’s results.  The messages are passed between the major components via the controller object.

7.2 OpenGL®, Open Haptics™ and Cocoa

Three frameworks were tied together to create the haptic display environment for this project; OpenGL®, Open Haptics™ and Cocoa.  Cocoa was used to create an interface which included a canvas for OpenGL® and controls for the program’s flow of execution.  Cocoa was also used to create and manage the OpenGL® and Open Haptics™ environments.  OpenGL® was used to draw the current shape onto the on-screen canvas and into the depth buffer or feedback buffer as specified by the shape drawing code.  The HLAPI (as described in section 5.2) reads the data from the specified buffer and then looks after the realisation of the VE on the PHANTOM Omni™.

The window component shown in Figure 6.1 (the actual window can be seen in Appendix B) was created using Interface Builder.  This window consists of an NSView object that is the visual canvas for OpenGL® and various GUI widgets that are used to send messages to the controller.  The NSView is passed via the controller to the haptic view, which uses it as a canvas for OpenGL® to draw on.  This is discussed further in section 6.3 below.  The GUI widgets in the window consist of:

· an initialisation button that changes to a stop button when the device has been initialised and started and sends a message to the controller to start/stop the PHANTOM Omni™.

· a popup menu used to inform the controller which shape to display.

· horizontal sliders used to send messages to the controller regarding the geometric scaling and rotation data to be sent to the currently displayed shape.
These controls formed a GUI that was very straightforward and had the basic controls needed to test the haptic view and to test the haptic shapes.

01 hlEnable(HL_HAPTIC_CAMERA_VIEW);

02 hlTouchableFace(HL_FRONT);

Code Fragment 6.1: Initialising the haptic workspace

When specifying the geometry of individual shapes in OpenGL® there are two major issues that affect the resulting HapticShape subclass object.  The first is the order in which the vertices are specified when writing geometry for HapticShapes and the second is the selection of the OpenGL® rendering mode used by the HLAPI to acquire the geometry to haptically render it.  Each of these is discussed in the following two paragraphs.

The order, more specifically the direction, in which vertices for geometry are specified in OpenGL® determines which side of the resulting surface is the front and which side is the back.  The direction that results in front facing surfaces is known as the winding order.  OpenGL® defines the winding order.  More about the winding order can be found in chapter 5 of ‘The OpenGL reference manual – the bluebook’ (Silicon Graphics, Inc. 1994a).  The HLAPI uses the winding order as defined by OpenGL® to also determine which side of surfaces are front and back. That is, triangles considered front facing by OpenGL® will be considered front facing by the HLAPI (SensAble Technologies, Inc. 2005a).  This implies that all geometry needs to have the vertices specified in the correct order to have the touchable face oriented in a specific direction.  It was discovered that the direction of the normal as specified in OpenGL® for the surface has no effect on this calculation.  So if a shape has its geometry specified in the opposite direction to the winding order of OpenGL® then it all needs to be reversed.  Changing the direction of, or more specifically inverting, the surface’s normal will not correct it.  The test surfaces first produced were found to be haptically transparent from the front, but their reverse side could be felt.  It was found that the geometry was specified in the direction opposite to OpenGL®’s winding order.  Line 02 in Code Fragment 6.1 above tells the HLAPI to only render the front-side of all surfaces.  The reasoning behind this is explained later in section 6.5.  After discovering that the winding order of OpenGL® was important in the specification of geometry the winding order of OpenGL® was found to be anti-clockwise through experimenting with small test cases.  Later it was learnt that the OpenGL® reference manual (Silicon Graphics, Inc. 1994a) states that anti-clockwise is the default winding order.  As a result of this all geometry is specified in an anti-clockwise order so that it can be felt in a predictable manner.

When creating HapticShapes the HLAPI needs to be told how to acquire the geometry of the shapes to haptically render them, it needs to be explicitly stated for every shape created.  Haptic shapes can be rendered via the depth buffer or feedback buffer (these are explained in section 5.2).  The depth buffer is only really useful when all of the touchable surfaces of the shape are visible in the OpenGL® view.  To be able to touch non-visible surfaces of geometry rendered from the depth buffer the HLAPI needs to be told to enable the haptic camera view, as is done in line 01 of Code Fragment 6.1. Basically this tells the HLAPI to render the haptic scene based on the motion and mapping of the haptic device in the scene (SensAble Technologies, Inc. 2005b).  The HLAPI modifies the OpenGL® viewing parameters to do this.  According to the Open Haptics™ Programming Guide (ibid) noticeable discontinuities can occur when non-visible sections of a shape are felt.  This occurs with deep or narrow groves and tunnels. To avoid problems and abnormalities with haptically rendered shapes all shapes created during this project were rendered using the feedback buffer.  The HLAPI’s feedback buffer rendering mode changes OpenGL®’s rendering mode to feedback mode and creates its own feedback buffer to capture the geometric data.  This buffer then collects the geometric primitives that make up the shape, which allows the shape to be accurately rendered in the haptic workspace. Although the haptic camera view is enabled so that the depth buffer can be used, it is recommended that any future shapes created using this haptic view use the feedback buffer to render the shapes for the reasons outlined in this paragraph.
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Figure 6.2: World, view, touch and workspace transformation matrices (SensAble Technologies, Inc. 2005b, pp. 6-13)

A mapping between the virtual workspace of OpenGL® and the physical workspace of the PHANTOM Omni™ is needed to define how the movement of the device’s stylus translates to movement in the graphical scene (SensAble Technologies, Inc. 2005b, p. 6-13).  Figure 6.2 above shows the stages of this mapping.  The world coordinates are the global frame of reference for the OpenGL® scene.  The view coordinates are the local coordinates as seen by the camera in OpenGL®, which is the coordinate system of the rendered OpenGL® view.  The touch coordinates are the parent coordinate system of the workspace coordinates.  The touch coordinates act as an abstraction layer to keep the final mapping to the haptic HCI device independent from the haptic VE (reasons explained in section 5.3).  The workspace coordinates are the local coordinates of the haptic HCI device, namely the PHANTOM Omni™ in this project.  The HLAPI provides two matrix stacks that are used to map the view coordinates to the workspace coordinates, the view-touch matrix and the touch-workspace matrix.  OpenGL® creates and is responsible for the world-view matrix.

A mapping between the view coordinates and workspace coordinates was generated so that the shapes could be felt with the same proportions as the world coordinates.  This was to allow the most accurate haptic representation of the shapes as specified in OpenGL®.  The mapping of the world coordinates to the view coordinates was the first mapping to take place.  This is done in OpenGL®.  The code for this can be seen in the implementation of the “resizeGL” method in Appendix E.  The method uses functions that are part of the OpenGL® Utility (GLU) Library to generate a model-view matrix, which is OpenGL®’s name for the world-view matrix, and a projection matrix, that only affects the OpenGL® view.  The “gluLookAt” function is used to position OpenGL®’s camera on the positive z-axis to look at the centre of the world coordinates.  This is the same way in which the orientation of the workspace coordinates were mapped so that the positive z-axis is towards the user, the negative z-axis is towards the device, the positive and negative x-axis is right and left respectively and the positive and negative y-axis is up and down respectively.  The view-touch workspace is an identity mapping, which is a direct mapping without changing the coordinates, between this model-view mapping and the touch coordinates because the coordinates are already correctly oriented and positioned.  The touch-workspace mapping is generated directly from OpenGL®’s projection matrix.  This matrix is generated using the “gluPerspective” function that is used to define the viewing frustum (Silicon Graphics, Inc. 1994a), the volume of area that gets rendered for the view, as part of the “resizeGL” method.  A HLAPI utility function called “hluFitWorkspace” is able to generate a uniform touch-workspace mapping from OpenGL®’s perspective matrix.  This completes the process of mapping coordinates from OpenGL®’s workspace to the workspace of the haptic HCI device.
The shapes that were created were haptically tested by manual exploration to ensure that their proportions were correct and that they were uniformly presented.  This verified that the mapping between the OpenGL® world coordinates and the haptic HCI device’s workspace was uniform.
7.3 Creating the haptic view

A haptic view needed to be created so that the shapes could be drawn on it to be seen visually and most importantly felt haptically.  This view was created as a standalone object in Cocoa.  This allows the haptic view to be portable across Cocoa programs by creating a simple controller object to handle its functions.  There are only four (4) messages that are needed to control the haptic view.  These are to initialise the haptic view, to start rendering a specific shape using a specific canvas with the haptic view, to change the shape being rendered in the haptic view and to stop rendering the current shape and close down the view.  As can be seen in Figure 6.1, which shows the possible message paths to and from the haptic view, all the messages pass through a controller object.  This follows the MVC design pattern by allowing the model of the environment to be passed through a controller to the view.  The benefits of this design are the modularity of the haptic view and the ability of the controller to command the flow of the haptic view’s operation in a non-ambiguous way.

The haptic view class that was created to be instantiated as a run-time object is a subclass of NSObject.  NSObject is the base class in Cocoa.  It handles tasks like object memory allocation and management.  The haptic view class handles the following tasks:

1. Creating and managing the OpenGL® environment
2. Initialising and managing the PHANTOM Omni™ haptic device
3. Creating and managing the Open Haptics™ environment
4. Setting the shape to be displayed and rendering it
5. Managing a timer to render the view as it is updated
Creating a canvas in Cocoa for OpenGL® was a trivial task.  This was first done in an exclusive Cocoa/OpenGL® environment for the sake of testing and procedure resolution.  It required constructing an NSOpenGLContext object.  The NSOpenGLContext class is used for managing the OpenGL® environment in Cocoa.  Considering the future implications of the haptic requirements for the software to be written, it was decided to make the OpenGL® view separate from the screen view.  The view was designed to be controlled by the controller object.  The controller object is responsible for initialising and operating the view.  This responsibility includes sending the view the data to display.  The view was designed to accept an NSView that would be used as a canvas for NSOpenGLContext.  NSOpenGLContext requires an NSView to be able to render the graphical scene.  To achieve this a message containing a pointer to an NSView on a GUI was passed to the OpenGL® view object via a controller object.

The OpenGL® view was then expanded to include support for the Open Haptics™ framework.  First this required that the haptic device be initialised via a trivial routine provided by the Open Haptics™ Toolkit Programmers Guide (SensAble Technologies, Inc. 2005b).  From there the following steps took place: the workspace was initialised with basic commands to allow shapes to be felt in various modes and the workspace coordinates needed to be mapped to the OpenGL®’s view coordinates.  These tasks are discussed in section 6.2.

03 – (void)startDrawingOn:(NSView *)view with:(HapticShape *)shape;

04 – (void)changeShapeTo:(HapticShape *)shape;

Code Fragment 6.2: Methods that can set or change the shape
Setting the HapticShape to be drawn in the haptic view can be done via two different messages.  The first message, line 01 in Code Fragment 6.2, tells the haptic view to start drawing on a specific NSView object and to draw a specific HapticShape.  This message is used to set the HapticShape to be displayed when there is currently no NSView assigned as the drawing canvas or the drawing canvas needs to be changed.  The second message, line 02 in Code Fragment 6.2, tells the haptic view to just change the current shape being rendered while keeping the current canvas, NSView.  The reason these two different methods were created was to facilitate the drawing on a new canvas and to allow the current HapticShape being displayed to be changed whilst drawing on the same NSView.  This functionality aids the creation of the testing interface by minimising the amount of code needed to manage the NSView because the controller does not need to worry about keeping track of the NSView it is currently using if it only wants to change the shape being displayed.

7.4 Creating modular haptic shapes

The testing environment that was developed encourages the use of an abstract haptic shape class that allows the shapes to be modular and easily switched.  The abstract haptic shape class created, called “HapticShape”, allows for shapes passed to the haptic view to be drawn and for the shapes to be adjusted via messages passed directly to them from outside the haptic view.  The HapticShape class (see Appendix D for the documentation and Appendix F for the implementation of this class) was designed to accept messages for setting rotation and scaling values on the shape and for calling the shape’s drawing methods.

The HapticShape has three (3) drawing methods; draw, drawGL and drawHL.  The draw method is the method called to tell the shape to draw itself graphically and haptically.  This method is implemented to call the drawGL and drawHL methods.  The drawGL method draws the OpenGL® representation of the shape.  This method was designed to be overloaded by a subclass of HapticShape that represents a specific shape.  The drawHL method draws the haptic representation of the shape.

7.5 2D haptic shapes

7.5.1 Representing 2D shapes in 3D space

When creating 3D models of 2D shapes one needs to consider how they will be represented because of the extra dimension that exists.  Due to the lack of data on how people identify different haptic shapes there is very little data on how to best represent 2D shapes so they can be efficiently identified.  So three representations were created and used on the 2D shapes that were created.  These representations are ridge, groove and gravity.  Each of these is respectively discussed in the following sub-sections.

In some research by Calle Sjöström (2001) a number of guidelines for point interaction haptics are outlined.  One guideline for navigation is to provide a well-defined point of reference that allows the user to orient themself.  It was decided to use a reference platform on which to create the 2D shapes.  This reference platform allows the user to quickly find the plane on which the 2D shape is located rather than searching around in 3D space for it.  This coincides with another guideline suggested for getting an “overview” of the VE.  With pure one-point haptics it is easy to miss an object even if one is really close to it.  It is suggested by Sjöström that using objects with large connected surfaces can compensate for this problem.  This is achieved when the 2D representation is connected to the reference platform.  For the representations that are only 2D, like the gravity representation shown below in section 6.5.4, the representation is placed directly on the reference platform.  For the representations that are 3D, like the ridge representation described below in section 6.5.2, the representation is connected with the reference platform.  This is most easily seen in Figure 6.3, Figure 6.4 and Figure 6.5, which are also located below.  The last guideline of importance recommends that sharp edges and corners be avoided because the user can easily slip past them.  This issue can be addressed by presenting sharp and round-edged versions of shapes to testees and by representing these with different styles.  This would allow for an analytical assessment of the issue.  Round-edged versions of shapes were not created for this project.
Handling what happens when the stylus slips off the edge of the reference platform is an important part of representing 2D shapes in 3D space.  As mentioned earlier, in section 6.2, it was decided to have only the front facing sides of surfaces rendered.  This is beneficial because it prevents the stylus from getting caught behind the reference platform.  It allows the stylus to pass through from behind the reference platform with no resistance.  Keeping only the front surface of the representation touchable prevents the possibility of disorienting a testee by letting them think the back of the reference platform needs to be explored.
The scaling and rotation functions of the 2D shapes created allow for the shape to be rotated upon its reference platform and scaling in its two dimensions.  This allows for a shape’s scale and rotation to be modified to see whether they affect a user’s ability to identify them whilst not affecting the representation of the shape.  The size and orientation of shapes should be independent of their representation so that if there is any association between the size, orientation and representation it can be discovered.

7.5.2 Ridge
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Figure 6.3: Ridge representation of a 2D circle

The ridge representation of 2D shapes extrudes the shape from the reference platform leaving a ridge around the perimeter of the shape.  The shape is then felt when the stylus is wedged between the reference platform and the ridge.  The stylus can then be moved around the perimeter of the shape to ascertain its identity.  The ridge is orthogonal to the reference platform.  This can be seen in Figure 6.3 above where the red surface represents the reference platform, the blue surface represents the ridge and the green surface represents the extruded 2D shape.

There are various modifications that can be made to this representation that may affect how easily a shape presented with this representation is identified.  These modifications include adding friction to the blue surface so that it would not seem as slippery, adding gravity to the blue surface to attract the stylus to it and using different angles of approach for blue surface against the red reference platform to create a tighter or looser wedging point.  The height of the ridge could also be modified.  Each of these modifications could be used in various combinations to find the most effective ridge representation.  The shapes created for this project that use the ridge representation only used the basic ridge representation with no friction, no gravity and an orthogonal angle of approach.

7.5.3 Groove
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Figure 6.4: Groove representation of a 2D square

The groove representation of 2D shapes cuts a ‘V’ shaped groove into the reference platform that follows the perimeter of the shape.  The shape is felt when the stylus slips down the side of the groove from the reference platform and the force that was being exerted by the user against the reference platform holds it between the sides of the groove. The stylus can then be moved around the perimeter of the shape to ascertain its identity.  The groove consists of two angled walls lowered 45-degrees from the reference platform.  This can be seen in Figure 6.4 above where the red surface represents the reference platform, the green surface represents the outer wall of the groove and the blue surface represents the inner surface of the groove.

Like the ridge representation mentioned above there are various ways that this representation can be modified that could affect how easy this shape is to identify.  For the groove representation these would be very similar modifications.  The angles of the groove’s walls could be modified, friction could be added to either both or just one of the walls and gravity could be added to the walls.  The width and depth of the groove could also be modified.  The shapes created for this project that use the groove representation have no friction, no gravity and 45-degree angles on the groove walls.

7.5.4 Gravity

The gravity representation of 2D shapes places a non-touchable line on the reference platform that traces the perimeter of the shape and attaches a gravitational force to the line that attracts the stylus to it.  The shape is felt when the stylus is moved along the frictionless line where gravitational forces don’t impede its movement, which means the stylus is effectively “stuck” to the line and is only allowed to move along the line.  Moving the stylus away from the line requires a force that is stronger than the gravitational force holding it to the line.  The green line in Figure 6.5 below shows the outline of the shape.  It can also be seen that the line is flush with the reference platform, which means that it cannot be felt as an obstruction like the other representations because it blends in with the reference platform when touching it.
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Figure 6.5: Gravity representation of a 2D square


Possible ways of modifying this representation would be to add friction to the movement along the line and to vary the amount of existing gravity.  Care has to be taken when adding friction to the line.  If the frictional force exceeds that of the gravitational force, or even approaches it, the friction along the line may not be distinguishable from the gravitational force on the line.  This would need to be experimented with to determine its viability for usefulness.  The shapes created for this project that use the gravity representation use a fixed gravitational force and have no friction along the line.

7.6 3D haptic shapes

No 3D shapes were created for this project.  There were two reasons for this. First, there was not enough time to create them in addition to the 2D shapes that were created. Second, the alpha version of the testing program and the 2D shapes were considered more important as an initial study.  Representing a 3D shape is not a significantly complex task using the environment that was created.  The shape could be constructed with OpenGL® code and integrated into a subclass of HapticShape.  Modifications to the representation of the 3D shape could include adding friction to its surface and applying gravitational forces to its surface.  The abstract HapticShape class already handles the scale and orientation of the shape, though the shape should be constructed with an appropriate default scale and orientation.  For simple shapes, like cubes and spheres, there already exists an abundance of sample code and functions for creating them in OpenGL® that can be found in OpenGL® tutorial books and on the Internet.

8.0 Managing testee data

8.1  Storing test results

One of the most important functions of a piece of software that collects results from tests is the storage of the collected information.  This information needs to be easily accessed for analysis.  It was decided that the best way to do this would be to use an Extensible Markup Language (XML) file to store the data.  XML files are text-based files that are human-readable and machine-readable.  There are two advantages to using an XML file.  The file can easily be created from Cocoa and the file can easily be parsed for processing in other programs.

Creating an XML file from Cocoa is a trivial task.  Property lists were used for this.  Property lists in Cocoa are used to store, organise and access standard object types (Property list programming guide for Cocoa 2006).  These include arrays, dictionaries, strings, binary data, numbers and dates.  These object types are respectively represented with the following Cocoa classes: NSArray, NSDictionary, NSString, NSData, NSNumber and NSDate.  The NSArray and NSDictionary classes both have methods for serialising (converting an object into a serial data stream) themselves as XML property lists.  The code that was created to do this, and manage the rest of the data as mentioned below, can be found in Appendix H.
All the information was stored in a specific structure, shown below in Figure 7.1, so that it could be serialised and saved to disk.  An NSArray object was used as a wrapper to store all the information for a group of testees. This information includes all the results associated with each testee within the group.  This was chosen over an NSDictionary implementation because it was decided to keep the results of specific groups in separate files to reduce the number of group management functions required in the testing program.
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Figure 7.1: Testee data structure
8.2 Data types

Storing the test results in a property list limits the classes that can be used to represent the data.  Fortunately three (3) of the four (4) property list Cocoa classes that represent individual pieces of data are sufficient for representing the data to be collected from tests.  NSData is not used because there was no need to store any raw binary data.

Textual data like the names of testees and shapes were stored as string objects.  This however raised an issue when comparing actual shape names and the guessed names of the shape.  The names of shapes can include the name of the shape and its representation, like “2D Square (Ridge)”.  The names of guessed shapes only include the basic name of the shape, like “Square”.  This issue is easily resolved with the use of string processing to look for the string of the guessed shape within the actual shape name. NSString provides a method called “rangeOfString” that can be used to do this (NSString class reference 2006).

As can be seen in Figure 7.1 above there is no mention of the orientation or scale of the shape.  These had not yet been programmed in to the alpha testing program.  These can easily be added though by adding new entries to the result dictionary.  This could be done with the keys “orientation” and “scale”.  Orientation would be best stored as an NSDictionary of three NSNumbers where the keys for the numbers are ‘x’, ‘y’ and ‘z’ and the numbers represent the degree of rotation about their respective axes’.  Scale would be best stored as an NSNumber.

8.3 Data management with hindsight

The alpha testing program’s data management functions are only partially implemented.  These include creating groups, creating new testees and viewing a testee’s results.  The need to create all the functions for managing this data within the program proved to be tedious and time consuming.  The interface for the testing program can be seen in Appendix B. It was subsequently found that it would have been easier to implement the results management functionality using Cocoa’s Core Data framework.

Core Data is an object-graph management and persistence framework (Developing with Core Data 2006).  Managed object models can be visually constructed using Xcode’s Data Model Design tool.  This makes it much easier to store data because code does not need to be written to handle this.  It is managed by Core Data in a database like structure.  Saving to disk is also very easy, though the formats are somewhat restricted.  They are limited to an XML file format that is representative of the database, a binary file format and an SQLite database file format (ibid).  The XML file is not as easily parsed as one generated from a property list, so it would not have the advantage of being able to be easily parsed with other programs.  Though this disadvantage is outweighed by the time saved due to automatically generated UIs for accessing and managing Core Data objects.  Also the code required to save the files is generated automatically.  These benefits compensate for the work that would be required to rebuild the testing program from scratch and outweigh the work that would be required to finish implementing the data management in the alpha version of the testing program.

9.0 Conclusion

9.1 Analysis of completed work

This project partially achieved the goals set out in the beginning.  Not all of the goals were achieved because of the unforseen complexity in the solution.  The end product consists of the following items:
· The haptic view.  This can be used to effectively present shapes for testing.
· The HapticShape class.  This can easily be used to create new shapes with knowledge of OpenGL® and some knowledge of Open Haptics™.
· Three (3) fundamental 2D shapes and definitions for three (3) representations of 2D haptic shapes.  The following shapes were created:

· A square in the ridge, groove and gravity representations

· A circle in the ridge, groove and gravity representations

· An oval in the ridge and groove representations
The key strength of the implemented haptic view is its modularity.  The ability to integrate it into other applications makes it useful for other haptic.  The view’s source code can also be modified with a minimum amount of effort to make it suitable for rendering entire VEs in Cocoa applications.  The abstract HapticShape class provides functionality that allows for the simple construction of haptic shapes and the real-time modification of these shapes.

From knowledge gained during and after this project it is recognised that the haptic view could probably have been better implemented as a subclass of NSOpenGLView with a custom controller class to manage the shapes.  This would have taken more time to implement but would result in an implementation that could be integrated into an application by adding the view in Interface Builder.  This would not give a big improvement in terms of the view’s functionality, but it would have made the haptic view fit a little better into Cocoa’s MVC-design environment.

The shapes designed and implemented for this project are only a small part of the library of shapes that would be required to perform suitable testing.  However, the shapes created and their representations are considered to be useful and serve as a foundation for the library of required shapes. There could be unforeseen issues with the implementation of 3D shapes because none were created during this project, but this is considered to be unlikely because of the use of 3D shapes when implementing the haptic view and the 3D nature of two representations of 2D shapes that were defined.

The testing program did not realise the initial expectation of this project (as outlined in Appendix A), however, the knowledge gained from its construction was useful in identifying a more efficient approach for developing the program using Cocoa’s Core Data framework.  Completing the testing program would have been a very big achievement for this project and it would have allowed the collection of data to be started upon its completion.  Nevertheless, the results of this project will allow a useful and versatile testing program to be built in the future.

9.2 Recommendations for follow-on work
There are two obvious recommendations to be made for future work that would build on this project’s work.  In order to realise the collection of data on how people respond to haptic shapes a bigger library of shapes is needed and a program that can facilitate the execution of tests is needed.

The first task is to generate more shapes.  It is suggested the shapes in the list that follows be created.  These shapes were discussed with Iain Murray (2006, pers. comm., 22 March).

· 2D

· Rectangle

· Triangle

· Pentagon

· Star

· 3D

· Cube

· Rectangular Cube

· Sphere

· Cylinder

· Egg

· Pyramid

A working knowledge of OpenGL® and the Objective-C programming language are required for creating new haptic shapes.  Also needed is a basic knowledge of how the HLAPI renders OpenGL® geometry and the haptic constraint functions provided by the HLAPI.

The second task is to create a new testing program.  As discussed in section 7.3 it would be best to rebuild the testing interface from scratch implementing it with Cocoa’s Core Data framework.  A detailed knowledge of the Cocoa and Core Data frameworks would be needed to implement this.  It takes some time to be able to comprehend these frameworks and apply them efficiently.  This is because they have many elements that work together to provide a powerful development framework.  A person tasked with writing this interface should spend a considerable amount of time learning how to use these frameworks if they don’t already have the knowledge.  The haptic view would also need to be studied so that it could be integrated into the testing program.  This would not be a complex task as the haptic view has a relatively low complexity by comparison.
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Appendix A Project plan

Initial plan

The original objective was:

To design and construct a non-visual haptic test interface which presents various shapes (in 2D and 3D) and measures the reaction time of the testee and if the testee determined it to be the correct shape.  The program is to be written as a Cocoa application (on Mac OS X) to improve accessibility for the visually impaired testees.

The original plan was made up of the following tasks and given the respective time allocations:

· (2-3 Weeks) Develop a simple test platform to establish a simple haptic workspace in a Cocoa application.

· (1-2 Weeks) Design and construct (in OpenGL) the test shapes to be presented to the testees.  Also test these shapes with the haptic environment so as to establish if they are in a useable arrangement for this task.

· (2-3 Weeks) Design, implement and test a testing application that can pick a random object, then ask the user to try and determine what it is and then allow the user to input their choice.  This application will also keep track of the following parameters:

· Time to submit answer

· The submitted answer

· The actual object presented

· (4 Weeks) Integrate the haptic workspace and the test shapes with the testing application.  Test to see the test application presents and records the correct data.  Refine interface to work well with OS X Universal Access features.

This task list and time allocation didn’t take into account the work done on the project before the semester started.  Before the semester started time was spent learning how to program with Cocoa, OpenGL® and Open Haptics™ and starting the development of the simple test platform to establish a simple haptic environment in Cocoa.

Plan amendments

Due to the initial tasks taking longer to complete than first planned and some parts being developed in more detail than originally intended, like the abstract haptic shape, the initial project plan was not completely adhered to.  The simple haptic environment in Cocoa turned into a fully functional haptic shape display view that resulted in a more useable and portable product.  It was also decided that the haptic shapes would be able to be displayed and manipulated more effectively if they were created as sub-classes of an abstract haptic shape class.  So this added to the time taken to construct the haptic view.  The testing interface was started, but not completed to a point where it could be used to actually test people’s responses to the created shapes.

Appendix B Program windows

Appendix C Haptic view and haptic shape testing GUI
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Alpha user testing GUI
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Appendix D Haptic view class documentation

05 – (id) init;

This method initialises the haptic view.  It calls the following four methods to set up the OpenGL® environment and the OpenHaptics™ environment.  This includes setting up and connecting to the haptic device, the PHANTOM Omni™ in this case.  This method is called after the haptic view has been allocated to initialise it.

06 – (bool) initGLContext;

07 – (bool) initGLWorkspace;

08 – (bool) initHL;

09 – (bool) initWorkspace;

010 – (void) stop;

This method tells the haptic view to stop rendering.  It stops all timers, releases the haptic view’s current shape object and disconnects the device.  The following two methods are called to shutdown the respective environments (GL being OpenGL® and HL being the HLAPI).  The method can be called before getting rid of a haptic view or when rendering is required to be postponed till later, but init must be called again to reinitialise the haptic view.

011 – (void) stopGL;

012 – (void) stopHL;

013 – (void) resizeGL:(NSView *)view;

014 – (void) resizeHL;

These two methods are only called internally when the view is resized to make sure the coordinate mapping between OpenGL® and the HLAPI is correct.

015 – (void) startDrawingOn:(NSView *)view with:(HapticShape *)shape;

This method tells the haptic view to start rendering shape using view as a canvas for OpenGL®.

016 – (void) changeShapeTo:(HapticShape *)shape;

This method is used to switch the shape currently being drawn.

017 – (void) drawScene;

This method is called internally to call the haptic shape’s rendering (draw) function and to flush the OpenGL® buffers.

Appendix E Haptic shape class documentation

018 - (void)scaleEntity:(GLfloat)size;

This method sets the scale of the shape to size.

019 - (void)rotateEntityX:(GLfloat)angle;

This method sets the degree of rotation about the x-axis to angle, which is expressed in degrees.

020 - (void)rotateEntityY:(GLfloat)angle;

This method sets the degree of rotation about the y-axis to angle, which is expressed in degrees.

021 - (void)rotateEntityZ:(GLfloat)angle;

This method sets the degree of rotation about the z-axis to angle, which is expressed in degrees.

022 - (void)entityTransform;

This method is internally called when rendering the shape to apply the transformations, namely scaling and rotation, to the shape.  The method can be overridden in subclasses if not all transformations are relevant or the transformation is handled in the drawing code, e.g. the scale member of the class is used to determine the size of the shape when drawing it rather than having OpenGL®’s scale function scale the entire shape.

023 - (void)drawShape;

This method is called by the haptic view every time the shape needs to be redrawn.

024 - (void)drawGL;

This method draws the OpenGL® representation of the shape.  This method needs to be implemented in subclasses of HapticShape to do this.

025 - (void)drawHL;

This method draws the HLAPI representation of the shape.  This method can just call the drawGL method to redraw the OpenGL® representation of the shape, have it captured into the feedback buffer and have haptic properties attached to every surface of the shape.  To customise specific surfaces all the geometry code needs to be redrawn in this method and have the specific properties attached to the specific surfaces.  This method needs to be implemented in subclasses of HapticShape to do this.

Appendix F Haptic view class code listing

The header file

//
//  HapticView.h
//
//  Created by Luke Pullella.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
/* Import OpenHaptics Libraries */
#import <HL/hl.h>
#import <HLU/hlu.h>
/* Import OpenGL Libraries */
#import <OpenGL/gl.h>
#import <OpenGL/glu.h>
/* Import HapticShape Classes */
#import "HapticShape.h"
/* OpenGL Constants */
#define BITS_PER_PIXEL 32.0
#define DEPTH_SIZE 32.0
/* NSTimer repeat interval */
#define REPEAT_INTERVAL 0.001
@interface HapticView : NSObject

{


HHD myHHD;


HHLRC myHHLRC;


HapticShape *hsMyShape;


HLuint hlShape;


NSTimer *timer;


NSView *glView;


NSOpenGLContext *openGLContext;

}

/* Initialisation & Destruction */
- (bool)initGLContext;

- (bool)initGLWorkspace;

- (bool)initHL;

- (bool)initHLWorkspace;

- (void)stop;

- (void)stopGL;

- (void)stopHL;

- (void)resizeGL:(NSView *)view;

- (void)resizeHL;

/* Drawing */
- (void)startDrawingOn:(NSView *)view with:(HapticShape *)shape;

- (void)changeShapeTo:(HapticShape *)shape;

- (void)drawScene;

@end

The implementation file

//
//  HapticView.m
//
//  Created by Luke Pullella.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HapticView.h"
@implementation HapticView

- (id) init

{


self = [super init];


if (self != nil)


{



if (!([self initGLContext] && [self initGLWorkspace] &&



      [self initHL]        && [self initHLWorkspace] ))




return nil;


}


return self;

}

- (bool)initGLContext

{


NSOpenGLPixelFormat *nsglFormat;


NSOpenGLPixelFormatAttribute attr[] = 



{



NSOpenGLPFADoubleBuffer,



NSOpenGLPFAAccelerated,



NSOpenGLPFAColorSize, BITS_PER_PIXEL,



NSOpenGLPFADepthSize, DEPTH_SIZE,



0 



};


nsglFormat = [[NSOpenGLPixelFormat alloc] initWithAttributes:attr];


if(!nsglFormat) { NSLog(@"Invalid format... terminating."); return NO; }


openGLContext = [[NSOpenGLContext alloc] initWithFormat:nsglFormat shareContext:nil];


[nsglFormat release];


if(!self) { NSLog(@"Self not created... terminating."); return NO; }


[openGLContext makeCurrentContext];


return YES;

}

- (bool)initGLWorkspace

{ 

    // Enable depth buffering for hidden surface removal.
    glDepthFunc(GL_LEQUAL);

    glEnable(GL_DEPTH_TEST);

    // Cull back faces.
    glCullFace(GL_BACK);

    glEnable(GL_CULL_FACE);

    // Setup other misc features.
    //glEnable(GL_LIGHTING);
    glEnable(GL_NORMALIZE);

    glShadeModel(GL_SMOOTH);


return YES;

}

- (bool)initHL

{


HDErrorInfo error;


myHHD = HD_INVALID_HANDLE;


myHHLRC = 0;


myHHD = hdInitDevice(HD_DEFAULT_DEVICE);


if(HD_DEVICE_ERROR(error = hdGetError()))


{



NSLog(@"Couldn't Initialise Haptic Device");



return NO;


}


myHHLRC = hlCreateContext(myHHD);


hlMakeCurrent(myHHLRC);


return YES;

}

- (bool)initHLWorkspace

{


hlEnable(HL_HAPTIC_CAMERA_VIEW);


hlTouchableFace(HL_FRONT);


return YES;

}

- (void)stop

{


[timer invalidate];


[timer release];


[hsMyShape release];


[self stopHL];


[self stopGL];

}

- (void)stopGL

{


[openGLContext release];


[glView release];

}

- (void)stopHL

{

    hlMakeCurrent(NULL);

    if (myHHLRC != NULL)

    {

        hlDeleteContext(myHHLRC);

    }

    if (myHHD != HD_INVALID_HANDLE)

    {

        hdDisableDevice(myHHD);

    }

}

- (void)resizeGL:(NSView *)view

{


    // Code from the HelloShpere example code


static const double kPI = 3.1415926535897932384626433832795;

    static const double kFovY = 40;

    double nearDist, farDist, aspect;


double width = [view frame].size.width;


double height = [view frame].size.height;

    glViewport(0, 0, width, height);

    // Compute the viewing parameters based on a fixed fov and viewing
    // a canonical box centered at the origin.
    nearDist = 1.0 / tan((kFovY / 2.0) * kPI / 180.0);

    farDist = nearDist + 2.0;


NSLog(@"Near Distance is %f and Far Distance is %f", nearDist, farDist);

    aspect = (double) width / height;

    glMatrixMode(GL_PROJECTION);

    glLoadIdentity();

    gluPerspective(kFovY, aspect, nearDist, farDist);

    // Place the camera down the Z axis looking at the origin.
    glMatrixMode(GL_MODELVIEW);

    glLoadIdentity();            

    gluLookAt(0, 0, nearDist + 1.0,

              0, 0, 0,

              0, 1, 0);

}

- (void)resizeHL

{

    GLdouble projection[16];

    glGetDoublev(GL_PROJECTION_MATRIX, projection);

    hlMatrixMode(HL_TOUCHWORKSPACE);

    hlLoadIdentity();

    hluFitWorkspace(projection);

}

- (void)startDrawingOn:(NSView *)view with:(HapticShape *)shape

{


glView = [view retain];


[openGLContext setView:glView];


[self resizeGL:glView];


[self resizeHL];


hsMyShape = [[shape init] retain];


// Start a timer to continually redraw the view

timer = [[NSTimer
scheduledTimerWithTimeInterval:REPEAT_INTERVAL







target:self






selector:@selector(drawScene)







userInfo:nil






repeats:YES] retain];

}

- (void)changeShapeTo:(HapticShape *)shape

{


[hsMyShape release];


hsMyShape = [[shape init] retain];

}

- (void)drawScene

{


[hsMyShape drawShape];


[openGLContext flushBuffer];

}

@end
Appendix G Haptic shape class code listing

The header file

//
//  HapticShape.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
/* Import OpenGL Libraries */
#import <OpenGL/gl.h>
#import <OpenGL/glu.h>
/* Import OpenHaptics Libraries */
#import <HL/hl.h>
#import <HLU/hlu.h>
@interface HapticShape : NSObject

{


GLfloat scale, rotX, rotY, rotZ;


HLuint boxShape;


GLuint boxFace;


NSString *name;

}

- (void)scaleEntity:(GLfloat)size;

- (void)rotateEntityX:(GLfloat)angle;

- (void)rotateEntityY:(GLfloat)angle;

- (void)rotateEntityZ:(GLfloat)angle;

- (void)entityTransform;

- (void)drawShape;

- (void)drawGL;

- (void)drawHL;

@end

The implementation file

//
//  HapticShape.m
//
//  Created by Luke on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HapticShape.h"
@implementation HapticShape

- init

{


self = [super init];


if(self != nil)


{



name = @"Unnamed Shape";



scale = 1.0f;



rotX  = 0.0f;



rotY  = 0.0f;



rotZ  = 0.0f;


}


return self;

}

- (void) dealloc

{


[name release];


[super dealloc];

}

- (void)scaleEntity:(GLfloat)size

{


scale = size;

}

- (void)rotateEntityX:(GLfloat)angle

{


rotX = angle;

}

- (void)rotateEntityY:(GLfloat)angle

{


rotY = angle;

}

- (void)rotateEntityZ:(GLfloat)angle

{


rotZ = angle;

}

- (void)entityTransform

{


glScalef(scale,scale,scale);


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawShape

{


glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);


glColor3f(1.0f, 1.0f, 1.0f);


[self drawGL];


hlBeginFrame();



[self drawHL];


hlEndFrame();


glFinish();

}

- (void)drawGL

{

}

- (void)drawHL

{

}

@end
Appendix H Created haptic shapes

Overview

In the following parts of this appendix are the code listing for the shapes that were created for this project.  Their names have a standard syntax that makes them easier to recognise.  They are prefixed with ‘HS’ to signify that they are subclasses of HapticShape and hence that they are HapticShapes.  Following this is the two-letter abbreviation for the number of dimentions the shape has, for example ‘2D’.  Lastly is the shape name that is suffixed with a number.  The number is used to differentiate between representations.  The numbers don’t necessarily need to match up to specific representations but they are respectively ridge, groove and gravity on the following HapticShapes.

HS2DCircle1 – Ridge Representation

//
//  HS2DCircle1.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.55f)
#define DEFAULT_HEIGHT (0.1f)
#define DEFAULT_SLICES (45)
@interface HS2DCircle1 : HapticShape

{


GLfloat height;


GLfloat slices;


HLuint hlShape;

}

@end

//
//  HS2DCircle1.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DCircle1.h"
@implementation HS2DCircle1

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Circle (Ridge)";



scale = DEFAULT_SCALE;



height = DEFAULT_HEIGHT;



slices = DEFAULT_SLICES;



hlShape = hlGenShapes(1);


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShape,1);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



/**** Draw Shape ****/


// Base


glBegin(GL_QUADS);




glColor3f(1.0f,0.0f,0.0f);




glNormal3f(0.0f,0.0f,1.0f);




glVertex3f(-1.0f,-1.0f,-1.0f);




glVertex3f(1.0f,-1.0f,-1.0f);




glVertex3f(1.0f,1.0f,-1.0f);




glVertex3f(-1.0f,1.0f,-1.0f);



glEnd();



// Circle


float DEG2RAD = 3.14159/180;



int i;



glBegin(GL_POLYGON);




glColor3f(0.0f,1.0f,0.0f);




glNormal3f(0.0f,0.0f,1.0f);




for(i = 0; i < slices; i++)




{





float degInRad = i*(360.0f/slices)*DEG2RAD;





glVertex3f(scale*cos(degInRad),scale*sin(degInRad),(-1.0f + height));




}



glEnd();



// Ridge


glBegin(GL_QUADS);




glColor3f(0.0f,0.0f,1.0f);




for(i = 0; i < slices; i++)




{





float degInRad1 = i*(360.0f/slices)*DEG2RAD;





float degInRad2 = (i+1)*(360.0f/slices)*DEG2RAD;





glNormal3f((cos(degInRad1)+cos(degInRad2))/2,(sin(degInRad1)+sin(degInRad2))/2,0.0f);


glVertex3f(scale*cos(degInRad1),scale*sin(degInRad1),(-1.0f + height));


glVertex3f(scale*cos(degInRad1),scale*sin(degInRad1),-1.0f);


glVertex3f(scale*cos(degInRad2),scale*sin(degInRad2),-1.0f);


glVertex3f(scale*cos(degInRad2),scale*sin(degInRad2),(-1.0f + height));




}



glEnd();


glPopMatrix();

}

- (void)drawHL

{


hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShape);



[self drawGL];


hlEndShape();

}

@end

HS2DCircle2 – Groove Representation

//
//  HS2DCircle2.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.55f)
#define DEFAULT_BASE_SCALE (2.0f)
#define DEFAULT_RIDGE_WIDTH (0.1f)
#define DEFAULT_RIDGE_HEIGHT (0.1f)
#define DEFAULT_SLICES (45)
@interface HS2DCircle2 : HapticShape

{


GLfloat slices;


GLfloat baseScale;


GLfloat ridgeWidth, ridgeHeight;


HLuint hlShape;

}

@end

//
//  HS2DCircle2.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DCircle2.h"
@implementation HS2DCircle2

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Circle (Groove)";



scale = DEFAULT_SCALE;



baseScale = DEFAULT_BASE_SCALE;



ridgeWidth = DEFAULT_RIDGE_WIDTH;



ridgeHeight = DEFAULT_RIDGE_HEIGHT;



slices = DEFAULT_SLICES;



hlShape = hlGenShapes(1);


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShape,1);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



float DEG2RAD = 3.14159/180;



int i;



glTranslatef(0.0f,0.0f,0.1f);



/**** Draw Shape ****/


// Base


glColor3f(1.0f,0.0f,0.0f);



glNormal3f(0.0f,0.0f,1.0f);



for(i = 0; i < slices; i++)



{




float degInRad1 = i*(360.0f/slices)*DEG2RAD;




float degInRad2 = (i+1)*(360.0f/slices)*DEG2RAD;




float scaleIn = scale+(ridgeWidth/2.0f);




float scaleOut = baseScale;




glBegin(GL_TRIANGLES);





glVertex3f(scaleOut*cos(degInRad1),scaleOut*sin(degInRad1),-1.0f);


glVertex3f(scaleOut*cos(degInRad2),scaleOut*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad2),scaleIn*sin(degInRad2),-1.0f);


glVertex3f(scaleOut*cos(degInRad1),scaleOut*sin(degInRad1),-1.0f);


glVertex3f(scaleIn*cos(degInRad2),scaleIn*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad1),scaleIn*sin(degInRad1),-1.0f);




glEnd();



}



// Inner Circle


glBegin(GL_POLYGON);




glColor3f(1.0f,0.0f,0.0f);




glNormal3f(0.0f,0.0f,1.0f);




for(i = 0; i < slices; i++)




{





float degInRad = i*(360.0f/slices)*DEG2RAD;





float scaleOut = scale-(ridgeWidth/2);


glVertex3f(scaleOut*cos(degInRad),scaleOut*sin(degInRad),-1.0f);




}



glEnd();



// Groove


glBegin(GL_QUADS);




for(i = 0; i < slices; i++)




{





float degInRad1 = i*(360.0f/slices)*DEG2RAD;





float degInRad2 = (i+1)*(360.0f/slices)*DEG2RAD;





float scaleIn = scale-(ridgeWidth/2.0f);





float scaleOut = scale;





// Inner Slope




glColor3f(0.0f,0.0f,1.0f);


glNormal3f((cos(degInRad1)+cos(degInRad2))/2,(sin(degInRad1)+sin(degInRad2))/2,90*tan((ridgeWidth/2)/ridgeHeight));


glVertex3f(scaleOut*cos(degInRad2),scaleOut*sin(degInRad2),(-1.0f - ridgeHeight));


glVertex3f(scaleIn*cos(degInRad2),scaleIn*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad1),scaleIn*sin(degInRad1),-1.0f);


glVertex3f(scaleOut*cos(degInRad1),scaleOut*sin(degInRad1),(-1.0f - ridgeHeight));





scaleIn = scale;





scaleOut = scale+(ridgeWidth/2);





// Outer Slope




glColor3f(0.0f,1.0f,0.0f);


glNormal3f((cos(degInRad1)+cos(degInRad2))/2,(sin(degInRad1)+sin(degInRad2))/2,90*tan(ridgeHeight/(ridgeWidth/2)));


glVertex3f(scaleOut*cos(degInRad2),scaleOut*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad2),scaleIn*sin(degInRad2),(-1.0f - ridgeHeight));





glVertex3f(scaleIn*cos(degInRad1),scaleIn*sin(degInRad1),(-1.0f - ridgeHeight));


glVertex3f(scaleOut*cos(degInRad1),scaleOut*sin(degInRad1),-1.0f);




}



glEnd();


glPopMatrix();

}

- (void)drawHL

{


hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShape);



[self drawGL];


hlEndShape();

}

@end

HS2DCircle3 – Gravity Representation

//
//  HS2DCircle3.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.55f)
#define DEFAULT_HEIGHT (0.1f)
#define DEFAULT_SLICES (45)
#define DEFAULT_SNAP_DISTANCE (7.0f)
@interface HS2DCircle3 : HapticShape

{


GLfloat height;


GLfloat slices;


HLuint hlShapeSurface, hlShapeLine;


HLfloat snapDistance;

}

- (void)drawSurface;

- (void)drawLine;

@end

//
//  HS2DCircle3.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DCircle3.h"
@implementation HS2DCircle3

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Circle (Gravity)";



scale = DEFAULT_SCALE;



height = DEFAULT_HEIGHT;



slices = DEFAULT_SLICES;



snapDistance = DEFAULT_SNAP_DISTANCE;



hlShapeSurface = hlGenShapes(2);



hlShapeLine = hlShapeSurface + 1;


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShapeSurface,2);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawSurface

{


glPushMatrix();



glBegin(GL_QUADS);




glColor3f(1.0f,0.0f,0.0f);




glVertex3f(1.0f,-1.0f,0.0f);




glVertex3f(1.0f,1.0f,0.0f);




glVertex3f(-1.0f,1.0f,0.0f);




glVertex3f(-1.0f,-1.0f,0.0f);



glEnd();


glPopMatrix();

}

- (void)drawLine

{


float DEG2RAD = 3.14159/180;


int i;


glBegin(GL_LINE_LOOP);



glColor3f(0.0f,1.0f,0.0f);



for(i = 0; i < slices; i++)



{




float degInRad = i*(360.0f/slices)*DEG2RAD;




glVertex3f(scale*cos(degInRad),scale*sin(degInRad), 0.0f);



}


glEnd();

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



glTranslatef(0.0f,0.0f,-0.9f);



// Base


[self drawSurface];



// Cicle Outline


[self drawLine];


glPopMatrix();

}

- (void)drawHL

{


glPushMatrix();



[self entityTransform];



glTranslatef(0.0f,0.0f,-0.9f);



// Circle Outine


hlTouchModel(HL_CONSTRAINT);



hlTouchModelf(HL_SNAP_DISTANCE, snapDistance);



hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShapeLine);




[self drawLine];



hlEndShape();



// Flat Surface


hlTouchModel(HL_CONTACT);



hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShapeSurface);




[self drawSurface];



hlEndShape();


glPopMatrix();

}

@end

HS2DOval1 – Ridge Representation

//
//  HS2DOval1.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.55f)
#define DEFAULT_HEIGHT (0.1f)
#define DEFAULT_SLICES (45)
@interface HS2DOval1 : HapticShape

{


GLfloat height;


GLfloat slices;


HLuint hlShape;

}

@end

//
//  HS2DOval1.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DOval1.h"
@implementation HS2DOval1

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Oval (Ridge)";



scale = DEFAULT_SCALE;



height = DEFAULT_HEIGHT;



slices = DEFAULT_SLICES;



hlShape = hlGenShapes(1);


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShape,1);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



/**** Draw Shape ****/


// Base


glBegin(GL_QUADS);




glColor3f(1.0f,0.0f,0.0f);




glNormal3f(0.0f,0.0f,1.0f);




glVertex3f(-1.0f,-1.0f,-1.0f);




glVertex3f(1.0f,-1.0f,-1.0f);




glVertex3f(1.0f,1.0f,-1.0f);




glVertex3f(-1.0f,1.0f,-1.0f);



glEnd();



// Circle


float DEG2RAD = 3.14159/180;



int i;



glBegin(GL_POLYGON);




glColor3f(0.0f,1.0f,0.0f);




glNormal3f(0.0f,0.0f,1.0f);




for(i = 0; i < slices; i++)




{





float degInRad = i*(360.0f/slices)*DEG2RAD;


glVertex3f(scale*cos(degInRad),0.5*scale*sin(degInRad),(-1.0f + height));




}



glEnd();



// Ridge


glBegin(GL_QUADS);




glColor3f(0.0f,0.0f,1.0f);




for(i = 0; i < slices; i++)




{





float degInRad1 = i*(360.0f/slices)*DEG2RAD;





float degInRad2 = (i+1)*(360.0f/slices)*DEG2RAD;


glNormal3f((cos(degInRad1)+cos(degInRad2))/2,(sin(degInRad1)+sin(degInRad2))/2,0.0f);


glVertex3f(scale*cos(degInRad1),0.5*scale*sin(degInRad1),(-1.0f + height));


glVertex3f(scale*cos(degInRad1),0.5*scale*sin(degInRad1),-1.0f);


glVertex3f(scale*cos(degInRad2),0.5*scale*sin(degInRad2),-1.0f);


glVertex3f(scale*cos(degInRad2),0.5*scale*sin(degInRad2),(-1.0f + height));




}



glEnd();


glPopMatrix();

}

- (void)drawHL

{


hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShape);



[self drawGL];


hlEndShape();

}

@end

HS2DOval2 – Groove Representation

//
//  HS2DOval2.h
//  OffScreenHapticRenderer
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.55f)
#define DEFAULT_BASE_SCALE (2.0f)
#define DEFAULT_RIDGE_WIDTH (0.1f)
#define DEFAULT_RIDGE_HEIGHT (0.1f)
#define DEFAULT_SLICES (45)
@interface HS2DOval2 : HapticShape

{


GLfloat slices;


GLfloat baseScale;


GLfloat ridgeWidth, ridgeHeight;


HLuint hlShape;

}

@end

//
//  HS2DOval2.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DOval2.h"
@implementation HS2DOval2

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Oval (Groove)";



scale = DEFAULT_SCALE;



baseScale = DEFAULT_BASE_SCALE;



ridgeWidth = DEFAULT_RIDGE_WIDTH;



ridgeHeight = DEFAULT_RIDGE_HEIGHT;



slices = DEFAULT_SLICES;



hlShape = hlGenShapes(1);


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShape,1);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



float DEG2RAD = 3.14159/180;



int i;



glTranslatef(0.0f,0.0f,0.1f);



/**** Draw Shape ****/


// Base


glColor3f(1.0f,0.0f,0.0f);



glNormal3f(0.0f,0.0f,1.0f);



for(i = 0; i < slices; i++)



{




float degInRad1 = i*(360.0f/slices)*DEG2RAD;




float degInRad2 = (i+1)*(360.0f/slices)*DEG2RAD;




float scaleIn = scale+(ridgeWidth/2.0f);




float scaleOut = baseScale;




glBegin(GL_TRIANGLES);


glVertex3f(scaleOut*cos(degInRad1),0.5*scaleOut*sin(degInRad1),-1.0f);


glVertex3f(scaleOut*cos(degInRad2),0.5*scaleOut*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad2),0.5*scaleIn*sin(degInRad2),-1.0f);


glVertex3f(scaleOut*cos(degInRad1),0.5*scaleOut*sin(degInRad1),-1.0f);


glVertex3f(scaleIn*cos(degInRad2),0.5*scaleIn*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad1),0.5*scaleIn*sin(degInRad1),-1.0f);




glEnd();



}



// Inner Circle


glBegin(GL_POLYGON);




glColor3f(1.0f,0.0f,0.0f);




glNormal3f(0.0f,0.0f,1.0f);




for(i = 0; i < slices; i++)




{





float degInRad = i*(360.0f/slices)*DEG2RAD;





float scaleOut = scale-(ridgeWidth/2);


glVertex3f(scaleOut*cos(degInRad),0.5*scaleOut*sin(degInRad),-1.0f);




}



glEnd();



// Groove


glBegin(GL_QUADS);




for(i = 0; i < slices; i++)




{





float degInRad1 = i*(360.0f/slices)*DEG2RAD;





float degInRad2 = (i+1)*(360.0f/slices)*DEG2RAD;





float scaleIn = scale-(ridgeWidth/2.0f);





float scaleOut = scale;





// Inner Slope




glColor3f(0.0f,0.0f,1.0f);


glNormal3f((cos(degInRad1)+cos(degInRad2))/2,(0.5*sin(degInRad1)+0.5*sin(degInRad2))/2,90*tan((ridgeWidth/2)/ridgeHeight));


glVertex3f(scaleOut*cos(degInRad2),0.5*scaleOut*sin(degInRad2),(-1.0f - ridgeHeight));


glVertex3f(scaleIn*cos(degInRad2),0.5*scaleIn*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad1),0.5*scaleIn*sin(degInRad1),-1.0f);


glVertex3f(scaleOut*cos(degInRad1),0.5*scaleOut*sin(degInRad1),(-1.0f - ridgeHeight));





scaleIn = scale;





scaleOut = scale+(ridgeWidth/2);





// Outer Slope




glColor3f(0.0f,1.0f,0.0f);


glNormal3f((cos(degInRad1)+cos(degInRad2))/2,(0.5*sin(degInRad1)+0.5*sin(degInRad2))/2,90*tan(ridgeHeight/(ridgeWidth/2)));


glVertex3f(scaleOut*cos(degInRad2),0.5*scaleOut*sin(degInRad2),-1.0f);


glVertex3f(scaleIn*cos(degInRad2),0.5*scaleIn*sin(degInRad2),(-1.0f - ridgeHeight));


glVertex3f(scaleIn*cos(degInRad1),0.5*scaleIn*sin(degInRad1),(-1.0f - ridgeHeight));


glVertex3f(scaleOut*cos(degInRad1),0.5*scaleOut*sin(degInRad1),-1.0f);




}



glEnd();


glPopMatrix();

}

- (void)drawHL

{


hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShape);



[self drawGL];


hlEndShape();

}

@end

HS2DSquare1 – Ridge Representation

//
//  HS2DSquare1.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.35f)
#define DEFAULT_HEIGHT (0.1f)
@interface HS2DSquare1 : HapticShape

{


GLuint face;


GLfloat height;


HLuint hlShape;

}

@end

//
//  HS2DSquare1.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DSquare1.h"
@implementation HS2DSquare1

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Square (Ridge)";



face = glGenLists(1);



scale = DEFAULT_SCALE;



height = DEFAULT_HEIGHT;



hlShape = hlGenShapes(1);



/* Create a sqaure face that will be used throughout the drawing of this shape */


glNewList(face, GL_COMPILE);




glBegin(GL_QUADS);





glNormal3f(0.0f,0.0f,1.0f);





glVertex3f(1.0f,-1.0f,0.0f);





glVertex3f(1.0f,1.0f,0.0f);





glVertex3f(-1.0f,1.0f,0.0f);





glVertex3f(-1.0f,-1.0f,0.0f);




glEnd();



glEndList();


}


return self;

}

- (void) dealloc

{


glDeleteLists(face,1);


hlDeleteShapes(hlShape,1);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



// Background


glColor3f(1.0f,0.0f,0.0f);



glPushMatrix();




glTranslatef(0.0f,0.0f,-1.0f);




glCallList(face);



glPopMatrix();



// Top of square


glColor3f(0.0f,1.0f,0.0f);



glPushMatrix();




glTranslatef(0.0f,0.0f,(-1.0f+height));




glScalef(scale,scale,1.0f);




glCallList(face);



glPopMatrix();



// Front edge


glColor3f(0.0f,0.0f,1.0f);



glPushMatrix();




glTranslatef(0.0f,scale,(-1.0f+(height/2.0f)));




glRotatef(90.0f,-1.0f,0.0f,0.0f);




glScalef(scale,(height/2.0f),1.0f);




glCallList(face);



glPopMatrix();



// Back edge


glColor3f(0.0f,0.0f,1.0f);



glPushMatrix();




glTranslatef(0.0f,-scale,(-1.0f+(height/2.0f)));




glRotatef(90.0f,1.0f,0.0f,0.0f);




glScalef(scale,(height/2.0f),1.0f);




glCallList(face);



glPopMatrix();



// Left edge


glColor3f(0.0f,0.0f,1.0f);



glPushMatrix();




glTranslatef(-scale,0.0f,(-1.0f+(height/2.0f)));




glRotatef(90.0f,0.0f,-1.0f,0.0f);




glScalef((height/2.0f),scale,1.0f);




glCallList(face);



glPopMatrix();



// Right edge


glColor3f(0.0f,0.0f,1.0f);



glPushMatrix();




glTranslatef(scale,0.0f,(-1.0f+(height/2.0f)));




glRotatef(90.0f,0.0f,1.0f,0.0f);




glScalef((height/2.0f),scale,1.0f);




glCallList(face);



glPopMatrix();


glPopMatrix();

}

- (void)drawHL

{


hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShape);



[self drawGL];


hlEndShape();

}

@end

HS2DSquare2 – Groove Representation

//
//  HS2DSquare3.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.35f)
#define DEFAULT_RIDGE_WIDTH (0.1f)
#define DEFAULT_RIDGE_HEIGHT (0.1f)
@interface HS2DSquare2 : HapticShape

{


GLuint face;


GLfloat ridgeWidth, ridgeHeight;


HLuint hlShape;

}

@end

//
//  HS2DSquare3.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DSquare2.h"
@implementation HS2DSquare2

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Square (Groove)";



scale = DEFAULT_SCALE;



ridgeWidth = DEFAULT_RIDGE_WIDTH;



ridgeHeight = DEFAULT_RIDGE_HEIGHT;



hlShape = hlGenShapes(1);


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShape,1);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaling */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawGL

{


glPushMatrix();



glNormal3f(0,0,1);



[self entityTransform];



/**** POINTS ****/


// Outer


GLfloat vfOBL[3] = { -1.0f, 1.0f, 0.0f };



GLfloat vfOBR[3] = { 1.0f, 1.0f, 0.0f };



GLfloat vfOFR[3] = { 1.0f, -1.0f, 0.0f };



GLfloat vfOFL[3] = { -1.0f, -1.0f, 0.0f };



// Inner (Outer of Ridge)


GLfloat vfIOBL[3] = { -(scale+(ridgeWidth/2.0f)), (scale+(ridgeWidth/2.0f)), 0.0f };



GLfloat vfIOBR[3] = { (scale+(ridgeWidth/2.0f)), (scale+(ridgeWidth/2.0f)), 0.0f };



GLfloat vfIOFR[3] = { (scale+(ridgeWidth/2.0f)), -(scale+(ridgeWidth/2.0f)), 0.0f };



GLfloat vfIOFL[3] = { -(scale+(ridgeWidth/2.0f)), -(scale+(ridgeWidth/2.0f)), 0.0f };



// Inner (Middle of Ridge)


GLfloat vfIMBL[3] = { -scale, scale, -ridgeHeight };



GLfloat vfIMBR[3] = { scale, scale, -ridgeHeight };



GLfloat vfIMFR[3] = { scale, -scale, -ridgeHeight };



GLfloat vfIMFL[3] = { -scale, -scale, -ridgeHeight };



// Inner (Inner of Ridge)


GLfloat vfIIBL[3] = { -(scale-(ridgeWidth/2.0f)), (scale-(ridgeWidth/2.0f)), 0.0f };



GLfloat vfIIBR[3] = { (scale-(ridgeWidth/2.0f)), (scale-(ridgeWidth/2.0f)), 0.0f };



GLfloat vfIIFR[3] = { (scale-(ridgeWidth/2.0f)), -(scale-(ridgeWidth/2.0f)), 0.0f };



GLfloat vfIIFL[3] = { -(scale-(ridgeWidth/2.0f)), -(scale-(ridgeWidth/2.0f)), 0.0f };



/**** Draw Shape ****/


glTranslatef(0.0f,0.0f,-0.9f);



glBegin(GL_QUADS);




// Outside first



glColor3f(1.0f,0.0f,0.0f);




glVertex3fv(vfIOBL);




glVertex3fv(vfIOBR);




glVertex3fv(vfOBR);




glVertex3fv(vfOBL);




glVertex3fv(vfIOBR);




glVertex3fv(vfIOFR);




glVertex3fv(vfOFR);




glVertex3fv(vfOBR);




glVertex3fv(vfIOFR);




glVertex3fv(vfIOFL);




glVertex3fv(vfOFL);




glVertex3fv(vfOFR);




glVertex3fv(vfIOFL);




glVertex3fv(vfIOBL);




glVertex3fv(vfOBL);




glVertex3fv(vfOFL);




// Inner Second



glVertex3fv(vfIIFL);




glVertex3fv(vfIIFR);




glVertex3fv(vfIIBR);




glVertex3fv(vfIIBL);




// Outer ridge slope Third



glColor3f(0.0f,1.0f,0.0f);




glVertex3fv(vfIMBL);




glVertex3fv(vfIMBR);




glVertex3fv(vfIOBR);




glVertex3fv(vfIOBL);




glVertex3fv(vfIMBR);




glVertex3fv(vfIMFR);




glVertex3fv(vfIOFR);




glVertex3fv(vfIOBR);




glVertex3fv(vfIMFR);




glVertex3fv(vfIMFL);




glVertex3fv(vfIOFL);




glVertex3fv(vfIOFR);




glVertex3fv(vfIMFL);




glVertex3fv(vfIMBL);




glVertex3fv(vfIOBL);




glVertex3fv(vfIOFL);




// Inner ridge slope Fourth



glColor3f(0.0f,0.0f,1.0f);




glVertex3fv(vfIIBL);




glVertex3fv(vfIIBR);




glVertex3fv(vfIMBR);




glVertex3fv(vfIMBL);




glVertex3fv(vfIIBR);




glVertex3fv(vfIIFR);




glVertex3fv(vfIMFR);




glVertex3fv(vfIMBR);




glVertex3fv(vfIIFR);




glVertex3fv(vfIIFL);




glVertex3fv(vfIMFL);




glVertex3fv(vfIMFR);




glVertex3fv(vfIIFL);




glVertex3fv(vfIIBL);




glVertex3fv(vfIMBL);




glVertex3fv(vfIMFL);



glEnd();


glPopMatrix();

}

- (void)drawHL

{


hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShape);



[self drawGL];


hlEndShape();

}

@end

HS2DSquare3 – Gravity Representation

//
//  HS2DSquare3.h
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
#import "HapticShape.h"
#define DEFAULT_SCALE (0.35f)
#define DEFAULT_SNAP_DISTANCE (7.0f)
@interface HS2DSquare3 : HapticShape

{


HLuint hlShapeSurface, hlShapeLine;


HLfloat snapDistance;

}

- (void)drawSurface;

- (void)drawLine;

@end

//
//  HS2DSquare3.m
//
//  Created by Luke Pullella on 4/04/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "HS2DSquare3.h"
@implementation HS2DSquare3

- (id) init

{


self = [super init];


if (self != nil)


{



name = @"2D Haptic Square (Gravity Line)";



scale = DEFAULT_SCALE;



snapDistance = DEFAULT_SNAP_DISTANCE;



hlShapeSurface = hlGenShapes(2);



hlShapeLine = hlShapeSurface + 1;


}


return self;

}

- (void) dealloc

{


hlDeleteShapes(hlShapeSurface,2);


[super dealloc];

}

/* Modified because there is no need for this function to handle scaleing */
- (void)entityTransform

{


glRotatef(rotX,1,0,0);


glRotatef(rotY,0,1,0);


glRotatef(rotZ,0,0,1);

}

- (void)drawSurface

{


glPushMatrix();



glBegin(GL_QUADS);




glColor3f(1.0f,0.0f,0.0f);




glVertex3f(1.0f,-1.0f,0.0f);




glVertex3f(1.0f,1.0f,0.0f);




glVertex3f(-1.0f,1.0f,0.0f);




glVertex3f(-1.0f,-1.0f,0.0f);



glEnd();


glPopMatrix();

}

- (void)drawLine

{


glPushMatrix();



glColor3f(0.0f,1.0f,0.0f);



glScalef(scale,scale,1.0f);



glLineWidth(2.0);



glBegin(GL_LINE_LOOP);




glVertex3f(1.0f,-1.0f,0.0f);




glVertex3f(1.0f,1.0f,0.0f);




glVertex3f(-1.0f,1.0f,0.0f);




glVertex3f(-1.0f,-1.0f,0.0f);



glEnd();


glPopMatrix();

}

- (void)drawGL

{


glPushMatrix();



[self entityTransform];



glTranslatef(0.0f,0.0f,-0.9f);



// Draw Backing Surface


[self drawSurface];



// Draw Line


[self drawLine];


glPopMatrix();

}

- (void)drawHL

{


glPushMatrix();



[self entityTransform];



glTranslatef(0.0f,0.0f,-0.9f);



// Square Line


hlTouchModel(HL_CONSTRAINT);



hlTouchModelf(HL_SNAP_DISTANCE, snapDistance);



hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShapeLine);




[self drawLine];



hlEndShape();



// Flat Surface


hlTouchModel(HL_CONTACT);



hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER,hlShapeSurface);




[self drawSurface];



hlEndShape();


glPopMatrix();

}

@end
Appendix I Testee data management

Overview

In the following sections is the code that was created to store and manage the data for groups, testees and test results.  The code is for a class called “TestGroup”.  A TestGroup object was created in the controller object for the incomplete testing program that was used to manage the data for a loaded group and to create new groups.  The code is fairly self-explanatory and straightforward.  The code for opening and saving the property lists was modified from the examples in the property list programming guide for Cocoa (2006).
Header File
//
//  TestGroup.h
//  TestInterface
//
//  Created by Luke Pullella on 17/05/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import <Cocoa/Cocoa.h>
@interface TestGroup : NSObject

{


NSString *groupName;


NSMutableDictionary *testees;


bool isLoaded;

}

// Group Functions
- (id)initGroupFromFile;

- (void)setGroupName:(NSString *)aName;

- (NSString *)getGroupName;

- (void)saveGroup;

- (void)loadGroup;

// Testee Functions
- (void)addTestee:(NSString *)aName;

- (void)delTestee:(NSString *)aName;

- (NSDictionary *)getTestee:(NSString *)aName;

- (NSArray *)getTestees;

// Result Functions
- (void)setActualShapeName:(NSString *)aShapeName forTestee:(NSString *)aName andForResult:(int)rID;

- (NSString *)getActualShapeNameForTestee:(NSString *)aName andForResult:(int)rID;

- (void)setGuessedShapeName:(NSString *)aShapeName forTestee:(NSString *)aName andForResult:(int)rID;

- (NSString *)getGuessedShapeNameForTestee:(NSString *)aName andForResult:(int)rID;

- (NSDate *)getDateOfResultForTestee:(NSString *)aName andForResult:(int)rID;

- (NSNumber *)getTimeToGuessForTestee:(NSString *)aName andForResult:(int)rID;

- (int)startNewResultForTestee:(NSString *)aName;

- (void)endNewResultForTestee:(NSString *)aName forResult:(int)rID;

@end
Implementation File

//
//  TestGroup.m
//  TestInterface
//
//  Created by Luke Pullella on 17/05/06.
//  Copyright 2006 Luke Pullella. All rights reserved.
//
#import "TestGroup.h"
@implementation TestGroup

- (id) init

{


self = [super init];


if (self != nil)


{



isLoaded = YES;



groupName = @"";



testees = [[NSMutableDictionary alloc] init];


}


return self;

}

// Group Functions
- (id)initGroupFromFile

{


self = [super init];


if (self != nil)


{



isLoaded = NO;



[self loadGroup];



if(!isLoaded)



{




[self release];




return nil;



}


}


return self;

}

- (void)setGroupName:(NSString *)aName

{


[groupName release];


groupName = [aName retain];

}

- (NSString *)getGroupName

{


return [groupName retain];

}

- (void)saveGroup

{


id plist;


NSData *xmlData;


NSString *error;


NSSavePanel *sp;


sp = [NSSavePanel savePanel];


[sp setRequiredFileType:@"xml"];


if([sp runModalForDirectory:NSHomeDirectory() file:groupName] == NSOKButton)


{



plist = [[NSMutableArray alloc] init];



[plist addObject:groupName];



[plist addObject:testees];



xmlData = [NSPropertyListSerialization 






dataFromPropertyList:plist







format:NSPropertyListXMLFormat_v1_0







errorDescription:&error];


if(xmlData)



{




[xmlData writeToFile:[sp filename] atomically:YES];



}



else


{




NSLog(error);




[error release];



}


}

}

- (void)loadGroup

{


// Check if a group is already loaded

if(groupName != nil)



[groupName release];


if(testees != nil)



[testees release];


// Ask user to open a saved test group

NSOpenPanel *openPanel = [NSOpenPanel openPanel];


[openPanel setAllowsMultipleSelection:NO];


[openPanel setCanChooseDirectories:NO];


[openPanel setCanChooseFiles:YES];


int result = [openPanel runModalForTypes:[NSArray arrayWithObject:@"xml"]];


if(result == NSOKButton)


{



NSString *error;



NSPropertyListFormat format;



NSData *plistData = [NSData dataWithContentsOfFile:[openPanel filename]];



id plist = [NSPropertyListSerialization






propertyListFromData:plistData



mutabilityOption:NSPropertyListMutableContainersAndLeaves






format:&format






errorDescription:&error];



if(!plist)



{




NSLog(error);




[error release];



}



else


{




// Check that the loaded file has a array class (default)



if(![plist isKindOfClass: [NSArray class]])




{





NSLog(@"Not a valid XML group file.");




}




else



{





groupName = [[plist objectAtIndex:0] retain];





testees = [[plist objectAtIndex:1] retain];





isLoaded = YES;




}



}


}

}

// Testee Functions
- (void)addTestee:(NSString *)aName

{


[testees setObject:[[NSMutableArray alloc] init] forKey:aName];

}

- (void)delTestee:(NSString *)aName

{


[testees removeObjectForKey:aName];

}

- (NSDictionary *)getTestee:(NSString *)aName

{


return [testees objectForKey:aName];

}

- (NSArray *)getTestees

{


return [[testees allKeys] sortedArrayUsingSelector:@selector(caseInsensitiveCompare:)];

}

// Result Functions
- (void)setActualShapeName:(NSString *)aShapeName forTestee:(NSString *)aName andForResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


[result setObject:[aShapeName retain] forKey:@"actualShape"];

}

- (NSString *)getActualShapeNameForTestee:(NSString *)aName andForResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


return [[result objectForKey:@"actualShape"] retain];

}

- (void)setGuessedShapeName:(NSString *)aShapeName forTestee:(NSString *)aName andForResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


[result setObject:[aShapeName retain] forKey:@"guessedShape"];

}

- (NSString *)getGuessedShapeNameForTestee:(NSString *)aName andForResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


return [[result objectForKey:@"guessedShape"] retain];

}

- (NSDate *)getDateOfResultForTestee:(NSString *)aName andForResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


return [[result objectForKey:@"date"] retain];

}

- (NSNumber *)getTimeToGuessForTestee:(NSString *)aName andForResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


return [[result objectForKey:@"timeToGuess"] retain];

}

- (int)startNewResultForTestee:(NSString *)aName

{


unsigned int index;


NSMutableDictionary *newResult = [[NSMutableDictionary alloc] init];


[[testees objectForKey:aName] addObject:newResult];


index = [[testees objectForKey:aName] length] - 1;


// Insert Start Date

[newResult setObject:[NSDate date] forKey:@"date"];


// Insert Fake End Date

[newResult setObject:[NSNumber numberWithDouble:0] forKey:@"timeToGuess"];


// Insert Fake actualShape

[newResult setObject:@"Not Initialised" forKey:@"actualShape"];


// Insert Fake guessedShape

[newResult setObject:@"Not Initialised" forKey:@"guessedShape"];


return index;

}

- (void)endNewResultForTestee:(NSString *)aName forResult:(int)rID

{


NSMutableDictionary *result = [[testees objectForKey:aName] objectAtIndex:rID];


// Negated because the returned value is negative (well, should be)

NSNumber *timeToGuess = [NSNumber numberWithDouble:(0-1)*[[result objectForKey:@"date"] timeIntervalSinceNow]];


[result insertValue:timeToGuess inPropertyWithKey:@"timeToGuess"];

}

@end
Appendix J attached CD

Attached to this thesis is a CD containing the source code and project files created for this project.  There are two directories on the CD called “OffScreenHapticRenderer” and “TestInterface”.  The first contains the software that was created for the hapticview class.  Included in this directory are the haptic shapes that were created.  The second folder contains the testing program that was under development.  A “README.txt” file is provided on the CD with an explanation of the reqirements for compiling the source code.













































