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Abstract 

This thesis outlines the design and testing of various image acquisition and processing 

techniques and their implementation on a portable image enhancer for low vision users.  

Included is a description of the most common causes of low vision, their characteristic 

symptoms, and the reasoning behind the proposed countermeasures.  The result is a basic 

design for a portable image enhancer, intended to aid students with low vision by 

providing several specifically designed user controllable filters. 
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1. Introduction 

1.1 The Problem 

Visual aids are used extensively in all areas of education.  When trying to express ideas, 

verbal communication is usually not sufficient.  Traditional teaching methods involve the 

use of blackboards, whiteboards, overhead projectors and other types of visual 

demonstration to supplement verbal explanations.  Books and computers are also 

important learning tools for they facilitate easy storage and retrieval of large amounts of 

information in a form that can be easily distributed.  Unfortunately, many people are 

visually impaired to such an extent that in a normal teaching environment the usefulness 

of the apparatus mentioned above is greatly decreased. The result can be a far less 

effective learning experience.  

Any vision impairment severe enough to impede the performance of common everyday 

tasks, while still allowing some useful visual discrimination, is referred to as low vision. 

Currently there are over 300 000 blind or vision impaired people in Australia, with 24 

900 affected people in Western Australia alone.  While vision impairment is more likely 

to affect older adults, a significant number (47 %) of those affected are younger people. It 

is the latter, who are more likely to be receiving some type of formal education.  

There are many different types of visual impairment, many developing from common 

conditions such as diabetes.  Impairments such as glaucoma and cataracts can result in 

blurred, distorted vision as well as a reduced field of vision.  Some disorders, such as 
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macular degeneration, can cause central blind spots, reduction in contrast sensitivity and 

even time varying changes in the individual s colour sensitivity. The result can be a 

person who has difficulty with low-contrast images, who in addition may be more 

sensitive to certain ranges of colour. To make an individual s interaction with the 

teaching environment more productive, a method of making existing visual aids clearer 

for a particular user needs to be established.  The device defined in this report is 

anticipated to be a portable, low cost solution to the problems outlined above.    

Besides the device s intended purpose, there are many other uses that could see it fill 

several niches in the consumer market.  As the image sensor used in the device is capable 

of picking up infrared light as well as visible light, it would prove useful in certain low 

light situations.  If packaged with an infrared spotlight, the device would be an excellent 

tool for reading text books in areas of low ambient light (for example lecture halls and 

libraries) without disturbing others.  Pointing the afore-mentioned infrared spotlight at the 

material to be viewed would have a similar effect to using a regular spotlight when 

viewed through the device, while remaining invisible to all other onlookers.  In the home, 

everyday activities such as cooking could be made simpler by using the device to 

magnify recipes such that they could be seen from anywhere in the kitchen.   

1.2 The Solution 

Although similar devices do already exist on the market, they have various shortcomings.  

Portable devices with similar functionality can be priced at over $2000, putting them far 

out of reach for most students.  Others priced more reasonably are only capable of 
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reading up-close material (for example textbooks) and/or do not include any device to 

present the enhanced image; rather they require a television or computer monitor to 

display their output, effectively rendering the device non-portable in most situations. 

For a more detailed description on current enhancer devices, see Arulliah, E. [19].  

It is intended that the device outlined in this document be priced far more reasonably; this 

is possible mainly due to the fact that it is being developed as a student project.  Most 

costs related to development such as development man-hours, development equipment 

and space concerns usually have to be recovered as part of the retail price.  Since 

development was done at no charge, using equipment and space already supplied, the 

device does not carry these overheads and thus will benefit from a greatly reduced price.  

Most of the electronic visual aids already available on the market operate on a relatively 

simple level.  In order to make an image clearer they employ simple contrasting and 

thresholding techniques resulting in a high contrast reproduction of the original image.  

More advanced devices may offer the option to change foreground and background 

colours as well as feature line markers to help the user stay focused on the desired 

information.  The device defined in this document offers all of the features outlined 

above as well as employing more advanced image processing techniques.  For example, 

the device will try to intelligently determine the difference between the foreground 

(information) and the background (whiteboard, shadows, dirt etc.) in order to display a 

more efficient representation of the desired information.  Also, instead of just generally 
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improving an image, attempts have been made to directly counter common low vision 

symptoms using specifically designed filters.  

1.3 Thesis Outline 

The following gives a summarised overview of this document, describing all chapters and 

their contents.  

Section 2. Some Theoretical Approaches to Low Vision Enhancement for Students: 

This section looks at the causes and symptoms of the most common vision 

disorders. A broad review of the theoretical issues relevant to the problem is 

given, as well as a justification of the approach taken in the design of filters on the 

LoVIE.  A brief outline of the other hardware components in the system is also 

provided.  

Section 3. Image-Processing Techniques and Test Results: 

This section examines the various image-processing techniques implemented in 

the LoVIE design and also contains an in-depth explanation of the development 

process employed for each filter.  

Section 4. Hardware Based Development Platform: 

This chapter describes the requirements and selection of the digital signal 

processor used in the design.  It includes a relevant description of the features 

available on the selected DSP that make it suitable for development of the LoVIE. 
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Section 5. Camera Selection and Evaluation 

This chapter gives a description of the CMOS image sensor used in the design.  It 

addresses such issues as why this image sensor is suitable and how it was 

implemented.  

Section 6. User Interface: 

An overall description of the user interface design is given, including accessible 

features, justification and hardware implementation.  

Section 7. Conclusion: 

This chapter summarises the progress made on the LoVIE design.  It also lists 

several recommendations for future development.       
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2. Some Theoretical Approaches to Low Vision 

Enhancement for Students 

It is reasonable to assume that in order for any image enhancement to be effective for a 

low vision user, the enhancement should in effect, counter the detrimental effects of the 

user s condition.  It is upon this premise that the enhancement algorithms used on the 

LoVIE were developed.  Obviously, a single device could not possibly be tailored to 

assuage every symptom associated with low vision.  Instead, the approach taken in the 

design of the LoVIE is to address the most common problems faced by low vision 

students.  By giving the user precise control over the different enhancements available, 

the output from the device can be better tailored to suit individual needs.  

The four most common causes of low vision after birth are macular degeneration, 

cataracts, glaucoma, and diabetic retinopathy [1].  Macular degeneration affects the centre 

of the retina, or macula.  It degenerates as a result of a breakdown of the retinal pigment 

epithelium, the insulating layer between the retina and the layer of blood vessels behind 

it.  The result is that the macula is effectively starved and dries out, causing blurred 

vision. The breakdown of the retinal pigment epithelium can also let harmful components 

of blood into the retina, leading to fluid leakage that can cause a loss of central vision.  

A Cataract is an area of the eye s lens that has become cloudy or opaque.  It can be 

inherited at birth but are most commonly found in the elderly.  Environmental factors 

such as smoking or toxic substances as well as metabolic conditions such as diabetes can 
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greatly accelerate this condition.  Cataracts affect a patient s night vision and perception 

of light, and can also cause sensitivity to glare.  

Glaucoma is the name given to damage of the optic nerve, due to an increase in fluid 

pressure inside the eye [2].  This increase in fluid pressure is due to improper drainage 

and causes damage by restricting the blood supply to the optic nerves.  This starvation 

causes the nerves to die off; leading to blind spots first in the sufferer s peripheral vision 

and, without treatment, total blindness.  People with the greatest risk of developing 

glaucoma include the elderly or those with diabetes.  

Finally, diabetic retinopathy is caused by damage to the blood vessels of the retina [3]. 

Due to this damage, these blood vessels can leak and cause blurred vision, or in more 

severe cases haemorrhage and cause vision loss and scaring.  People with type I or II 

diabetes are at risk of developing this condition; the likelihood and severity of diabetic 

retinopathy increases with the duration the patient has suffered diabetes.  

All the symptoms outlined above can be categorised into 3 broad problem areas:  

 

Blurred vision  the patient has difficulty with fine details in images. 

 

Localised vision degradation 

 

certain areas of a patient s vision are lost or 

distorted. 

 

Altered colour/contrast perception 

 

patients have difficulty perceiving slight 

changes in contrast and may experience discomfort when viewing certain colours. 
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By implementing several independent processes that combat each problem area 

separately, it is intended that the LoVIE be able to provide suitable enhancement for most 

low vision users.  

In addition to the actual image enhancement, there are several other factors in the design 

of the low vision enhancer that need to be addressed. Firstly, the system requires some 

way of capturing the input images for processing. As the device is intended for low vision 

users, the selected camera should require little or no setup time from the user.  

Secondly, the LoVIE must offer the user a method of controlling the featured 

enhancements such that they may be tailored to suit each particular user s needs.  Above 

all, any user interface implemented must be clear and simple to use.  Offering too 

complicated an interface would prove counter productive as the user would be deterred 

from attempting to use the device to its full potential.  

Finally, without a clear method of representing the output, any enhancement provided 

would be rendered useless.  As such, a display capable of giving large, clear output must 

be implemented without reducing the devices portability significantly.  As this report 

focuses mainly on the image capture and processing aspects of the LoVIE, little detail is 

given concerning the display subsystem.  For an in depth description of the display 

interface, refer to Lowe, J. [20].  
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3. Image-Processing Techniques and Test Results 

3.1 Algorithm Design Process 

3.1.1 Introduction 

While designing and testing an image enhancement algorithm, constraints such as 

processing time, memory usage and compatibility are of little or no concern.  As such, 

instead of testing designs directly on the C6711, a high-level design environment that 

allows algorithms to be quickly and easily implemented and tested was needed. The 

MATLAB software package, including the MATLAB Image Processing Toolbox, allows 

images to be easily loaded into memory and manipulated via a high-level language 

similar to C.  

Once each algorithm was working as desired in the MATLAB environment (See 

Appendix B), the code was ported to C and compiled and tested on the C6711 via Code 

Composer Studio (See section 4.2.4).  While it is possible to embed code from the 

MATLAB environment directly onto the C6711, it was felt that the level of control over 

memory allocation and optimisation required, would only be attainable by coding the 

algorithms manually.  The following is a short description of the more useful tools 

provided and implemented in the MATLAB environment.  

3.1.2 Working with Images 

All test images were be loaded saved to and from the MATLAB design environment 

using the imread and imwrite commands as follows 
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>> image=imread('test.bmp');   

process image...   

>> imwrite(image, test result.bmp );  

As only 8-bit greyscale images need be considered for the LoVIE design, once loaded, 

images were converted to the correct format using the rgb2gray command as follows    

>>image=rgb2gray(image);  

At this point, the image can be manipulated in the same way as a standard matrix.  

Additionally, many of the processing functions developed require the image matrix 

represented in double format, instead of the default 8-bit unsigned integer (uint8). The 

double format represents each pixel as a decimal number between 0 and 1 while the uint8 

format represents them as an integer number between 0 and 255. Images were converted 

between the two formats using  

>>image=im2double(image);   

>>image-im2uint8(image);  

3.1.3 Transferring Images between MATLAB and the C6711 

Often, it was desired that a test image be loaded into memory on the C6711 to test the 

ported enhancement algorithms against a known result.  At other times it was necessary 



 

11

to use a captured image from the M3188A in order to test the designed algorithms in 

MATLAB.  The easiest way to achieve this was by using the Load Data and Save 

Data functions from within Code Composer Studio.  These functions allow the C6711 s 

memory space to be read from or written to using a raw hexadecimal data file.  Thus two 

MATLAB functions, ti_data_read and ti_data_write, were created that enabled 

MATLAB to read and write image data in this format.  These functions are available in 

Appendix B and were used in the following manner    

>>image=ti_data_read( captured.dat );   

process image

   

>>ti_data_write(image, processed.dat );  

3.1.4 Output Format for Display Subsystem 

In order for the display subsystem to function correctly, the output image must be 

constantly available, properly formatted and stored in a pre-defined memory space.  The 

output image is stored depending on whether the output required is colour or greyscale.  

The colour output format is as yet only used whenever the threshold filter (See Section 

3.4.1) is applied and configured to display the foreground and background in colours 

other than black and white.  To indicate the format of each particular frame, a register 

within the display subsystem is set via the EMIF (See Section 4.2.3.1).  Figure 3.1 shows 

the pixel formats for colour and greyscale pixels.    
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Red Green Blue 

5 bits 5 bits 6 bits 

16 bits 

Colour 

Greyscale Brightness 

6 bits 

8 bits 

2 least 
significant bits 
are discarded 

 

Figure 3.1 Output Pixel Formats  

Greyscale output is stored identically throughout the system, using 8-bits per pixel. Thus 

the resultant image need only be transferred to the appropriate location before being 

output to the display subsystem.  Currently, as the display uses only 6 bits per greyscale 

pixel, the 2 least significant bits are discarded before being passed to the display.  In the 

future it is recommended that a dithering algorithm be implemented to optimise image 

quality (See Section 7.2).  

Colour output is handled in a slightly different manner.  Once the thresholded image is 

ready for output it is processed in the following manner.  Replicas of the desired 

foreground and background colour pixels are stored in memory.  For each pixel in the 

image, a colour foreground or background pixel is transferred to the equivalent location 

in the output buffer.  While the greyscale output could be processed in the same manner, 
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this would require a 16-bit transfer per pixel where only 8 bits are needed. Thus the 

differing methods are utilised to minimise the bandwidth requirement of the display 

subsystem.  

3.2 Techniques to Combat Blurred Vision 

3.2.1 Effects of Blurred Vision 

One of the most common symptoms in low vision individuals, as described earlier, is 

blurred vision.  Those with blurred vision experience a general loss in sharpness of an 

image making it appear out of focus .  For the purposes of investigation and testing, a 

blurred effect was simulated using a Gaussian blur convolution matrix (See Appendix B).  

3.2.2 Edge Enhancement 

In order to attempt to reverse the effect of blurred vision, it is first necessary to establish 

an equivalent model for a blurriness filter.  Upon examining the example image given in 

Figure 3.2, sharp edges appear to have been smeared, making fine details difficult to 

distinguish.  In other words, the high frequency components of the image appear to have 

been reduced or removed altogether.  Thus, it has been suggested that general blurriness 

is the equivalent of applying a low-pass filter to an image. 
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Figure 3.2 Simulation of Blurred Vision  

Peli and Fine [4] proposed that the best way to go about countering this low-pass filtering 

effect would be to pre-amplify all high frequency components in the image before 

submitting it for viewing.  If done appropriately, the image perceived by the end user 

should be close to the original image.  Figure 3.3 gives a block diagram of the inverse 

filter suggested. 
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Figure 3.3 Block Diagram for High Frequency Amplification  

To implement this filter on the C6711 in the frequency domain, a 2-D Fourier transform 

must be performed on each frame twice.  In order to compute the Fourier transform of an 

image using the computationally efficient radix-2 FFT, the image first needs to be zero 

padded so that both dimensions are radix-2 numbers, resulting in an image with 

dimensions of 1024x512. Next, the FFT of each line in the image has to be computed, 

followed by the FFT of each column; thus, a total of 512 1024-point and 1024 512-point 

FFT s need to be performed to transform one image.  Consequently, it is not practical to 

attempt to implement filters in the frequency domain in real time.  As such, an alternate 

method of amplifying an image s high frequency components in the spatial domain will 

be established.  



 

16

The equivalent of low-pass filtering in the frequency domain can be achieved in the 

spatial domain using a 2 dimensional FIR filter.  As all other operations involved in the 

filter are linear (specifically addition and multiplication), they can also be carried out in 

the spatial domain without any further transformations.  

Figure 3.4 and Figure 3.5 below show the effect the Edge Enhancement filter has on a 

test image taken from the LoVIE.  The normalised low-pass filter cut-off frequency is 0.2 

and the foreground is amplified by a factor of 10 (all parameters are user definable).  It 

should be noted that as the edges of the text represent a relatively high change in 

frequency,  they have been emphasised, as have the edges of the whiteboard.  

 

Figure 3.4 Test Image Before Edge Enhancement 
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Figure 3.5 Test Image After Edge Enhancement  

A second feature of the Edge Enhancement filter is the ability to reduce the significance 

of low frequency components.  In other words, any soft transitions such as reflections or 

shadows across the whiteboard can be reduced or even eliminated altogether.  Figure 3.6 

shows the output of the Edge Enhancement filter with the background amplification at 

0.2 and the normalised cut-off frequency at 0.08.   
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Figure 3.6 Test Image with Low Frequency Components Reduced  

It should be noted that with proper adjustment, it is possible to obtain a result similar to 

an edge detection filter, except that the effective size of the text has been increased.  E. 

M. Fine and E. Peli [4] found that while purely increasing text size did have a small 

effect on reading rates, the enhanced text produced better results in this respect.  

Unfortunately, the same study did not produce conclusive results on the benefits of the 

Edge Enhance filter on reading rates for low vision individuals in general.  However, as 

the LoVIE is designed as an aid to improve clarity, not reading rates, it was felt the 

inclusion of this filter was justified.  

3.2.3 Edge Outline 

After examining many simulated examples of blurred vision, it was proposed that in real 

terms, blurred vision has the effect of making boundaries indistinct.  The effect of this is 
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to make relatively intricate symbols such as text and diagrams extremely difficult to 

discern.  A logical remedy for this would be to enhance the definition of boundaries such 

that when blurred, they are more easily recognised.  

To achieve this on the LoVIE involved a two-step process.  Firstly, the image is passed 

through a Sobel edge detector to isolate the boundary components of the image.  The 

Sobel edge detector was chosen because it has a fairly low sensitivity to noise while 

being relatively fast, computationally, compared with similar quality edge detectors [5].    

The second step of the process involved combining the boundary data obtained from the 

Sobel edge detector with the original image in some way as to highlight areas judged by 

the Sobel operator to be significant.  As this step will have quite a significant effect on 

the filter s output, a fair amount of time was spent experimenting with different methods 

of combining the two frames.  The final method decided upon, involved brightening all 

boundary regions in the image relative to the detected boundary strength. The result of 

this was a bright line superimposed on the edges of well-defined areas such as text with 

less contrasted areas obtaining a subtly lightened outline.    
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Figure 3.7 Test Image with Edge Outline Filter Applied  

While the Edge Outline filter is based upon a logical premise, it remains to be seen 

whether it is effective.  The current implementation of the filter (See Appendix A) takes 

around 5 seconds to complete one frame, and as such requires some optimisation before it 

could be applied in real time.  Another issue is that the use of the Edge Outline filter 

could not be justified through simulation.  Figure 3.8 shows the resultant image of the 

Edge Outline filter as seen through simulated blurred vision compared with that of the 

original unprocessed image.  The Edge Outline filter does not appear to have improved 

the clarity of the blurred image; as such it has been left out of the current implementation 

of the LoVIE.  It is suggested, however, that the use of this filter should not be 

completely ruled out until testing can be undertaken on actual low vision individuals. 
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(a) 

 

(b) 

Figure 3.8 Original Test Image (a) and Test Image with Edge Outline (b) with a Low Pass Filter 

Applied  

3.2.4 Focus Lines 

Individuals with low vision often have difficulty following a single line of text if it is 

surrounded by other text or visual information.  This can be a result of blurred vision, 
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lack of fine eye-movement control or a combination of both.  In order to compensate for 

this difficulty, the LoVIE provides a filter that enables the user to highlight a region of 

the display to help keep track of areas of interest.  As shown in Figure 3.9, the user 

definable region is bordered on each side by a thick black line.  Areas outside the focus 

area appear darkened, and thus less attractive to the eye.  

 

Figure 3.9 Test Image with Focus Filter Applied  

3.3 Techniques to Combat Localised Vision Degradation 

3.3.1 Digital Zoom 

Localised vision degradation is a symptom that can make reading extremely difficult.  

Sufferers experience partial or total loss of vision in certain areas, making it difficult to 

recognise text, faces, or anything requiring the perception of fine details.  In this case, 



 

23

more so than with other symptoms, the best possible outcome of any enhancement 

applied, is only to reduce the significance of the impairment in an educational 

environment.  

By using digital zoom techniques, the overall size of the image region of interest can be 

increased, thus reducing the portion of the image distorted relative to the information 

contained therein.  Figure 3.10 below shows normal and zoomed images, as they would 

appear to a student experiencing localised vision loss.  It should be noted that in the 

normal image the dark region would cover the entire middle word, while in the zoomed 

image the affected region distorts only fragments of individual letters.    

 

(a) 
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(b) 

Figure 3.10 Test Image with Simulated Localised Vision Loss Before (a) and After (b) Digital Zoom  

The digital zoom currently used on the LoVIE involves a simple bilinear interpolation 

method.  While not the most effective interpolation method available, bilinear 

interpolation is one of the most efficient true interpolation methods available and thus 

was used in the current digital zoom implementation to facilitate use until other 

interpolation methods can be implemented and optimised (See Section 7.2.7).   
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3.4 Techniques to Combat Altered Colour/Contrast 

Perception 

3.4.1 Thresholding 

3.4.1.1 General Threshold Process 

Many low vision disorders can cause a reduction in contrast perception.  Individuals with 

this symptom can experience difficulty discerning subtle changes in contrast, making 

faint or distorted images difficult to interpret.  In an educational environment, this 

situation could be caused by things such as the use of a faint marker on a whiteboard, or 

shadows cast across a blackboard.  Fortunately, this is a symptom that can be countered 

effectively.    

The basic idea behind thresholding involves choosing a mid point or threshold value for 

an image.  All pixels darker than this value are considered to belong to the foreground 

component of the image, while all pixels brighter than this are considered background (in 

other words, dark text on a white background).  By performing this operation on all 

pixels in an image, it can be compressed into binary form, increasing all contrasts to the 

maximum possible.  The key to properly thresholding an image is choosing an 

appropriate midpoint brightness value between foreground and background.  Several 

different methods of intelligently obtaining this value, based on the input image were 

investigated.  The two most successful and thus fully implemented methods are outlined 

below.  While these methods are generally close to the optimal value, they can sometimes 
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be wrong.  As such, the user is given the option to manually alter the automatically 

selected threshold value (See Section 6).  

Once the image has been divided into foreground and background components, the 

LoVIE is able to process each component independently.  The main benefit of this, at this 

stage of development, is that the user is given the option to choose a combination of 

foreground and background colours that they find the most comfortable to view.  For 

example, those with retinitis pigmentosa experience excessive glare when looking at 

purely white light [6], and therefore usually prefer to view a colour foreground and 

background combination. Figure 3.11 shows the output of the threshold filter with black-

and-white and colour outputs.  

 

(a) 
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(b) 

Figure 3.11 Test Image with Threshold Filter Configured for Greyscale (a) and Colour (b) Outputs  

3.4.1.2 White Background Assumption Technique 

One method by which the LoVIE selects a threshold value was derived based upon the 

assumption that the input image will consist mainly of a white background (the 

whiteboard) with black foreground (text, diagrams).  Figure 3.12 shows a typical 

histogram for such an image.    
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Figure 3.12 Typical Histogram of a Mainly White Background Image  

The large peak to the right of the plot is a result of the white coloured background 

making up most of the image.  If it is assumed that the mean of the brightness values 

associated with the background is the same as the median, then the middle of the peak 

can be found simply by finding the maximum value in the histogram.  By making another 

assumption that the background is the brightest component of the input image, then the 

half width of the peak can be found by calculating the distance of the maximum from the 

highest brightness value (234 in this case).  Once the width and location of the peak are 

known, a threshold value can be established at a point slightly lower than the lowest 

value of the peak.  In this way, the background has been set to incorporate the whiteboard 

while the foreground is considered to be everything else.  While testing, it was found that 

this method worked particularly well if the above assumptions were true.  However this 
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method fails once the white background no longer occupies a significant portion of the 

input image.   

3.4.1.3 Fuzzy Logic Technique 

The second technique for establishing a valid threshold point implemented on the LoVIE 

involved a two-step process. Firstly a logarithm contrast operator, given by Equation 3.1 

[7] (where R is the maximum brightness in the input image), adjusts the image so that the 

contrast of lighter coloured areas (shadows or reflections on the whiteboard) is reduced, 

while the contrast of darker areas, such as text, is increased.   
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Equation 3.1 Log Contrast Equation  

Figure 3.13 gives a graphical representation of the transfer function of the logarithm 

operator.  It should be noted that the rate of change of the operator is much higher for 

lower brightness values.  
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Figure 3.13 Transfer Function of Log Contrast Operator  

Once the contrasting operation is complete, the second stage of the Fuzzy Logic 

Technique is carried out.  This involves summing the darkness coefficient of each pixel 

to obtain the number of dark pixels in an image.  In order to obtain this coefficient, 

each pixel is classified according to a darkness fuzzy set.  A typical transfer function of 

this fuzzy set is given in Figure 3.14.   
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Figure 3.14 Typical Transfer Function of Darkness Fuzzy Set  

As darkness is a purely relative measure, the cut-offs of the transfer function are modified 

according to the histogram of the log-contrasted image.  From the fuzzy transfer function 

a value between 1, meaning purely dark, and 0, meaning purely light, for each pixel is 

obtained.  The sum of these values, or darkness coefficients , is taken to be the true 

number of dark, or foreground, pixels in an image.  Once this sum is obtained, the 

threshold point is calculated by finding the location in the images histogram with the 

number of pixels darker than that point being equal to the sum of the darkness 

coefficients.  
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3.5 Basic Image Controls 

As well as including some more advanced features, it was felt that the LoVIE should still 

include the facility to adjust basic image parameters such as brightness and contrast.  

While the C6711 itself could be used to implement these controls with some basic 

processing, this was seen as an unnecessary increase in processing load as the hardware 

used in the LoVIE has these facilities already built in.   

Firstly, the display used in the current design features controls that can be used to adjust 

the output contrast, colour and brightness much like that of a typical television or 

monitor.  Secondly, the M3188A camera module features automatic gain control and 

white balancing algorithms that attempt to output the best possible image for any lighting 

conditions.  The facility to adjust these parameters on the M3188A manually could be 

implemented quite easily with the addition of an I2C interface [8].   
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4. Hardware Based Development Platform 

4.1 Hardware Platform Requirements 

Today, there are many hardware based development platforms that facilitate the 

development and implementation of embedded systems.  Many platforms are designed 

for specific purposes including audio processing, security, and imaging. As such, a wide 

range of platforms with diverse feature sets are available.  Due to this, choosing an 

appropriate platform for a particular application is an extremely important stage of the 

development process.    

Before deciding on a development platform for the LoVIE, a set of requirements were 

established to ensure an appropriate choice would be made.  The requirements decided 

upon, and the reasoning behind each, are outlined below.  

First and foremost, as the LoVIE was to provide several image enhancements, 

simultaneously if necessary, processing power was a concern.  At this stage of 

development, particulars were not known, but it was expected that an image resolution of 

640x480 pixels with 256 levels of grey would be sufficient.  The majority of image 

enhancements fall into 2 categories.  Point to point operations, such as thresholding and 

contrast adjustment, involve transforming each pixel individually based on upon a certain 

set of rules.  A 640x480 image features 307200 pixels, each of which may need to be 

transformed several times before being output to the display.  As an example, to apply 

one enhancement to a frame at a rate of 15 frames per second (the desired rate at this 
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stage of development) would involve at least 307200 x 15 = 4608000 complex 

calculations per second, a fairly heavy processing load for a development platform.  

Convolution based enhancements, including FIR filtering and digital zooming, transform 

each pixel according to a weighted sum of itself and its surrounding pixels.  Thus, instead 

of one calculation per pixel, the processor must perform several (depending on the 

convolution mask size).  The platform decided upon must be capable of these speeds to 

be of any practical use in development.  

The second major issue in deciding on a development platform is available memory 

space.  In order to perform several image enhancements on one frame, as well as the 

original frame, each intermediate frame needs to be stored for the next enhancement to 

process.  Because of this it was estimated that as many as 6 frames may need to be kept in 

memory at any one time.  A single 640x480 256-level greyscale image requires 

approximately 300 kilobytes; therefore for the initial estimate of 6 frames, at least 1.8 

megabytes of memory space would be required.  This is not an unusual or particularly 

large requirement by today s standards, but it remains an important requirement none the 

less.  

The development platform decided upon will need to be capable of receiving image data 

from an image sensor and outputting each enhanced frame to a display in a suitable 

manner.  As such, the development platform decided upon must feature appropriate 

interfaces, capable of transmitting and receiving data at a link bandwidth of at least 37 

Mbps (See Equation 4.1). 
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Equation 4.1 Approximate Bandwidth Requirement at 15 fps  

In addition to this, it was intended that the user be provided with a means of controlling 

the featured enhancements via an appropriate user interface (See Section 6).  The chosen 

platform must be able to accommodate this and ideally, more, to allow further 

functionality to be added as necessary.  

Finally, to facilitate implementation and optimisation of the designed enhancements, the 

chosen platform should feature a flexible and stable design environment, preferably with 

a highly developed set of debugging tools. As this is the first major design undertaken by 

the students involved, many mistakes were anticipated.  Without appropriate tools, the 

development process could become unnecessarily difficult and lengthy.  Also, an 

optimised library set including relevant mathematical operations such as 2D FIR filtering 

and matrix operations would greatly speed up implementation and simplify the 

optimisation process.  
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4.2 The TMS320C6711 Digital Signal Processor 

4.2.1 Overview 

The Texas Instruments TMS320C6711 is a low cost (approximately $550 Australian 

dollars at time of printing), high performance 32-bit floating point digital signal processor 

designed especially for complex multi-channel and multifunction applications.  It was 

chosen as the hardware development platform for the LoVIE as it meets or exceeds all 

the requirements outlined in Section 4.1.  The following sections describe the relevant 

components of the C6711 and their capabilities.   

4.2.2 Processor and Memory 

The TMS320C6711-BGFN150 is the specific C6711 model used in development of the 

LoVIE.  Designed specifically for high performance DSP applications, it features a 150 

MHz CPU capable of up to 900 million floating point operations per second. The CPU 

features 32 general-purpose registers of 32-bit word length as well as 8 independent 

functional units for fixed and floating-point operations.  As well as 512 kilobits of on-

chip program/data memory, the C6711 features 16 megabytes of external SDRAM 

addressable via a glueless external memory interface.  

The specifications above were seen to meet those defined in Section 4.1; thus the C6711 

was deemed an appropriate choice in this respect.  
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4.2.3 Interfaces 

4.2.3.1 The External Memory Interface (EMIF)  

The C6711 features a 32-bt external memory interface that provides a glueless interface 

to both synchronous and asynchronous memory spaces and is capable of addressing up to 

256 megabytes of external memory [9].  While, the C6711 comes packaged with 16 

megabytes of external SDRAM available via the EMIF, for the LoVIE it is also currently 

used as an interface to the display subsystem [20].   

4.2.3.2 The Multi-channel Buffered Serial Port (McBSP)  

The McBSP featured on the C6711 features 2 serial port channels each capable of acting 

either as a standard serial port or a set of independent general purpose binary input output 

pins.  

The serial port interface provides [10] 

 

Full-duplex communication 

 

Double-buffered data registers, which allow a continuous data stream 

 

Independent framing and clocking for reception and transmission 

 

Direct interface to industry-standard CODECs, analogue interface chips (AICs), 

and other serially connected A/D and D/A devices 

 

External shift clock generation or an internal programmable frequency shift clock 

 

8-bit data transfers with LSB or MSB first 

 

Programmable polarity for both frame synchronization and data clocks 
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Highly programmable internal clock and frame generation  

For the LoVIE, both channels of the McBSP have been reconfigured to act as general-

purpose input/outputs.  The design of the McBSP is such that only 6 independent pins are 

available for input per channel.  Figure 4.1 below shows the register configuration of the 

McBSP channels.  

CLKS_STATx FSXx DR_STATx DX_STATx FSRx CLKXx CLKRx 

Available McBSP Channel Registers 

Registers used for pixel data 

Registers available User Interface/Misc 

Registers configurable for output only 

 

Figure 4.1 Register Configuration of the McBSP Channels  

With only 6 pins available per channel, the current interface method (See Section 5.3.4) 

utilises 4 registers per channel to receive the 8-bit data bus from the M3188A camera 

module (See Section 5.2).  Currently, the remaining free pins on the McBSP are used in 

the implementation of the user interface, outlined in Section 6, and to request each frame 

from the M3188A. 
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4.2.3.3 Enhanced Direct Memory Access (EDMA)  

The C6711 s EDMA is a highly efficient data transfer engine theoretically capable of 

transferring 8, 16, or 32 bit blocks at speeds of up to 1200 megabits per second at a CPU 

rate of 150 MHz.  This data rate is much higher than the required 37 megabits per second 

required for image reception.  It features 16 independently programmable channels that 

can be initiated by and synchronised with, among other things, the CPU, external 

interrupts and timing events.   

In the LoVIE design, the EDMA is used not only to transfer image data within the 

external SDRAM, but also to transfer received image data from the 2 McBSP channels 

onto the SDRAM and to transfer the output image to the display subsystem via the EMIF.  

The advantage of this is that once set up, the EDMA does not require the CPU to carry 

out the transfer. In this manner, the LoVIE is able to process one frame while 

simultaneously receiving the next.  

4.2.3.4 External Hardware Interrupts 

To enable control by external devices or users, the C6711 features 4 3.3V external pins 

available as interrupt sources that can be used to trigger software events or provide 

synchronisation information.  
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In the current LoVIE design, external interrupts 4 and 5 are wired to the pixel clock 

output of the M3188A to act as synchronisation events for the EDMA transfers from the 

McBSP channels to the SDRAM.  External interrupts 6 and 7 are used as parameter 

adjustment buttons in the current implementation of the user interface.  

4.2.4 Design Environment 

All source code design, debugging and testing on the C6711 was done within the Texas 

Instruments Code Composer Studio design environment (Version 2.00.00).  Code 

Composer features a fully integrated C/C++ compiler, assembler, linker and visual linker.  

To facilitate debugging, Code Composer Studio supports simple, conditional and 

hardware breakpoints as well as a symbol browser and an advanced watch window, all of 

which were used extensively during development.  

To provide simple control over the various peripherals available on the C6711, Code 

Composer Studio also includes a DSP/BIOS kernel that features interrupt handling, a 

chip support library and several DSP libraries.  The graphical user interface of the 

DSP/BIOS proved extremely useful in configuring the EDMA transfers and McBSP 

channels as they provide a simple and clear view of the relevant registers.   

While at times quite unstable, the Code Composer Studio package has many features that 

made it invaluable while implementing the various LoVIE designs. The graphical 
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interface proved especially useful when configuring the various peripherals, and thus was 

considered a suitable software environment for the implementation of the LoVIE. 
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5. Camera Selection and Evaluation 

5.1 Camera Requirements 

As the processing carried out by the LoVIE depends heavily on image quality, the choice 

of an appropriate image sensor was a critical aspect of the design process.  Before the 

selection process could begin, a number of primary and secondary requirements for the 

image sensor itself were established.  

First and foremost, the selected image sensor needed to give output of an acceptable 

quality.  It was decided that colour video output would be unnecessary for the intended 

purpose, as it would only increase the visual complexity of the image, as well as the time 

required to process it. With finding a balance between image quality and required 

processing time in mind, it was decided that an output resolution of 640x480 pixels with 

a depth of 256 grey levels per pixel would be more than sufficient.   As the LoVIE will be 

expected to output a fairly smooth video stream to maintain clarity, the output frame rate 

should be at least 15 fps.  

The second requirement was that the image sensor output the image data in an 

appropriate format via an appropriate interface.  The appropriate inputs available on the 

TMS320C6711 device are limited to 2 McBSP channels, an external memory interface, 

and four hardware interrupts (See Section 4.2.3).  With this in mind, and to offer the 

maximum flexibility, it was desired that the chosen image sensor offer output via a data 

bus of at least 8 bits width for parallel transfers of each pixel.  Any control data lines 
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were to be tied to the external hardware interrupts.  The TMS320C6711 features 3.3V 

I/O, buffered up to 5 volts, so it was preferable that the chosen image sensor be 

compatible with this to negate the need for additional circuitry.  

As the LoVIE is eventually intended to be a low cost portable device, power consumption 

was a major concern in selecting an appropriate image sensor.  While CCD image sensor 

chips are less sensitive to noise than equivalent CMOS chips [11], they can consume as 

much as 100 times more power than an equivalent CMOS device and are also fairly 

expensive.  Because of this, it was decided that a CMOS image sensor would be the more 

appropriate choice.  If noise sensitivity does become a problem further along in 

development, it is expected that an equivalent CCD device could be substituted into the 

existing interface framework with few problems.  

Secondary requirements were established as a means of choosing between several 

devices that matched the needs outlined above.  Although not entirely necessary, a means 

of controlling the camera via the TMS320C6711 (preferably using the I2C bus protocol) 

would be convenient.  If available, this would provide a means of adjusting the camera s 

frame rate, contrast, and brightness among other things, without additional processing.    

Preferably, the CMOS image sensor chip would come packaged with all components 

necessary to drive it.  While the necessary circuitry could be implemented if required, this 

would be unnecessarily time consuming and hence would decrease development time 

available for more important aspects of the LoVIE. 
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An auto focus feature would increase the versatility of the camera, but would most likely 

increase the power consumption, size and weight of the camera package.  If deemed 

necessary later in development, a compatible lens incorporating auto focus could be 

obtained.  

5.2 The M3188A CMOS Camera Module 

The M3188A camera module [12] incorporates the OmniVision OV7120 1/3 CMOS 

image sensor [8] along with all discrete components necessary to drive it.  It features an 

output resolution of 640x480 pixels with 256 grey levels (8 bits) per pixel available at up 

to 30 fps.  The image data is available via an 8-bit bus line synchronised with an 

internally generated pixel clock.  Data can be output in various formats, including 

interlaced and progressive scan modes.  All I/O on the module operates at 5V; thus the 

M3188A meets or exceeds all primary requirements outlined in Section 5.1.  

Additionally, the M3188A provides various functions including frame rate, contrast and 

brightness adjustment as well as windowing and noise suppression, configurable via an 

I2C interface.  Many functions available via the I2C interface can also be enabled 

automatically on power-up by attaching pull-up or pull-down resistors to specified pins.  

This may be useful further on in the development process to reduce the time required to 

configure the camera at start up, or possibly negate the need for an I2C interface 

altogether.  
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Unfortunately, the M3188A comes packaged with a fish-eye lens (f = 3.7mm), probably 

because the module is intended for security applications.  While this was not entirely 

suitable for viewing written material at distances greater than about 3 metres, it was 

sufficient for development and testing purposes.  Further on in development, a 

compatible lens with a focal length of about 12mm [13] will need to be obtained.  

5.3 Camera Interface Methods 

5.3.1 Timing Overview 

In order for the interface methods described below to be meaningful to the reader, a brief 

description of the timing and purpose of the output signals from the M3188A will be 

given.  The OV7120 is configured to operate in progressive scan mode for all timing and 

interface descriptions given.  

 

Figure 5.1 Timing Diagram for the M3188A 
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As shown in Figure 5.1, the M3188A requires three control lines and one 8-bit data bus 

be utilised for correct operation.  The VSYNC line goes high momentarily to indicate the 

start of each frame while the HREF line is high for an entire line (640 pixels) of valid 

data.  Pixel data can to be read off the data bus on each rising edge of the pixel clock.  

5.3.2 Interrupt Controlled Data Transfer via McBSP 

This method was used on the first attempt to interface the M3188A with the C6711 DSP 

platform; unfortunately it is also the method that produced the poorest results.  As the 

image data was to be received from the M3188A via an 8-bit bus line, it was concluded 

that the best way to receive the data on the C6711 was via the McBSP configured to act 

as a set of independent general-purpose binary input/output pins (See Section 4.2.3.2).  

On receiving each pixel, the C6711 s EDMA was to be used to transfer the data to an 

appropriate location in memory.  

As this was the first attempt at using the C6711 s EDMA in a practical sense, nothing 

about the limitations of the engine were known apart from those provided in the various 

technical documents available [14],[15].  For this reason, it was decided that processing 

of the various signals from the camera would be done with the EDMA directly.  

Specifically, this involved linking the HREF and VSYNC lines to external interrupts 6 

and 7 respectively, with the pixel clock attached to external interrupts 4 and 5 and pixel 

data received via the McBSP as shown in Figure 5.2 below.  
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M3188A 6 7 

4 5 

External Interrupts 

McBSP  

Channel 0 Channel 1 

Pixel Data Bus 

Pixel Clock 

VSYNC 

HREF 

 

Figure 5.2 Wiring Diagram for Interrupt Controlled Data Transfer  

Essentially, once the processor was ready for a new frame, the VSYNC interrupt would 

be enabled.  On receiving this interrupt, the EDMA was configured to transfer one line of 

pixel data (640 pixels) starting at the first address in the frame buffer, and the HREF 

interrupt was enabled.  On receiving an HREF interrupt, the EDMA transfer was started, 

synchronised with the pixel clock interrupt.  Once the line of data was transferred, the 

destination address of the EDMA transfer was increased by 640 bytes and the transfer 

counter reset, ready for a new line of data.  Once 480 lines of data were received in this 

manner, the HREF and VSYNC interrupts were disabled until a new frame was required.  

As each McBSP channel features only 6 pins capable of receiving binary data 

independently, it was necessary to use 2 McBSP channels to receive all 8 bits of data.  As 
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such 2 concurrently running EDMA transfers were needed to transfer this data, which 

caused several problems.    

Firstly, while the EDMA engine on the C6711 was more than capable of maintaining the 

bandwidth required for transferring 15 frames per second (approximately 37 Mbps), 2 

simultaneous transfers from the McBSP registers involved transferring 8 redundant bits 

for every 8 data bits. Tests carried out running 2 concurrent EDMA transfers with various 

configurations revealed the maximum obtainable effective bandwidth to be 

approximately 31 Mbps, while in reality the actual achieved bandwidth was closer to 62 

Mbps. When combining this limitation with the delays involved with constantly 

reconfiguring and restarting the EDMA transfers, the highest frame rate obtainable with 

this interface method was 3 frames per second.  The second significant problem involved 

the resultant image itself.  While the image as a whole was quite clear, it seems the 

transfer introduced speckled areas (Figure 5.3) that tended to adversely affect the 

implemented filters. Also it seems that in the transfer process, several levels of grey were 

lost, distorting areas of low contrast gradient.  The reason these spurious pixels were 

being introduced into the image could not be ascertained so it was assumed that random 

bits were being lost due to the strain placed on the EDMA engine.  
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Figure 5.3 Example Image Obtained via Interrupt Controlled Interface with Problem Examples 

Circled  

Due to the reasons outlined above, this interface method was deemed to be unsatisfactory 

for its intended purpose.  Therefore, further work was done to develop the alternative 

methods outlined below.  

5.3.3 Interrupt Triggered Gated Pixel Clock Signal via McBSP 

At this stage of development, the main reason for the low frame rate achieved was 

thought to be the constant initialising and reconfiguring of the EDMA necessary in the 

interface method outline in Section 5.3.2.  As such, 2 methods of eliminating the need for 

these reconfigurations were devised.    
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The first method discussed involved simply dumping all pixel data onto the SDRAM.  

The states of VSYNC and HREF were embedded in this data simply by attaching these 

lines to spare McBSP pins.  Once an entire frame was received, all necessary processing 

was to be carried out by the CPU.  However, it was quickly discovered that this method 

was redundant, as the extra processing time required extracting the frame would negate 

any resulting gain in transfer speed.  

The second method attempted, involved using a standard AND gate to combine the 

signals from the pixel clock and the HREF line.  The resulting output would give a 

positive edge only when valid pixel data was available.  The only restriction on the AND 

gate used was that its propagation delay be small enough, that it did not cause the data 

bus and pixel clocks output to be misaligned. At 3 fps, the OV7120 pixel clock runs with 

a period of roughly 727 nanoseconds.  As the OV7120 guarantees valid pixel data on the 

positive edge of the pixel clock only, it was established that the propagation delay of the 

AND gate should not be more than one tenth of the pixel clock period.  The AND gate 

used in the implementation of the interface method was the 74HC08 Quad 2-input AND 

gate.  The 74HC08 has a propagation delay around 7ns [16], far below the limit 

established and was also readily available in the technical storeroom; thus, it was deemed 

suitable.  

With this method implemented, the EDMA need only be configured and started once, at 

the start of each frame.  It would receive only pixel data necessary for the frame and 

trigger an interrupt once the transfer was complete. 
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The output images obtained with the AND gate implementation contained none of the 

spurious pixels found in the results of the previous method, thus in this respect the AND 

gate implementation was successful.  However, for reasons unknown the frame was now 

misaligned, giving an output image similar to that from a television with a badly adjusted 

vertical hold (See Figure 5.4).  

 

Figure 5.4 Example Resultant Frame from Interrupt Triggered Gated Pixel Clock Interface  

As mentioned in Section 5.3.2, the EDMA transfer is triggered on receiving the VSYNC 

interrupt. The measured delay for an interrupt routine on the C6711 was around 880ns, 

more than fast enough to set up and start the EDMA transfer before the M3188A begins 

to transmit data. Consequently, the problem was not hardware related on the C6711 s 

part.  Several tests were run, but the source of this particular problem could not be found.  

For this reason the Interrupt Triggered Gated Pixel Clock interface was not suitable for 
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use in the final implementation.  Methods of guaranteeing proper frame synchronisation 

were investigated, resulting in the interface design discussed in Section 5.3.4.  

5.3.4 SRAM Mode with Gated Pixel Clock 

In order to address the frame synchronisation problem discussed in Section 5.3.3, a 

method needed to be devised that would ensure the EDMA transfer began on the first 

pixel of the frame every time.  The OV7120 datasheet [8] states that by setting a 

particular I2C register, the image sensor can be put into SRAM mode.  Once in SRAM 

mode, the OV7120 goes into a wait state with the VSYNC line high and the data bus tri-

stated.  While in this state, a single frame can be output from the OV7120 by requesting it 

via the I2C interface or an external pin on the chip itself.  As the McBSP is currently tied 

up receiving pixel data, an I2C controller on the C6711 has as yet not been implemented; 

as such the frame is requested by sending a pulse to the appropriate pin on the OV7120.  

Since this method means the data is available as soon as requested, and not as a part of a 

continuous stream, there are no synchronisation issues.  Also, as the signal is still run 

through the AND gate, as described in Section 5.3.3, the resulting output consists solely 

of one frame of valid data.  Operating the OV7120 in this mode simplifies the reception 

of data on the C6711 greatly.  Once a frame is required, the EDMA is configured to 

transfer 307200 pixels from the McBSP to an appropriate location in memory.  Once the 

set up is complete, a pulse is sent via one of the McBSP output pins to the appropriate pin 

on the OV7120.  Once all necessary data is received, the EDMA triggers a software 

interrupt that updates all necessary flags and begins processing the frame. 
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Figure 5.5 Wiring Diagram of SRAM Mode with Gated Pixel Clock Interface  

As this interface method resolves all timing and processing issues inherent in the 

previous interface methods, Figure 5.6 shows optimal image quality can be attained with 

relatively low processing requirements on the C6711.  Unfortunately, as this method still 

uses the McBSP to receive the data, the same speed limitations outlined in the previous 

methods still apply.   
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Figure 5.6 Resultant Image from SRAM Mode with Gated Pixel Clock Interface  
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6. User Interface 

6.1 User Interface Design 

As the LoVIE is intended for people with poor vision, it must feature a simple, and above 

all, clear method for accessing all user controllable parameters.  

Currently, there are 4 main enhancements available; Focus, Edge Enhance, Zoom and 

Threshold.  Aside from enabling and disabling the enhancements, each has at least 1 user 

definable parameter.  Focus requires the user to be able to adjust the location and width 

of the focus area.  Thresholding allows not only the threshold level to be adjusted, but 

also the foreground and background colours of the output image.  Zoom can be adjusted 

to give different magnification factors, while the Edge Enhance filter allows the user the 

ability to adjust the cut off frequency, as well as the foreground and background 

amplifications.  A visual representation of the effects and their parameters is given in 

Figure 6.1.  
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Figure 6.1 Flow Diagram of User Interface Design  

To create a simple interface, it was decided that the controls should be based around 4 

function buttons and 2 adjustment buttons.  Each individual function button can be used 

to cycle through its assigned enhancement parameters while the adjustment buttons can 

be used to alter the selected parameter. With one separate button for each function, they 

could be quite large and clearly labelled and/or colour coded.  Also as the same two 

buttons are used to adjust all parameters, with practice the LoVIE could be operated on 

tactile memory alone.  

6.2 User Interface Implementation 

With the current hardware implementation of the LoVIE, there are 3 general-purpose 

input/output pins available (via the McBSP) and 2 hardware interrupts.  When triggered, 
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the hardware interrupts can interrupt software flow, therefore their current states are 

available at any time.  On the other hand, the 3 McBSP pins must be continually polled in 

order to obtain their state.  Due to this, it was decided that the 3 McBSP pins be used as 

the 4 main function buttons, while the two interrupts be used as the adjustment buttons.  

As 4 function buttons are required with only 3 McBSP pins, a combination of the 3 pin 

states is used to trigger each function. While only 2 pins would be sufficient, the 3 

McBSP pins can support up to 23 = 8 functions, allowing room for future developments.  

The corresponding registers for the three available pins are DR0, CLKS0 and DR1, a 

truth table and wiring diagram of the current configuration is given below. 

DR0 

0 

0 

1 

1 

CLKS0 

0 

1 

0 

0 

DR1 

1 

0 

0 

1 

Threshold 

Edge 

Zoom 

Focus 

FUNCTION 

 

Figure 6.2 Truth Table for User Interface Register Configuration  
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Figure 6.3 Wiring Diagram for User Interface  

The 3 pins are polled once at the start of every frame processing cycle.  While the two 2 

adjustment buttons are updated instantly on triggering, the modified parameters will not 

take effect until the modified filter is next applied. 
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7. Conclusion 

7.1 Progress Summary 

The LoVIE preliminary design involved in-depth research into several areas of image 

enhancement techniques, including fuzzy processing, image segmentation and a number 

of domain-transform methods.  Because of this research, it was possible to create several 

custom filters, from the ground up, designed specifically for use with the LoVIE.  

Currently, there are 4 filters in use on the system 

 

Focus, Edge Enhance, Zoom and 

Threshold.  A fifth, Edge Outline, has been implemented but is as yet untested.  While 

some of these filters, namely Edge Enhance and Zoom, are not yet running at speeds that 

could be classified as real-time , this is definitely an achievable goal.  Theoretically the 

hardware platform used in development is more than capable of the calculations required; 

however due to time constraints, no time has yet been put into improving and optimising 

the code involved.    

Concerning the image sensor hardware, an adequate interface between the M3188A and 

the C6711 was implemented.  While the current interface in use limits the transfer of 

images to 3 frames per second, it is felt that a far more efficient system design is 

achievable. Some research was carried out on the subject, but again due to time 

constraints, the matter was not developed further.  
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7.2 Future Developments 

7.2.1 Overview 

While a basic design for the LoVIE has been defined, there are several aspects of the 

system that need to be improved or developed further before the device could be 

considered ready for commercial use.  The following sections outline several such areas 

where further work is necessary or possible.  

7.2.2 Optimisation 

As mentioned previously, the existing hardware configuration allows up to 3 frame 

transfers per second.  Unfortunately the current implementations of the designed filters 

are not capable of running at these speeds.  Ultimately, a realistic goal for the processing 

system should be around 15 frames per second.  However, it is expected that the final 

frame rate be variable, depending on the processing load.  As yet no optimisation work 

has been done at all, thus a fairly basic initial optimisation process should result in a 

significant speed improvement.  Further, as many filters involve 2D convolution, it is 

suggested that fast 2D convolution methods such as the nesting, splitting and polynomial 

transforms would be a productive area of investigation.  

7.2.3 Camera Interface via C6711 EMIF 

As a possible solution to the frame rate limitation inherent in the current interface 

methods, it is proposed that by using an FPGA as an external controller, the M3188A 

could be interfaced with the C6711 via its external memory interface (See Section 

4.2.3.1). The FPGA would buffer incoming data from the M3188A and retransmit it to 
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the C6711 via a 32-bit data bus on request.  Doing this would eliminate the need for 2 

simultaneous EDMA transfers, or any pre processing of the frame upon reception.  It is 

expected that by doing this, rates of up to 15 fps would be achievable.  

Though not yet implemented, a similar set up has been successfully used in the display 

subsystem interface [20].  Aside from improving on the current achievable frame rate, 

this rather more elegant solution would have the added bonus of freeing up the McBSP, 

enabling it to be used as an I2C controller.  

7.2.4 On Board I2C Controller 

The current camera interface method requires the use of both McBSP channels to 

function correctly.  As such, all I2C register sets on the M3188A were controlled during 

development via an external controller (namely the Z8 Encore Evaluation Board).  

Freeing up the McBSP channels by making use of the C6711 s EMIF for the interface 

would mean an on board I2C controller could be implemented on the C6711 relatively 

easily.  

7.2.5 Appropriate Filter Testing and Further Design 

While all filters implemented on the LoVIE were designed based on the findings of 

others or on the advice of people experienced in working with low vision students, they 

are yet to be properly tested.  Tests carried out on low vision individuals within an 

appropriate environment would provide valuable feedback on the real world usefulness of 
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the current filters and possibly provide ideas for improvements and/or further 

enhancements.  

7.2.6 Implementation of Dithering Algorithm on Greyscale 

Output 

The display used in the LoVIE design is not capable of displaying any more than 64 

levels of grey.  Currently, to format the output appropriately, the 2 least significant bits of 

each output pixel are discarded before transferring it to the display subsystem.  While the 

results achieved using this method are satisfactory, a noticeable improvement could be 

gained by first dithering the image to 64 grey levels before discarding the unused bits.    

It may be suggested that since the display is capable of using only 6 bits per pixel, then 

attempting to transfer 8 bits from the image sensor is unnecessary.  However, some of the 

filters implemented, particularly zoom and threshold, are quite sensitive to changes in 

contrast. Thus it was felt that better results could be achieved by maintaining optimal 

image quality while applying these filters.  

7.2.7 Implementation of Edge Preserving Interpolation Methods 

It is suggested that the final zoom implementation make use of the many available edge 

preserving interpolation techniques [17],[18].  Edge preserving interpolation acts as 

normal interpolation techniques but attempts to preserve the sharpness of edges and thus 

overall clarity of a zoomed image.  The sharper the edges obtained from the output of the 
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digital zoom, the more effective the performance of the Edge Enhance and Threshold 

filters.  

7.2.8 Further User Interface Development 

At this point in time the user interface provides no feedback as to the parameter selected 

or its adjusted value.  It is suggested that such feedback be implemented, possibly in the 

following manner.  Firstly, a large on screen display should be implemented to give a 

clear visual representation of the current operation.  Additionally, the LoVIE could make 

use of audible cues to indicate the current operation being performed by the user.    

7.2.9 Advanced Image Processing Techniques 

While the filters currently implemented are on par with, and in some respects exceed, the 

capabilities of equivalent devices on the market, there is room for improvement.  The 

ultimate goal of the LoVIE is to be able to intelligently recognise the information desired, 

even going so far as to recognise what is text and what isn t.  Were the device capable of 

this, all interfering image components could be removed completely.  While this is not 

yet proven to be feasible, research into a number of areas including image segmentation 

and fuzzy image processing could prove quite beneficial in this respect. 
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Appendix A  C Source Code 

/* SRAM mode with gated pixel clock interface source code*/ 
/* requires main_cfg.c to configure hardware            */  

#define CHIP_6711  

#define _TI_ENHANCED_MATH_H 1 
#include <math.h> 
#include <std.h> 
#include <stdio.h> 
#include <log.h> 
#include <hwi.h> 
#include <csl.h> 
#include <csl_irq.h> 
#include <csl_mcbsp.h> 
#include <csl_edma.h> 
#include "main_cfg.h"  

//first define memory locations 
#define FRAME_ONE_A 0x800A9000 //Memory location of frame 
#define FRAME_ONE_B 0x800F5000 //buffers  

#define FRAME_TWO_A 0x80141000 //Have left 0x1000 between 
#define FRAME_TWO_B 0x8018D000 //each data segment  

#define PROCESSED_FRAME_START 0x801D9000 //start of actual frame 
#define FINAL_FRAME 0x80225000 // start of processed frame  

//list of globals needed 
int EDMA_finished, 
new_frame, 
count, 
EDMA_number, 
CPU_number, 
CPU_finished;   

int swap_times;  //if we only want it to swap a certain number of times  

unsigned char *processed_start =(unsigned char *)PROCESSED_FRAME_START,     
*PCR0    = (unsigned char *)0x018C0024; 

unsigned int  *PCR1   = (unsigned int *)0x01900024;  

unsigned char *EDMA_frame_a, //pointer to data segment A for EDMA     
*EDMA_frame_b,      //pointer to data segment B for EDMA   

int enable;  

/*function declarations*/ 
void initialise(void); //setup variables/interrupts. run once at start 
void EDMA_frame_finished(void);//called when EDMA transfer completed 
void CPU_process(void);//post processing of frame   

void main(void) 
{  

initialise();  
for (count=0;count<0x4d000;count++)  
{ 
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*((unsigned char *)FRAME_ONE_A+count)=0x00;   
*((unsigned char *)FRAME_ONE_B+count)=0x00;   
*((unsigned char *)FRAME_TWO_A+count)=0x00;   
*((unsigned char *)FRAME_TWO_B+count)=0x00;   
*((unsigned char *)PROCESSED_FRAME_START+count) = 0x00;  

}  
count=0;    

while(EDMA_finished<15) //transferring 15 frames  
{   

if (new_frame==0)   
{    

EDMA_enableChannel(hEdmaExtint4); //first set up    
EDMA_enableChannel(hEdmaExtint5); //EDMA transfer    
new_frame=1;    
*PCR1 = 0x3010; //then send a pulse to the M3188A    
*PCR1 = (*PCR1 | 0x3030);   

}   
CPU_process(); //once the frame is received, post-process it  

}  
EDMA_close(hEdmaExtint4); //once all frames are received  
EDMA_close(hEdmaExtint5); //tidy up and finish  
MCBSP_close(hMcbsp1);  
MCBSP_close(hMcbsp0);    

printf("finished and all over \n"); 
}  

void initialise(void) 
{    

EDMA_finished=0;  
new_frame=0;  
EDMA_number = 1;  
CPU_number = 0;  
CPU_finished = 1;    

IRQ_resetAll();    //clear all interrupts  
EDMA_intClear(1);  
EDMA_intEnable(1); //enable TCINT 1    

IRQ_enable(IRQ_EVT_EDMAINT);  
IRQ_globalEnable(); 

}    

void EDMA_frame_finished(void) 
{  

//this function is called by the edma when it is finished a frame    

EDMA_disableChannel(hEdmaExtint4);  
EDMA_disableChannel(hEdmaExtint5);  
printf("frame finished %d\n",EDMA_finished);  
EDMA_intClear(1);//clear the cipr register so this  
//function will trigger again    

if(CPU_finished) //once the frame finishes, switch buffer  
{   

if(EDMA_number == 1)   
{    

EDMA_number = 2;    
CPU_number = 1;    
edmaCfg0.dst = FRAME_TWO_A; 
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edmaCfg1.dst = FRAME_TWO_B;   
}   
else   
{    

EDMA_number = 1;    
CPU_number = 2;    
edmaCfg0.dst = FRAME_ONE_A;    
edmaCfg1.dst = FRAME_ONE_B;   

}   
CPU_finished = 0;  

}  
EDMA_config(hEdmaExtint4,&edmaCfg0); //reset the EDMA channels  
EDMA_config(hEdmaExtint5,&edmaCfg1); //for each frame    

EDMA_finished++;  
new_frame = 0; 

}  

void CPU_process(void) //perform post processing of frame 
{  

long int read_counter;  
int i;  
unsigned char *CPU_frame_a,   

*CPU_frame_b;  
if(CPU_number != 0)  
{   

if(CPU_number==1)   
{    

CPU_frame_a = (unsigned char *)FRAME_ONE_A;    
CPU_frame_b = (unsigned char *)FRAME_ONE_B;   

}   
else   
{    

CPU_frame_a = (unsigned char *)FRAME_TWO_A;    
CPU_frame_b = (unsigned char *)FRAME_TWO_B;   

}   
//this for loop reads both half pixels at once   
//combines them into a single pixel and then   
//writes the output to processed_start      

for(read_counter=0;read_counter<307200;read_counter++)   
{    

//entire process done in one line to save time    
*(processed_start+read_counter) = 

((*(CPU_frame_b+read_counter) & 0x0F)<<4)|(*(CPU_frame_a+read_counter) & 
0x0F);   

}         

CPU_finished = 1;     

}  

  

/*Hardware setup file generated for SRAM interface */ 
/*generated automatically by Code Composer.*/ 
/*This file is included solely to illustrate the*/ 
/*hardware configuration used by this interface. */ 
/*        */ 
/*   Do *not* directly modify this file.  It was    */ 
/*   generated by the Configuration Tool; any  */ 
/*   changes risk being overwritten.                */  

/* INPUT main.cdb */ 
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/*  Include Header File  */ 
#include "main_cfg.h"  

/*  Config Structures */ 
EDMA_Config edmaCfg0 = {     

0x50310000,        /*  Option  */     
0x018C0024,        /*  Source Address - Numeric   */     
0x01DF0280,        /*  Transfer Counter  */     
0x800A9000,        /*  Destination Address - Numeric   */     
0x00000000,        /*  Transfer Index  */     
0x02800000         /*  Element Count Reload and Link Address  */ 

};  

EDMA_Config edmaCfg1 = {     
0x50200000,        /*  Option  */     
0x01900024,        /*  Source Address - Numeric   */     
0x01DF0280,        /*  Transfer Counter  */     
0x800F5000,        /*  Destination Address - Numeric   */     
0x00000000,        /*  Transfer Index  */     
0x02800000         /*  Element Count Reload and Link Address  */ 

};  

MCBSP_Config mcbspCfg0 = {     
0x00000000,        /*  Serial Port Control Reg. (SPCR)   */     
0x000000A0,        /*  Receiver Control Reg. (RCR)   */     
0x000000A0,        /*  Transmitter Control Reg. (XCR)   */     
0x203F1F0F,        /*  Sample-Rate Generator Reg. (SRGR)   */     
0x00000000,        /*  Multichannel Control Reg. (MCR)   */     
0x00000000,        /*  Receiver Channel Enable(RCER)   */     
0x00000000,        /*  Transmitter Channel Enable(XCER)   */     
0x00003000         /*  Pin Control Reg. (PCR)   */ 

};  

/*  Handles  */ 
EDMA_Handle hEdmaExtint4; 
EDMA_Handle hEdmaExtint5; 
MCBSP_Handle hMcbsp0; 
MCBSP_Handle hMcbsp1;  

/*  
*  ======== CSL_cfgInit() ========    
*/ 
void CSL_cfgInit() 
{     

hEdmaExtint4 = EDMA_open(EDMA_CHA_EXTINT4, EDMA_OPEN_RESET);     
hEdmaExtint5 = EDMA_open(EDMA_CHA_EXTINT5, EDMA_OPEN_RESET);     
hMcbsp0 = MCBSP_open(MCBSP_DEV0, MCBSP_OPEN_RESET);     
hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET);     
EDMA_config(hEdmaExtint4, &edmaCfg0);     
EDMA_config(hEdmaExtint5, &edmaCfg1);     
MCBSP_config(hMcbsp0, &mcbspCfg0);     
MCBSP_config(hMcbsp1, &mcbspCfg0); 

}   

   

/*Source code used to implement protoptype user interface*/ 
/*Currently does not execute filters, only reads in and alters*/ 
/*parameter values*/  

#define CHIP_6711  

#include <std.h> 
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#include <stdio.h> 
#include <log.h> 
#include <hwi.h> 
#include <csl.h> 
#include <csl_irq.h> 
#include <csl_mcbsp.h> 
#include <csl_edma.h>  
#include "uicfg.h"  

#define PCR0_ADDR 0x018C0024 
#define PCR1_ADDR 0x01900024  

//void log_contrast(); //apply log contrast function 
//void fuzzy_threshold(); //calculate threhold value  
//void zoom(int mode);//zoom image, mode depends on whether thresholding 
is enabled 
//void edge_enhance();  //enhance edges 
//void focus(); //use focus lines 
void initialise(); //set camera/interrupts/edma/default params 
//void power_down(); //stop everything, sw powerdown camera 
void check_UI(); 
void adjust_threshold(); 
void adjust_edge(); 
void adjust_zoom(); 
void adjust_focus();  

typedef struct  
{  

unsigned int enable;   
signed int offset;   
unsigned char foreground;   
unsigned char background;  

} thresh;  

typedef struct  
{  

unsigned int enable;  
float strength;  

} edge;  

typedef struct  
{  

unsigned int factor;  
} zoom;  

typedef struct  
{  

unsigned int enable;   
int position;   
int width;  

} focus;   

int       UI_prev,UI_comb; 
int       current_parameter=0;  

unsigned char *pcr0 = (unsigned char *)PCR0_ADDR;  

unsigned char *pcr1 = (unsigned char *)PCR1_ADDR; 
thresh threshold; 
edge  edge_enhance; 
zoom  zoom_in; 
focus focus_lines;  
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void main() 
{  

//step 1 : set everything up  
initialise();    

//step 2 : begin main loop  
while (1)  
{   

//check user inputs   
check_UI();   
printf("The current UI number is : %d\n",current_parameter);   
//grab frame   
//process frame   
//output frame  

}    

//step 3 : shutdown  
//power_down();   

}  

void initialise() 
{  

threshold.enable=0;  
threshold.offset=0;  
threshold.foreground=0x00;  
threshold.background=0xFF;    

edge_enhance.enable=0;  
edge_enhance.strength=1;    

zoom_in.factor=1;    

focus_lines.enable=0;  
focus_lines.position=240;  
focus_lines.width=20;  
UI_prev=0; 

}  

void check_UI() 
{      

UI_comb=(*pcr0&0x10)>>4|(*pcr0&0x40)>>5|(*pcr1&0x40)>>4;  
if (UI_comb==UI_prev)  
{   

UI_comb=0;  
}  
else  
{   

UI_prev=UI_comb;  
}    

switch(UI_comb)  
{  
case 4 : if (current_parameter==1)      

current_parameter=2;   
else if (current_parameter==2)    

current_parameter=3;   
else    

current_parameter=1;   
break;     

case 2  : if (current_parameter==4) 
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current_parameter=5;   
else    

current_parameter=4;     
break;     

case 1  : current_parameter=6;   
break;     

case 5 : if (current_parameter==7)      
current_parameter=8;   

else if (current_parameter==8)    
current_parameter=9;   

else     
current_parameter=7;   

break;  
default : printf("default\n");  
} 

}     

void positive_interrupt() 
{  

switch(current_parameter)  
{   
case 1:    

threshold.enable = 1;   
break;  

case 2:   
threshold.offset++;   
break;  

case 3:   
threshold.foreground=(threshold.foreground+1) % 3;   
break;  

case 4:    
edge_enhance.enable = 1;   
break;  

case 5:   
edge_enhance.strength+=0.2;   
break;  

case 6:   
zoom_in.factor=(zoom_in.factor + 1 )%3;   
break;  

case 7:    
focus_lines.enable = 1;   
break;  

case 8:   
focus_lines.position+=2;   
if((focus_lines.position + focus_lines.width/2)>480)    

focus_lines.position = 480-focus_lines.width/2;   
break;  

case 9:   
focus_lines.width +=2;   
if(focus_lines.position>240)   
{ if((focus_lines.position + focus_lines.width/2)>480)   
focus_lines.width-=2;   
}   
else   
{    

if((focus_lines.position - focus_lines.width/2)<0)     
focus_lines.width-=2;   

}   
break;   
//default;   

} 
} 
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void negative_interrupt() 
{  

switch(current_parameter)  
{   
case 1:    

threshold.enable = 0;   
break;  

case 2:   
threshold.offset--;   
break;  

case 3:   
threshold.background=(threshold.background+1) % 3;   
break;  

case 4:    
edge_enhance.enable = 0;   
break;  

case 5:   
edge_enhance.strength-=0.2;   
break;  

case 6:   
if(zoom_in.factor != 1)    

zoom_in.factor=(zoom_in.factor - 1 )%3;   
break;  

case 7:    
focus_lines.enable = 0;   
break;  

case 8:   
focus_lines.position-=2;   
if((focus_lines.position - focus_lines.width/2)<0)    

focus_lines.position = focus_lines.width/2;   
break;  

case 9:   
focus_lines.width -=2;   
if(focus_lines.width<5)    

focus_lines.width = 5;   
break;   
//default;   

} 
}  

 

/*Hardware setup file generated for user interface */ 
/*generated automatically by Code Composer.*/ 
/*This file is included solely to illustrate the*/ 
/*hardware configuration used by the user interface. */ 
/*   Do *not* directly modify this file.  It was    */ 
/*   generated by the Configuration Tool; any  */ 
/*   changes risk being overwritten.                */  

/* INPUT ui.cdb */  

/*  Include Header File  */ 
#include "uicfg.h"  

/*  Config Structures */ 
MCBSP_Config mcbspCfg0 = {     

0x00000000,        /*  Serial Port Control Reg. (SPCR)   */   
0x000000A0,        /*  Receiver Control Reg. (RCR)   */   
0x000000A0,        /*  Transmitter Control Reg. (XCR)   */   
0x203F1F0F,        /*  Sample-Rate Generator Reg. (SRGR)   

*/   
0x00000000,        /*  Multichannel Control Reg. (MCR)   */ 
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0x00000000,        /*  Receiver Channel Enable(RCER)   */   
0x00000000,        /*  Transmitter Channel Enable(XCER)   */   
0x00003000         /*  Pin Control Reg. (PCR)   */ 

};  

/*  Handles  */ 
MCBSP_Handle hMcbsp0; 
MCBSP_Handle hMcbsp1;  

/* 
*  ======== CSL_cfgInit() ========   
*/ 
void CSL_cfgInit() 
{     

hMcbsp0 = MCBSP_open(MCBSP_DEV0, MCBSP_OPEN_RESET);     
hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET);     
MCBSP_config(hMcbsp0, &mcbspCfg0);     
MCBSP_config(hMcbsp1, &mcbspCfg0); 

}   

   

//This code implements a simple digital zoom using a variation of 
//bilinear interpolation.  The zoom factor and offset can both be 
//specified, as required by the LoVIE.  

#include <stdio.h>  

#define _TI_ENHANCED_MATH_H 1 
#include <math.h> 
#define input_location  0x80000000 
#define output_location 0x8004B018    

void main() 
{  

int const rows=480;  
int const cols=640;  
float const factor=2.0;  
int y_offset=300,x_offset=270;  
float 

average[3][3]={{1.0/15,2.0/15,1.0/15},{2.0/15,3.0/15,2.0/15},{1.0/15,2.0
/15,1.0/15}};    

int row_zoomed,col_zoomed,i_in,j_in;  
int equiv_0_0,   

equiv_0_1,   
equiv_0_2,   
equiv_1_0,   
equiv_1_2,   
equiv_2_0,   
equiv_2_1,   
equiv_2_2;  

int i,j,out_pointer_offset,equiv_input_offset;  
unsigned char * input = (unsigned char *) input_location;     

unsigned char * output = (unsigned char *) output_location;      

row_zoomed=rows/factor;  
col_zoomed=cols/factor;      

for (i=0;i<640*480;i++){ 



 

77

  

*(output+i)=0x00;  
}    

if (x_offset>(480-(480/factor)))  
{   

x_offset=480-(480/factor)-1;  
}    

if (y_offset>(640-(640/factor)))  
{   

y_offset=640-(640/factor)-1;  
}      

for (i=0;i<row_zoomed;i++)  
{      

for (j=0;j<col_zoomed;j++)   
{    

/*spread the pixels out by the factor specified*/       

*(output+((i*(int)factor*cols)+(j*(int)factor)))=*(input+(((i+x_of
fset)*cols))+(j+y_offset));            

}     
}         

//now to interpolate     
for (i=0;i<480;i++)     
{   

for (j=0;j<640;j++)   
{   
//first we need to know what pixel we are talking about    

out_pointer_offset=i*640+j;        

if (*(output+out_pointer_offset)==0x00)    
{        

//calculate the closest equivalent pixel in input frame     
i_in=round((i/factor))+x_offset;     
j_in=round((j/factor))+y_offset;     
equiv_input_offset=(i_in)*640+(j_in);     
equiv_0_0=equiv_input_offset-641;     
equiv_0_1=equiv_input_offset-640;     
equiv_0_2=equiv_input_offset-639;     
equiv_1_0=equiv_input_offset-1;     
//note that 1_1 is equiv_input_offset     
equiv_1_2=equiv_input_offset+1;     
equiv_2_0=equiv_input_offset+639;     
equiv_2_1=equiv_input_offset+640;     
equiv_2_2=equiv_input_offset+641;       

*(output+out_pointer_offset)=average[0][0] * *(input+equiv_0_0)+      
average[0][1] * *(input+equiv_0_1)+      
average[0][2] * *(input+equiv_0_2)+      
average[1][0] * *(input+equiv_1_0)+     

average[1][1] * *(input+equiv_input_offset)+      
average[1][2] * *(input+equiv_1_2)+      
average[2][0] * *(input+equiv_2_0)+      
average[2][1] * *(input+equiv_2_1)+      
average[2][2] * *(input+equiv_2_2);         

}   
} 
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}      

printf("completed\n"); 
}  

 

//Threshold using white background assumption technique. 
//Calculates the threshold value based on the method described in  
//section 3.4.1.1  

#include <stdio.h> 
#define _TI_ENHANCED_MATH_H 1 
#include <math.h>  

#define ROWS 480 
#define COLS 640 
#define IMAGE_IN 0x800A9000 
#define IMAGE_OUT  0x80240000  

#define TEMP 0x800F5000 
#define HISTO 0x80140002   

int histo[256]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 
histo_max, 
histo_max_location;  

//unsigned char *out = (unsigned char *)IMAGE_OUT; 
//unsigned char *inp = (unsigned char *)IMAGE_IN; 
float s_factor;   

void logcontrast(void); 
void histogram(void); 
int assumption_threshold(void); 
int last_sig_histo(); 
int sig_factor(void); 
void threshold(int); 
unsigned char red[]={0xFF,0x00,0x00,0xFF,0x00,0xFF}, 
blue[]={0x00,0xFF,0x00,0x00,0x00,0xFF}, 
green[]={0x00,0x00,0xFF,0xFF,0x00,0xFF};  

unsigned int foreground; 
unsigned int background;   

void main() 
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{    

int th_value;  
s_factor = 0;  
histogram();  
s_factor = sig_factor();  
foreground = 1; //these parameters selected the foreground  
background = 3; //and background colours  
th_value = assumption_threshold();  
printf("\nThresh value = %d", th_value);  
threshold(th_value);   
printf("\ncompleted\n");   

}  

/********************************************************************** 
* this function finds the distribution of the pixel values between 
* 0 and 255 
**********************************************************************/ 
void histogram() 
{  

unsigned char *tem = (unsigned char *)TEMP;    

int i;  
unsigned char ch;         

for(i=0;i<307200;i++)  
{   

ch = *(tem+i);   
histo[ch]++ ;     

} 
}   

int assumption_threshold() 
{    

unsigned int  thresh_value;  
int i;    

histo_max=0;  
for (i=0;i<256;i++)  
{   

if (histo[i]>histo_max)   
{    

histo_max=histo[i];    
histo_max_location=i;   

}      

if (histo_max_location<250)   
{    

thresh_value=histo_max_location-(255-
histo_max_location);   

}   
else   
{    

thresh_value=histo_max_location-(255-
histo_max_location+5);    

}        

} 
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return thresh_value;   

}  

void threshold(int thresh_value) /*this function generates the 
thresholded image*/ 
{     

int i;  
unsigned char *tem = (unsigned char *)IMAGE_IN;  
unsigned char *output = (unsigned char *)IMAGE_OUT;      

for(i=0;i<302700;i++)  
{   

if( *(tem+i)<thresh_value)   
{    

*(output+(i)*3) = red[foreground];    
*(output+(i)*3+1) = green[foreground];    
*(output+(i)*3+2) = blue[foreground];   

}     
else   
{    

*(output+(i*3))  = red[background];    
*(output+i*3+1) = green[background];    
*(output+i*3+2) = blue[background];     

}  
} 

}  

int last_sig_histo() 
{  

int flag;  
int i;  
unsigned int p_end;   

/* the following finds the last significant pixel of the histo 
array    */    

flag = 0;  
i=255;  
do  
{   

if((histo[i]>s_factor) & (histo[i-1]>s_factor))   
{    

flag  = 1;    
p_end = i;   

}   
i--;  

}  
while(i>=0 && flag==0);    

return p_end; 
}  

int sig_factor() 
{  

float factor;  
unsigned int max;  
int i;   

/* the following loop finds the maximum value of the distribution 
array histo: see histogram for the values in histo*/  
max = 0;  
for(i=0;i<256;i++) 
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{   
if(histo[i]>max)    

max = histo[i];  
} 
/* a pixel value is considered significant if it occurs more than 
0.05 times the occurance of the most occuring pixel    */  
factor = round(0.05*max);//rounding the value    

return factor; 
}  

 

//This function transfers frames from the M3188A using the SRAM mode 
//with gated pixel clock interface and thresholds them using the fuzzy 
//logic technique. Appropriate hardware configuration is listed 
//previously  

#define CHIP_6711  

#define _TI_ENHANCED_MATH_H 1 
#include <math.h> 
#include <std.h> 
#include <stdio.h> 
#include <log.h> 
#include <hwi.h> 
#include <csl.h> 
#include <csl_irq.h> 
#include <csl_mcbsp.h> 
#include <csl_edma.h>  
#include "pingpongcfg.h"  

//first define memory locations 
#define FRAME_ONE_A 0x800A9000 //These are probably alright. 
#define FRAME_ONE_B 0x800F5000 //These are probably alright.  

#define FRAME_TWO_A 0x80141000 //Have left 0x1000 between  
#define FRAME_TWO_B 0x8018D000 //each data segment  

#define PROCESSED_FRAME_START 0x801D9000 //start of actual frame 
#define FINAL_FRAME 0x80225000 // start of processed frame  

//list of globals needed 
int EDMA_finished, 
new_frame, 
count, 
EDMA_number, 
CPU_number, 
CPU_finished;  

unsigned int histo[256]; 
float s_factor;   
int swap_times;  //needed if we only want it to swap a certain number of 
times  

unsigned char *processed_start =(unsigned char *)PROCESSED_FRAME_START,     
*PCR0       = (unsigned char *)0x018C0024; 

unsigned int  *PCR1   = (unsigned int *)0x01900024;  

unsigned char *EDMA_frame_a, //pointer to data segment A for EDMA     
*EDMA_frame_b; //pointer to data segment B for EDMA    

int enable;  

/*function declarations*/ 
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void initialise(void); //setup variables/interrupts. run once at start 
void EDMA_frame_finished(void); 
void CPU_process(void);//this will change, need to separate out 
void zmf(int x[],float y[],int start, int end); 
void threshold(int);  

void main(void) 
{  

initialise();  
for (count=0;count<0x4d000;count++)  
{   

*((unsigned char *)FRAME_ONE_A+count)=0x00;   
*((unsigned char *)FRAME_ONE_B+count)=0x00;   
*((unsigned char *)FRAME_TWO_A+count)=0x00;   
*((unsigned char *)FRAME_TWO_B+count)=0x00;   
*((unsigned char *)PROCESSED_FRAME_START+count) = 0x00;    

}  
count=0;      

while(EDMA_finished<3)  
{   

if (new_frame==0)   
{    

EDMA_enableChannel(hEdmaExtint4);    
EDMA_enableChannel(hEdmaExtint5);    
new_frame=1;    
*PCR1 = 0x3010;    
*PCR1 = (*PCR1 | 0x3030);   

}   
CPU_process();  

}  
EDMA_close(hEdmaExtint4);  
EDMA_close(hEdmaExtint5);  
MCBSP_close(hMcbsp1);   
MCBSP_close(hMcbsp0);     

printf("finished and all over \n"); 
}  

void initialise(void) 
{    

EDMA_finished=0;  
new_frame=0;  
EDMA_number = 1;  
CPU_number = 0;  
CPU_finished = 1;    

IRQ_resetAll();    //clear all interrupts  
EDMA_intClear(1);  
EDMA_intEnable(1); //enable TCINT 1      

IRQ_enable(IRQ_EVT_EDMAINT);  
IRQ_globalEnable(); 

}    

void EDMA_frame_finished(void)  
{  

//this function is called by the edma when it is finished a frame   
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EDMA_disableChannel(hEdmaExtint4);  
EDMA_disableChannel(hEdmaExtint5);  
printf("frame finished %d\n",EDMA_finished);  
EDMA_intClear(1);   //clear the cipr register so this function 

will       
//trigger again  

if(CPU_finished)  
{   

if(EDMA_number == 1)   
{    

EDMA_number = 2;    
CPU_number = 1;    
edmaCfg0.dst = FRAME_TWO_A;    
edmaCfg1.dst = FRAME_TWO_B;   

}   
else   
{    

EDMA_number = 1;    
CPU_number = 2;    
edmaCfg0.dst = FRAME_ONE_A;    
edmaCfg1.dst = FRAME_ONE_B;   

}   
CPU_finished = 0;  

}  
EDMA_config(hEdmaExtint4,&edmaCfg0);  
EDMA_config(hEdmaExtint5,&edmaCfg1);      

EDMA_finished++;  
new_frame = 0; 

}   

void CPU_process(void) 
{  

long int read_counter;  
int i;  
unsigned char *CPU_frame_a,   

*CPU_frame_b;  
if(CPU_number != 0)  
{   

if(CPU_number==1)   
{    

CPU_frame_a = (unsigned char *)FRAME_ONE_A;    
CPU_frame_b = (unsigned char *)FRAME_ONE_B;   

}   
else   
{    

CPU_frame_a = (unsigned char *)FRAME_TWO_A;    
CPU_frame_b = (unsigned char *)FRAME_TWO_B;   

}   
//this for loop reads both half pixels at once   
//combines them into a single pixel and then   
//writes the output to processed_start   
for(i=0;i<256;i++)    

histo[i] = 0;   
for(read_counter=0;read_counter<307200;read_counter++)   
{    

//entire process done in one line to save time    
*(processed_start+read_counter) = 

((*(CPU_frame_b+read_counter) & 0x0F)<<4)|(*(CPU_frame_a+read_counter) & 
0x0F);    

// histogram    
}   
for(read_counter=0;read_counter<307200;read_counter++) 
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{    
if(*(processed_start+read_counter)+1>256)     

printf("Greater than 256\n");    
if(*(processed_start+read_counter)+1<0)     

printf("less than 0\n");        

histo[*(processed_start+read_counter)+1] = 
histo[*(processed_start+read_counter)+1]+1;          

}   
s_factor = 0;   
s_factor = sig_factor();   
threshold(fuzzy_threshold());  

}  
CPU_finished = 1;   

}  

int fuzzy_threshold() 
{  

float y[256];  
int x[256];  
unsigned int p_start, p_end, p_range;  
unsigned int  thresh_value;  
int i;  
unsigned int sum;  
unsigned int histo0;  
unsigned char *tem = (unsigned char *)PROCESSED_FRAME_START;    

p_start = first_sig_histo(s_factor);  
p_end   = last_sig_histo(s_factor);    

p_range = p_end - p_start;    

for(i=0;i<256;i++)  
{   

x[i]=i;   
y[i] = 0;  

}      

zmf(x,y,round(p_start+0.1*p_range), round(p_start+0.4*p_range));    

sum = 0;    

for(i=0;i<307200;i++)   
sum = sum + (y[(*(tem+i)+1)]);      

thresh_value = p_start;    

histo0 = histo[0];    

while(histo0<sum)  
{   

thresh_value = thresh_value + 1;   
histo0 = histo0 + histo[thresh_value];  

}    

return thresh_value; 
}  

void threshold(int thresh_value) 
{ 
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int i;  
unsigned char *tem = (unsigned char *)PROCESSED_FRAME_START;  
unsigned char *out = (unsigned char *)FINAL_FRAME;    

for(i=0;i<307200;i++)     
{            

if( *(tem+i)<thresh_value)       
*(out+i) = 0;      

else       
*(out+i) = 255;           

} 
} 
int last_sig_histo() 
{  

int flag;  
int i;  
unsigned int p_end;   

// the following finds the last significant pixel of the histo array     

flag = 0;  
i=255;  
do  
{   

if((histo[i]>s_factor) )   
{    

flag  = 1;    
p_end = i;   

}   
i--;  

}  
while(i>=0 && flag==0);    

return p_end; 
}  

int first_sig_histo() 
{  

int flag;  
int i;  
unsigned int p_start;   

//the following finds the last significant pixel of the histo array      

flag = 0;  
i=0;  
do  
{   

if((histo[i]>s_factor))   
{    

flag  = 1;    
p_start = i;   

}   
i++;  

}  
while(i<256 && flag==0);    

return p_start; 
}   

int sig_factor() 
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{  
float factor;  
unsigned int max,max2;  
int i;   

/* the following loop finds the maximum value of the distribution array    
histo: see histogram for the values in histo */  

max = 0;  
for(i=0;i<256;i++)   

if(histo[i]>max)    
max = histo[i];   

max2 = 0;   
for(i=0;i<256;i++)    

if(histo[i]>max2 & histo[i]!=max)     
max2 = histo[i];     

/* a pixel value is significant if it occurs more than 0.05 times the    
occurance of the most occuring pixel   */     

factor = (0.1*max2+0.5);//rounding the value        

return factor; 
}  

void zmf(int x[],float y[],int start, int end)  
//this function generates the fuzzy transfer function 
{  

int i;  
int range;  
float mid;    

range = end - start;  
mid = (end+start)/2;    

for(i=0;i<256;i++)  
{   

if(x[i]<start)    
y[i] = 1;   

else if(start<=x[i] && x[i]<=mid)   
{    

y[i] =  (((float)x[i]-start)/range);/*^2;*/    
y[i] = 1-2*y[i] * y[i];   

}   
else if(mid<x[i] && x[i]<=end)   
{    

y[i] = (((float)end-x[i])/range); /*^2;*/    
y[i] = 2*y[i] * y[i];   

}   
else    

y[i]=0;      

//printf("\ny %d = %f",i,y[i]);     

}   

}  

 

//This code adds focus lines to a picture.  

#include <stdio.h> 
#define _TI_ENHANCED_MATH_H 1 
#include <math.h> 
#define input_location  0x80000000 
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#define output_location 0x8004B018    

void main() 
{  

int const rows=480;  
int const cols=640;  
int i,line1,line2,centre,width;  
unsigned char * input = (unsigned char *) input_location;     

unsigned char * output = (unsigned char *) output_location;    

centre=302;  
width=60;  
line1=centre-round(0.5*width);  
line2=centre+round(0.5*width);    

for (i=0;i<rows*cols;i++)  
{   

if ((i<(line1-1)*640)|(i>=(line2+1)*640))  
//if outside guidelines   
{    

if (*(input+i)<0x40)     
*(output+i)=0x00;   

//cant get any darker than black...    
else       

*(output+i)=*(input+i)-0x40;//make image darker       

}   
else if ((i>(line1+2)*640)&(i<(line2-2)*640))  
//if inside guidelines   
{    

*(output+i)=*(input+i);   
}   
else  //otherwise, there should be a line there   
{    

*(output+i)=0x00; //a black line   
}  

}      

printf("completed\n");   

}  

 

//This function performs applies the Edge Outline 
//filter to a frame.  

#include <stdio.h> 
#define _TI_ENHANCED_MATH_H 1 
#include <math.h>  

#define input_location  0x80000000 
#define output_location 0x8004B018 
#define edge_location   0x80096030   

void main() 
{  

double edge_strength=1; //Strength of edge outline    

//sobel operators  
double gx[3][3]={{1,  0 , -1},{2,  0,  -2},{1,  0,  -1}};  
double gy[3][3]={{-1, -2 , -1},{0,  0,  0},{1,  2,  1}}; 
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unsigned char * line_ref;  
long int i,j,row_pos;  
double horiz_edge,vert_edge;  
float pixel_value,max_edge=0.0;  
unsigned char * input = (unsigned char *) input_location;     
unsigned char * output = (unsigned char *) output_location; 
unsigned char * edge = (unsigned char *) edge_location;         

for (i=0;i<479;i++) 
{  

//read position line_ref over the rows we need  
row_pos=i*640;  
line_ref = (unsigned char *)(input+(row_pos));  
for (j=1;j<639;j++)  
{   

//now perform edge detection   
horiz_edge=edge_strength*gx[0][0]*(int)*(line_ref+(j-1))+   
edge_strength*gx[0][1]*(int)*(line_ref+j)+   
edge_strength*gx[0][2]*(int)*(line_ref+(j+1))+   
edge_strength*gx[1][0]*(int)*(line_ref+640+(j-1))+   
edge_strength*gx[1][1]*(int)*(line_ref+640+j)+   
edge_strength*gx[1][2]*(int)*(line_ref+640+(j+1))+   
edge_strength*gx[2][0]*(int)*(line_ref+1280+(j-1))+   
edge_strength*gx[2][1]*(int)*(line_ref+1280+j)+   
edge_strength*gx[2][2]*(int)*(line_ref+1280+(j+1));      

vert_edge=edge_strength*gy[0][0]*(int)*(line_ref+(j-1))+   
edge_strength*gy[0][1]*(int)*(line_ref+j)+   
edge_strength*gy[0][2]*(int)*(line_ref+(j+1))+   
edge_strength*gy[1][0]*(int)*(line_ref+640+(j-1))+   
edge_strength*gy[1][1]*(int)*(line_ref+640+j)+   
edge_strength*gy[1][2]*(int)*(line_ref+640+(j+1))+   
edge_strength*gy[2][0]*(int)*(line_ref+1280+(j-1))+   
edge_strength*gy[2][1]*(int)*(line_ref+1280+j)+   
edge_strength*gy[2][2]*(int)*(line_ref+1280+(j+1));      

*(edge+(i*640)+j)=(int)sqrt((vert_edge*vert_edge+horiz_edge*horiz_edge))
;   

if (*(edge+(i*640)+j)>max_edge)    
max_edge=*(edge+(i*640)+j);          

}     
}       

//now combine the edge detection output with the original frame  
for (i=0;i<640*480;i++){  
pixel_value=round((*(input+i) *(*(edge+i)/max_edge)))+*(input+i);   

if (pixel_value>255)    
*(output+i)=0xFF;   

else    
*(output+i)=pixel_value;  

}    

printf("completed\n");   

}  

 

//This function performs applies the Edge Enhance 
//filter to a frame. 
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//Note: For the C port of this code, the variable cutoff frequency 
//has not yet been implemented. 
//The cutoff frequency is set to 0.2  

#include <stdio.h> 
#define _TI_ENHANCED_MATH_H 1 
#include <math.h>  

#define input_location  0x80000000 
#define output_location 0x8004B018 
#define low_location   0x80096030 
#define high_location  0x800E1094   

void main() 
{  

double f_amp=100; //Foreground amplification       
b_amp=0.2; //Background amplification     

double h={{0.0163,0.0325,0.0163},{0.0325,0.8047,0.0325},        
{0.0163,0.0325,0.0163}};  

unsigned char * line_ref;  
long int i,j,row_pos;  
float pixel_value,max_pixel=0.0;  
unsigned char * input = (unsigned char *) input_location;    

unsigned char * output = (unsigned char *) output_location;  
unsigned char * low = (unsigned char *) low_location;    

unsigned char * high = (usigned char *) high_location;  

max_pixel=0;   

for (i=0;i<479;i++) 
{  

//read position line_ref over the rows we need  
row_pos=i*640;  
line_ref = (unsigned char *)(input+(row_pos));  
for (j=1;j<639;j++)  
{   

//now apply low pass filter   
low=h[0][0]*(int)*(line_ref+(j-1))+       

h[0][1]*(int)*(line_ref+j)+       
h[0][2]*(int)*(line_ref+(j+1))+       
h[1][0]*(int)*(line_ref+640+(j-1))+           
h[1][1]*(int)*(line_ref+640+j)+          
h[1][2]*(int)*(line_ref+640+(j+1))+       
h[2][0]*(int)*(line_ref+1280+(j-1))+       
h[2][1]*(int)*(line_ref+1280+j)+       
h[2][2]*(int)*(line_ref+1280+(j+1));     

}          

}     
}   

//now obtain high frequency components  
for (i=0;i<640*480;i++)    

{   
*(high+i)=round(*(input+i)- *(low+i));   
if (*(high+i)>255)    

*(output+i)=0xFF;    
}     

//combine image components  
for (i=0;i<640*480;i++) 
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{   
*(output+i)=round((f_amp * *(high+i)) +(b_amp * *(low+i)));       

if (*(output+i)>max_pixel)        
max_pixel=*(output+i);    

}     

//and amplify    
for (i=0;i<640*480;i++)    
{   

*(output+i)=round((*(output+i)/max_pixel)*255);    
}   

printf("completed\n"); 
}
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Appendix B  MATLAB Source Code  

function output=ti_data_read(input)  

%This function reads in a memory dump from  
%Code Composer studio and attempts to convert it 
%to an image file for use in the MATLAB environment.  

output=zeros(480,640); 
fid = fopen(input,'rt'); 
tline= fgetl(fid);  %ignore header line  

for row=1:1:480   
for column=1:4:640       
tline= fgetl(fid);     
output(row,column+3)=hex2dec(tline(3:4));     
output(row,column+2)=hex2dec(tline(5:6));     
output(row,column+1)=hex2dec(tline(7:8));     
output(row,column)=hex2dec(tline(9:10));   

end; 
end; 
output=uint8(output);  

 

function output=ti_data_write(input,file)  

%This function wites a MATLAB image matrix  
%to a file that can be directly read to memory by 
%Code Composer  

input=double(input); 
fid = fopen(file,'wt'); 
fprintf(fid,'%d %d %d %d %d\n',1651,1,0,1,0);  

for j=1:1:480     
for i=1:4:640         

fprintf(fid,'0x%02x%02x%02x%02x\n',input(j,i+3),input(j,i+2),input(j,i+1
),input(j,i));     

end 
end  

status = fclose(fid) 
output=1;  

 

function output=edge_enhance(input,cutoff,f_amp,b_amp)  

%This function applies the edge enhance filter using FIR filtering. 
%----------------------------------------------------------------- 
%Output - Output image 
%Input - Input image 
%cutoff - Normalised cutoff frequency 
%f_amp - Foreground amplification 
%b_amp - Background amplification  

input=double(input); 
b = fir1(2,cutoff); %Generate 1D FIR filter with N=3 
h = ftrans2(b);     %and convert it to 2D  
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low=filter2(h,input); %Filter to obtain low freq components   

high=input-low;  %Sepearate high freq components 
high_amp=high*f_amp;  %Amplify 
low_amp=low*b_amp;    %Amplify 
output=high_amp+low_amp;    %Sum and output 
output=uint8(output);  

 

function [output]=gauss_smth(input)  

%This function applies the gaussian smoothing filter use 
%to simulate blurred vision through this report 
%-------------------------------------------------------  

input=double(input);  

[cols,rows]=size(input); 
output=zeros([cols,rows]);  

%This is the gaussian convolution mask 
gauss=(1/159)*[2 4 5 4 2;4 9 12 9 4;5 12 15 12 5;4 9 12 9 4;2 4 5 4 2];  

output=uint8(conv2(input,gauss));  

 

function [output]=logcontrast(input)  

%This function applies the log contrast operator used by the 
%fuzzy threshold method  

[rows,cols]=size(input); 
output=zeros([rows,cols]);  

%this line is only needed in matlab 
input=double(input);          

histo=histogram(input);  

%a pixel value is considered significant if it occurs  
%more than 0.05 times the occuranceof the most occuring pixel 
sig_factor=round(0.05*max(histo));   

flag=0; 
p_end=0; 
for i=length(histo):-1:1 %for each pixel value     

if (histo(i)>sig_factor)&&(flag==0) %check if its significant         
flag=1;                         %if yes, define it as the end         
p_end=i     

end; 
end;  

c=255/(log(1+p_end)); 
for i=1:1:rows     

for j=1:1:cols         
output(i,j)=c*log(1+abs(input(i,j))); %apply log contrast              

end; 
end;               

%this line is only needed in matlab 
output=uint8(output);  
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function [histo]=histogram(input)  

%This function generates the histogram of an image 
%-------------------------------------------------  

%needed for matlab 
input=double(input); 
[rows,cols]=size(input); 
histo=zeros(1,256); 
for i=1:1:rows     

for j=1:1:cols         
histo(input(i,j)+1)=histo(input(i,j)+1)+1;     

end; 
end;  

 

function [output,l_list]=fuzzy_threshold(input)  

%This function finds the fuzzy threshold value of 
%an image and applies the threshold function 
%at this value. 
%-----------------------------------------------  

input=double(input); 
histo=histogram(input); 
[rows,cols]=size(input); 
output=zeros([rows,cols]);  

sig_factor=round(0.05*max(histo));  
%a pixel value is significant if it occurs more than 0.05 times the 
%occurance of the most occuring pixel  

flag=0; 
p_start=0; 
for i=1:1:length(histo) %for each pixel value     

if (histo(i)>sig_factor)&&(flag==0) %check if its significant         
flag=1;                         %if yes, define it as the start         
p_start=i;     

end; 
end;  

flag=0; 
p_end=0; 
for i=length(histo):-1:1 %for each pixel value     

if (histo(i)>sig_factor)&&(flag==0) %check if its significant         
flag=1;                         %if yes, define it as the end         
p_end=i;     

end; 
end;  

p_range=p_end-p_start; 
x=0:1:255; 
%generate fuzzy seet transfer function 
y=zmf(x,[round(p_start+0.1*p_range),round(p_start+0.4*p_range)]); 
sum=0;     

for i=1:1:rows     
for j=1:1:cols         

%calculate the number of dark pixels         
sum=sum+y(input(i,j)+1); 
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end 
end   

thresh_value=p_start; 
i=histo(1); 
while (i<sum)     

thresh_value=thresh_value+1;     
i=i+histo(thresh_value); 

end; 
%generate thresholded output 
output=uint8(threshold(input,thresh_value));  

 

function output=threshold(input,level)  

%This function applies a simple threshold to an image 
%on being given a specific threshold value 
%-----------------------------------------------------  

input=double(input); 
[rows,cols]=size(input); 
output=zeros([rows,cols]);   

for i=1:1:rows     
for j=1:1:cols                          

if (input(i,j)<level))                 
output(i,j)=0;                                      

else                 
output(i,j)=255;         

end     
end; 

end;              
output=uint8(output);  

 

function [post]=zoom(input,factor)  

%This zoom function uses gaussian interpolation to achieve 
%zoom factors of up to 4. 
%--------------------------------------------------------- 
input=double(input); 
[rows,cols]=size(input); 
pre=zeros([rows,cols]); 
post=zeros([rows,cols]);  

%Establish portion of image to be zoomed 
row_zoomed=(rows-(rows/factor))/2; 
col_zoomed=(cols-(cols/factor))/2;  

%Gaussian filter 
filter=(1/16)*[1 2 3 4 3 2 1;2 4 6 8 6 4 2;3 6 9 12 9 6 3;           

4 8 12 16 12 8 4;3 6 9 12 9 6 3;2 4 6 8 6 4 2;1 2 3 4 3 2 1];  

for i=row_zoomed:1:rows-row_zoomed-1     
for j=col_zoomed:1:cols-col_zoomed-1         

pre(((i-row_zoomed)*factor)+1,((j-
col_zoomed)*factor)+1)=input(i,j);     

end; 
end;  
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post=conv2(pre,filter);     
post=post(1:rows,1:cols); 

post=uint8(post);  

 

function [output] = sobel_conv(input)  

%This function implements a Sobel edge detector. 
%It is used by the edge outline filter 
%----------------------------------------------  

input=double(input); 
gx=-0.25.*[-1 0 1;-2 0 2;-1 0 1]; 
gy=-0.25.*[1 2 1;0 0 0;-1 -2 -1];  

output_rowgrad=conv2(input,gx);      
output_colgrad=conv2(input,gy);    

[cols,rows]=size(output_rowgrad);  
output=zeros([cols,rows]);  
for j=1:1:rows      

for i=1:1:cols         

output(i,j)=sqrt((output_rowgrad(i,j)^2)+(output_colgrad(i,j)^2));      
end 

end 
output=output(1:480,1:640); 
output(1:7,1:640)=0; 
output(473:480,1:640)=0;  %get rid of white edges introduced by conv2 
function 
output(1:480,1:7)=0; 
output(1:480,633:640)=0; 
output=uint8(output);  

 

function output=edge_outline(input,strength)  

%This function implements the edge outline filter 
%------------------------------------------------  

% This line is neceesary to process images in 
% the uint8 8 (ie 0-255) format 
input=double(input); 
output=zeros(size(input));  

edge=double(sobel_conv(input)); 
max_edge=max(max(edge)); 
edge=strength*(edge./max_edge);  

for row=1:1:480   
for column=1:1:640       

output(row,column)=input(row,column)+(input(row,column)*edge(row,column)
);   

end; 
end;  

output=uint8(output);  

 

function [output]=focus(input,pos,width)  

%This function applies the focus filter 
%Where the focus area's centre and width can be specified 
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[rows,cols]=size(input); 
output=zeros([rows,cols]); 
input=double(input); 
ymin=pos-0.5*width; 
ymax=pos+0.5*width;  

for i=1:1:rows     
if (i<ymin)||(i>ymax)         

output(i,1:1:cols)=(input(i,1:1:cols)-60);     
else if (i==ymin)||(i==ymax)         

output(i,1:1:cols)=0;         
else         

output(i,1:1:cols)=input(i,1:1:cols);     
end; 

end; 
output=uint8(output); 
end; 


