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�SYNOPSIS

�Australia’s decimal paper currency, in use since 1966, was recently replaced by polymer notes. The denominations of the new notes, while very distinctive in their colour and design, are very difficult to differentiate for a vision impaired person. All notes are of equal width and increase only slightly in length with increasing value. This is in contrast to the notes they replaced, which varied by a larger amount in both length and width, and could be distinguished using a simple template.

 �The design and development of a prototype device to identify Australian polymer banknotes is described, which indicates the denomination to a vision impaired person using a digitally recorded voice output.  Use is made of a charge-coupled device (CCD) linear array and a digital signal processing (DSP) chip. Identification is performed by imaging and recognising the contents of the clear window. This is found near the lower corner of each note, and is unique for each denomination. 



This development is of significance in Australia to people who suffer a large degree of vision impairment, and possibly also to the vision impaired population of the European Union, which also plans to adopt polymer note technology. In Western Australia alone, about 22,500 people are vision impaired (Australian Bureau of Statistics, 1993).
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��0   INTRODUCTION

�Australia’s decimal paper currency, in use since 1966, was recently replaced by polymer notes. The impetus behind this move was to increase the overall quality and longevity of the huge number of notes in circulation whilst simultaneously lowering costs. The new notes are difficult to counterfeit, resistant to tearing and other abuse, and are completely recyclable.



The denominations of the new notes are very different in their colour and design, but it is difficult for a blind person to discriminate between them. This is because all notes are of equal width and the length difference between succeeding denominations is only 5mm nominally. The actual difference can be even less due to trimming variations. The older notes, however, could be distinguished using a simple template because they varied by a larger amount in both length and width.

�Vision impaired people currently use various methods to identify currency notes. For a person with partial loss of sight, close-up examination of colour and features can still suffice. For those with greater loss, notes can be identified by friends or relatives. Some people fold notes in particular ways to identify them later, while some use a wallet with many compartments to store the different values in known locations. Some use the CashTest Australia note identifier. To use it, the note to be identified is folded over the device and the length is compared with graduating marks which are identified with braille. The device requires considerable manipulation of the note and very small differences in note length to be discerned. The device is difficult to use, particularly when the notes are creased, by those who are arthritic or have low tactile sensitivity. Diabetes is a common cause of blindness, and low levels of tactile sense is a side-effect. The high levels of dexterity required makes the device slow and inaccurate, and is inconvenient in everyday money-changing situations (eg paying a taxi fare and verifying the change received). In Australia, about 75% of blind people are aver 65 years of age.

�A need therefore exists for an improved device which can identify Australian currency notes. This would give the vision impaired a extra degree of independence and confidence when handling cash. The ideal device would be cheap, accurate, and not require a large amount of dexterity to use. Currently, no hand-held electronic device exists to identify Australian banknotes.

 

The concept of the currency note identifier project is that of a battery-operated device which is held in one hand, while holding the note to be identified in the other, and swiping it with arbitrary speed and orientation through a slot. The note passes over a 512 element CCD linear array, which is able to image a single line. A complete image can be built up from the single lines as the note is moved across the array. The image is then processed, leading to unambiguous identification of the particular note. The arbitrary swipe motion of the note is an important attribute, as it makes the device easy to use, even by arthritis suffers, as well as not requiring any moving parts. The absence of moving parts makes the device easy to manufacture, lowers costs and reduces maintenance.



�

Figure � SEQ Figure \* ARABIC �1�: Swipe Action of Note over the CCD Linear Array.



In this project, the prototype of a portable device was designed and built to indicate the denomination of an Australian polymer banknote to a vision impaired person, using a recorded voice. Recognition of the particular note is by making use of the characteristic features of the clear window and its contents which appears near the lower corner of all Australian currency notes. The swiping action of the window across the imaging device is shown in � REF _Ref433597098 \* MERGEFORMAT �Figure 1�. The clear windows were chosen as the method of distinguishing between the various notes because they are different sizes for different denominations, as well as having great variation in internal detail. For reference, the Australian series of banknotes is shown � REF _Ref432830147 \* MERGEFORMAT �Appendix V�. In � REF _Ref432830262 \* MERGEFORMAT �Appendix VI�, examples of two badly worn notes are shown. They show that the window has a high wear resistance in comparison to other features of the note.



In Chapter 2, background information is given on image recognition generally, and the approach finally adopted. Information about the Digital Signal Processor (DSP) board used is also given. Chapter 3 describes the design of the complete imaging system, beginning with a description of the imaging device. Next, the necessary hardware and software are covered. Following this, the illumination, analogue to digital conversion and testing are presented. Chapter 4 describes the design and testing of the voice output system. This includes the voice chip and amplifier. Chapter 5 discusses all software routines in detail while Chapter 6 covers the final testing. Chapter 7 sums up the project and suggests further improvements.



�0   BACKGROUND

Image Recognition

The recognition of the clear window and the pattern contained within was chosen as the method of distinguishing between the various notes. This is because it is wear resistant and can be easily illuminated and imaged. Ideally, the result after imaging and digitising will be a high-contrast image containing just two levels. Each picture element (pixel or pel) will either be on where it has received light through the clear window, or off if it has not. This two-level binary digital image contains all the information necessary to identify the window unambiguously, and therefore the note. 



The continuous curve of the window’s extremity can be thought of as a single entity or character. Likewise, the patterns within can be thought of as separate characters. These can be identified using optical character recognition (OCR) techniques. There are four basic steps to be taken when processing and recognising a complete image. These are: 1) data capture,   2) pixel-level processing, 3) line-level analysis, and  4) feature detection and recognition.



Data capture

Data capture is the term given to the acquisition and storage of the data which represents the image. The imaging of the note is carried out using a low cost CCD linear array. The note is swept across the array whilst being backlit by a light source. This raw data must then undergo processing in order to extract the useful information.

Pixel-level processing

Even though the image of the note’s window and its contents is inherently binary, it is advantageous to first capture a grey-scale image, then perform binarisation. The threshold between on and off pixels can be chosen to maximise certain criteria such as connectivity or separation between objects. A single threshold can be found and applied globally, or an adaptive algorithm can be used to find local thresholds. An adaptive algorithm is superior when the difference in levels between background and foreground vary greatly. This could occur, for example, in an image of a printed page with dark shadows across it. Adaptive algorithms commonly use local windows to analyse the grey-level data to determine the local threshold. If the pixel values across the background and foreground are fairly consistent, global thresholding is preferable. Global methods use overall characteristics of the image such as moment statistics of the intensity histogram. This method chooses a threshold which best preserves the first four moments as compared with the original grey-scale image.



Noise reduction

Reducing noise is an important step which can greatly affect the success of subsequent recognition. A common type of noise appears as small holes and speckle in the image, and is known as ‘salt and pepper’ noise. A common image filtering technique to remove it is to apply mathematical morphology. This is an iterative process where a number of chosen small elements is added to the edges of image regions, followed by the deletion of the same element. This process of dilation and erosion has the effect of removing the small holes and thin indentations from the image. If erosion precedes dilation, the effect is to remove speckle and thin protrusions.



Various other filtering processes can be successfully applied in certain circumstances. A Guassian smoothing function can be applied, followed by thresholding. The image can also be digitally filtered using the Discrete Fourier Transform (DFT). Care must be taken when using filters not to erase wanted features or to merge adjacent regions.



Line-level processing

Thinning is a line-level process where regions are successively eroded until a single pixel-width line remains. This line along the approximate centre of the region is commonly called a skeleton. The process can be visualised by imagining that the region is covered by a uniform field of dry grass. If a fire is then lit at all points on the boundary simultaneously, it will burn towards the centre at uniform velocity. The points along the centre where the fire fronts meet is the skeleton. However, thin protrusions of the region will also be destroyed. A practical algorithm to find the skeleton must therefore first identify end points so protrusions can be preserved in the final skeleton representation. The purpose of deriving a skeleton is to decompose thick lines and regions to simple structures which can be easily analysed in terms of number of components, the connections between them, curvature of lines and other salient features. This information provides a powerful description of the components of the original image. A skeleton is not intended to be reversible. However, a medial line of the region can be constructed with each pixel labelled with its distance from the edge of the original region, according to a distance transform. This reversible structure is known as the medial axis transform (MAT). The MAT, while yielding a compact description of a region, cannot be used for shape description as it does not preserve information on the topological properties of the image.



The chain code of a thinned line is stored more efficiently than its pixel representation. More importantly, the chain code contains information concerning connectedness. The simplest chain code traverses a line in a particular direction and labels each pixel with one of eight directions to indicate where the next pixel is located. A disadvantage of this particular chain code is that topology information is not directly available. More sophisticated chain coding methods exist that enable interconnections between lines to be easily determined.



Feature Detection and Recognition

Feature detection methods attempt to identify curves and critical points in an image. Critical points in an image of an object may be particular sharp corners that are known to exist in the object. Location of these may be crucial in determining the orientation of the object, as may occur in an industrial process.



The fitting of curves to thinned lines provides a more succinct description of the thinned lines. The chain code representation of the thinned line readily lends itself to this extra processing. A fitted line can be analysed in terms of curvature. Gently sloping portions will have low curvature while the curvature of sharp points will be high. An overall description of a contour can be determined by calculation of its Fourier transform along its entire length. The resulting Fourier coefficients yield a frequency domain description. Higher order terms give information on sharp features while lower order terms describe lower curvature portions of the contour.



Other methods of shape description include the calculation of moments, areas of objects, and topological features. The methods of shape description chosen in an application are those which maximise recognition by accentuating the differences between objects.



Cross-correlation Technique

The image recognition techniques already outlined require a precise CCD image of the entire window which is then decomposed to extract features. This would be very difficult to achieve in practice. Since the passage of the note across the array is of arbitrary speed and direction and the scanning speed of the imaging device is limited, a linear or continuous image cannot be obtained. An area CCD and lens, as used in video cameras, could be used to capture a complete image. However, the cost is prohibitive. A new recognition method was then sought, which did not require a complete window image to be obtained and which offered improved reliability of recognition despite image degradation from a number of factors. A possible solution presented itself when it was realised that only small portions of each note’s window needed to be captured, and then matched to precisely defined images held in memory. The processes of data capture, thresholding and noise reduction still need to carried out, but feature extraction is no longer necessary. While feature extraction methods are necessary in areas such as handwriting recognition, they are not needed when recognising an image which is already accurately known.

�In � REF _Ref433597098 \* MERGEFORMAT �Figure 1�, a 50 dollar note is shown over a device which images a single line through the window. The image obtained across the window could be represented by the sequence shown in � REF _Ref433597372 \* MERGEFORMAT �Figure 2�, where light is shown as ‘+’ and dark is shown as ‘-’. The two dark segments are caused by the two stars within the window.



++++--------++++++++++++++++++++++++++++-------++++++

Figure � SEQ Figure \* ARABIC �2�: Representation of Image Slice through Window of 50 Dollar Note.   



This particular sequence is unique across all the window designs. Therefore the note can be identified as being a 50 dollar note. Since most image slices obtainable from the 50 dollar note through the stars in various directions are unique, the image slice matching could identify in almost any swipe direction. This can be extended to the other notes, where the difference in internal detail is sufficient to unequivocally identify them. It now remains to find a method of matching the image slices obtained from the note against those stored in memory.



The matching method relies on cross-correlation, in which two number sequences are compared. In � REF _Ref433597372 \* MERGEFORMAT �Figure 2�, the light and dark segments are written with ‘+’ and ‘-’ signs. These are shorthand representations for the numbers ‘1’ and ‘-1’ respectively. One sequence represents a slice of window image obtained from the CCD, the other is a slice of window image stored in memory. The process, similar to convolution, can be visualised as one image ‘sliding past’ the other, with the degree of similarity being recorded at increments. If the sequences are similar, a large correlation will occur at the point when the two sequences are ‘lined up’ alongside one another to give the best match. This process is shown in � REF _Ref433598637 \* MERGEFORMAT �Figure 3�. The image slice from � REF _Ref433597372 \* MERGEFORMAT �Figure 2� is shown once more at the top, and below is a stored image slice from a 50 dollar note, referred to as the ‘template’. It is desired to find the correlation, and from this the number of elements which do not match. The process begins with the template lined up at the beginning of the image slice.



S ++++--------++++++++++++++++++++++++++++-------++++++

T +++--------+++++++++++++++++++++++++++-------+++  (

Figure � SEQ Figure \* ARABIC �3�: Correlation Example.

 

The correlation in this position is calculated by multiplying the two sequences, element by element, and summing the result. This is expressed mathematically as:



� EMBED Equation.2  ���

Equation � SEQ Equation \* ARABIC �1�: Correlation Equation.



where ‘S’ and ‘T’ are the image slice and template sequences, ‘m’ and ‘n’ are the element numbers of the image slice and template respectively, and ‘length’ is the number of elements in the template. For a template position other than that shown in � REF _Ref433598637 \* MERGEFORMAT �Figure 3�, ‘m’ must be altered accordingly. Because light and dark elements have been assigned the values ‘1’ and ‘-1’, � REF _Ref434245889 \* MERGEFORMAT �Equation 1� is more simply stated as:



‘The number of matching elements - the number of mismatching elements’



 The correlation for the position shown in � REF _Ref433598637 \* MERGEFORMAT �Figure 3� is 42 - 6 = 36. If, after the correlation, only the template length and the correlation result is known, then the number of mismatched elements can be obtained from:



Number of mismatches = (Template length - Correlation value) / 2 



For the example, the number of mismatches is: (48 - 36) / 2 = 6. This  calculation yields the correct result, even if the correlation value is negative. For the example template length of 48, the correlation value has a possible range of -48 for no matching elements at all, to +48 for an exact match.



Since it is desired to find the best match within the longer sequence, the template must be incremented and the correlation process repeated. The highest value at any increment then becomes the correlation.



S ++++--------++++++++++++++++++++++++++++-------++++++

T   +++--------+++++++++++++++++++++++++++-------+++  (

Figure � SEQ Figure \* ARABIC �4�: Position of Best Match.



The best match for the example sequences occurs at the position shown in � REF _Ref433605913 \* MERGEFORMAT �Figure 4�. In this case there are only two mismatches. This also occurred at the previous increment. To be sure that the highest correlation has been found, shifting and correlating must continue until the template reaches the end of the slice.



If a correlation above a certain threshold is found for a certain stored window slice, while the correlation is low for others, the conclusion can be drawn that the window, and therefore the note has been identified, with a degree of uncertainty. The degree of uncertainty is difficult to quantify, but will improve with the quality and resolution of the scanned and stored images. In practice, however, the resolution does not need to be extremely high to obtain acceptable results, and is largely determined by available CCD resolution and memory.



The DSP Starter Kit

The processor used for the prototype was the Texas Instruments TMS320C50 Digital Signal Processor (DSP). A DSP was used as it is specifically designed for tasks such as correlation. This is because of its Harvard architecture and pipelined processing. This allows many operations to proceed on consecutive clock cycles, some even in parallel. Also, the processor is able to simultaneously read and write to some sections of memory. This gives the capability to perform complex calculations in a single 50ns cycle. For example, the multiply and accumulate instruction (MAC) is able to multiply an operand from data memory with an operand from program memory and accumulate the result in a single cycle, once the repeat pipeline is started. This is provided that the data memory operand is stored in dual-access random access memory (DARAM). Also, when the instruction is repeated, the program memory address contained in the prefetch counter (PFC) is automatically incremented. If the data memory address is incremented as well using indirect addressing via an auxiliary register (AR), then two series of consecutive operands can be multiplied and accumulated. This is useful for efficient calculation of long sums-of-products, such as the direct method of correlation. The MADS instruction is a variation of the MAC instruction which effectively allows indirect addressing of both series of operands. One series is pointed to by the auxiliary register as before, while the beginning of the series of program memory operands is pointed to by the address stored in the block move address register (BMAR).



The DSP Starter Kit (DSK) is a simple DSP application board containing 10K of on-chip RAM but no external RAM. The DSK memory map is shown � REF _Ref434221043 \* MERGEFORMAT �Appendix I�. The DARAM Block 2 is reserved as a status register buffer. The single-access RAM  (SARAM) is configured as both data memory and program memory. At reset, the kernal program is loaded into the SARAM program memory, beginning at 0840h. The interrupt vectors are located in the area 0800h-0840h. The prototype software was located in the user’s area starting at 0980h in program memory. Of particular interest are the DARAM blocks Block 0 and Block1. Block 1 in data memory was used to hold the template, while Block 0 was used to hold the scan. The 512 words in Block 0 has the capability of being mapped into either data memory (0100h-0300h) or into program memory (FE00h-FFFFh). This is accomplished by clearing or setting the on-chip RAM configuration control bit (CNF) in status register 1 (ST1). This provides a zero overhead means of transferring data dynamically. This is useful since the image slice from the array must be written into data memory, but must reside in program memory for the correlation. This is simply swapped by setting the CNF bit.

�0  DESIGN OF IMAGING SYSTEM

CCD linear array

The Texas Instruments TSL218 linear array was chosen to image the window because of its long length, adequate resolution, ease of use and its low cost in comparison to other imaging devices. It consists of a single line of 512 sensing elements, made up from 8 separate sections of 64 charge-mode pixels. The picture elements (pixels) have a pitch of 125µm, making the total length of the array 64mm. Each pixel has length of 120µm and the width of each pixel, and hence the array, is 70µm. Each pixel is actually a potential well, which is a localised volume that is attractive to electrons. These are formed by overlaying a P-type silicon substrate with a series of aluminium electrodes, separated by a thin insulating layer of silicon dioxide (SiO2). Light energy entering each pixel well generates electrons and holes in the substrate material. Due to the bias applied to the well, the electrons generated�

�

Figure � SEQ Figure \* ARABIC �5�: Texas Instruments TSL218 Linear Array

accumulate in the well, while the holes are swept away. The charge remaining in the well is directly proportional to the incident light energy. The well has a finite charge-carrying capacity. When no more charge can be accumulated by a pixel, the pixel is saturated.  



The TSL218 requires a single 5V supply and two signals in order to function. These are:

Clock Signal - The clock signal controls charge transfer, picture element (pixel) output and reset. The frequency must be between 10 kHz and 500 kHz and be low for a minimum 1µs.

Serial Input - The serial input signal initiates the sequential transfer of all pixels to the output of the device. It must be high at least 50ns before a rising clock edge, be maintained at least 50ns after the edge and be low before the next rising edge.

�The TSL218 has two outputs. These are:

Serial Output - This signals the end of the complete transfer of pixel charges to the analogue output. A new scan can begin on any rising clock edge after the falling edge of this signal.

Analogue Output - The accumulated charges of each pixel in the sequence appear as voltages at this output at a rate dependent on the clock signal. The accumulated charge is directly proportional to the level of incident light on the array and the integration (exposure) time.

An output sequence begins when a serial input (SI) pulse is correctly presented at the SI input during a rising clock edge. This sets the first bit of a 512 bit shift register and closes the internal switch to transfer the accumulated charge from the first pixel well to the sense node. The differential amplifier outputs a voltage representing the difference between the sense node and a reference dark pixel. This is then held, under the control of the clock signal. Just before the end of each pixel transfer, the sense node is reset to the dark level by closing a switch connecting it to the dark-pixel reference, under the control of a non-overlapping clock generator. This sequence then repeats for all pixels as the first bit of the shift register set by the SI pulse propagates through its entire length. The serial output (SO) pulse is generated when this bit reaches the end of the shift register, as the last pixel is output. After the output sequence is complete, a new sequence can begin on the 514th clock, or later, if the integration period needs to be extended. In this case, it is possible for the clock to be disabled until the next SI pulse is due, as no activity need occur within the device.



CCD clock generation

The clock signal is derived from the timer output (TOUT) of the DSP Starter Kit (DSK). The timer is a software programmable down counter built into the TMS320C50 DSP chip. Its block diagram is shown in � REF _Ref433538767 \* MERGEFORMAT �Figure 6�. The timer registers are set  to provide timer output (TOUT) pulses with a period of 1.05 µs. This is done by setting the timer divide down register (TDDR) to zero and the period register (PRD) to 20. This gives a period of 21 CLKOUT1 cycles, which occur every 50 ns. When the timer reload bit (TRB) is set to one, the prescaler register (PSC) is loaded with the TDDR, and the timer counter register (TIM) is loaded with the PRD. As long as the timer stop status bit (TSS) is zero, CLKOUT1 pulses appear at the prescaler. Since the prescale is zero, the pulses which occur at the prescaler output�� � EMBED Visio.Drawing.4  ���

Figure � SEQ Figure \* ARABIC �6�: TMS320C50 Timer Block Diagram.





are also at a frequency of 20 MHz. Each cycle decrements the value in the TIM by one. Whenever the TIM decrements to zero, the TIM is reloaded with the PRD and a borrow pulse is generated. This buffered pulse becomes the timer output (TOUT). The 50ns pulses produced by the timer are divided by two with a positive-edge-triggered flip-flop to derive a 476.2 kHz clock signal with a 50% duty cycle. The clock generation circuit utilising a dual D-type flip-flop is shown in � REF _Ref434454949 \* MERGEFORMAT �Figure 7�. The TOUT pulses and the flip-flop output are shown in � REF _Ref434246533 \* MERGEFORMAT �Figure 8�. The clock also provides INT1 interrupts to the DSK.

�

Figure � SEQ Figure \* ARABIC �7�: CCD Clock Generation Circuit.



� EMBED MSPhotoEd.3  ���

Figure � SEQ Figure \* ARABIC �8�: TOUT Pulses (trace 2) and Clock signal.



Serial Input latching circuit

The other half of the flip-flop provides the SI signal. This is brought high or low when needed by placing the desired new state on the flip-flop’s D input and latching it with a rising edge on its clock input. The output of this flip-flop is connected directly to the SI pin of the TSL218 (pin 2). The SO pin (pin 6) is connected directly to the INT3 input (pin 3 JP3) of the DSK to provide an interrupt at the end of each scan. The DSK has pull-up resistors on board for all external interrupts.

�

Figure � SEQ Figure \* ARABIC �9�: CCD Serial Input Latch Circuit.



Scanning software

The SI signal must be generated in order to initiate each new scan of the linear array. As outlined in section � REF _Ref433354616 \n �3.1�, this signal is subject to timing constraints and cannot be brought high or low arbitrarily.  In order to satisfy these constraints, use is made of interrupts triggered by the clock and SO signals.



The clock signal derived by the flip-flop is connected to the DSK external interrupt INT1. This is done so that the SI signal can be correctly positioned with regard to the clock signal. The Clock Low Interrupt Service Routine (CLKL_ISR) is entered with every INT1 interrupt on every falling edge of the clock signal. On entering the ISR, it must first be determined whether the SI signal should be generated. This is done by testing the SI flag. This is bit zero of the variable FLAGS, which has been set up to flag the status of the array, and other aspects of the scan to be introduced in later chapters. If the SI flag has not been set, then the ISR is exited. Processing of the pixel can occur at this point before exiting, if desired.



If the SI flag has been set, then the SI signal should be generated. The flag will be set if it is desired to start the CCD for the first time, or if it has been reset at the end of a scan as part of the Serial Output Signal ISR (SO_SIG_ISR). This is done so that continuous scanning of the CCD can be maintained. Thus, at the end of each scan, the SI flag is reset so that the SI signal is generated on the next entry of the CLKL_ISR, directly after leaving the SO_SIG_ISR. The Clock Low ISR code is shown in � REF _Ref433357076 \* MERGEFORMAT �Figure 10�.





CLKL_ISR

LDP	#FLAGS

BIT	FLAGS,15		;test SI flag (bit 0).

BCND	SI_SIGNAL,TC		;set SI signal if flag clear,

	                               

            		RETE                    			; otherwise just exit.



SI_SIGNAL

            		APL   	#0fffeh,FLAGS		;clear SI flag.



LDP	#0

OPL	#02h,DATA_PORT		;take flip-flop D input high.

OPL	#0ah,DATA_PORT		;take CLK high to latch.

APL	#0fff5h,DATA_PORT	;take both low again.



WAIT_INT1   	BIT  	 IFR,15

            		BCND  	WAIT_INT1,NTC     	;wait for next INT1 interrupt.

            

            		RPT   	#17               		;waste time to extend SI signal.

            		NOP



            		SPLK  	#01h,IFR          		;clear the interrupt which occurred.

OPL	#08h,DATA_PORT    	;take CLK high to latch flip-flop low.



            		RETE





Figure � SEQ Figure \* ARABIC �10�: Clock Low Interrupt Service Routine (CLKL_LOW ISR).

If, on entry, the SI flag has not been set, then the ISR is exited. Otherwise, the SI flag needs to be generated. This is done by taking the D input of the flip-flop high and latching it by taking the flip-flop clock input high on the next cycle. Because of the interrupt latency and the execution of the six instructions thus far, the rising edge of the SI signal is guaranteed to occur after a rising clock edge. With the rising edge of the SI signal now completed, it is necessary to maintain the SI signal until at least 50 ns after the next rising clock edge. This is done by waiting for the next INT1 interrupt to occur. Since an ISR is already being executed, the only response to the interrupt will be to set the flag in the interrupt flag register (IFR). Thus, to sense the interrupt, a loop is entered which only terminates when the interrupt flag is set. When this occurs on the next falling clock edge, it is still too early to bring the SI�� �

Figure � SEQ Figure \* ARABIC �11�. Clock signal (trace 1) and Serial Input signal.

signal low. Eighteen cycles are therefore wasted performing no operations (NOPs)  before clearing the interrupt flag bit and latching the flip-flop low once more. With all tasks complete, the ISR is terminated. 

 

The completed SI signal and its timing relationship to the clock signal is shown in � REF _Ref429108148 \* MERGEFORMAT �Figure 11�. The interrupt which caused the ISR to be entered occurred on the first falling edge of the clock signal. The SI signal completely covers a single rising clock edge, as required. 
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Figure � SEQ Figure \* ARABIC �12�: Serial Output (SO) Signal (trace 1) and Last Pixels of a Scan.



The interrupt which occurs during the SI signal was cleared so that there is no response to it when leaving the ISR. The next interrupt occurs on the last falling edge of the clock trace of � REF _Ref433357076 \* MERGEFORMAT �Figure 10� so that correct sampling of the first pixel occurs.



The Serial Output signal from the linear array is connected to external interrupt INT3 and signals the end of each scan. The interrupt occurs on the falling edge of the SO signal. The SO signal is shown in � REF _Ref434246715 \* MERGEFORMAT �Figure 12�. The Serial Output ISR code is shown in Figure 13. The only task is to reset the SI flag so that the SI signal will be generated on the next INT1 interrupt after the ISR.

  

SO_SIG_ISR

LDP	#FLAGS

            			OPL	#01h,FLAGS		;set SI flag for next scan.



			RETE





Figure � SEQ Figure \* ARABIC �13�: Serial Output Interrupt Service Routine.





Interrupt latency

During a valid scan, INT1 interrupts occur on every falling clock edge so that sampling is guaranteed to take place at the correct time. � REF _Ref434430377 \* MERGEFORMAT �Figure 14� shows the clock and analogue pixel output. The valid pixel period is during the low clock. Sampling occurs approximately 16 cycles (800ns) after the interrupt on the falling clock edge. The actual time may vary by a number of cycles depending on the contents of the pipeline when the interrupt occurs. For this reason, the processor is made to execute a very small loop so the contents of the pipeline are known when the interrupt occurs. 
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Figure � SEQ Figure \* ARABIC �14�:  Clock Signal (trace 1) and Analogue Output



Illumination

Infrared LED

Illumination of the linear array is by means of a wide-angle infrared light emitting diode (LED). The ideal illumination would be provided by parallel rays striking at normal incidence across the length of the array. An approximation to this can be more practically obtained by a point source, provided it is located a large distance from the array. The LED in the prototype is located approximately 65mm from the array. This is a compromise between the conflicting requirements of adequate intensity, evenness of spread and the approximation to an ideal parallel light source. The angle of the illuminating rays distorts the image slightly towards the ends of the array. This is because of the gap between the face of the covering glass and the actual array pixels underneath. In any case, it is expected that the note will be drawn across the array slightly above the glass to avoid grime build-up. Although distorting the image even more,  its effect is discounted, as the correlation process is tolerant of some image perturbation.

    

The response of the CCD array to infrared light is less than that of visible light. However, infrared LEDs are quite efficient, making up for the deficit. An important reason for using an infrared LED is so an infrared pass filter can be used on the array. This screens out the visible spectrum, obviating any problems caused by extraneous light. They can also sustain large peak currents, providing the duty cycle is small. This allows a short and very bright flash to be produced. This effectively freezes the image of the note, even though it may be moving at considerable speed over the array.



In the prototype, the infrared LED is mounted on a bracket above the array so the light is spread across its entire length. A photo of the arrangement is shown in � REF _Ref433645472 \* MERGEFORMAT �Figure 15�. The emission from the LED, however, is not even. It is concentrated in the centre and tapers off radially. This is shown in the scan of � REF _Ref434463158 \* MERGEFORMAT �Figure 16�. Also evident in the scan is the unevenness in the response from of the eight segments of the array. The response variation can be up to 20%. Even with an attenuation of about 50% by the window features, it is difficult to set a single threshold that produces a clean binary image in all cases.
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Figure � SEQ Figure \* ARABIC �15�: Photo of LED Arrangement.

� EMBED MSPhotoEd.3  ���

Figure � SEQ Figure \* ARABIC �16�: Scan Illuminated by LED.



Almost all of the emitted light is wasted with the simple arrangement used. Therefore, a major improvement would be to concentrate the light in an even manner onto the array. This will be essential for a battery driven device to conserve power. A lens arrangement was tried utilising a narrow beam LED spread along one axis by a cylindrical rod. In this case, the evenness problem still persisted. A clear acrylic block was also tried to guide the light onto the array. This did provide a very even illumination. However, the light rays emanating from the end of the block were spread in all directions, no longer approximating a point source.



LED flash circuit

The LED flash circuit is shown in � REF _Ref434415520 \* MERGEFORMAT �Figure 17�. The data port pin directly controls the switching of the LED via two inverters and a transistor. The inverters were used to provide sufficient current drive since they were on hand, but a buffer would also be suitable. The transistor is turned hard on by the inverter output, drawing a large current pulse through the LED. This can only be sustained for a very short period. Therefore, care needs to be exercised when changing the flash time. C1 provides a charge reservoir for the current pulse. The pull-down resistor R1 was added after a number of LEDs were burnt out. This occurred because the data port assumes a high impedance state when not used. Since the inverter also has a high input impedance, induced currents in the wire connection from the port were enough to switch on the inverter. Adding the pull-down resistor cured the problem completely.

�

Figure � SEQ Figure \* ARABIC �17�: LED Flash Circuit.



Analogue to digital conversion

The prototype uses a comparator to provide a very simple binary analogue to digital conversion. The circuit is shown in � REF _Ref434416822 \* MERGEFORMAT �Figure 18�. The resistors set the threshold that determines the voltage level to which the analogue pixel voltage is compared. Below this level is interpreted as a light pixel and above as dark. An inverting comparator

� �

Figure � SEQ Figure \* ARABIC �18�: Analogue to Digital Converter.

arrangement was used as it gives the option of adding hysteresis. However, this�not found to be necessary. The LM319 is a high speed comparator. High speed is necessary as a decision on the pixel voltage must be made within approximately 1µs, when the array is run at its maximum clock rate. The LM319 provides more than adequate speed.



Testing of imaging system

The imaging system was tested by running the scanning software and gradually increasing the flash period of the LED until the whole array was lit above the comparator threshold. This was done by setting the time the data port is held high�
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Figure � SEQ Figure \* ARABIC �19�.  Analogue Image Through Fifty Dollar Note.

within the Serial Output ISR. � REF _Ref434417353 \* MERGEFORMAT �Figure 19� shows the analogue CCD output obtained for a scan through the window of a fifty dollar note. The top trace is the SI signal at the end of the scan, preceded on the bottom trace by a short blank period during which the LED is flashed. The two large dips in the waveform were caused by the two large stars across the centre of the window. The small dip in the centre was caused by the tip of the small star.
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Figure � SEQ Figure \* ARABIC �20�.  Thresholded Image Through Fifty Dollar Note.



� REF _Ref434417809 \* MERGEFORMAT �Figure 20� shows the image after thresholding and inverting with the comparator. With a carefully selected threshold and even illumination, a clean binary image of each banknote’s window can be obtained. Without even illumination, a more complicated scheme of digital conversion employing more thresholds will be necessary, with more interfacing and processing overhead. This would be costly and difficult to implement due to the time restrictions of the pixel sample and store routine.

�0  DESIGN OF VOICE OUTPUT

Voice recorder chip

A voice recorder chip was used to provide announcement of the denomination. The voice chip provided a quick and easy solution for the prototype, but it is not envisaged to use it for a completed product. For this, digitised announcements will be stored in a low cost EPROM, since a recording facility is not necessary.



Voice recorder chip operation

The device used in the prototype was the ISD1210. This has 10 seconds of recording time addressable to a resolution of 125ms. The digitised voice sampled at 6.4 kHz is stored in non-volatile electrically erasable programmable read only memory (EEPROM), allowing retention with zero power. The device has several operational modes including message cueing, consecutive playback and message looping. These were not utilised. Instead, each message was directly addressed using the address� 

Recorded Message�Start Location

(seconds)�Binary Address

(A2-A5)�Hex Address

(A2-A5)��Ready�0�0000�e1��5 Dollars�1�0010�e5��10 Dollars�2�0100�e9��20 Dollars�3�0110�ed��50 Dollars�4�1000�f1��100 Dollars�5.5�1010�f5��Failed�6.5�1101�fb��

Table � SEQ Table \* ARABIC �1�: Locations of Recorded Messages.

pins. The two most significant bits (MSBs) were tied low to disable the aforementioned modes. The two least significant bits were also tied low as addressing to a high resolution was not required. The four remaining address bits�(A2-A5)  allow direct addressing of the start of a message in the first eight seconds�of the message space, with half a second resolution. The messages which were recorded and their locations are shown � REF _Ref433546835 \* MERGEFORMAT �Table 1�.



Edge activated playback was used to initiate the playing of recorded messages. To play a message, the address of the message is put onto the address lines for 300ns and the edge-activated playback pin (pin 24) is brought low. The falling edge latches the address and initiates playback. Once started, the message plays to completion with no other intervention required.



Voice chip circuit and interfacing

The voice chip circuit is shown in � REF _Ref434418093 \* MERGEFORMAT �Figure 21�. R6 to R12 are the pull-up resistors for the four address lines A2-A5 and the two play pins and the record pin. The edge-triggered play back pin (pin 24) and the address lines are connected the DSK. The level-triggered playback pin (pin 23) is connected to a push button switch to allow easy playback of recorded messages. The record pin (pin 27) is also connected to a push button switch for easy recording. Although not shown, a jumper was provided to prevent accidental recording. Capacitor C3 is necessary to prevent the chip entering the record mode on power-up. A dynamic microphone was used as it was on hand and requires less circuitry than a condenser type. The other components connected to the ISD1210 were as recommended by the manufacturer’s data sheet. These set the AGC ‘attack’ and ‘release’ times and connect the preamplifier to the rest of the internal circuitry. If desired, a high level input can be fed into the analogue input for recording instead of using the microphone and preamplifier. 



�

Figure � SEQ Figure \* ARABIC �21�: Voice Chip Circuit.



Audio amplifier

Although the voice recorder chip has a speaker output, this was found to produce inadequate volume. As the completed product will be used in public places, many of which are noisy, a much louder output is necessary. A small integrated circuit (IC) power amplifier was used to provide the louder output. The LM386 has a maximum power output of approximately 140 mW from a 5V supply into an 8 ohm speaker. It also has a low quiescent power drain of 18mW at this supply voltage. � REF _Ref434419648 \* MERGEFORMAT �Figure 22� shows the amplifier circuit. The differential connection was used so that common-mode noise would be rejected. Other components are as recommended by the manufacturer, with the exception of the speaker coupling capacitor. A smaller value of 47µF, rather than the recommended 220 µF was found to work adequately with the small speaker used.

�

Figure � SEQ Figure \* ARABIC �22�: Amplifier Circuit.



Testing of voice output

The voice output circuit was tested by connecting a microphone and recording several messages. A dip switch was used to pull the address lines low to set the record and playback addresses. This is not shown in � REF _Ref434418093 \* MERGEFORMAT �Figure 21�. The recording and playback worked as intended, with reasonable speech quality obtainable when speaking loudly into the microphone. The volume was also sufficient. Although distortion was evident with the volume at maximum, this was mainly due to the very small speaker used. Proper mounting of the speaker on a baffle would provide a great improvement in power handling and quality of the voice output. 



�0  SOFTWARE DESCRIPTION

Software Overview

The software is designed to correctly control the scanning of the CCD linear array and to process and attempt to match the pixel information it produces. If a match can be found, then the voice chip plays the correct voice message. A complete list of interrupt service routines and subroutines together with their main functions are shown in Table 2.



Name of Subroutine or ISR�Function��CLKL_ISR�Store pixels or produce SI signal, determine and store transitions.��SO_SIG_ISR�Flash LED, determine if scan valid, set SI flag for next scan.��INITIALISE�Set all applicable TMSC50 registers, set start-up message.��START_CCD�Reload and start timer.��STOP_CCD�Stop timer.��CHECK_VALID�Determine if scan just ended is valid.��SEARCH�Locate a similar template length.��RECONSTRUCT�Write template into buffer from the stored segment run-lengths.��CORRELATE�Find the number of mismatched pixels between the scan and the found template��REVERSE�Write template into buffer backwards.��ANNOUNCE�Play voice message.��NEXT_SLICE�Set flags to obtain another scan.��

Table � SEQ Table \* ARABIC �2�: Subroutines and Interrupt Service Routines.



In order to correctly scan the array, Serial Input (SI) signals must be generated to initiate each new scan, timed for correct positioning with respect to the clock signal. This is done within the Clock Low ISR (CLKL_ISR). At the end of the scan, the array produces a Serial Out (SO) signal. The Serial Output ISR (SO_SIG_ISR) is entered on the falling edge of the SO signal. The LED is flashed and the scan is then examined within the ISR to see what further processing (if any) should occur on the collected pixels. Further processing is warranted if internal features within a window were detected, and a template can be found which has a similar length. The presence of internal features is determined within the CHECK_VALID subroutine, by examining the number of light to dark transitions which occurred. The length of the window is also checked to see if it falls within the valid range of stored template lengths. If the scan was valid, then a binary search for a similar template length is performed by the SEARCH subroutine. Regardless of the outcome of these two subroutines, an SI signal is again generated to scan the array. However, incoming pixels will be ignored if the last slice is valid and is being correlated to the found template. Continuous background scanning of the array prevents the build-up of excess charge in the pixel wells, due to the extended integration time.



Before the window can be correlated against the found template, the template must be reconstructed from its stored segment lengths. This is done using the RECONSTRUCT subroutine. Correlation occurs using the CORRELATE subroutine. Within this subroutine, the reconstructed template is ‘stepped along’ the whole length of the array slice in order to find the best match. If a sufficient match cannot be found, then the template is written into the template buffer backwards, using the REVERSE subroutine. If a sufficient match can be found in either direction, then an announcement is made via the ANNOUNCE subroutine.



After the correlation has been completed, another scan is grabbed and the process repeats. This is accomplished by calling the NEXT_SLICE subroutine. 



Main program

The main program performs three tasks before entering an endless loop, designated MAIN_LOOP. First, the TMS320C50 registers are initialised with the INITIALISE subroutine. Next, the START_CCD subroutine starts scanning the linear array. This is followed by the playing of a ‘ready’ message using the ANNOUNCE subroutine. 



On entering the main loop, the Test/Control (TC) flag bit is cleared in Status Register 1 (ST1) before immediately entering a small loop called TINY_loop to wait for interrupts from the array. Depending on which interrupt arrives, each pixel is stored, or the Serial Input signal is generated, as required. The loop can only be terminated by setting the TC bit. Due to the automatic context save feature of the TMS320C50, this will never occur when returning normally from an interrupt service routine (ISR) since the cleared TC bit is always automatically restored. However, the ISR can be terminated prematurely with interrupts disabled (RETI instruction) and then re-entered to set the TC bit. This is done within the Clock Low ISR when an entire valid scan has been collected. This technique is used because it saves the overhead of specific testing for loop termination. This is necessary due to the severe time constraints involved in the pixel processing routine.



A determination is made between each scan as to whether it is valid. A scan is valid if at least two light to dark transitions occurred, and the length of the collected window is within range of the stored templates. If valid, a search is performed through the table of template lengths to see if any have comparable lengths. If a template can be found, the pointer to the template in the template storage area is loaded. The run-lengths of light and dark pixels are then written into the template buffer with the RECONSTRUCT subroutine. 



The collected scan in the buffer can now be correlated using the CORRELATE subroutine to determine its closeness of match with the reconstructed template. If the correlation is not within the set BOUND, then the template is reconstructed again back to front using the REVERSE subroutine, and correlated again. If the correlation is sufficient, the denomination corresponding to the stored template is announced to the user from the ANNOUNCE subroutine. After setting the flags in the NEXT_SLICE subroutine to obtain the next available scan, a branch is then made back to the beginning of the main_loop where the TC bit is cleared, and the entire process repeats.

Serial output interrupt service routine 

This ISR is entered on the falling edge of the SO pulse, at the end of each scan of the linear array. A pseudo-code representation of the ISR is shown in Figure 23. 



procedure Serial Output Interrupt Service Routine

	begin	

save number of transitions in scan just ended

	clear transition counter

	if length not zero

		store delimiting character



	call CHECK_VALID

	call SEARCH



	set SI flag



if scan was valid

clear GS flag



flash LED

clear any pending interrupts

return from ISR

	end

		

Figure � SEQ Figure \* ARABIC �23�: Pseudo-code Representation of Serial Output ISR



On entry, the number of light to dark transitions which occurred in the scan just ended is stored into TRANSITIONS from AR5. AR5 is then reset to zero for the next scan. The window length stored in LENGTH_WNDW is now compared to zero. A length of zero means that no window was encountered. In this case, no delimiter should be stored. This prevents overwriting the first transition stored in TRANS_ARRAY for the last valid slice. At this point, the CHECK_VALID and SEARCH subroutines are called to determine if the last scan was valid. If the scan was valid, the following scan does not need to be grabbed. This is prevented by disabling INT1 interrupts. However, this cannot be done immediately, as the SI pulse needs to be generated from within Clock Low ISR. Accordingly, the Grab Scan (GS) flag is set so the interrupts can be disabled at the appropriate point. The array illumination LED is now flashed to imprint the next image slice onto the pixels of the CCD. This is done by taking bit 14 of the data port high for the required time. INT1 interrupts are then restored in case they were disabled during the previous scan due to correlation or other processing. This must be done, otherwise the Clock Low ISR will not be entered on leaving the Serial Out ISR, so the SI signal will never be generated. For continuous scanning, the SI flag is then set so that the SI signal will be produced on the next entry of the Clock Low ISR. It is not desired to respond to any INT1 interrupts which occurred during the Serial Out ISR. Before returning, these are cleared.



Clock low interrupt service routine 

This important interrupt service routine is entered on the falling edge of the clock signal generated by the flip-flop. The pseudo-code representation of the ISR is shown in � REF _Ref434427048 \* MERGEFORMAT �Figure 24�. Assuming all interrupts are enabled, one of two separate tasks will be performed. If the SI flag has been set, then an SI pulse must be generated, correctly positioned with respect to the clock signal. This initiates a new scan. If the SI flag is not set, then the incoming pixel must be correctly processed.

		

procedure Clock Low Interrupt Service Routine



	begin	get pixel from port

	 	if SI flag not set

			begin

			mask off and save current pixel

			subtract previous pixel from current pixel

			if IW flag not set

				begin

				if a dark to light transition occurred

					set IW flag

				return from ISR

end		

		

			else IW flag set

				begin

				store pixel

				if no transition

					return from ISR

			

store transition counter



				if a light to dark transition occurred

					begin

					update window length

					increment light to dark transition counter

					end

			

				return from ISR

				end

			end else IW flag set					

		end SI flag not set



		else SI flag set

			begin

			clear SI flag

			set SI signal high

			wait for next INT1 interrupt

			reset pixel counter

			reset transition array pointer

			reset data memory pixel buffer

			clear IW flag

			clear the interrupt which occurred

			take SI signal low again



			if GS flag set

				exit ISR

			

			else GS flag not set

				begin

				clear TC bit outside ISR

				re-enter and exit ISR

				end

			end else GS flag set



			end

		end else SI flag set

end



		

Figure � SEQ Figure \* ARABIC �24�: Pseudo-code Representation of Clock Low ISR.



Due to the latency inherent in interrupt processing, the valid pixel period is almost expired when the first instruction executes. To be sure that the pixel is sampled during the valid period, it must be sampled immediately. The first instruction therefore loads the available pixel from the data port (bit zero) into the accumulator, whether it is needed or not. The SI flag is then tested to see if this is the beginning of a new scan. If not, then the pixel must be correctly stored in the buffer and the transitions noted.



The first task in processing the pixel is to mask off all bits in the accumulator other than the pixel in bit zero. This is done by ANDing the accumulator with one. The remaining pixel is then stored in CURRENT. The previous pixel stored in PREVIOUS is then subtracted from the pixel still in the accumulator. This is done so that transitions can be detected. There are three possible cases. If the pixel was unchanged, then the result is always zero, regardless of whether both were light (zero) or both were dark (one). If the transition was from light to dark, then the result of the subtraction is one. This type of transition occurs over the leading edge of the note, leading edges of internal features of the window, and the trailing edge of the window. Since the final light to dark transition always occurs at the end of the window, this can be located unambiguously. A dark to light transition on the other hand (a result of negative one), means that the leading edge of the window has been located, or trailing edges of the features or the note. Since a dark to light transition always locates the start of a window, no pixel processing is undertaken until it occurs. When it does occur, the In Window (IW) flag is set. Up until this point, the only processing which occurs involves updating the pixel stored in PREVIOUS with the CURRENT pixel. After this is done, a return from the interrupt service routine is executed.



Once the IW flag has been set, pixel processing begins. The result of the previous subtraction to determine transitions is temporarily stored in TEMP, and the previous pixel is loaded into the accumulator. The auxiliary register pointer (ARP) is changed to the data buffer pointer (AR4) at this point in preparation for storage of the pixel, and also to allow a one cycle delay for the execute conditionally (XC) instruction. The execute conditionally instruction subtracts one from the accumulator if the pixel is zero. If the pixel was one, then it is unaffected. Thus, ones are stored as is, and pixels which are zero are stored as negative ones. This is necessary for the correlation procedure.



With the pixel correctly stored in the buffer, the task remains to note locations of transitions. The result of the subtraction is reloaded from TEMP, and the pixel counter is incremented at this point to use a cycle ahead of the XC instruction. If the value of TEMP now in the accumulator was zero, then no transition occurred, and the ISR is terminated.



If a transition occurred, then the current value of the pixel counter in AR7 is stored into the current location in TRANS_ARRAY pointed at by AR6. This allows many scans to be stored sequentially, although this facility is not used in the prototype. The result of the subtraction still in the accumulator is now tested for the final time to see if its value is one. If it is, then the light to dark transition counter (AR5) is incremented and the current value of the pixel counter is stored in LENGTH_WNDW. At the end of the scan, LENGTH_WNDW holds the number of pixels across the window, as the final light to dark transition always occurs there. When this has been done, all pixel processing tasks have been completed, and the ISR is terminated.   

  

If, on entering the ISR, the SI flag tested true, then the SI pulse needs to be generated. After clearing the SI flag, sixteen no operations (NOPs) are executed. This is done to ensure that the rising edge of the generated SI signal is correctly positioned between two rising edges of the clock signal, even with varying interrupt latency. Bit one of the data port is then taken high, pulling the D input of the flip-flop high. On the next cycle, 50ns later, the clock (CLK) input of the flip-flop (on bit three of the data port) is taken high as well, latching the flop-flop high with its rising edge. Both inputs are then taken low. A loop is now entered to wait for the next interrupt on the falling edge of the clock signal (INT1). The latched SI signal must be kept high to cover the next rising edge of the clock signal. To ensure this, eight NOPs are executed, followed by some tasks necessary for the scan which is about to begin, which are convenient to carry out at this point. First, the pixel counter (AR7) is reset to zero. The pointer (AR6) into the transition array, TRANS_ARRAY, is reset to its beginning, and the pixel value stored in PREVIOUS is set to zero (light). PREVIOUS must be set to light when the first incoming pixel in CURRENT is compared so that a dark to light transition (ie start of a window) cannot occur prematurely. Next, the pointer (AR4) is reset to the beginning of the data memory buffer so that pixels from the start of the window can be stored in the correct position. The In Window (IW) flag is cleared then cleared and, finally, the INT1 interrupt which occurred is cleared from the interrupt flag register (IFR). Bit three of the data port is then taken high to latch the flip-flop low, ending the SI signal.



The Grab Scan (GS) flag is now tested to see if pixel processing needs to occur for the new scan. If the flag has been set, then a return from the ISR is executed, after the flag is cleared. This flag is set again only after all processing on the previous scan (including correlation) has been completed. Since INT1 interrupts are enabled and the SI flag has been cleared at this point, processing of pixels will begin on the next falling clock edge after the return from the ISR.    



If the GS flag was not set, then INT1 interrupts are disabled in the interrupt mask register (IMR) so that any processing in the background can continue unhindered. At this point, it may be desired to set the TC bit outside the ISR. To allow this, the ISR is exited prematurely by pushing the re-entry address onto the stack, then executing a return with interrupts disabled (RETI). Execution continues from the label SET_TC_EXIT. Setting the TC bit is necessary to exit the small loop in the main program if a scan has just been collected. However, if the ISR was entered from some other point, then setting the TC bit could cause undesired results. To avoid this, the TC bit is only set when inside the small loop. To determine if the ISR was entered from the small loop, the return address is popped off the stack and stored in TEMP. The address of the LOOP label is loaded into the accumulator. The return address in TEMP is then subtracted from it. A result of zero means that the ISR was indeed entered from the small loop, so the execute conditionally instruction (XC) sets the TC bit. The stack is restored by pushing the address in TEMP back onto the stack. Since execution is now outside the ISR, interrupts must be manually enabled by clearing the INTM bit in ST0. A normal return is executed because the stacks were all popped when the ISR was terminated prematurely.



Initialisation Subroutine

The initialisation routine sets up all applicable TMS320C50 registers. The product shift mode (PM) bits are cleared for no shift in the MADS instruction, and memory block 0 is initially mapped to data space. This is done by clearing the configuration control bit (CNF) in status register one (ST1). The sign extension mode bit, also in ST1, is set so that negative numbers can be correctly loaded into the accumulator. As there is no external memory, all wait states are set to zero for maximum speed. This is done by storing zero into all three wait-state control registers. These are the program data wait-state register (PDWSR), the input output port wait-state register (IOWSR) and the wait state control register (CWSR). 



The timer is set using the timer control register (TCR) for zero prescale while stopped. This is done by storing a one in the timer stop status bit (TSS) of the TCR and clearing all other bits, including timer prescaler  counter bits (PSC). The period register (PRD) is then loaded with a value of 20, to give a period of 1.05µs. Since, due to the flip-flop this is half a cycle, the clock frequency is 476.2 kHz. 



INT1 and INT3 interrupts are unmasked for use by clearing bits zero and two in the Interrupt Mask Register (IMR), and are enabled by clearing the interrupt mode bit (INTM) in status register zero (ST0). This two tasks are performed after clearing any interrupts that may be pending, by writing ones to all bits in the interrupt flag register (IFR). Finally, the start up ‘ready’ message is stored into MESSAGE, so that it will be played when the ANNOUNCE subroutine is first called at the beginning of the main program.



Start CCD subroutine

The Serial Input (SI) and Get Scan (GS) flags are set in FLAGS to begin reading in pixels. The timer is then reloaded with the period and started. Timer TOUT pulses then commence, and as a result, the clock signal is generated by the flip-flop.



Stop CCD subroutine

This routine stops the timer output (TOUT) immediately, halting the clock signal from the flip-flop. With the CCD stopped, all INT1 and INT3 interrupts do not occur, suspending all pixel processing. This routine is currently unused.



Check valid subroutine

A valid scan is one which passes through an internal feature of a window. To test this, two is subtracted from the number of light-to-dark transitions which occurred in the current scan. If the result is non-negative, then the scan has at least two light-to-dark transitions. In this case, the Valid Scan flag is set. 



Next, the length of the window is tested to see if it falls within the range of available stored templates. First, the length is tested to see if it is not too short by subtracting the length of the shortest available template. If the result is negative, then the window length is too small, and the previously set VS flag is cleared. The length is then tested again to see if it is too long by subtracting the longest available template length and seeing if the result is still positive. If it is, then the window is too long, and the VS flag is cleared.



Search subroutine

The lengths of all the available templates are stored in a table, together with pointers for each length into the template storage area. The search subroutine quickly locates the template length which is closest to, but not less than, the length which was requested. This is performed using a binary search algorithm to successively divide the search area of the table until the desired length is found. This requires that the templates lengths be stored in order, in this case ascending, with increasing address through a contiguous section of memory. To provide further efficiency, the binary search algorithm requires a table length in a power of two, so that a set number of iterations is always employed. The returned length is always equal to or greater than that requested. A final check is made to be sure that the returned template length is not too big. If it is, then the Valid Scan flag is cleared. In any case, the length of the retrieved template and its associated pointer are stored.



On entering the subroutine, the Valid Scan flag is tested to see if the current scan passed all previous tests. A conditional return is executed if the scan is not valid. Otherwise, the length of the search table is loaded into the accumulator and shifted right to divide it by two. The result is always without remainder, as the table has a length which is a power of two. The result is stored in the index (INDX) register. AR0 is then loaded with the start address of the table, and the block repeat count register (BRCR) is loaded with the number of iterations required minus one. AR0 is then incremented by the index amount, so that it is now loaded with the address half-way up the table. The length of the window (LENGTH_WNDW) in the current scan is now loaded into the accumulator, and the BOUND is subtracted from it. This value is then stored in SEARCH_ITEM. 



The repeat block is now entered. First, the current value of the of the index register is loaded into the accumulator and shifted right to halve it. This is then stored back into the index register. Now the search item is loaded into the accumulator and the table value currently pointed at by AR0 is subtracted from it. Three cases are possible. If the result is negative, then the table value is too high in the table, so the item must lie in the bottom half of the current search space. In this case, the index value is subtracted so that AR0 now points half-way up the bottom half of the table. The bottom half of the table is the new search space, since it is now known that the item is contained within its range of values. Similarly, if the result of the subtraction was positive, then the search item is known to lie in the top half of the table, and the index value is then added to the pointer in AR0. If the result of the subtraction was zero, then an exact match has been found, and AR0 is left pointing to this value. 



Ideally, after the set number of iterations, AR0 points to the exact value requested. However, if this is not a length contained in the table, then AR0 will be pointing to the closest value, which may be out of the valid range of lengths. To determine if this is so, the search item is reloaded into the accumulator, and the found value pointed at by AR0 is subtracted from it. If the result is positive, then the found value is lower than the valid range, so AR0 is stepped up to point at the next higher value. This is then tested to see if it is now too large by loading the window length into the accumulator and subtracting the new higher table value. If the result is negative, then no template is in range, so the Valid Scan is cleared.



Regardless of whether they are used or not, the final template length value pointed at by AR0 is loaded into LENGTH_TEMP and the pointer stored in the following table location is stored into AR0 in readiness for the correlation procedure.



Reconstruct subroutine

Before correlation can begin, the transitions of the stored template first need to be reconstructed into a complete template in the DARAM template buffer set aside for the purpose. AR1 is first loaded with the start address of the template buffer in readiness for the template reconstruction. Since the first pixel is always light, a negative one is loaded into the accumulator before entering the MORE_SEGS loop. A repeat instruction is then executed, using the value pointed at by AR0. This first location in the template storage area was left in AR0 by the previous search subroutine. The repeat instruction writes the first light segment into the template buffer, incrementing the template address automatically using AR1. After the last repeat has been executed, AR0 points to the next transition value and AR1 is left pointing to the template buffer location just following the segment which was just written, in readiness for the next segment. The most significant bit of the template value is then examined to see if the segment just written was the last. To allow for the one cycle delay of the execute conditional (XC) instruction, the written value of negative one is toggled to one at this point by exclusive oring with the hexadecimal value FFFE. If the previous test indicated that the segment was not the final one (never the case for the first segment), then a branch is made back to the repeat instruction, which then writes the next segment of all ones. This loop continues writing alternate segments of negative ones and ones until the final value flags the end of template. With the template completely reconstructed, the loop is terminated. The message word which flagged the end of the template is then loaded into MESSAGE for possible playing later, and a pointer is saved to the final segment value. This is so the segment values can be obtained in reverse order, if needed. The pointer is stored in LAST. The number of segments is also saved in NUM_SEGS. With the template complete, the correlation procedure can begin. 



Correlate subroutine

This important subroutine forms the heart of the recognition process by correlating the template located by the search subroutine and correlating it against the image slice from the linear array. 



On entering, the VS flag is first checked to see if the scan is valid. This will not be so if the window length could not be found in the table. The VS flag is cleared at this point, as no more tests need to be performed on it. If the scan is not valid, then nothing can be done, and a conditional return is executed.



If the scan was valid, then the incoming scan stored in the buffer needs to be correlated against the found template. To do this, the buffer needs to be transferred into program memory from data memory. This is neatly accomplished by setting the CNF bit (bit 12) of status register 1 (ST1). The starting address of the program memory buffer is now loaded into the block move address register (BMAR) register, as required by the MADS instruction. The minimum possible value of the correlation is -512, if all pixels are mismatched. The value stored in CORRELATION is initialised to this maximum mismatch value for later comparison. AR0 and the circular buffer start register (CBSR1) are now initialised to the start of the template buffer. The circular buffer end register (CBER1) is loaded with the template buffer location of the final element of the current reconstructed template. This address is calculated by adding the template length to the template start address already in the accumulator and subtracting one.



The correlation process dictates that the template be ‘slid’ in increments along the window of the current scan in the buffer. The number of increments is the difference between the length of the window and the length of the template. The length of the window is loaded into the accumulator and the length of the found template is subtracted from it, since this is always shorter (or equal). The result is stored in the block repeat counter register (BRCR).

At each increment, the length of the template is correlated against the a section of the window in the buffer. The repeat instruction requires a value one less than the number of repeats, so one is subtracted from LENGTH_TEMP and stored into NUM_TIMES. Before entering the block repeat, the circular buffer holding the template is enabled by loading the circular buffer control register (CBCR) with the value eight. This sets the circular buffer 1 enable bit (CENB1) and sets the circular buffer 1 auxiliary register (CAR1) bits to zero. This assigns AR0 to the circular buffer.



The repeat block is now entered. The accumulator and product register are both cleared before the MADS instruction is repeated NUM_TIMES. This correlates the template over its entire length. After the following APAC instruction accumulates the last product, the accumulator hold the correlation value. This is swapped into the accumulator buffer (ACCB) and the previous stored correlation value (-512 for the first block repeat) is loaded into the accumulator. The CRGT instruction is then executed, after which both accumulators hold the greater value. This is then stored back into the CORRELATION variable. After all block repeats have been performed, the highest value of correlation found at any increment remains.



On the first iteration of the block, the first element of the template is correlated against the first element of the buffer, the second against the second, and so forth. On subsequent iterations (if any), the  template is ‘stepped along’ one element at each iteration, so that on the second iteration, the first element of the template is being correlated against the second element of the buffer, and so on. This is done by incrementing the pointer in the BMAR, so that the correlation procedure starts at buffer addresses other than the first. The BMAR is incremented by simply loading the accumulator with the current BMAR, adding one, and storing it back. At this point, if the value in the block repeat counter register (BRCR) is not zero, then control is passed immediately back to the start of the block for the next repeat of the block.



Once all block repeats are finished, CORRELATION holds the greatest correlation value found at any increment of the template ‘along’ the buffer. This could be a negative or positive number. To find the number of mismatched pixels, the correlation value is subtracted from the length of the template, and then divided by two. This is done by shifting the accumulator right one bit, with the sign extension mode (SXM) bit set. The final result is the number of mismatched pixels, and this is stored in MISMATCH. 



Before exiting the subroutine, the circular buffer control register (CBCR) is completely cleared to disable the circular buffers, and the CNF bit in ST1 is also cleared to map Block 0 from program memory back to data memory so that the next scan can be written into it. 

  

Reverse subroutine

This subroutine begins by checking that the scan is valid and whether the correlation in the forward direction failed. If both conditions are true, then the subroutine reconstructs the template in reverse order. This is done in a very similar fashion to the RECONSTRUCT subroutine, so will not be repeated here. The difference is that the pointer to the first segment value is stored in LAST and the number of segments to be written is already known. This was stored in NUM_SEGS. The message to be played if a sufficient match can be found in reverse was stored in MESSAGE.

 

Announce subroutine

The announce subroutine latches the address bits of the voice recorder chip so that it plays the message corresponding to the denomination of the matching image slice.



Next slice subroutine

This subroutine simply sets the Get Scan (GS) flag so that processing of incoming pixels commences on the next SI pulse.



�0  SYSTEM TESTING

The completed system was tested by running the software and observing any problems. The LED position was adjusted for the most even spread. As already outlined, the evenness of spread is less than ideal. This was therefore a difficult task. Allied with this is the required flash time to fully illuminate every pixel above the comparator threshold. A problem was then discovered, as it appeared that two pixels were less sensitive than all the others. Since these were towards the middle of the array and usually under the note, this was ignored. However, since transitions are noted by comparing adjacent pixels, this has the potential to cause failure of the recognition process in the prototype. This is because any single stray pixel produces a light to dark and a dark to light transition. If these occur before or after the window, then the beginning and/or end of the window will be erroneous. This highlights the importance of low-pass filtering the image.



Slices were then read in from the windows of several notes and stored. This was done by placing the desired slice of the particular note across the array, stopping execution of the software, and reading the transitions from TRANS_ARRAY. This gives the pixel position of each transition from the start of the window. The run-lengths of each segment were calculated from these and stored into the template storage area, with the correct message to play appended. The overall lengths of each template together with their associated pointers were stored into the template table in ascending order so that the binary search algorithm could locate them. When the software was then run, the prototype correctly identified all the templates as each note was slowly passed over the array.



As the prototype has a very limited set of templates and processes every valid slice, it is possible that a slice able to be matched passes unnoticed while another valid, but unstored slice is being processed. Therefore, swiping too fast causes recognition to fail. This problem can be alleviated by storing strategic slices. However, the best solution is not to attempt to process scans as they come in, but to store them for later processing once the note has passed.

    

�0  CONCLUSION

Achievements

The prototype recognises 10 dollar and 50 dollar notes when they are swept arbitrarily over the array. This shows the usefulness of the correlation technique as a method for recognising the clear window of Australian notes. A useful device for the vision impaired could stem from the prototype if several problems can be overcome.



Future Improvements

Illumination

The problem of poor evenness and concentration of the illumination needs to be solved. Better concentration is essential for reasonable battery life. The evenness problem may need to be solved using a two-pronged approach. A suitable lens arrangement is needed to concentrate the light in one axis. Then, an analogue to digital converter with more resolution can cope with the drop in intensity towards the ends of the array. This may be as simple as using the other half of the dual comparator to provide another threshold. The output of one comparator could be used across the centre and the other at the ends. On start-up, the processor could enter a control loop in which the illumination is increased while monitoring the thresholds. This would enable the illumination to be brought up to the same level each time, regardless of slight changes in the illumination system. A failure of the LED or array would be sensed, and an announcement made to the user.



Slice storage

As little time exists to process the scans as they arrive, all incoming slices should be stored for later processing. Scans can be compactly stored in terms of their transitions. If a number of scans are stored, then each can be correlated and a decision made by majority rule. This would greatly improve the accuracy of the device.



EPROM voice storage

Because voice recording is not necessary, the voice recorder chip used in the prototype should be dispensed with and an EPROM used to store the digitised voices and tones. This would lower costs.



Power management

In the prototype, the audio amplifier and the LED are keep running, even when they are not needed. Switching these off when they are not needed would result in useful power savings.



Fast Fourier Transform

Correlation in the prototype is performed using the direct method. However, using Fast Fourier Transforms (FFTs) will provide a speed increase when the window is long, and particularly when the window extent cannot be identified. This will happen when the note has been damaged around the window. In this case, it may be necessary to try a large number of templates against a long scan, in the hope of extracting a match from the surrounding noise. This represents the worst situation that can occur. However, it should be said that the vast majority of notes are in good condition. This is because they are withdrawn very quickly from circulation when wear is evident.



Image filtering

The prototype can be misled by isolated pixels. This has the potential to cause failure if the window extremities cannot be identified. Isolated pixels also occur inside the window due to dirt and creases. While not being a major problem, low-pass filtering of the scan would remove these as well. The simplest method which could be applied is to examine a small block of contiguous pixels to see if a transition has truly occurred over its length, or is merely a sporadic event. This can be done by digitally filtering the input with a FIR filter. Since severe time constraints exist within the ISR, a hardware solution may be more appropriate. Other filtering methods include morphology and the DFT. 



Note authentication

Finally, in order to add to the usefulness of the device, some form of authentication of the note could be performed. This would need to be low in cost. The polymer itself may possibly provide the easiest means to accomplish this. If the polymer material has certain optical peculiarities, then this could be exploited to give some peace of mind as to the note’s authenticity as well as performing the identification.



* * * * *  
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�Appendix � SEQ Appendix \* ROMAN �I�: DSP STARTER KIT MEMORY MAP



The following is the memory map of the TMS320C5x DSP Starter Kit (DSK).



� EMBED Visio.Drawing.4  ���



Note: 	External interrupt INT2 reserved by DSK.

Block 0 can be configured as either data or program memory, depending on the value of the CN bit in ST1.

�Appendix � SEQ Appendix \* ROMAN �II�: SCANNING SOFTWARE



The following is the minimum software necessary to scan the linear array.�

.mmregs		;define global symbolic names for

		; TMS320C5x registers.



***************************************************************************************************************

*				GLOBAL CONSTANTS				*

***************************************************************************************************************



DATA_PORT	.set	0050h		;memory-mapped Port Address 0.



***************************************************************************************************************

*				GLOBAL VARIABLES				*

***************************************************************************************************************



     		.ds	0300h

FLAGS       	.word	0		;bit 0      Serial Input (SI) flag.



***************************************************************************************************************

*				INTERRUPT VECTORS				*

***************************************************************************************************************



            					;set interrupt vectors.

		.ps	0803h

            		.word	09a6h		;store INT1 ISR address (CLKL_ISR).

            		.ps	0802h			

            		.word	7980h             	;store branch instruction.

            		.ps	0807h

            		.word	0980h             	;save INT3 ISR address (SO_SIG_ISR).

.ps	0806h			

            		.word	7980h             	;store branch instruction.

      

***************************************************************************************************************

*         			INTERRUPT SERVICE ROUTINES                 			*

***************************************************************************************************************



            		;Serial Out SIGnal Interrupt Service Routine.

            		;This routine is triggered by external interrupt INT3.



            		.ps   0980h             			;assemble from this address.

SO_SIG_ISR

LDP	#FLAGS

            		OPL	#01h,FLAGS		;set SI flag for next scan.



		RETE



;-----------------------------------------------------------------------------------------------------------------------------



		;CLocK Low Interrupt Service Routine

            		;This routine is triggered by external interrupt INT1.



            		.ps   09a6h

CLKL_ISR

LDP	#FLAGS

BIT	FLAGS,15		;test SI flag (bit 0).

BCND	SI_SIGNAL,TC		;set SI signal if flag clear,

	                               

            		RETE                    			; otherwise just exit.



SI_SIGNAL

            		APL   	#0fffeh,FLAGS		;clear SI flag.



LDP	#0

OPL	#02h,DATA_PORT		;take flip-flop D input high.

OPL	#0ah,DATA_PORT		;take CLK high to latch.

APL	#0fff5h,DATA_PORT	;take both low again.



WAIT_INT1   	BIT  	 IFR,15

            		BCND  	WAIT_INT1,NTC     	;wait for next INT1 interrupt.

            

            		RPT   	#17               		;waste time to extend SI signal.

            		NOP



            		SPLK  	#01h,IFR          		;clear the interrupt which occurred.

OPL	#08h,DATA_PORT    	;take CLK high to latch flip-flop low.



            		RETE



***************************************************************************************************************

*                 			SUBROUTINES                                    			*

***************************************************************************************************************



           		;INITIALISATION subroutine.

            		;This subroutine configures the TMS320C50.



            		;CWSR = Wait-State Control Register

            		;PDWSR = Program Data Wait-State Register

            		;IOWSR = Input Output port Wait-State Register

            		;PRD = timer PeRioD register

            		;TCR = Timer Control Register

            		;IFR = Interrupt Flag Register

            		;IMR = Interupt Mask Register

            		;INTM = INTerrupt Mode bit



INITIALISE          

LDP   	#0                		;data pointer points to page 0.

            		SPLK  	#0,CWSR           		;configure wait states.

            		SPLK  	#0,IOWSR          		;zero I/O wait states.

            		SPLK  	#0,PDWSR          		;zero program/data wait states.

            		SPLK  	#10h,TCR          		;timer stopped with no prescale.

            		SPLK  	#20,PRD           		;load timer for 1.05 us period.

            		SPLK  	#0ffffh,IFR       		;clear any pending interrupts.

OPL   	#05h,IMR          		;unmask INT1 and INT3 external

; interrupts.

            		CLRC	INTM              		;enable maskable interrupts.

            		RET



;------------------------------------------------------------------------------------------------------------------------------



            		;START CCD subroutine.

            		;This subroutine starts scanning the CCD.



START_CCD   

            		LDP   	#FLAGS

            		OPL	#01h,FLAGS 		;set SI flag (bit 0) to start scan.



            		LACL  	#20h

            		SAMM	TCR              		;reload and start timer.



            		RET



***************************************************************************************************************

*                    			MAIN PROGRAM                                    		*

***************************************************************************************************************



            		.ps   0af0h



MAIN

            		CALL  	INITIALISE    		;configure TMS320C50.

            		CALL  	START_CCD		;scan linear array.



TINY_LOOP   	B	TINY_LOOP      		;loop and wait for interrupts.



 		.entry MAIN

            		.end



;-----------------------------------------------------------------------------------------------------------------------------







�Appendix � SEQ Appendix \* ROMAN �III�: COMPLETE SOFTWARE LISTING



The following is a complete software listing of the prototype.



***************************************************************************************************************

*       (C) COPYRIGHT CURTIN UNIVERSITY, PERTH, WESTERN AUSTRALIA.            		*   

*       Written by Ivar Siewert 930609A (February to September 1998).         			*

***************************************************************************************************************

*                                                                             					*

*  PROGRAM NAME: AUSTRALIAN POLYMER NOTE IDENTIFIER FOR THE VISION IMPAIRED  *

*                                                                             					*

*  DESCRIPTION: 	This program for the Texas Instruments TMS320C50 Digital      		*

*               	Signal Processor (DSP) is designed to recognise the           		*

*               	image of the clear window on Australian currency notes.       		*

*               	The image is produced by a Texas Instruments TSL218           		*

*               	linear array with a length of 512 pixels.                     			*

*                                                                             					*

***************************************************************************************************************



            		.mmregs                 ;define global symbolic names for

                                   	 	; TMS320C5x registers.



***************************************************************************************************************

*                             		GLOBAL CONSTANTS                                			*

***************************************************************************************************************



DATA_PORT	.set  0050h	;memory-mapped data Port Address 0.

BOUND      	.set  20 		;maximum allowable mismatch.



***************************************************************************************************************

*                             		GLOBAL VARIABLES                                			*

***************************************************************************************************************



;NOTE: THIS PROGRAM ASSUMES ALL SINGLE VARIABLES ARE ON THE SAME DATA PAGE.



                  	.ds         0300h

FLAGS             	.word       0	;Explanation of flags.

                                          		;bit 0      Serial Input (SI) flag.

                                          		;bit 1      Grab Scan (GS) flag.

                                          		;bit 2      In Window (IW) flag.

                                          		;bit 3      Valid Scan (VS) flag.

MISMATCH          	.word       0

CORRELATION     	.word       0

LENGTH_TEMP     .word       0

LENGTH_WNDW  	.word       0

NUM_TIMES         	.word       0

TRANSITIONS       	.word       0

MESSAGE           	.word       0

PREVIOUS          	.word       0

CURRENT           	.word       0

TEMP              	.word       0

SEARCH_ITEM      .word       0

POINTER           	.word       0

NUM_SEGS          	.word       0

LAST              	.word       0



                  	.include    "template.asm"



                  	.ds         0370h       ;template MUST be DARAM block 1.

TEMPLATE                                  	;storage for 400 words.

                  	.ds         02a00h

TRANS_ARRAY              		;storage for 512 words.

                  	.ds         0100h       

D_BUFFER                                  	;pointer to data DARAM block 0.   

                  	.ps         0fe00h      

P_BUFFER                                  	;pointer to program DARAM block 0.



***************************************************************************************************************

*                             		INTERRUPT VECTORS                               			*

***************************************************************************************************************



            		;set interrupt vectors



            		.ps   0803h

            		.word 09a6h             ;store INT1 ISR address (CLKL signal).

            		.ps   0802h

            		.word 7980h             ;store branch instruction.

            		.ps   0807h

            		.word 0980h             ;store INT3 ISR address (SO signal).

            		.ps   0806h

            		.word 7980h             ;store branch instruction.

      

***************************************************************************************************************

*                         		INTERRUPT SERVICE ROUTINES                          		*

***************************************************************************************************************



            		.ps   0980h             ;assemble code starting at this address.

            

            		;Serial Out SIGnal Interrupt Service Routine.

            		;This routine is triggered by external interrupt INT3.



            		;AR5 = light to dark (L/D) transition counter.

            		;AR6 = TRANS_ARRAY pointer.



SO_SIG_ISR

  		MAR   	*,AR6             		;change to AR6.

            		LDP   	#TRANSITIONS

            		SAR   	AR5,TRANSITIONS   	;save number L\D transitions.

            		LAR   	AR5,#0            		;reset L\D transition counter.

            		CPL   	#0h,LENGTH_WNDW

            		NOP                     			;wait for XC. 

            		XC    	2,NTC             		;if not zero length,

            		SPLK  	#0ffffh,*         		;store delimiter.



            		CALL  	VALID_SCAN?       	;check if scan valid.

            		CALL  	SEARCH            		;check if template available.



            		OPL   	#01h,FLAGS        		;set SI flag for next scan.



            		BIT   	FLAGS,12          		;test Valid Scan (VS) flag.

            		NOP

            		XC    	2,TC              		;if scan valid,

            		APL   	#0fffdh,FLAGS     		; clear GS flag, don't grab the next scan.  



            		LDP   	#0

            		RPT   	#310

            		OPL   	#4000h,DATA_PORT  	;set DAT14, turn LEDs on.

            		APL   	#0BFFFh,DATA_PORT 	;clear DAT14, turn LEDs off.

            		OPL   	#01h,IMR          		;restore INT1, required to enter  

						;  CLKL_ISR

                                    				; so that SI signal can be generated.

            		SPLK  	#01h,IFR          		;clear any pending interrupts which

                                    				; occurred during this ISR.

            		RETE



;------------------------------------------------------------------------------------------------------------------------------



		;CLocK Low Interrupt Service Routine

           		 ;This routine is triggered by external interrupt INT1.



            		;AR4 = D_BUFFER pointer.

            		;AR5 = light to dark (L\D) transition counter.

            		;AR6 = TRANS_ARRAY pointer.

            		;AR7 = pixel counter from start of window.



            		.ps   09a6h

CLKL_ISR

            		LAMM  	DATA_PORT         		;first, get pixel on data port.

            		LDP   	#FLAGS

            		BIT   	FLAGS,15          		;test SI flag (bit 0).

            		BCND  	SI_SIGNAL,TC      		;set SI signal if flag clear,

                                    				; otherwise store pixel.



            		AND   	#01h              		;mask off pixel.

            		SACL  	CURRENT          		;save current pixel.

            

            		SUB   	PREVIOUS          		;subtract previous pixel from current.

            		BIT   	FLAGS,13          		;test IW flag (bit 2).

            		BCNDD 	IN_WINDOW,TC     	;if already in window, then branch.

            		LAR   	AR0,CURRENT       	;without affecting accumulator,

            		SAR   	AR0,PREVIOUS      	; update previous pixel.



            		XC    	2,LT              		;if a dark to light transition,

            		OPL   	#04h,FLAGS        		; then set IW flag then exit,



            		RETE                    			; otherwise just exit



IN_WINDOW

            		SACL  	TEMP              		;save result of previous subtraction.

            		LACL  	PREVIOUS

            		MAR   	*,AR4             		;change to pixel counter.



            		XC    	1,EQ              		;if pixel is zero,

            		SUB   	#01h              		; subtract 1.

            		SACL  	*+,0,AR7          		;store pixel as either 1 or -1.

            		LACC  	TEMP              		;reload previous subtraction.



            		MAR   	*+,AR6            		;delay one cycle for XC instruction.

            		XC    	1,EQ              		;if there was no transition,

            		RETE                    			; then exit ISR.



            		SAR   	AR7,*+,AR5        		;store counter in current array location.

            		XC    	2,GT              		;if light to dark transition,

            		SAR   	AR7,LENGTH_WNDW   	; update window length,

            		MAR   	*+                		; and increment L\D transition counter.



            		RETE



SI_SIGNAL

            		APL   	#0fffeh,FLAGS     		;clear SI flag.

            		LDP   	#0



            		OPL   	#02h,DATA_PORT    	;take flip-flop D input high.

            		OPL   	#0ah,DATA_PORT    	;take CLK high to latch.

            		APL   	#0fff5h,DATA_PORT 	;take both low again.



WAIT_INT1   	BIT   	IFR,15

            		BCND  	WAIT_INT1,NTC     	;wait for next INT1 interrupt.

            

            		RPT   	#2                		;waste a little time.

            		NOP

            		LDP   	#FLAGS            		;do a few things for more overlap.

            		LAR   	AR7,#0h           		;reset pixel counter.

            		LAR   	AR6,#TRANS_ARRAY  	;reset storage to beginning of array.

            		SAR   	AR7,PREVIOUS      	;initial previous pixel must be light.

            		MAR   	*,AR4             		;change to D_BUFFER pointer.

            		LAR   	AR4,#D_BUFFER     	;reset data memory buffer.

            		APL   	#0fffbh,FLAGS     		;clear IW flag (bit 2).



            		LDP   	#0

            		SPLK  	#01h,IFR          		;clear the interrupt which occurred.

            		OPL   	#08h,DATA_PORT    	;take CLK high to latch flip-flop low.



            		LDP   	#FLAGS

            		BIT   	FLAGS,14          		;test Grab Scan (GS) flag.

            		BCND  	SKIP,NTC          		;if grabbing, then exit.       

            		RETE



SET_TC_EXIT

            		LDP   	#TEMP

            		POPD  	TEMP              		;pop return address from stack.

            		LACC  	#0af7h            		;program address of LOOP label,

            		SUB   	TEMP              		; assembler wouldn't accept symbolic.

            		NOP                     			;delay a cycle.

            		XC    	1,EQ              		;if return address is the same,

            		SETC  	TC                		; set TC bit to branch out of MAIN_LOOP.



            		PSHD  	TEMP              		;push return address back onto stack.

            		CLRC  	INTM              		;re-enable interrupts.

            		RET                     			;normal return, stacks already popped.



SKIP

            		LDP   	#0

            		APL   	#0fffeh,IMR       		;disable INT1 for following scan.

            		LACC  	#SET_TC_EXIT      	;load ISR re-entry address.

            		PUSH  	                  		;push address onto stack.

            		RETI                    			;pop stacks, continue from re-entry point.



***************************************************************************************************************

*                             			SUBROUTINES                                    			*

***************************************************************************************************************



            ;INITIALISATION subroutine.

            ;This subroutine configures the TMS320C50.



            ;CNF = CoNFiguration control bit

            ;CWSR = Wait-State Control Register

            ;PDWSR = Program Data Wait-State Register

            ;IOWSR = Input Output port Wait-State Register

            ;PMST = Processor Mode STatus register

            ;PRD = timer PeRioD register

            ;SXM = Sign eXtension Mode bit

            ;TCR = Timer Control Register

            ;IFR = Interrupt Flag Register

            ;IMR = Interupt Mask Register

            ;INTM = INTerrupt Mode bit



INITIALISE

            		LDP   	#0                		;data pointer points to page 0.

            		SETC 	SXM               		;set sign extension mode bit.

 		SPM   	0                 		;set PM bits for no shift.

            		CLRC  	CNF               		;initially map BLOCK 0 to data space.             

            		SPLK  	#0,CWSR           		;configure wait states.

            		SPLK  	#0,IOWSR          		;zero I/O wait states.

            		SPLK  	#0,PDWSR          		;zero program/data wait states.

            		SPLK  	#10h,TCR          		;timer stopped with no prescale.

            		SPLK  	#20,PRD           		;load timer for 1.05 us period.

            		SPLK  	#0ffffh,IFR       		;clear any pending interrupts.

            		OPL   	#05h,IMR          		;unmask INT1 & INT3 external interrupts.

CLRC  	INTM              		;enable maskable interrupts.

            		LDP   	#MESSAGE

            		SPLK  	#0e1ffh,MESSAGE   	;store start up message.

            		RET



;------------------------------------------------------------------------------------------------------------------------------



            		;START CCD subroutine.

            		;This subroutine starts scanning the CCD.



START_CCD   

            		LDP   	#FLAGS

            		OPL   	#03h,FLAGS        		;set SI flag (bit 0) to start scan, and

                                    				; set GS flag (bit 1) to grab next scan.                                    

            		LACL  	#20h

            		SAMM  	TCR               		;reload and start timer.



            		RET



;------------------------------------------------------------------------------------------------------------------------------



            		;STOP CCD subroutine.

            		;This routine immediately stops the CCD.



STOP_CCD

            		LDP   	#0

            		SPLK  	#10h,TCR          		;stop timer immediately.

            		RET



;------------------------------------------------------------------------------------------------------------------------------



            		;ANNOUNCE subroutine.

            		;This subroutine announces the result.



ANNOUNCE

            		MAR   	*,AR0

            		LDP   	#MISMATCH

	

            		LACC  	MISMATCH          		;load the number of mismatched pixels.

            		SUB   	#BOUND            		;subtract the BOUND.

            		NOP

            		RETC  	GT                		;if mismatch too great, don't announce.



            		LACC  	#DATA_PORT        	;load data port address.

            		SAMM  	AR0               		;store for indirect addressing.



            		LACC  	MESSAGE           		;load message minus play bit.

            		LDP   	#0

            		SAMM  	DBMR              		;load DBMR for indirect ANDing.

            		

		RPT	#5			;300ns setup time.	

APL   	*                 		;put message on chipcorder address lines.

            		APL   	#0dfffh,*         		;play the message.



            RET



;------------------------------------------------------------------------------------------------------------------------------



            		;CHECK_VALID subroutine.

            		;This subroutine determines if the scan is valid.



CHECK_VALID 

            		LDP   	#TRANSITIONS

            		LACL  	TRANSITIONS       	;load number of light to dark transitions.

            		SUB   	#02h

            		NOP                     			;waste a cycle for XC instruction.

            		XC    	2,GEQ             		;if number light to dark transitions >=2,

            		OPL   	#08h,FLAGS        		; set valid scan (VS) flag.



            		LACL  	LENGTH_WNDW       	;load window length.

            		SUB   	#SHORTEST         		;check if too short. 

            		NOP                     

            		XC    	2,LT              		;if window too short,

            		APL   	#0fff7h,FLAGS     		; clear VS flag.



            		LACL 	LENGTH_WNDW       	;reload window length.

            		SUB   	#LONGEST_1

            		SUB   	#LONGEST_2        	;assembler doesn't like big numbers.

            		NOP

            		XC    	2,GT              		;if window too big,

            		APL   	#0fff7h,FLAGS     		; clear VS flag.



            		RET



;------------------------------------------------------------------------------------------------------------------------------



            		;SEARCH subroutine.

            		;This subroutine performs a binary search on the length table.



            		;BRCR = Block Repeat Counter Register

            		;INDX = INDeX register



SEARCH

            		MAR   	*,AR0

            		LDP   	#FLAGS

            		BIT   	FLAGS,12          		;test Valid Scan (VS) flag.

            		RETC  	NTC               		;if not a valid scan, then return.



            		LACL  	#TABLE_SIZE       		;load correct table size.

            		SFR                     

            		SAMM  	INDX              		;save in index.

            		LAR   	AR0,#TABLE        		;load start address of table.



            		LACL  	#3                		;repeat 4 times for TABLE_SIZE of 64.

            		SAMM  	BRCR

            		MAR   	*0+               		;point to middle of TABLE.



            		LACL  	LENGTH_WNDW

            		SUB   	#BOUND

            		SACL  	SEARCH_ITEM       	;search for LENGTH_WNDW-BOUND.



            		RPTB  	BLOCK_A

            		LAMM  	INDX              		;load current index.

            		SFR                     			;halve it.

            		SAMM  	INDX             		;put it back.

           		LACC  	SEARCH_ITEM       	;load required length.

            		SUB   *                 			;subtract middle key from accumulator.

            		NOP                     			;XC samples a cycle ahead, so wait.



            		XC    	1,LT              		;if too high in TABLE,

            		MAR   	*0-               		; jump to lower half.

            		XC    	1,GT              		;if too low in TABLE,

            		MAR   	*0+               		; jump to upper half.

BLOCK_A     	NOP                     			;otherwise do nothing, found.



            		LACC  	SEARCH_ITEM       	;reload required length.

            		SUB   	*                 		;subtract lower value.

            		NOP                     			;waste a cycle.

            		XC    	1,GT              		;if lower value in TABLE too small,

            		MAR   	*0+               		; step up to next.



            		LACL  	LENGTH_WNDW       	;load window length.

            		SUB   	*                 		;subtract found template length.

            		NOP                     			;waste a cycle.

            		XC    	2,LT              		;if found template length too big,

            		APL   	#0fff7h,FLAGS     		; no template is in range, clear VS flag.



            		LACC  	*+                		;load the in range template length.

            		SACL  	LENGTH_TEMP       	;store the length.

            		LACC  	*                 		;load pointer into TEMP_TABLE.

            		SACL  	POINTER           		;store pointer in POINTER.



            		RET



;------------------------------------------------------------------------------------------------------------------------------



            		;RECONSTRUCT subroutine.

            		;This subroutine reconstructs the template from the transitions.



            		;AR0 = template TABLE pointer

            		;AR1 = TEMPLATE pointer

            		;AR2 = segment counter



RECONSTRUCT

            		MAR   	*,AR0             		;use AR0 throughout.

            		LDP   	#FLAGS            		;all variables on this page.

            		BIT   	FLAGS,12          		;first check if scan is valid.

            		RETC  	NTC               		;if scan not valid, then do nothing, exit.



            		LAR   	AR0,POINTER       		;load pointer into template table.

            		LAR   	AR1,#TEMPLATE     	;prepare to write new template.

            		LAR   	AR2,#0            		;zero the segment counter.



            		LACC  	#0ffffh           		;reconstruct template starting with -1s.

MORE_SEGS

            		RPT   	*+,AR1            		;reconstruct segment with -1 or 1.

            		SACL  	*+                		;write out segment.



            		MAR   	*,AR2

            		MAR   	*+,AR0            		;increment segment counter.

            		BIT   	*,0               		;see if finished.

            		BCNDD 	MORE_SEGS,NTC     	; branch back for next segment.

            		XOR   	#0fffeh           		;toggle value between -1 and 1.



            		SAR   	AR2,NUM_SEGS      	;save the number of segments.

            		LACC  	*-,0,AR1 			;load delimiter with message embedded.

SACL  	MESSAGE           		;store this for possible playing later.

            		LAMM  	AR0

            		SACL  	LAST              		;save pointer to last transition so

                                    				; it can be reconstructed backwards.

            		RPT   	#19

            		SPLK  	#0h,*+            		;pad out with twenty zeros.



            		RET



;-------------------------------------------------------------------------------------------------------------------------------



            		;REVERSE subroutine.

            		;This subroutine reverses the template (back to front).



REVERSE

            		LDP   	#FLAGS

            		BIT   	FLAGS,12          		;test VS flag.

            		RETC  	NTC               		;if not valid, then exit.



            		LACL  	MISMATCH          		;load mismatch for previous forward

            		SUB   	#BOUND            		; correlation, subtract the BOUND.

            		RETC 	 LT                		;if already sufficient match, then return.



            		MAR   	*,AR3

            		LAR   	AR3,LAST          		;load pointer to last transition in TABLE.

            		LACL  	NUM_SEGS          		;load the number of segments to write.

            		SUB   	#01h              		;subtract one for correct repeat number.

            		SAMM  	BRCR              		;store in block repeat register.



            		LAR   	AR1,#TEMPLATE     	;load pointer to start of template.

            		LACC  	#0ffffh           		;start by writing a light segment.



            		RPTB  	BLOCK_B

            		RPT   	*-,AR1            		;write out segment.

            		SACL  	*+



            		MAR   	*,AR3             		;change back to TABLE pointer.

            		XOR   	#0fffeh           		;swap from light to dark or vice versa.

BLOCK_B     	NOP



            		RET



;-------------------------------------------------------------------------------------------------------------------------------



            		;CORRELATION subroutine.

            		;This subroutine correlates the template against the scan.



            		;BMAR = Block Move Address Register

            		;CBSR1 = Circular Buffer 1 Start Register

            		;CBER1 = Circular Buffer End Register

            		;CBCR = Circular Buffer Control Register



CORRELATE

            		LDP   	#FLAGS

            		BIT   	FLAGS,12          		;test VS flag.

            		RETC  	NTC               		;if not valid, then exit.



            		MAR   	*,AR0

            		SETC  	SXM               		;sign extension mode must be set.

            		SETC  	CNF               		;now map buffer into program space.



            		LACC  	#P_BUFFER         		;load buffer start address.

            		SAMM  	BMAR              		;save start address in BMAR.

           		LACC  	#0ffe0h

            		SACL  	CORRELATION       	;store minimum correlation value of -512.



            		LACC  	#TEMPLATE         		;load start address of template.

            		SAMM  	CBSR1             		;load circular buffer start register.

            		SAMM  	AR0               		;initialise AR0.

            		ADD   	LENGTH_TEMP       	;last template address + 1.

            		SUB   	#01h              		;subtract 1 to yield correct address.

            		SAMM  	CBER1             		;current end of circular template buffer.



            		LACL  	LENGTH_WNDW       	;load length of buffer.

            		SUB   	LENGTH_TEMP       	;subtract length of template.

            		SAMM  	BRCR              		;store result in repeat register.



            		LACL  	LENGTH_TEMP       	;load template length.

            		SUB   	#01h              		;subtract 1 for correct repeat value.

            		SACL  	NUM_TIMES         		;save value for repeat MADD instruction.



            		LACL  	#08h

            		SAMM  	CBCR              		;enable template circular buffer, use AR0.



            		RPTB  	BLOCK_C

            		ZAP                     			;clear accumulator and product register.

            		RPT   	NUM_TIMES         		;clear and match over length of template.

            		MADS  	*+                		;perform match over length of template.     

            		APAC                    			;accumulate last product.

		

            		EXAR                    			;swap current match value into ACCB.

            		LACC  	CORRELATION       	;load previous value, sign extended.

            		CRGT                    			;test which is greater.

            		SACL  	CORRELATION       	;store the greater correlation value.

	

            		LAMM  	BMAR              		;load BMAR.

            		ADD   	#01h              		;increment BMAR and

BLOCK_C     	SAMM  	BMAR              		; put back.



            		LACL  	LENGTH_TEMP       	;load template length.

            		SUB   	CORRELATION       	;subtract greatest match amount.

            		SFR                     			;divide by two.

            		SACL  	MISMATCH          		;result is number of mismatched pixels.



            		ZAP

            		SAMM  	CBCR              		;disable template circular buffer.

            		CLRC  	CNF               		;map buffer back to data space.



            		RET



;-------------------------------------------------------------------------------------------------------------------------------



 		;NEXT_SLICE subroutine.

            		;This subroutine sets the flags to grab a new scan.



NEXT_SLICE  

            		LDP   	#FLAGS

            		APL   	#0fff7h,FLAGS     		;clear VS flag.

            		OPL   	#02h,FLAGS        		;set  GS flag.

            		RET





***************************************************************************************************************

*                             			MAIN PROGRAM                                    		*

***************************************************************************************************************



            		.ps   0af0h



MAIN

            		CALL  	INITIALISE        		;configure TMS320C50.

            		CALL  	START_CCD         		;scan linear array.

            		CALL  	ANNOUNCE          		;announce ready for use.



MAIN_LOOP

            		CLRC  	TC                		;clear loop test bit.

                                    				;TC bit remains set after every

                                    				; normal interrupt.

TINY_LOOP   	BCND  	TINY_LOOP,NTC     	;loop and wait for interrupts.

                                    				;loop is exited when TC bit is set

                                    				; within CLKL_ISR.



            		CALL 	RECONSTRUCT       	;reconstruct the found template.

            		CALL  	CORRELATE         		;attempt to match scanned slice to stored.

            		CALL  	REVERSE           		;if no match yet, reverse the template.

            		CALL  	CORRELATE         		;correlate again.

            		CALL  	ANNOUNCE          		;announce if template match sufficient.

            		CALL  	NEXT_SLICE        		;obtain another image slice.



            		B     	MAIN_LOOP         		;go back for more image slices.



            		.entry MAIN

            		.end



;------------------------------------------------------------------------------------------------------------------------------





�Appendix � SEQ Appendix \* ROMAN �IV�: STORED TEMPLATES



*******************************************************************************

*       (C) COPYRIGHT CURTIN UNIVERSITY, PERTH, WESTERN AUSTRALIA. 	    *         

*       Written by Ivar Siewert 930609A (February to September 1998).         *

*******************************************************************************

*                                                                             *

*  PROGRAM NAME: AUSTRALIAN POLYMER NOTE IDENTIFIER FOR THE VISION IMPAIRED.  *

*                                                                             *

*  DESCRIPTION: template TABLE and stored templates.                          *

*                                                                             *

*******************************************************************************

*                             GLOBAL CONSTANTS                                *

*******************************************************************************



TABLE_SIZE        .set        64          ;table size, currently must be 64.       

SHORTEST          .set        30          ;shortest stored template.

LONGEST_1         .set        150         ;longest given as two numbers as

LONGEST_2         .set        159         ; assembler dislikes big numbers.



                  .ds         02800h

TABLE             .space      0400h       ;64 word (32 entry) search table.

                  .ds         02838h

                  .word    123,2904h,157,2900h,179,2918h,289,2914h,512,2900h

                  .ds         02900h

TEMPLATES         .word       66,33,55,0f1ffh,9,9,2,8,2,7,3,10,64,0e9ffh

                  .ds         02914h

                  .word       130,25,131,0fbffh,16,27,84,37,10,0f1ffh



;------------------------------------------------------------------------------



�Appendix � SEQ Appendix \* ROMAN �V�: AUSTRALIAN POLYMER NOTES



The current series of Australian polymer notes is shown below (not actual size). The notes were placed on a blue backing to show the window clearly.



� EMBED MSPhotoEd.3  ���

� EMBED MSPhotoEd.3  ���



The 20 dollar, 10 dollar and five dollar notes are shown on the next page.

� EMBED MSPhotoEd.3  ���

� EMBED MSPhotoEd.3  ���

� EMBED MSPhotoEd.3  ���.

Appendix � SEQ Appendix \* ROMAN �VI�: EXAMPLES OF WORN NOTES



Badly worn 10 dollar and 5 dollar notes are shown below (not actual size). The notes were placed on a blue backing to show the window clearly.



� EMBED MSPhotoEd.3  ���

� EMBED MSPhotoEd.3  ���

�Appendix � SEQ Appendix \* ROMAN �VII�: PHOTOS OF PROTOTYPE



� EMBED MSPhotoEd.3  ���

Completed Prototype. The two push buttons at lower right are for a separate project.

� EMBED MSPhotoEd.3  ���

Development setup.�
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