&

PRINTED WITH

SOYINK|_

TMS320VC547x
CPU and Peripherals
Reference Guide

Literature Number: SPRU038
December 2001

b TEXAS

INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is currentand complete. All products are sold subject to the terms and conditions of sale supplied
atthe time of order acknowledgment, including those pertaining to warranty, patentinfringement,
and limitation of liability.

Tl warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized
to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express orimplied, is granted under any patentright,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such products or services might be or are used. TI's
publication of information regarding any third party’s products or services does not constitute TI's
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated
by TI for that products or service voids all express and any implied warranties for the associated
TI product or service, is an unfair and deceptive business practice, and Tl is not responsible nor
liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright [0 2001, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This user’s guide serves as a reference for the Texas Instruments
TMS320VC547x low-power, enhanced-architecture, dual-core digital signal
processor (DSP), and is intended to assist hardware and software engineers
in developing applications using this device. It describes both cores—the
TMS320C54x0 DSP CPU and the ARM7TDMICO microcontroller unit (MCU)
—and their peripherals, together with the memory and peripheral interface as-
sociated with each core.

Throughout this book, the TMS320VC547x dual-core device is referred to as
the VC547x. Where the ARM7TDMI MCU core is referred to separately, the
alphanumeric designation is shortened to ARMO. Information about the two
processor cores in relevant chapters is provided separately, rather than com-
bining similar features where applicable.

Notational Conventions

This book uses the following conventions.

[Instruction Sets

B The TMS320VC547x DSP CPU can use either of two forms of the
instruction set: a mnemonic form or an algebraic form. This book uses
the mnemonic form of the instruction set. For information about the
mnemonic form of the instruction set, see TMS320C54x DSP Refer-
ence Set, Volume 2: Mnemonic Instruction Set. For information about
the algebraic form of the instruction set, see TMS320C54x DSP Ref-
erence Set, Volume 3: Algebraic Instruction Set. These references
are both listed in the section titled Related Documentation From Texas
Instruments.

Related Documentation From Texas Instruments

B The TMS320VC547x MCU CPU uses its own instruction set. For infor-
mation about the MCU'’s instruction set, see TMS470R1x User’s
Guide, also shown in Related Documentation From Texas Instru-
ments.

[Program listings and program examples are showninaspeci al type-
face.

Here is a segment of a program listing:

STL A *ARL+ ;I nt _RAM1) =0
RSBX | NTM ;@ obally enable interrupts
B MAI N_PG ; Return to foreground program

[Square brackets, [and], identify an optional parameter. If you use an op-
tional parameter, specify the information within the brackets; do not type
the brackets themselves.

Related Documentation From Texas Instruments

The following books provide related documentation for the TMS320VC547x.
To obtain a copy of any of these Tl documents, call the Texas Instruments Liter-
ature Response Center at (800) 477-8924. When ordering, please identify the
book by its title and literature number. Many of these documents are located
on the Internet at http://www.ti.com.

TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set
(literature number SPRU172) describes the TMS320C54x digital signal
processor mnemonic instructions individually. Also includes a summary
of instruction set classes and cycles.

TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set
(literature number SPRU179) describes the TMS320C54x digital signal
processor algebraic instructions individually. Also includes a summary of
instruction set classes and cycles.

TMS470R1x User’'s Guide (literature number SPNU134) describes the
TMS470R1x RISC microcontroller, its architecture (including registers),
the ICEBreakerd module, interfaces (memory, coprocessor, and
debugger), 16-bit and 32-bit instruction sets, and electrical specifica-
tions.

TMS320C54x DSKplus User’s Guide (literature number SPRU191)
describes the TMS320C54x digital signal processor starter kit (DSK),
which allows you to execute custom C54x0 code in real time and debug it
line by line. Covered are installation procedures, a description of the
debugger and the assembler, customized applications, and initialization
routines.

Related Documentation From Texas Instruments

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler di-
rectives, macros, common object file format, and symbolic debugging di-
rectives for the C54x generation of devices.

TMS320C54x C Source Debugger User’'s Guide (literature number
SPRU099) tells you how to invoke the C54x emulator, evaluation
module, and simulator versions of the C source debugger interface. This
book discusses various aspects of the debugger interface, including
window management, command entry, code execution, data
management, and breakpoints. It also includes a tutorial that introduces
basic debugger functionality.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x assembly
language tools and the C compiler for the C54x devices. The installation
for MS-DOS[, OS/2[0, SunOSO, Solaris(d, and HP-UX[O 9.0x systems
is covered.

TMS320C54x Evaluation Module Technical Reference (literature number
SPRU135) describes the C54x evaluation module, its features, design
details and external interfaces.

TMS320C54x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU103) describes the C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS3200 assembly lan-
guage source code for the C54x generation of devices.

TMS320C54x Simulator Getting Started Guide (literature number
SPRU137) describes how to install the TMS320C54x simulator and the
C source debugger for the C54x. The installation for MS-DOSO, PC-
DOSO, SunOS(1, Solaris, and HP-UXO systems is covered.

TMS320 Third-Party Support Reference Guide (literature number
SPRUO052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Trademarks

Trademarks

vi

TMS320 DSP Development Support Reference Guide (literature number
SPRUO011) describes the TMS320 ™ DSP family of digital signal proces-
sors and the tools that supportthese devices. Included are code-genera-
tion tools (compilers, assemblers, linkers, etc.) and system integration
and debug tools (simulators, emulators, evaluation modules, etc.). Also
covered are available documentation, seminars, the university program,
and factory repair and exchange.

TMS320C54x, C54x, TMS320, ICECrusher, and MicroStar BGA are trade-
marks of Texas Instruments.

ARM7TDMI, ARM, Thumb, and Multi-ICE are registered trademarks of ARM
Limited.

ICEBreaker, ARM7, and EmbeddedICE are trademarks of ARM Limited.
MS-DOS is a registered trademark of Microsoft Corporation.

0OS/2 and PC-DOS are trademarks of International Business Machines Corpo-
ration.

SunOS and Solaris are trademarks of Sun Microsystems, Inc.
HP-UX is a trademark of Hewlett-Packard Company.

Other trademarks are the property of their respective owners.

1

Contents

INErOAUCTION . .. e e e e e e e 1-1
Provides an overview of the TMS320VC547x dual-core chipset and lists its key features and
benefits.
1.1 General Description of the VC5A47X ot e 1-2
1.2 Key Features of the VOS54 7X ...ttt e e e e e 1-2
AT GO UNE . .o 2-1
Summarizes the TMS320VC547x architecture. Provides overview information about the DSP
and ARM cores, and general information about the memory spaces, registers, and peripherals
for each core.
2.1 Functional Overview of the VC547X e 2-2
2.2 Functional Block Diagram of the VC547X i 2-4
2.3 DSP Subsystem Overview (TMS320C54x DSP COre)ccvviiiiinenennnnn. 2-5
23,1 FRAIUIES ..ottt 2-5
2.3.2 DSP CPU Core AsSsOCIatioNsttt 2-6
2.4 DSP MEMOIY SPaCE ...ttt ittt e e e e 2-7
241 ON-Chip RAM Lo 2-7
2.4.2 Normal Mode DSP Memory Mapouiuii i 2-7
243 APIBOOtMOOE ... 2-9
2.4.4 APIBoot Mode DSPMemory Mapcovuiiiiiiiiiiii i, 2-9
245 Extended Program MemOryttt [2-11
2.4.6 Relocatable Interrupt Vector Table i 2-12
2.5 DSP REQISIEIS . .ot 2-13
2.6 DSP Subsystem Peripherals i e e 2-15
2.6.1 Multichannel Buffered Serial Ports (McBSPO and McBSP1) 2-15
2.6.2 Direct Memory Access Controller (DMAC)ot 2-18
2.6.3 ARM PortInterface (API) 2-19
2.6.4 Software-Programmable Wait-State Generator 2-19
2.6.5 External Memory Interface 2-20
2.6.6 Hardware Timer 2-20
2.7 ARM Core Overview (ARM7TDMIE) oo i 2-21
2.7.1 ARM7TDMIOVEIVIEW . . .ottt et e e 2-21
2.7.2 ARMT7TDMIE ... 2-22
2.7.3 ARM7TDMIE Emulation Featuresttt 2-22
2.8 ARM MeMOIY SPACE ..ottt e e e 2-23

Vii

Contents

viii

2.9 ARM REQISIEIS ..o e e 2-25
2.10 ARM Peripherals 2-35
2.10.1 ARM Memory Interface (MEMINT) 2-35
2.10.2 SDRAM Memory Interface (SDRAMIF) i 2-35
2.10.3 Interrupt Handler (INTH) o e 2-36
2.10.4 ARM General-Purpose /O (GPIO) ...t 2-36
2.10.5 TiMers (TIMERS) ...ttt e e e e 2-38
2.10.6 IRDA Universal Asynchronous Receiver/Transmitter 16C750
(UART-IRDA) ..ot e e e 2-38
2.10.7 Universal Asynchronous Receiver/Transmitter 16C750
(UART-MOAEM) ..o e e e e 2-39
2.10.8 Serial Peripheral Interface (SPI) i 2-39
2.10.9 Ethernet Interface Module (EIM) (VC5471)ottt 2-40
2.10.10 Master Inter-Integrated Circuit (I12C) Interfacec.ou.... 2-40
2.10.11 Clock Management (CLKM)t e e e 2-41
2.11 General-Purpose Peripherals i 2-42
2.12 CloCK FrE&QUENCIES . .ottt ittt et e e e ettt et et e 2-43
2.12.0 DSP ClOCK .\ vttt 2-43
2.12.2 ARM CIOCK ..ttt e 2-44
2.12.3 AUIO CIOCK . . .o 2-44
2.13 Power-Down MOOES 2-45
2.13.1 DSP Power-Down MOUESottt 2-45
2.13.2 ARM Power-DOown MOOESot e 2-46
2.14 Interrupt Managementot 2-47
2.14.1 DSP INEITUPLS ..ottt e e 2-47
2.14.2 MCU INeITUPLS . .ot e e e e e 2-48
Memory Interface (MEMINT) e e et et e e 3-1

Explains the Memory Interface function, discusses the System and API buses and the external
memory interface, provides an overview of SDRAM, and describes the SDRAM interface
(SDRAM IF) and its internal and external controls.

3.1
3.2
3.3
3.4

3.5

3.6

Memory Interface (MEMINT) FUuNnction i 3-2
System (Internal) BUSt e 3-3
APIBUS INterface 3-5
External Memory INterfacet 3-8
3.4.1 ROM (Flash) and SRAM o e 3-8
Memory Interface (MEMINT) ReQIStErst e 3-10
3.5.1 External Memory Control Register for CS0-CS3, CS4 Memory Range[3-10
3.5.2 ARM Port Interface Wait-State Configuration Register 3-13
3.5.3 APICoNtrol RegiSter e 3-13
3.5.4 Bank-Switching Control Registert 3-15
3.5.5 SDRAM Data Bus Size Control Register, 3-18
3.5.6 Bank-Switching Configuration Registero it 3-19
ARM MeEMOIY SPaCE . ..ottt e e e 3-23

Contents

3.7 S RAM L 3-25
371 IntrodUCtioNo 3-25
3.7.2 SDRAMIF OVEIVIEW . ..ttt e e e e 3-26
3.7.3 SUPPOred DEeVICES ...ttt 3-28
3.8 SDRAMINterface 3-28
3.9 SDRAMIF REQISIEIS . .\ttt e e 3-29
3.9.1 SDRAM Configuration Register 3-30
3.9.2 SDRAM Refresh Counter Register i, 3-34
3.9.3 SDRAM Control Registerttt e 3-35
3.9.4 SDRAM Initialization Refresh Counter Register 3-36
310 WaVe OrmMS .o e 3-37
3.10.1 Waveforms of Read/Write Operations With Rows Enabled/Disabled 3-37
3.10.2 Waveforms With External Transactions (8-, 16-, and 32-Bit Devices) 3-41
Interrupt Handler e 4-1

Provides a functional description of the Interrupt Handler, describes the microcontroller (MCU)
interrupt requests, and shows the MCU accessible registers.

4.1 Functional DeSCHPtONot 4-2
4.2 MCU INeITUPES . .ottt e e e e e e e e e 4-3
421 Internal REQISterS . ..ot 4-5
4.2.2 INtErrUPt SEAUENCEttt e 4-6
4.3 ARM Memory-Mapped Registers 4-7
4.3.1 Interrupt REQISter ... 4-8
4.3.2 Mask Interrupt Register 4-10
4.3.3 Source IRQ ReQISter i e 4-11
4.3.4 Source FIQ RegiSter 4-12
4.3.5 Interrupt Control Register e 4-13
4.3.6 IRQ Sleep RegISter ... o 4-13
4.3.7 Interrupt Level Registers (Read/Write), 4-14
4.3.8 InterruptLevel Register O ...t i e 4-15
Clock Management Module i i e e e e 5-1
Provides an overview of the clock management module, describes the three modes of clock
operation for both the DSP and ARM subsystems, shows the clock module registers, and dis-
cusses the phase-locked loop (PLL) clock source.
5.1 Clock Management Module OVEIVIEWciiiiiii ittt 5-2
5.1.1 Clock Operation MOESttt e 5-2
5.1.2 Features Controlled by the Clock Management Module 5-3
5.2 Clock Module Register Tables i 5-5
521 CLKMModule RegiSterst e e e e e 5-5
5.2.2 PLL_REG Register (ARMSS) i e 5-5
5.2.3 CLKMD Register (DSPSS) vti ittt 5-6
Contents iX

Contents

5.3

54

55

6 Timer

DSP Subsystem CoNntrolo e 5-7
5.3.1 DSP Phase-Locked Loop Register 5-7
5.3.2 Reset Control Register i e 5-10
ARM Subsystem Control 5-11
5.4.1 Clock Configuration Register 5-11
5.4.2 Interrupt Clock Wakeup Register 5-13
5.4.3 ReSet ReQiSter 5-15
5.4.4 Audio Rate Register 5-17
5.4.5 Watchdog Status Register 5-18
5.4.6 Low-Power Mode Registeroouiiii e 5-19
5.4.7 Low-Power Register Value Register i, 5-20
Phase-Locked LOOP (PLL) ...t e e e 5-22
55.1 PLL_REG Register (ARMSS) ot e 5-22
5.5.2 CLKMD Clock Control Register (DSPSS) ...ttt 5-25
MOdUIE L 6-1

Provides a description of the three timers implemented on the TMS320VC547x device, dis-
cusses the watchdog function, and shows the timer registers.

6.1 Timer Module IntroducCtion it e 6-2
6.2 TIMERD ... 6-3
6.2.1 Disabling the Watchdog Function i, 6-4
6.2.2 Re-Enabling the Watchdog Function 6-4
6.2.3 Timer0 Control Register i e e e 6-5
6.2.4 TimerO Current Value Register i, 6-6
6.3 TIMERL and TIMERZt e e e e 6-7
6.3.1 TimerInterrupt Periodt e 6-7
6.3.2 TIMER1 and TIMER2 Control Registersccoiiiiiiiiininnann. 6-8
6.3.3 TIMERL1 and TIMER2 Current Value Registers 6-9
6.4 Programming the TIMerst 6-10
6.5 Read TiImer Operationsttt e e i 6-10
7 General-Purpose I/O Module (GPIO) e e e e 7-1
Provides a functional description of the general-purpose 1/0 module (GPIO) and shows all
GPIO and KBGPIO registers.
7.1 Functional DeSCIiPtONttt e e e 7-2
7.1.1 General-Purpose /O (GPIO) e e 7-2
7.2 GPIO/KBGPIO REQISIEIS . .ttt e e e e e 7-4
7.2.1 GPIO REQISIEIS .ottt 7-5
7.2.2 KBGPIO REQISIEIS . . o it 7-11
7.2.3 Keyboard CONNECHION it 7-17
7.3 Input/Outputs of GPIO Module 7-19
8 UARTIRDA MOAUIE .t e e e e e 8-1
Explains the features of the UART IRDA module, shows the applicable registers, and discusses
the serial infrared (SIR) mode and the universal asynchronous receiver/transmitter (UART)
mode.
8.1 General DesCription e e 8-2

8.2

8.3
8.4

8.5

Contents

Main FeatUIES ... i 8-3
8.2.1 UART Mode Featuresiiiii et 8-3
8.2.2 IrDASIRMode Featuresoiiiiiii e 8-4
/O DESCIIPLON . .ttt e e e e e e e e e 8-5
Register Mapping/DescCriptionst e 8-6
8.4.1 UART IRDA Module RegiStersc.iiiii i 8-6
8.4.2 Special ACCESS REQISIEIS . ..ot 8-8
8.4.3 Register Mapping cov ittt 8-8
8.4.4 Receive Holding Register i 8-9
8.4.5 Transmit Holding Register 8-10
8.4.6 FIFO Control Register e 8-11
8.4.7 Status Control Registert e e 8-12
8.4.8 Line Control Register (UART Mode Only) ..., 8-14
8.4.9 Line Status Registerot 8-15
8.4.10 Supplementary Status Register 8-18
8.4.11 Modem Control RegIStert 8-18
8.4.12 Modem Status RegiSter ...t e e e 8-19
8.4.13 Interrupt Enable Register i 8-20
8.4.14 Interrupt Status RegiStert e 8-22
8.4.15 Enhanced Feature Registert e 8-24
8.4.16 XONLI1 Character RegiStert 8-26
8.4.17 XON2 Character Register 8-26
8.4.18 XOFF1 Character Registeriuiiiiiiiii ittt 8-27
8.4.19 XOFF2 Character RegiSteruiiiuiii e 8-27
8.4.20 Scratch Pad Register e 8-28
8.4.21 Divisor for 115K-Baud Generation Register oo, 8-28
8.4.22 Divisor for Baud-Rate Generation Register oot 8-29
8.4.23 Transmission Control Register (UART Mode Only) 8-30
8.4.24 Trigger Level Registert 8-31
8.4.25 Mode Definition Register 1 e 8-32
8.4.26 Mode Definition Register 2 8-33
8.4.27 Transmit Frame Length Register (LSB) i, 8-34
8.4.28 Transmit Frame Length Register (MSB) i, 8-34
8.4.29 Receive Frame Length Register (LSB) ..., 8-35
8.4.30 Receive Frame Length Register (MSB)cciiiiiiiniinennan. 8-35
8.4.31 Status FIFO Line Status Register 8-36
8.4.32 Status FIFO RegiSter e 8-37
8.4.33 Beginning-of-File Length Register i i, 8-38
8.4.34 Pulse Width Register e e e 8-39
8.4.35 Auxiliary Control Register ... 8-39
8.4.36 Start Point for IR Transmissionc i, 8-40
8.4.37 Accessto Read and Write Pointers i, 8-41
8.4.38 ResUMeE ReQiSter 8-44
UART IRDA Functional Block Diagram, 8-45

Contents Xi

Contents

Xii

8.6 Serial Infrared Mode and Protocol 8-46
8.6.1 CRC GeNEratioN\ttt e 8-47
8.6.2 Asynchronous TranSPar€nCyeuueenen e 8-47
8.6.3 ADOIM SEQUENCE .. .ttt e 8-48
8.6.4 Pulse Shaping e 8-48
8.6.5 Address Checkingot e e 8-51
8.7 Functional DeSCIPLONS ittt e 8-52
8.7.1 Trigger Levels 8-52
8.7 2 I BITUPES oot e 8-52
8.7.3 Features Available in UART Mode i, 8-54
8.7.4 Features Available in SIRMode i 8-56
UART Modem Interfacet e 9-1

Explains the features of the UART Modem module, shows the applicable registers, and pro-
vides a functional description that includes trigger levels, interrupts, break and time-out condi-
tions, hardware and software flow control, and the Autobauding mode.

9.1
9.2

9.3
9.4

General DeSCIiPHON . ..ot e 9-2
Main FEatUIES . . . oottt e e e 9-2
9.2.1 UART MoOde FEAtUIESottt e e 9-3
/O DESCIIPIION oottt e e e e e 9-4
Register Mapping/DescCriptionst 9-5
9.4.1 UART Modem Module Registersoiiiiiiiiiiiiiinann. 9-5
9.4.2 Special ACCESS REQIStEISttt e 9-6
9.4.3 Receive Holding Registert e e 9-6
9.4.4 Transmit Holding Registero 9-8
9.4.5 FIFO Control Register ooo it e e 9-9
9.4.6 Status Control Registerot i e e e 9-10
9.4.7 Line Control RegiSterot e e e e 9-11
9.4.8 Line Status RegIStert e 9-13
9.4.9 Supplementary Status Register i 9-14
9.4.10 Modem Control Registerot i e e 9-15
9.4.11 Modem Status Registert e e 9-16
9.4.12 Interrupt Enable Register i 9-17
9.4.13 Interrupt Status RegiSterot e 9-18
9.4.14 Enhanced Feature Register it 9-19
9.4.15 XON1 Character Registerc..iiiiiiiiii e 9-21
9.4.16 XON2 Character Registeriiiiiiiii i 9-21
9.4.17 XOFF1 Character Registert 9-22
9.4.18 XOFF2 Character Registeriiiiiiii et 9-22
9.4.19 Scratch-Pad Registero i i i e 9-23
9.4.20 Divisor for 115k-Baud Generation i 9-23
9.4.21 Divisor for Baud-Rate Generationt 9-24
9.4.22 Transmission Control Register 9-25
9.4.23 Trigger-Level Registerc i e 9-26

10

11

9.5
9.6

Contents

9.4.24 Mode Definition Register i
9.4.25 UART Autobauding Status Register i,
9.4.26 RXFIFO Read Pointer Registercoiiiiiiiiiiiiinnann.
9.4.27 RX FIFO Write Pointer Registert
9.4.28 TX FIFO Read Pointer Register ...
9.4.29 TX FIFO Write Pointer Register ...t
Functional Block Diagram o
Functional DesCriplions i
9.6.1 Trigger Levelso
0.6.2 INteITUPLS . . oot
9.6.3 Break and Time-Out Conditionscoviiiiiiii i
9.6.4 Hardware Flow Control i
9.6.5 Software FIow Controlot e
9.6.6 Autobauding Mode

Serial Port Interface (SPI) o

Describes the operation of the serial port interfce (SPI) and includes register definitions and
timing diagrams.

9-27

9-28

9-29

9-30

9-30

9-31

9-32

9-33

9-33

9-33

9-34

9-35

9-35

9-36

10-1

10.1 SPIMaIN FEatUrest e e e 10-2
10.2 SPIGeneral DesCriptioNt e e 10-2
10.3 SPII/O DeSCIIPlON ..ottt e e e 10-4
10.4 SPI REQISIEIS . 10-5
10.4.1 SPI Setup ReQISter ...t 10-5
10.4.2 SPIControl RegiSter o 10-7
10.4.3 SPIStatus RegisStero e e e e 10-8
10.4.4 SPITransmit RegiSterot e 10-9
10.4.5 SPIReceive Registert e e e 10-9
10.5 SPIProtocol DeSCHPLONttt e e e 10-10
10.5.1 Transmit Protocol 10-11
10.5.2 Receive Protocolt 10-11
10.5.3 Transmission Mode Waveforms i, 10-12
MaSter 12C INLEIFACEttt ettt e et e e e et e e e e 11-1

Provides a general description of the 12C Interface, shows the applicable registers, describes
the 12C bus protocol and Master 12C interface resets, and discusses interrupt, FIFO, and clock
management.

11.1

11.2

Master 12C Interface Module General DesCriptionc.oeeueirennan...
O Ot O 1Y =
11.1.2 Main FEAtUIES .ottt et e e
11.1.3 Special Considerationsttt e e
11.1.4 Standard I2C BUS ProtoCOlottt et
/O DESCIIPION ..t e e

Contents

11-2

11-2

11-2

11-3

11-5

11-8

xii

Contents

12

Xiv

11.3 Register DesCHPliONSot e 11-9
11.3.1 DeVIiCE ReQISIEr ..\ttt e e 11-10
11.3.2 Address RegiStert e e 11-10
11.3.3 Data Write Register e 11-11
11.3.4 Data Read RegiSter e 11-11
11.3.5 Command RegiStert 11-12
11.3.6 Configuration FIFO Register 11-13
11.3.7 Configuration Clock Register 11-13
11.3.8 Configuration Clock Functional Reference Register 11-14
11.3.9 Status FIFO RegiSter e e et 11-15
11.3.10 Status Activity RegiSter 11-16

11.4 FIFO Managementttt e 11-17

11.5 Master 12C Interface RESELS ovt ittt et e 11-18

11.6 Clock Managementt 11-18

11.7 Interrupt Managementt 11-18

Ethernet Interface Module (EIM) e 12-1

Describes the Ethernet interface module (EIM), its registers, and its operation.

121 EIM OVEIVIEW . .ttt et e et e e e e e e e e e e e 12-2
12.1.1 General DesCription 12-2

12.2 EthernetInterface Signalsc i e 12-5

12.3 ENET Functional DeSCriptiono ou it e et et i e 12-6
12.3.1 ENET OVEIVIEW ..ottt e et e e et 12-6
12.3.2 Buffer Memory Unit (FIFO) e 12-7
12.3.3 DMA Controllero e 12-8
12.3.4 Control Registers Interfacec.c.o i 12-9
12.3.5 Media Access Controller (MAC)ot 12-9
12.3.6 Statistics Block 12-18
12.3.7 LOOPbhacKo e 12-18
12.3.8 Flow Control 12-18
12.3.9 Addressing MOOESottt 12-20
12.3. 10 ENET INteITUPLS .. oot e e e e e 12-21
12.3.11 Configurationt e 12-21

12.4 EIM DesCriptors SITUCLUIEottt et e e e e e 12-22
12.4.1 TXDescriptor RiNGt e e e 12-22
12.4.2 RX Descriptor RiNG e 12-26

12.5 EIM Peripheral Register Tables i e 12-29

12.6 ESM Peripheral Registerst e e 12-32
12.6.1 EIM ESM Control Registero i 12-32
12.6.2 EIM ESM Status Registert i 12-33
12.6.3 EIM CPU TX Descriptors Base Address Register 12-34
12.6.4 EIM CPU RX Descriptors Base Address Register 12-35
12.6.5 EIM Packet Buffer Size Register 12-36
12.6.6 EIM CPU Filtering Control Register i, 12-37

12.7

12.8

12.9

Contents

12.6.7 EIM CPU Destination Address Register, HighWord
12.6.8 EIM CPU Destination Address Register, LowWord
12.6.9 EIM Multicast Filter Valid Register, HighWord
12.6.10 EIM Multicast Filter Valid Register, LowWord
12.6.11 EIM Multicast Filter Mask Register, HighWord
12.6.12 EIM Multicast Filter Mask Register, LowWord
12.6.13 EIM RX Threshold Register ...t
12.6.14 EIM CPU RX Ready Registero,
12.6.15 EIM ESM Interrupt Enable Register ... i,
12.6.16 EIM ENETO TX Queue Current Pointer Register
12.6.17 EIM ENETO RX Queue Current Pointer Register
12.6.18 EIM CPU TX Queue Current Pointer Register
12.6.19 EIM CPU RX Queue Current Pointer Register
ENETO REQISIEIS ..ottt e e e et et e
12.7.1 EIM ENETO Mode RegiStert
12.7.2 EIM ENETO Backoff Seed Register,
12.7.3 EIM ENETO Backoff CountRegister ...,
12.7.4 EIM ENETO TX Flow Pause CountRegisterccvvvnenn..
12.7.5 EIM ENETO Flow Control Registero,
12.7.6 EIMENETOVTYPE Tag Registercoouiiiiiiiiiiiaeeen,
12.7.7 EIM ENETO System Error Interrupt Status Register
12.7.8 EIM ENETO Transmit Descriptor Buffer Ready Register
12.7.9 EIM ENETO Transmit Descriptor Base Address Register
12.7.10 EIM ENETO Receive Descriptor Base Address Register
12.7.11 EIM ENETO Destination Physical Address Match Register, High Word
12.7.12 EIM ENETO Destination Physical Address Match Register, Low Word
12.7.13 EIM ENETO Logical Address Hash Filter Register, High Word
12.7.14 EIM ENETO Logical Address Hash Filter Register, Low Word
12.7.15 EIM ENETO Address Mode Enable Register
12.7.16 EIM ENETO Descriptor Ring Poll Interval Count Register
EIM Packet RAM StrUCTUIE o e e e e e en
12.8.1 Logical Organizationoue i
12.8.2 Packets Memory Physical Organization oo iiiaan..
12.8.3 DeSCriptor WOrdsSot e e
12.8.4 CPU TX DESCHPIOr .\ttt e e ettt i
12.8.5 CPU RX DESCIIPIOr . .\ttt e e e e e e
12.8.6 ENETO RX DESCHPIOIS . . . oottt e et e et
12.8.7 ENETO TX DESCIIPIOIS . ..\ttt
12.8.8 BufferUsage Word i e
EIM ESM Functional Descriptiont
12.9.1 Main State Machine Descriptionc i
12.9.2 ReSet Stale
12.9.3 Select RX _Queue State ...t
12.9.4 Test RX_QUEUE State . ..ottt e e

Contents

12-38

12-38

12-39

12-39

12-40

12-40

12-41

12-41

12-42

12-43

12-44

12-44

12-45

12-46

12-46

12-48

12-49

12-50

12-51

12-52

12-53

12-54

12-54

12-55

12-55

12-56

12-56

12-57

12-57

12-58

12-59

12-59

12-60

12-61

12-61

12-62

12-63

12-65

12-66

12-67

12-67

12-69

12-69

12-69

XV

Contents

1295 Evaluate DestStatet 12-70
12.9.6 Check First Desc TX QueueStateccviiiiiennennnnnn. 12-70
12.9.7 Transfer Desc State ...t e 12-71
12.9.8 Check_TX_Queue State ...t 12-76
12.9.9 Wait_TX_EventState e 12-76

12.10 EIM OPEIAtiONttt et e e e e e e 12-77
12.00.1 Setting UpP ..ottt 12-77
12.10.2 Packets Operationiuit i e e 12-78

12.11 ENET Operation ..ottt et ettt e et et ettt et 12-80
12001 Setting Up ..ot 12-80
12.11.2 Packet Operationsottt e e 12-80

13 Initialization ProtoCol o 13-1

Explains hardware logic reset, ARM code downloading, and DSP boot mode.

13.1 Initialization Protocol i 13-2
13.1.1 Hardware LogiC RESEtt 13-2
13.1.2 ARM Code Downloadingcoouiiuiii e 13-2
13.1.3 DSP BOOtMOE . ..ot 13-3

XVi

|
IN

PP PPPED
A wN PR

CA)(AJQ)OJQ)CIA)(&)(A)Q)(D

|
I = S (e I s JE I WS

Figures

TMS320VC547x Functional Block Diagram 2-4
DSP Subsystem Memory Map for DSP Accesses

(When DSP_APIBN =10r ABMDIS = 1) ...ttt 2-8
API Boot Mode DSP Subsystem Memory Map for DSP Accesses

(When DSP_APIBN =0and ABMDIS =0) oitiriieie e, 2-10
DSP Extended Program Memory Mapt 2-12
16-Bit API Write Access With API_WS =3, API_CS=2,API_.BS=1 3-6
32-Bit API Write Access with API_WS =3, API_CS =2, API BS=1 3-7
External Memory Control Register for CS0-CS3, CS4 Memory Range

(CSO_REG-CS4 _REG) ...ttt ettt e e i 3-11
ARM Port Interface Wait-State Configuration Register (API_REG) 3-13
API Control Register (APIC)o e e 3-13
Bank-Switching Control Register (BSCR)o e 3-15
SDRAM Data Bus Size Control Register (SDRAM _REG), 3-18
Bank-Switching Configuration Register (BS_CONFIG) ..., 3-20
SDRAM Configuration Register (SDRAM_CONFIG), 3-30
SDRAM Refresh Counter Register (SDRAM_REF _COUNT) 3-34
SDRAM Control Register (SDRAM_CNTL) ...t 3-35
SDRAM Initialization Refresh Counter Register (SDRAM_INIT_CONF) 3-36
Write Operation With Row Already Enabled — Parameters:

ICAS = 2, IrC = 4, trP = L o e 3-37
Read Operation With Row Already Activated — Parameters:

tCaS = 2, trC = 4, I P = o e 3-38
Write Operation With Row Disabled — Parameters: tcas = 2,trc =4, trp=1 3-39
Read Operation With Row Disabled — Parameters: tcas=2,trc=4 3-40
8-Bit Device Transaction in Little Endian i, 3-41
32-Bit Write Access on 8-Bit Big-Endian Device With One Wait State 3-41
32-Bit Write Access on 8-Bit Little-Endian Device With One Wait State 3-42
8-Bit Accesses 0n 32-Bit DeVICettt e 3-43
16-Bit accesses 0N 32-Bit DEVICEottt 3-44
32-Bit Accesses 0N 32-Bit DeVICet 3-45
ARM Peripheral Interrupt Mapping Diagram ...t 4-5
Interrupt Register (IT_REG)ot e e 4-8
Mask Interrupt Register (MASK_IT_REG)o 4-10
Source IRQ Register (SRC_ IRQ_REG) ..ottt i 4-11
Source FIQ Register (SRC_FIQ REG)ttt 4-12
Interrupt Control Register (INT_CTRL REG) ...ttt 4-13

Contents

Figures

S b
[L A O P R
A WNPEFE 0N

=

R Y S O P R I
mNI—‘-bOJI\)I—\IIGI—‘ISQOCD\ICDU'I

|
N

N B

(R
w

|
OJI\JI—\I—‘I—‘I—‘ISLO(I)\ICDO‘I

[
N

o

=Y

oooooooooooooooooooooooooo\l\1\1\1\1\1Nwﬂﬂwwﬂmmmmmmmmmmmmmmmm
N

|
PR R RO~

w

XViii

IRQ Sleep Register (IRQ_SLEEP_REG) i i 4-13
Interrupt Level Register O (ILR_IRQ_0)t 4-15
Clock Management Module e .15-4
DSP Phase-Locked Loop Register (DSP_REG)ooiiiiiiiiiiiiiineann .|5-7
Reset Control Register (CLKM_CNTL_RESET) ... 5-10
Clock Configuration Register (CLKM_REG)ot 5-11
Interrupt Clock Wakeup Register (WAKEUP_REG) iiiiiiiiin... 5-13
Reset Register (RESET _REG) . ..ottt 5-15
Audio Rate Register (AUDIO_CLK)ot e 5-17
Watchdog Status Register (WATCHDOG_STATUS)ot 5-18
Low-Power Mode Register (LOW_POWER_REG) 5-19
Low-Power Register Value Register LOW_POWER_REG _VALUE) 5-20
PLL Clock Control Register (PLL_REG) —ARMSS 5-22
CLKMD Clock Control Register (CLKMD) —DSPSS ...t 5-25
TimerO Control Register (CNTL_TIMERO) e 6-5
TimerO Current Value Register (READ_TIMO)ttt 6-6
Timerl,2 Control Registers (CNTL_TIMERL,2)ii i 6-8
Timerl,2 Current Value Registers (READ_TIM1,2) ...ttt 6-9
GPIO IO REIS O . . oottt e 7-5
GPIO _ClIO REQISIEr . ittt e e e e 7-6
GPIO_IRQA REISIEr . . ottt e e e e e 7-7
GPIO_IRQB REISIEr . . ottt e e e e e e 7-8
GPIO_DDIO — Delta Detect RegiSterottt i e 7-9
GPIO_EN REQISIEr . ottt e e e e 7-10
KBGPIO_IO REQISIEr . .ottt e e e e e 7-11
KBGPIO_CIO REQISIEI . .\ttt e e e e e e 7-12
KBGPIO_IRQA REQIStEr . .ottt ettt e e e e 7-13
KBGPIO_IRQB REQISter ...ttt e e 7-14
KBGPIO_DDIO — Delta Detect Register ...t 7-15
KBGPIO_EN RegiSter ..o e e 7-16
Keyboard Connectiont 7-18
Receive Holding Register (UVART_IRDA_RHR) —UARTMode[8-9 |
Receive Holding Register (UART_IRDA_RHR)-SIRMode 8-10
Transmit Holding Register (UART _IRDA THR) 8-11
FIFO Control Register (UART _IRDA FCR) ...t e 8-11
Status Control Register (UART_IRDA_SCR)ot e 8-12
Line Control Register (UART_IRDA_LCR) —UART Modeccoiiiinn.n. 8-14
Line Status Register (UART_IRDA_LSR)-UART Mode 8-15
Line Status Register (UART _IRDA LSR)-SIRModet 8-16
Supplementary Status Register (UART _IRDA _SSR) ...t 8-18
Modem Control Register (UART_IRDA_MCR) ... oo 8-18
Modem Status Register (UART_IRDA_MSR) 8-19
Interrupt Enable Register (UART_IRDA_IER) —UART Mode 8-20
Interrupt Enable Register (UART_IRDA IER)—SIRMode 8-21

G0 G G g 00 00 00 O P GG 00O PP ®PE®®®OO®
WWWWWRWWWWRNNRNRNNNNNNNRERPR R RP R

PEE
Il
W NP

8-44
8-45
8-46
8-47
8-48

P
N
©

QOLO(OGIDLOLOLOLO
coO~NO UL WDN B

Figures

Interrupt Status Register (UART_IRDA ISR)—UART Mode
Interrupt Status Register (UART _IRDA ISR)-SIRMode
Enhanced Feature Register (UART_IRDA_EFR)
XONL1 Character Register (UART_IRDA_XONL) ..ot
XONZ2 Character Register (UART_IRDA_XON2) i
XOFF1 Character Register (UART_IRDA_XOFF1) ...t
XOFF2 Character Register (UART _IRDA XOFF2) ...t
Scratch Pad Register (UART_IRDA _SPR) e
Divisor for 115K-Baud Generation Register (UART_IRDA_DIV_115K)
Divisor for Baud-Rate Generation Register (UART_IRDA_DIV_BIT_RATE)
Transmission Control Register (UART_IRDA_TCR) —UART Mode
Trigger Level Register (UART _IRDA TLR) ...t
Mode Definition Register 1 (UART _IRDA MDR1) ...ttt
Mode Definition Register 2 (UART _IRDA MDR2) ...t
Transmit Frame Length Register — LSB (UART_IRDA_TXFLL)
Transmit Frame Length Register —- MSB (UART_IRDA_TXFLH)
Receive Frame Length Register — LSB (UART _IRDA RXFLL)
Receive Frame Length Register - MSB (UART_IRDA RXFLH)
Status FIFO Line Status Register (UART_IRDA_SFLSR) ...,
Status FIFO Register — LSB (UART_IRDA_SFREGL)o,
Status FIFO Register - MSB (UART_IRDA_SFREGH) oot
Beginning-of-File Length Register (UART_IRDA BLR) it
Pulse Width Register (UART_IRDA_PULSE_WIDTH) ...,
Auxiliary Control Register (UART_IRDA_ACREG) ...
Start Point for IR Transmission (UART_IRDA_START_POINT) ..o,
Write Pointer of RX FIFO (UART_IRDA_ WRPTR_URX)cviiiiiaiaann.,
Read Pointer of RX FIFO (UART_IRDA_RDPTR_URX)t
Write Pointer of TX FIFO (UART_IRDA_WRPTR_UTX) ...ttt
Read Pointer of TX FIFO (UART_IRDA_RDPTR_UTX) ...,
Write Pointer of Status FIFO (UART_IRDA_ WRPTR_STA)c.oviuirenann..
Read Pointer of Status FIFO (UART_IRDA_RDPTR_STA)coviiirinann...
Resume Register (UART_IRDA RESUME) i
Function Block Diagram e
IFDA Frame Format
Encoder Timing Diagramt e et e e
Decoder Timing Diagram o e e
Receive Holding Register (UART_RHR) e
Transmit Holding Register (UART_THR) e
FIFO Control Register (UART _FCR)t i
Status Control Register (UART_SCR) i e e
Line Control Register (UART_LCR) o e
Line Status Register (UART_LSR)o e
Supplementary Status Register (UART_SSR)t
Modem Control Register (UART_MCR) ... e

Contents

XiX

Figures

o

N B

w

S

(61

()]

~

oo

o

[

N

w

S

o Ol

~

© © O O O O W W W W WWWOWWOWWOWOWOWOWO©

|
NRNRRNNNRNR LB R s b s 2O

[e¢]

XX

Modem Status Register (UART_MSR) ... i e 9-16
Interrupt Enable Register (UART_IER)ot e 9-17
Interrupt Status Register (UART_ISR)ot i 9-18
Enhanced Feature Register (UART_EFR) 9-19
XONZ1 Character Register (UART_XONIL)t 9-21
XONZ2 Character Register (UART_XON2) e 9-21
XOFF1 Character Register (UART_XOFFL)ttt 9-22
XOFF2 Character Register (UART_XOFF2)ot 9-22
Scratch-Pad Register (UART_SPR) ...t i 9-23
Divisor for 115K-Baud Generation (UART_DIV_115K) oo 9-23
Divisor for Baud-Rate Generation (UART_DIV_BIT RATE)t 9-24
Transmission Control Register (UART_TCR) ...ttt 9-25
Trigger-Level Register (UART _TLR) ... oot e e e 9-26
Mode Definition Register (UART_MDR)ot e 9-27
UART Autobauding Status Register (UART_UASR) i, 9-28
RX FIFO Read Pointer Register (UART_RDPTR_URX) ..., 9-29
RX FIFO Write Pointer Register (UART _WRPTR _URX) ..., 9-30
TX FIFO Read Pointer Register (UART_RDPTR UTX), 9-30
TX FIFO Write Pointer Register (UART_WRPTR_UTX) ..., 9-31
UART Modem Interface Block Diagramt 9-32
SPIBIlOCK Diagram 10-2
SPI Setup Register (SPI_SET)t e 10-5
SPI Control Register (SPI_CTRL)iiit i e et e et 10-7
SPI Status Register (SPI_STATUS)o 10-8
SPI Transmit Register (SPI_TX)t e 10-9
SPI Receive Register (SPI_RX)t 10-9
Protocol Waveforms e 10-10
Case C=0, DO on Rising Edge, DI on Falling Edge, P=0,L=0 10-13
Case C=1, DO on Falling Edge, Dl on Rising Edge, P=1,L=0 10-13
Case C=0, DO= on Falling Edge, DI on Rising Edge, P=1,L=1 10-13
[2C Write OPEIationiti et e e e | 11-4
I2C Read OPEIatiON\ttt et e e et e et e e e e e e e | 11-5
Device Register (DEVICE_REG) e 11-10
Address Register (ADDRESS REG)ottt et et 11-10
Data Write Register (DATA_WRITE_REG) ...t 11-11
Data Read Register (DATA_READ_REG) ... 11-11
Command Register (CMD_REG)ottt 11-12
Configuration FIFO Register (CONF_FIFO_REG), 11-13
Configuration Clock Register (CONF_CLK REG) ...t 11-13
Configuration Clock Functional Reference Register (CONF_CLK_REF_REG)....... 11-14
Status FIFO Register (STATUS_FIFO_REG) 11-15
Status Activity Register (STATUS_ACTIVITY_REG) ..., 11-16
FIFO Management Statet e 11-17
EIM BIOCK Diagram e e e e 12-3

Figures

12-2 ENET Module Functional Block Diagramcc i, 12-7
12-3 Buffer Organizationt 12-7
12-4 Single-Port RAM ... e 12-8
12-5 Media Access Controller (MAC) Receive Block Functional Diagram 12-10
12-6 Media Access Controller (MAC) Transmit Block Functional Diagram 12-14
12-7 Logical Address Filter Implementation i, 12-20
12-8 EIM ESM Control Register (EIM_CTRL) e 12-32
12-9 EIM ESM Status Register (EIM_STATUS) 12-33
12-10 EIM CPU TX Descriptors Base Address Register (EIM_CPUTXBA) 12-34
12-11 EIM CPU RX Descriptors Base Address Register (EIM_CPURXBA) 12-35
12-12 EIM Packet Buffer Size Register (EIM_BUFSIZE) oo, 12-36
12-13 EIM CPU Filtering Control Register (EIM_FILTER) 12-37
12-14 EIM CPU Destination Address Register, High Word (EIM_CPUDA_1) 12-38
12-15 EIM CPU Destination Address Register, Low Word (EIM_CPUDA 0) 12-38
12-16 EIM Multicast Filter Valid Register, High Word (EIM_MFV_1) 12-39
12-17 EIM Multicast Filter Valid Register, Low Word (EIM_MFV_0) 12-39
12-18 EIM Multicast Filter Mask Register, High Word (EIM_ MFM_1) 12-40
12-19 EIM Multicast Filter Mask Register, Low Word (EIM_MFM_0) 12-40
12-20 EIM RX Threshold Register (EIM_RXTH) e 12-41
12-21 EIM RX CPU Ready Register (EIM_RX_CPU RDY)ciiiiiiiiiii i 12-41
12-22 EIM ESM Interrupt Enable Register (EIM_INT_EN) o, 12-42
12-23 EIM ENETO TX Queue Current Pointer Register (EIM_ENETO_TX DESC) 12-43
12-24 EIM ENETO RX Queue Current Pointer Register (EIM_ENETO_RX DESC) 12-44
12-25 EIM CPU TX Queue Current Pointer Register (EIM_CPU_TX_DESC).............. 12-44
12-26 EIM CPU RX Queue Current Pointer Register (EIM_CPU RX DESC) 12-45
12-27 EIM ENETO Mode Register (EIM_MODE_EQ) ..ot 12-46
12-28 EIM ENETO Backoff Seed Register (EIM_NEW_RBOF_EO) 12-48
12-29 EIM ENETO Backoff Count Register (EIM_RBOF_CNT_EO)c..v.... 12-49
12-30 EIM ENETO TX Flow Pause Count Register (EIM_FLW_CNT_EO) 12-50
12-31 EIM ENETO Flow Control Register (EIM_FLW_CNTRL_EO) 12-51
12-32 EIM ENETO VTYPE Tag Register (EIM_VTYPE_EQ), 12-52
12-33 EIM ENETO System Error Interrupt Status Register (EIM_SE_SR_EOQ) 12-53
12-34 EIM ENETO Transmit Descriptor Buffer Ready Register (EIM_TX BUF_RDY_EOQ) ...[12-54
12-35 EIM ENETO Transmit Descriptor Base Address Register (EIM_TDBA EOQO) 12-54
12-36 EIM ENETO Receive Descriptor Base Address Register (EIM_RDBA EQ) 12-55
12-37 EIM ENETO Destination Physical Address Match Register, High Word

(EIM_PARL EQ) ...ttt e e e e e e e e e
12-38 EIM ENETO Destination Physical Address Match Register, Low Word

(EIM_PAROD _EO) ...ttt e e e e e 12-56
12-39 EIM ENETO Logical Address Hash Filter Register, High Word (EIM_LAR1 EO) 12-56
12-40 EIM ENETO Logical Address Hash Filter Register, Low Word (EIM_LARO_EO) 12-57
12-41 EIM ENETO Address Mode Enable Register (EIM_ADR_MODE_EOQ) 12-57
12-42 EIM ENETO Descriptor Ring Poll Interval Count Register (EIM_DRP_EQ) 12-58
12-43 Packets Memory Physical Organization 12-60

Contents XXi

Figures

12-44
12-45
12-46
12-47
1248
12-49
12-50
12-51

XXii

Descriptor Word StruCtUreo e e e et e e e
Buffer Usage Word Structurettt
Buffer Usage Table Structure e
ESM FIOW Diagramttt e e e e
Free Buffer Retrieval i e
Copy of Source Descriptor to Two Destinations
Copy of Source Descriptor to a Single Destination
Free Buffer Allocation to Source DescCriptor ...t

12-61

12-61

12-66

12-68

12-72

12-74

12-75

12-76

D N D R R M M N
A OWONPO~NOOOGDMWNLERE

B

(S

a1
WNNPFP WNPREPOOONO O

a1

)]

6]
I

NN NN NN A A
A OWODNREPPFPOOG

(0]
NP~ 0 ~NO O

0o

Tables

DSP Peripheral Memory-Mapped Registerscc i,
ARM MEMOIY SPaCE ...ttt e e
ARM Peripheral Memory-Mapped Registers i
GPIO Control/Status BitS
GPIO_IRQ Bit DEfiNitioNSot e e
C54x DSP Core CIOCK FreqUENCYottt e e e e e
ARM Core CIOCK FreqUeNCYot e e
DSP Interrupt Mapping oot e
MEMINT Terminologyttt e e e e
ARM Accesses Through the System/Internal Bus via MEMINT
ROM (Flash) and SRAM Memory Interface Signals oot
MEMINT REQISIEIS . .ottt e e e e et e e e
Relationship Between BNKCMP and Bank Size i,
State of Signals When External Bus Interface is Disabled (EXIO=1)
ARM MEMOIY SPaCE ..ottt
SDRAM IF REQISIEIS ottt e e e
ARM Peripherals Interrupt Mappingot
ARM Memory-Mapped Registers oo
Offset Addresses of Interrupt Level Registers 0-15 (ILR_IRQ_0—ILR_IRQ_15)......
Clock Module (CLKM) ReQISLEISttt e e
PLL_REG Register (ARMSS) e
CLKMD Register (DSPSS) e
DSP BOOt MOOE ... e
Conditions Affecting PLL Frequency Dividing Factor
VCO Operating States ittt e e et e
Timer Module RegIStErS
GPIO Control/Status BitSot
GPIO_IRQ Bit DefinitioNs i
GPIO REISIEIS ottt e e e
KBGPIO REISIEIS . . ittt e e e e e
IRQA/IRQB Value Interpretationst e e
KBGPIO_IRQA/IRQB Value Interpretationso i,
Keyboard Scanning SEQUENCEttt e e e
GPIO ModUle 1108 ..
UART_IRDA Signals e e e
UART IRDA Module Registers ... e e

Contents

XXiii

Tables

[EnN
TPT
N

[EnN
T
WN P

{
w N P

XXiV

Pulse Shaping ata Frequency of 50 MHz i 8-49
Interrupts INUART MOAE oo e e et et et et 8-53
Interrupts IN SIR MOE oo e e e 8-54
Modem /O SIgNalSo .19-4
UART Modem Module RegiSterst i .19-5
UART Modem INterruptsS ..o e e e e 9-34
ARM Serial Port Interface Signals i 10-4
SPI REGIS IS . ..ot 10-5
12C BUS TEIMINOIOGY .« e ettt et e e et e e e e e e e e 11-7
12C SIGNAIS . . . oottt et 11-8
Master 12C Register DEeSCIPHONSttt ettt e et et 11-9
Ethernet Interface Signals (ENETO Ml Interface Signals) 12-5
TX Descriptor Word #0 ..o 12-22
TX Descriptor WOord #1 12-24
TX Descriptor Word #2 e 12-24
TX Descriptor Word #3 . ..o 12-25
RX Descriptor Word #0o e e 12-26
RX DesCriptor Word #Lt e e e 12-27
RX DesCriptor Word #2 e 12-27
RX Descriptor Word #3 o 12-27
ESM Peripheral RegiSterst e 12-29
ENETO REQISIErS ..ot e e e e e 12-31
CPU TX Descriptor Words #0 and 1 i e 12-61
CPU TX Descriptor Words #2 and 3o 12-62
CPU RX Descriptor Words #0 and 1 ot 12-62
CPURX DescriptorWords #2 and 3t e 12-63
ENETO RX Descriptor Word # 1ttt e it 12-63
ENETO RX Descriptor Word #2 o e 12-64
ENETO TX Descriptor Word #1 e 12-65
ENETO TX Descriptor Word #2 e 12-66
BUffer Word 12-66
Reset Management e 13-2
DSP BOOt MBMO Y .ottt e e e 13-3

Chapter 1

Introduction

This chapter introduces the TMS320VC547x—a dual-core device consisting
of a programmable digital signal processor (DSP) and a microcontroller unit
(MCU).

This introduction includes a general description of the VC547x and a list of its
key features.

For specific information about the 54x DSP core or the RISC MCU core, see
the appropriate user guide listed under Related Documentation from Texas In-
struments in the Preface of this book.

Topic Page
1.1 General Description of the VC547x i, 1-2
1.2 Key Features of the VC547X 1-2

1-1

General Description of the VC547x

1.1 General Description of the VC547x

The VC547x devices (VC5470 and VC5471) integrate a TMS320C54x[] DSP
subsystem with its program and data memories (all RAM) and an ARM70
RISC microcontroller core with emulation facilities. On the VC5471, an inte-
grated Ethernet 10/100 Base-T interface is supported for connection to the
Ethernet physical layer (PHY) via a media-independent interface (Mil).

1.2 Key Features of the VC547x

(1 Dual-CPU processor integrating a TMS320C54x DSP and an ARM7TDMI
RISC MCU

(1 DSP:100-MHz, low-power, TMS320C54x 16-bit core with 72K x 16-bit on-
chip RAM [16K x 16-bit dual-access RAM (DARAM) and 56K x 16-bit
single-access RAM (SARAM)]

[DSP on-chip peripherals

B Two high-speed, full-duplex multichannel buffered serial ports
(McBSPs) allowing the DSP core to interface directly with codecs and
other devices in the system

B A six-channel direct memory access (DMA) controller enabling six in-
dependent block transfers with no intervention from the CPU

B ARM port interface (API) shared-memory interface for efficient infor-
mation exchange between the ARM and the DSP CPUs

W Software-programmable wait-state generator capable of extending
external bus cycles by up to 14 machine cycles

W External memory interface (EMIF)

B One independent software-programmable hardware timer for control
operations

1 RISC: 47.5-MHz, ARM7TDMI microcontroller core with 16K bytes of on-
chip SARAM

[RISC peripherals

B VC5471 only: Ethernet interface module with 10/100-Mbps
IEEE 802.3 Ethernet media-access controller (MAC)

B Universal asynchronous receiver/transmitter (UART) compatible with
NS 16C750-compliant devices

B NS 16C750-compliant UART/IrDA interface allowing the connection
through an infrared transmitter to any external data peripherals using
the slow infrared (SIR) protocol

Key Features of the VC547x

Serial port interface

Thirty-six general-purpose I/O pins configurable in read or write mode
by internal registers

Inter-integrated circuit (12C) interface connecting ARM to 12C-com-
pliant devices made by Texas Instruments

Three on-chip MCU timers (one watchdog timer and two general-
purpose timers)

Interrupt handler managing prioritized and maskable interrupts for
both internal modules and external devices

Memory interface between ARM CPU and its internal peripherals, ex-
ternal Flash and SRAM memories

Synchronous dynamic random-access memory (SDRAM) memory
interface between the ARM CPU and external SDRAM memories

Clock management module controlling clock generation and activity
for the DSP, MCU, and peripherals

[On-chip scan-based emulation logic, IEEE Std 1149.1T (JTAG) boundary

scan logic
T |EEE Standard 1149.1-1990, IEEE Standard Test-Access Port

a
a

ICECrusher module for emulation of both the DSP and RISC CPUs

Smart power management and low-power modes:

DSP low-power mode
ARM low-power mode

Peripherals low-power mode

10-ns single-cycle, fixed-point instruction execution time (100 MIPS) for
3.3-V power supply (1.8-V core)

Provided in a 257-pin MicroStar BGAL package (GHK Suffix)

Introduction 1-3

Chapter 2

Architecture

This chapter provides an overview of the architectural structure of the dual-
core TMS320VC547x device.

For specific information about the 54x DSP core or the RISC MCU core (such
as bus structure, CPU, or pipeline operations), see the appropriate user guide
listed under Related Documentation from Texas Instruments in the Preface of
this book.

Topic Page
2.1 Functional Overview of the VC547xoue. 2-2
2.2 Functional Block Diagram of the VC547x 2-4
2.3 DSP Subsystem Overview (TMS320C54x DSP Core) 2-5
2.4 DSP MeMOIY SPACE ...ttt et et e e 2-7
25 DSPRegisters @
2.6 DSP Subsystem Peripherals E
2.7 ARM Core Overview (ARM7TDMIE)coovvviuunnnn.., [2-21]
2.8 ARMMemMoOry Space ...ttt @
29 ARMREQISIEISo i @
2.10 ARMPeripherals i E
2.11 General-Purpose Peripherals @
2.12 Clock FrequencCiesouuiiiiiiiiiii . E
2.13 Power-Down Modes @
2.14 Interrupt Management it 2-47

2-1

Functional Overview of the VC547x

2.1 Functional Overview of the VC547x

The VC547x architecture is based on a dual-processor core plus some ap-
plication peripherals that are memory-mapped in the ARM memory space.

The VC547x consists of the following modules:

DSP Subsystem

a

TMS320C54x DSP core with 72K words (16-bit) of data/program RAM.

DSP Peripherals:

U o0 d oo d U

Two multichannel buffered serial ports (McBSPS)
Direct memory access (DMA) controller

ARM port interface (API)

Programmable wait-state generator

External memory interface (EMIF)

Timer

Phase-locked loop (PLL)

ARM7 RISC Microcontroller

J
4

ARM7TDMI CPU core (32/16-bit RISC processor)

ARM ICECrusher for emulation purposes

ARM Peripherals:

a

a
J
J
a

ARM memory interface for external SRAM, flash or ROM, and SDRAM.
On-chip 16K-byte (32 x 4096) zero wait-state SRAM.

ARM general-purpose I/0Os (GPIOs) with 8 x 8 keyboard interface.
Three timers (two generic, one watchdog)

UART 16C750 interface (UART_IRDA) with
B IRDA control capabilities (SIR)
B supports only the software flow control (UART mode)

Functional Overview of the VC547x

1 UART 16C750 interface (UART) with
B hardware flow protocol (DCD, CTS/RTS)

B autobaud function

ARM interrupt handler (INTH)

Clock generator and control (CLKM)

Phase-locked loop (PLL)

Ethernet 10/100Base-T Interface (EIM) (on VC5471)

I2C master-only interface (12C)

I Ny N By N Iy

Serial peripheral interface (SPI)
Other peripherals:

] JTAG TAP controller

Architecture 2-3

Functional Block Diagram of the VC547x

2.2 Functional Block Diagram of the VC547x

Figure 2-1. TMS320VC547x Functional Block Diagram

Codec «—»

DSP SRAM
(optional)

RISC R

RAM/ROM

LAN «—»

CLK PLL Keypad IF
C54x DSP GPIO

McBSPO (100 MIPS)

McBSP1 SPI

Timer | | 12C

DARAM
MEM IF 5?@%%5 16K words UART
(+API)

DMA | UART IRDA
SDRAM & ARM7TDMIRISC Timers (2)
SRAM IF (47.5 MHz)

| | Timer—WD
Ethernet RAM
10/100 MAC State Machine 16 KB
(VC5471) (VC5471) CLK JTAG
16K-byte buffer PLL

 —
«—>

—

2-4

8x8 keypad
LEDs, etc.

LCD display

DSP Subsystem Overview (TMS320C54x DSP Core)

2.3 DSP Subsystem Overview (TMS320C54x DSP Core)

2.3.1 Features

The DSP subsystem is based on the TMS320C54x DSP core, and is com-
pletely code-compatible with other C54x products.

C54x devices are fixed-point digital signal processors (DSPs) in Texas Instru-
ments’ TMS320 family. The C54x CPU, with its advanced modified Harvard
architecture, features minimized power consumption and a high degree of par-
allelism.

This processor has one program memory bus and three data memory buses.
It also provides an arithmetic logic unit (ALU) that has a high degree of parallel-
ism, application-specific hardware logic, on-chip memory, and additional on-
chip peripherals. The basis of the operational flexibility and speed of this DSP
is a highly specialized instruction set.

Separate program and data spaces allow simultaneous access to program in-
structions and data, providing the high degree of parallelism. Two read opera-
tions and one write operation can be performed in a single cycle. Instructions
with parallel store and application-specific instructions can fully utilize this ar-
chitecture. In addition, data can be transferred between data and program
spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-
manipulation operations that can all be performed in a single machine cycle.
In addition, this processor includes the control mechanisms to manage inter-
rupts, repeated operations, and function calls.

The DSP core includes the following features:

(1 Low-power C54x DSP CPU

[Software-programmable wait-state generator with bank-switching wait-
state logic

] External memory interface
B Program space
B Data space

W /O space

(1 Scan-based emulation logic

Architecture 2-5

DSP Subsystem Overview (TMS320C54x DSP Core)

2.3.2 DSP CPU Core Associations

The DSP CPU core is associated with an ARM port interface (API), a program-
mable phase-locked loop (PLL), an interrupt handler, a parallel interface XIO,
a timer, 72K words of RAM, two multichannel buffered serial ports (McBSPs),
and a JTAG interface.

The maximum DSP cycle frequency is programmable up to 100 MHz.

DSP Memory Space

2.4 DSP Memory Space

2.4.1 On-Chip RAM

2.4.2 Normal Mode

The C54x DSP uses an enhanced Harvard architecture. This architecture has
multiple memory spaces and four parallel buses that allow you to access both
program and data simultaneously. Each of the four buses accesses different
memory spaces for different aspects of the DSP operation. These are:

(1 Theprogrambus (PB) reads from program memory space, which contains
the instructions to be executed.

(1 The write data bus (EB) writes into data memory space, which stores data
used by the instructions and tables eventually used in execution. It also
writes into I/O memory space.

[The two read data buses (CB and DB) read data from the data memory
space and the DB data bus accesses I/O memory space. The I/O memory
space interfaces to external memory-mapped peripherals and can serve
as extra data storage space.

[The DSP subsystem includes 72K words of on-chip RAM as well as an ex-
tensive external memory range, which can be used to interface to a variety
of memory types or peripherals.

The DSP subsystem features 72K x 16 bits of on-chip RAM (two blocks of
8K x16-bit DARAM and seven blocks of 8K x 16-bit SARAM). The DSP CPU
can perform two accesses to a DARAM in one machine cycle (two reads in one
cycle, oraread and a write in one cycle). It can also perform multiple accesses
to separate memory blocks in one machine cycle.

After reset, the lower address range of the program space is mapped to exter-
nal memory, the lower address range of the data space is mapped with on-chip
RAM blocks. However, the OVLY bit in the PMST register can be used to map
these RAM blocks into both program and data space.

DSP Memory Map

The “Normal Mode” DSP subsystem provides the memory map shown in
Figure 2—2. This is the memory map that applies when the API Boot Mode fea-
ture is not enabled. The Normal Mode memory map applies any time that
BSCR[4] (ABMDIS) is 1, or when DSP_REG[9] (DSP_APIBN) port is high.

Architecture 2-7

DSP Memory Space

Figure 2—-2. DSP Subsystem Memory Map for DSP Accesses (When DSP_APIBN =1 or

Hex

0000

007F
0080

1FFF

2000

3FFF

4000

5FFF

6000

7FFF
8000

FFFF

2-8

ABMDIS = 1)
Page Q program, Page Q program,
MP/MC =1 MP/MC =0
(Microprocessor mode) Hex (Microcomputer mode)
OVLY =1 OVLY =0 0000 OVLY =1 OVLY =0
External External
Reserved program Reserved program
space space
memory 007F memory
External 0080 External
On-chip data program On-chip data program
DARAM space DARAM space
memory 1FFF memory
On-chip data External 2000 | On-chip data External
DARAM, API program DARAM, API program
accessible space 3FFF | accessible space
memory memory
External 4000 External
On-chip data program On-chip data program
SARAM space SARAM space
memory SFFF memory
External program space 6000 On-chip program SARAM
memo 8K words, program onl
ry 7EFE (prog y)
8000 On-chip program SARAM
9FFF (8K words, program only)
AO00 On-chip program SARAM
BFFF (8K words, program only)
External program space
memory C000 On-chip program SARAM
DFFE (8K Words)
E000 On-chip program SARAM
FFFF (8K words)

Hex

0000

007F
0080

1FFF

2000

3FFF

4000

5FFF

6000

7FFF
8000

BFFF
€000

FFFF

Data

Memory mapped registers,
scratch-pad RAM

On-chip data DARAM
(8K—0x80 words)

On-chip data DARAM,
APl-accessible
(8K words)

On-chip data SARAM
(8K words)

On-chip Data SARAM,
(8K words, data only)

External data space

memory

DROM=1 DROM=0
On-chip External
program data-space
SARAM memory

DSP Memory Space

2.4.3 APl Boot Mode

Since there is no ROM at all in the C547x, there is no built-in boot-load pro-
gram. All DSP code must come from external sources — either a Flash or ROM
via the DSP’s XIO pins, or code uploaded via the ARM’s APl interface to DSP
RAM.

Under normal DSP reset conditions, the DSP begins operation either from in-
ternal RAM code (when in microcomputer mode) or from external memory on
the XIO bus (microprocessor mode). A new mode is made possible by the
presence of the APl module and the MCU that controls it, called API Boot
mode. When the DSP subsystem is in APl boot mode, the upper 2K words of
the 8K-word APl DARAM is aliased so that it is found both in DSP data space
at 0x3800—0x3FFF and in DSP program space at 0xF800 to OxFFFF.

To make use of this mode, the MCU directly controls the DSP’s reset and API
boot mode signals. It holds the DSP in reset, enables API boot mode, and
loads the DSP initialization code via the API. Once it has loaded the code to
the appropriate location in the API DARAM, the MCU releases the DSP from
reset, and the DSP begins executing the code. It is recommended that the
MCU change the APl boot mode input signal only when the DSP is held in re-
set.

Note: The microprocessor or microcomputer mode can be important in API
boot mode.
2.4.4 APIBoot Mode DSP Memory Map

The Memory Map, when the APl Boot Mode feature is enabled, is shown in
Figure 2-3. API Boot Mode is enabled when the DSP_REG[9] (DSP_APIBN)
port is low and BSCR[4] (ABMDIS) is 0.

Architecture 2-9

DSP Memory Space

Figure 2—3. API Boot Mode DSP Subsystem Memory Map for DSP Accesses
(When DSP_APIBN = 0 and ABMDIS = 0)T

Page 0 program, Page 0 program,
MP/MC =1 MP/MC =0
Hex (Microprocessor mode) Hex (Microcomputer mode) Hex Data
0000 OVLY =1 OVLY =0 0000 OVLY =1 OVLY =0 0000
External External Memory mapped registers,
Reserved program Reserved program scratch-pad RAM
007F space 007F space 007F
0080
On-chip data 0080 On-chip data 0080 On-chip data DARAM
DARAM DARAM (8K—0x80 words)
1FFF 1FFF 1FFF
2000 External 2000 2000 On—Zr;)iE :Caé:SIzQIF;AM,
37FF | Onchipdata | Progam | oo | onchipdaa | EXeMa oo (8K words)
DARAM, space DARAM, program
3800 APIl-accessible 3800 APl-accessible space 3800
(shadowed portion)
3FFF 3FFF 3FFF
4000 On-chip data 4000 On-chip data 4000 On-chip data SARAM
6000 6000 6000 On-chip data SARAM
7EEF (8K words)
8000 External data space
BFFF memory
C000 DROM=1 DROM=0
External program space External program space On-chip
program
SARAM
DFFF | (8K words) | External data
space
E000 On-chip memory
program
SARAM
F7FF F7FF F7FF | (6K words)
F800 F800 F800
Shadowed API DARAM (2K) Shadowed API DARAM (2K) External data space
FFFF FFFF FFFF memory

T When DSP_REG[9] (DSP_APIBN) = 0 and BSCRI[4] (ABMDIS) = 0, 2K words of the AP DARAM are remapped to program-
space, regardless of DSP_REG[10] (MP/MC) value. All other internal program-space RAMs are disabled in program space.
Overlayable data-space RAMs may be dual-mapped to program-space via OVLY.

2-10

DSP Memory Space

2.45 Extended Program Memory

The DSP subsystem includes a memory-paging scheme to extend the number
of addressable program space locations from 64K to 1M words. The four ex-
tended address pins (A16 to A19) are used to address 15 pages of program
memory. Each page includes 64K addressable locations. The extended pro-
gram addresses are supported by the following eight instructions:

(g FB[D] - Far branch

[0 FBACCI|D]-Farbranchto the location specified by the value in accumula-
tor A or accumulator B

[

FCALA[D] — Far call to the location specified by the value in accumulator
A or accumulator B

FCALL[D] — Far call
FRET[D] — Far return

FRETE[D] — Far return with interrupts enabled

[I I Ry I

READA — Read program memory addressed by accumulator A and store
in data memory

1 WRITA — Write data to program memory addressed by accumulator A

For more information on these instructions, please refer to the TMS320C54x
DSP Reference Set, Volume 2: Mnemonic Instruction Set, (literature number
SPRU172).

When the OVLY bit is set, each page of program memory is made up of two
parts: a common block of 24K words maximum and a unique block of
40K words minimum (see Figure 2—4). The common block is shared by all
pages, and each unique block is accessible only through its assigned page.

The value of the program counter extension register (XPC) defines the page
selection. At a hardware reset, the XPC is initialized to 0.

Architecture 2-11

DSP Memory Space

Figure 2—-4. DSP Extended Program Memory Map

00000

0 FFFF

Page 0
64K

1 0000 Page 1 2 0000 Page 2 F 0000 Page 15
lower 24K T lower 24K T lower 24K T
1 5EFE external 2 5EFE external o F 5FEF external
1 6000 2 6000 F 6000
Page 1 Page 2 e Page 15
upper 40K upper 40K upper 40K
external external external
1 FFFF 2 FFFF F FFFF

T Accesses to the lower 24K words of pages 1 through 15 are to external program memory only when the OVLY bit is cleared
to 0. If the OVLY bit is set to 1, on-chip RAM is mapped to Ox0 to Ox5FFF of pages 1 through 15. Note external address pins
have been provided to support 15 external pages.

2.4.6 Relocatable Interrupt Vector Table

2-12

The reset, interrupt, and trap vectors are addressed in program space. These
vectors are soft—meaning that the processor, when taking the trap, loads the
program counter (PC) with the trap address and executes the code at the vec-
tor location. Four words are reserved at each vector location to accommodate
a delayed branch instruction—either two 1-word instructions or one 2-word in-
struction—which allows branching to the appropriate interrupt service routine
with minimal overhead.

At device reset, the reset, interrupt, and trap vectors are mapped to address
FF80h in program space. However, these vectors can be remapped to the be-
ginning of any 128-word page in program space after device reset. Thisis done
by loading the interrupt vector pointer (IPTR) bits in the PMST register with the
appropriate 128-word page boundary address. After loading IPTR, any user
interrupt or trap vector is mapped to the new 128-word page.

Note: The hardware reset (RS) vector cannot be remapped because a
hardware reset loads the IPTR with 1s. Therefore, the reset vector is al-
ways fetched at location FF80h in program space.

2.5 DSP Registers

DSP Registers

This section lists the DSP subsystem registers that are available in the
VC547x. For a description of all registers except BSCR, see either the
TMS320VC5409 Fixed-Point Digital Signal Processor data sheet (literature
number SPRS082) or the TMS320VC5402 Fixed-Point Digital Signal Proces-
sor data sheet (literature number SPRS079). For a description of BSCR, see
section 3.5.4, Bank-Switching Control Register.

The DSP subsystem peripheral mapping is shown in Table 2—1.

Table 2—-1. DSP Peripheral Memory-Mapped Registers

Register Address Description Type
DRR20 20h Data receive register 2 McBSP #0
DRR10 21h Data receive register 1 McBSP #0
DXR20 22h Data transmit register 2 McBSP #0
DXR10 23h Data transmit register 1 McBSP #0
TIM 24h Timer register Timer
PRD 25h Timer period counter Timer
TCR 26h Timer control register Timer
- 27h Reserved
SWWSR 28h Software wait-state register External Bus
BSCR 29h Bank-switching control register External Bus
- 2Ah Reserved
SWCR 2Bh Software wait-state control register External Bus
- 2Ch-37h Reserved
SPSAQ0 38h McBSPO subbank address register McBSP #0
SPSDO 39h McBSPO subbank data register McBSP #0
- 3Ah-3Bh Reserved
GPIOCR 3C General-purpose I/O pins control register GPIO
GPIOSR 3D General-purpose I/O pins status register GPIO
- 3E-3F Reserved

Architecture 2-13

DSP Registers

Table 2—-1. DSP Peripheral Memory-Mapped Registers (Continued)

Register Address Description Type
DRR21 40h Data receive register 1 McBSP #1
DRR11 41h Data receive register 2 McBSP #1
DXR21 42h Data transmit register 1 McBSP #1
DXR11 43h Data transmit register 2 McBSP #1
- 44h—47h Reserved
SPSAl 48h McBSP1 subbank address register McBSP #1
SPSD1 49h McBSP1 subbank data register McBSP #1
- 4Ah-53h Reserved
DMPREC 54h DMA channel priority and enable control register DMA
DMSA 55h DMA subbank address register DMA
DMSDI 56h DMA subbank data register with autoincrement DMA
DMSDN 57h DMA subbank data register DMA
CLKMD 58h Clock mode register PLL
- 59h-5Fh Reserved

2-14

DSP Subsystem Peripherals

2.6 DSP Subsystem Peripherals

The sections that follow describe the peripherals provided by the DSP sub-

system.

2.6.1 Multichannel Buffered Serial Ports (McBSPO and McBSP1)

Capabilities

The VC547x has two high-speed, full-duplex multichannel buffered serial
ports (McBSPs) that allow direct interface to other C54x devices, codecs, and
other devices in a system. The McBSPs used in the VC547x are based on the
standard serial port interface found on other TMS320C54x devices. The two
McBSPs that are accessible to the DSP are named McBSPO and McBSP1.

The McBSPs provide:

(g Full-duplex communication

(1 Double-buffered data registers that allow a continuous data stream

d Independent framing and clocking for receive and transmit

In addition, the McBSPs have the following capabilities:

(4 Direct interface to:

T1/E1 framers

MVIP switching-compatible and ST-BUS-compliant device
IOM-2-compliant devices

AC97-compliant devices

Some lIS-compliant devices

Serial peripheral interface (SPI) devices

[Multichannel transmit and receive of up to 32 channels

(1 Direct interface to industry-standard codecs, analog interface chips
(AICs), and other serially connected A/D and D/A devices

(1 A wide selection of data sizes, including 8, 12, 16, 20, 24, and 32 bits

1 uM-law and A-law companding

Architecture 2-15

DSP Subsystem Peripherals

External Interface

(1 External shift clock or an internal, programmable-frequency shift clock for
data transfer

[Autobuffering capability through the six-channel DMA controller

[Programmable polarity for both frame synchronization and data clocks

The McBSPs consist of separate transmit and receive channels that operate
independently. The external interface of each McBSP consists of the following
pins:

BCLKX: Transmit reference clock
BDX: Transmit data

BFSX: Transmit frame synchronization
BCLKR: Receive reference clock

BDR: Receive data

U U o odJ o g

BFSR: Receive frame synchronization

Transmitter/Receiver Pins

2-16

The six pins listed are functionally equivalent to the pins of previous serial port
interface pins in the C54x generation of DSPs. On the transmitter, transmit
frame synchronization and clocking are indicated by the BFSX and BCLKX
pins, respectively. The CPU or DMA can initiate transmission of data by writing
to the data transmit register (DXR). Data written to DXR is shifted out on the
BDX pin through a transmit shift register (XSR). This structure allows DXR to
be loaded with the next word to be sent while the transmission of the current
word is in progress.

On the receiver, receive frame synchronization and clocking are indicated by
the BFSR and BCLKR pins, respectively. The CPU or DMA can read received
data from the data receive register (DRR). Data received on the BDR pin is
shifted into a receive shift register (RSR) and then buffered in the receive buff-
er register (RBR). If the DRR is empty, the RBR contents are copied into the
DRR. If not, the RBR holds the data until the DRR is available. This structure
allows storage of the two previous words while the reception of the current
word is in progress.

DSP Subsystem Peripherals

Data Movement

The CPU and DMA can move data to and from the McBSPs and can synchro-
nize transfers based on McBSP interrupts, event signals, and status flags. The
DMA is capable of handling data movement between the McBSPs and
memory with no intervention from the CPU.

Programmable Functions

In addition to the standard serial port functions, the McBSP provides program-
mable clock and frame sync generation. Among the programmable functions
are:

Frame synchronization pulse width
Frame period

Frame synchronization delay

Clock reference (internal vs. external)

Clock division

I Ny I R

Clock and frame sync polarity

The on-chip companding hardware allows compression and expansion of data
in either p-law or A-law format. When companding is used, transmit data is en-
coded according to specified companding law and received data is decoded
to 2s-complement format.

Multiple Channel Selection

The McBSPs allow multiple channels to be independently selected for the
transmitter and receiver. When multiple channels are selected, each frame
represents a time-division multiplexed (TDM) data stream. In using TDM data
streams, the CPU may only need to process a few of them. Thus, to save
memory and bus bandwidth, multichannel selection allows independent enab-
ling of particular channels for transmission and reception. Up to 32 channels
can be enabled.

Architecture 2-17

DSP Subsystem Peripherals

Clock-Stop Mode

The clock-stop mode (CLKSTP) in the McBSP provides compatibility with the
serial peripheral interface (SPI) protocol. Clock-stop mode works with only
single-phase frames and one word per frame. The word sizes supported by
the McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation.
When the McBSP is configured to operate in SPI mode, both the transmitter
and the receiver operate together as a master or as a slave.

The McBSP is fully static and operates at arbitrarily low clock frequencies. The
maximum frequency is CPU clock frequency divided by two.

2.6.2 Direct Memory Access Controller (DMAC)

2-18

The DSP subsystem includes a six-channel DMA controller, for performing
data transfers independent of the CPU. The DMA controller has access to off-
chip memory: it can move data from external DSP memory to internal memory
(or internal to external). The primary function of the DMA controller is to man-
age data transfers between on-chip memory and the serial ports.

The DMA Controller includes the following features:
[Operates independently of the CPU

(1 Sixindependent channels (DMA controller can keep track of the context
of six independent block transfers)

(1 Higher priority for memory accesses than CPU
(1 Each channel has an independently programmable priority level

[Eachchannel's source and destination address registersinclude configur-
able indexing modes. The address can remain constant, be post-increm-
ented/decremented, or be adjusted by a programmable value.

[0 Eachread orwrite transfer may be initialized by selected events (internally
only)

[Each DMA channel caninterrupt the CPU upon completion of a half or en-
tire block transfer

(1 Supports doubleword transfers; i.e., a 32-bit transfer of two 16-bit words
(internally only)

[The DMA cannot access the APl DARAM

DSP Subsystem Peripherals

2.6.3 ARM Port Interface (API)

Information is exchanged between the ARM and the DSP through the on-chip
shared APl memory. The APl memory is an 8K x 16-bit word DARAM (dual-
access RAM) block. The API memory can also be used by the DSP as general-
purpose data or program DARAM. DARAM is memory that can be accessed
twice in the same clock cycle. In the VC547x, only the DSP memory has DA-
RAM.

The API has two modes of operation that are selected by the API control regis-
ter (APIC): shared-access mode (SAM) and host-only mode (HOM). In SAM,
both the DSP and the ARM can access the APl memory, and asynchronous
host accesses from the ARM are resynchronized internally. If the DSP and the
ARM try to perform an access at the same time, the ARM has access priority
and the DSP waits one cycle. SAM can be runwhen the DSP isin IDLE1 mode.
In HOM, only the ARM can access the APl memory. When HOM is selected,
APl memory blocks are disabled for DSP access, no value can be read from
or written to those memory locations.

SAM is the default configuration when the DSP exits from a reset phase. SAM
is normally selected whenever the DSP is in normal operating mode or in
IDLE1. HOMis normally selected before the DSP is placed in IDLE2 or IDLES3.

2.6.4 Software-Programmable Wait-State Generator

The software wait-state generator extends external bus cycles by up to four-
teen machine cycles to interface with slower off-chip memory and I/O devices.
Devices that require more than fourteen wait-states can be interfaced using
the hardware DSP_READY line. When all external accesses are configured
for zero wait states, the internal clocks to the wait-state generator are automat-
ically disabled. Disabling the wait-state generator clocks reduces the power
consumption of the DSP subsystem.

The software wait-state register (SWWSR) controls the operation of the wait-
state generator. The 14 least significant bits (LSBs) of the SWWSR specify the
number of wait states (0 to 7) to be inserted for external memory accesses to
five separate address ranges. This allows a different number of wait states for
each of the five address ranges. In addition, the software wait-state multiplier
(SWSM) bit of the software wait-state control register (SWCR) defines a multi-
plication factor of 1 or 2 for the number of wait states. At reset, the wait-state
generator is initialized to provide seven wait states on all external memory ac-
cesses.

Architecture 2-19

DSP Subsystem Peripherals

2.6.5 External Memory Interface

The DSP external memory interface provides access to three separate off-
chip memory spaces—program space, data space, and I/O space. The inter-
face consists of a 16-bit address bus, a 4-bit extended program space address
bus, a 16-bit bidirectional data bus, three space select signals, and various
control signals.

The space select signals—program space select (PS), data space select
(DS), and I/O space select (IS)—determine which external memory space is
accessed. The control signals of the external memory interface—R/W,
READY, MSTRB, and IOSTRB—are used to control the flow of data to and
from external memory devices.

2.6.6 Hardware Timer

2-20

The DSP subsystem features one independent software-programmable timer.
Three memory-mapped registers (MMRS) control the operation of the timer.
These registers are: the timer control register (TCR), the timer period register
(PRD), and the timer counter register (TIM). The timer resolution is the CPU
clock rate of the DSP. The timer has a 20-bit dynamic range. The timer consists
of a programmable 16-bit main counter (TIM), and a programmable 4-bit pres-
calar. The main counter is driven by the 4-bit prescalar, which decrements by
one at every CPU clock. Once the prescalar reaches zero, the 16-bit counter
decrements by one. When the 16-bit counter decrements to zero, a maskable
interrupt (TINT) is generated, and the counter is reloaded with the period value
defined in the PRD. The timer can be stopped, restarted, reset, or disabled via
the bits of the timer control register (TCR).

ARM Core Overview (ARM7TDMIE)

2.7 ARM Core Overview (ARM7TDMIE)
What does ARM7TDMIE stand for?
ARMO: Advanced RISC Machines
7: Version number of the architecture
T: Thumb0O: 32-bit-wide instruction words, 16-bit-wide memory
D: Debug: two breakpoints to stop the CPU (both hardware and software)
M: Multiplier: Has one multiplier

I: Interface: JTAG (Joint Test Action Group). Archaic name for serial scan stan-
dard prior to IEEE sanctioning as IEEE 1149.1

E: Emulation extension. Texas Instruments (TI) calls it ICECrusherd

2.7.1 ARM7TDMI Overview

The ARM7TDMI processor core is a member of the ARM70 Thumb[d family.
Itis a low-power 32-bit RISC processor incorporating the Thumb 16-bit com-
pressed instruction set. This microprocessor works in 32-bit or 16-bit instruc-
tions and on 32-, 16- or 8-bit data. The excellent code density achieved with
Thumb leads to system cost reductions by reducing the required memory size
and achieving 32-bit system performance from 16-bit-wide memaories.

Thumb is a unique architectural strategy employed by the ARM7TDMI proces-
sor. It makes the ARM microprocessor ideally suited to high-volume applica-
tions with memory restrictions, or applications where code density is an issue.

The key idea behind Thumb is that of a super-reduced instruction set. Essen-
tially, the ARM7TDMI processor has two instruction sets:

] The standard 32-bit ARM set
d A 16-bit Thumb set

The Thumb set’s 16-bit instruction length allows it to approach twice the densi-
ty of standard ARM code while retaining most of the ARM'’s performance ad-
vantage over a traditional 16-bit processor using 16-bit registers. This is pos-
sible because Thumb code operates on the same 32-bit register set as ARM
code. Thumb code is able to occupy as little as 65% of the code size of ARM,
and provide up to 160% of the performance of an equivalent ARM processor
connected to a 16-bit memory system. This enables the development of ap-
plications with increased functionality and performance while maintaining
competitive system cost and power consumption.

Architecture 2-21

ARM Core Overview (ARM7TDMIE)

2.7.2 ARMTTDMIE

The ARM7TDMI ICEBreakerd module provides integrated on-chip debug
support forthe ARM7TDMI core. Used with ARM’s software development tool-
kit and the Multi-ICEDO interface unit, the ICEBreaker logic allows source-level
debug, code download, instruction and data breakpoints even when the ARM
processor is integrated within a larger chip. (Note: The name ICEBreaker has
changed and is now known as the EmbeddedICEO macrocell.)

ARM7TDMIE refers to the module formed by combining the ARM7TDMI
(Thumb) processor module and the ICECrusher emulation module. Combin-
ing the ARM and ICECrusher modules provides debug support whichis an en-
hanced version of the emulation support found on the ARM7TDMI module in
its ICEBreaker block. The functions of the ICECrusher module are accessed
through the JTAG port of the Thumb module; the emulation options and modes
are selected by writing into ARM internal shadow registers.

2.7.3 ARM7TDMIE Emulation Features

2-22

The ARM7TDMIE core emulation capability is a combination of the individual
ARM7TDMI and ICECrusher module capabilities.

The overall debug features are:
[Single processor and multiprocessor debug
(1 High-level language and assembly debug (run, halt, step...)

[Real-time (CPU continuously running) or non-real-time (CPU stopped)
debug options

Combined 32- and 16-bit modes for ARM processor
Endianness transparency

Unlimited breakpoints via op-code replacement (software breakpoint)

U o o od

Two hardware breakpoints (one configurable as software breakpoint) with
maskable cycle type, address and data compare

L

Two external breakpoint events

[

Internal events generate external triggers

(1 Benchmarking/profiling capability

ARM Memory Space

2.8 ARM Memory Space

ARM memory space is shared between the external memory interface, the
SDRAM interface, and the ARM peripherals (see Table 2-2).

The memory interface provides five chip-select signals, while the SDRAM in-
terface provides one chip-select signal.

Table 2—-2. ARM Memory Space

Name Start Address Stop Address Size in Bytes Data Access
CSo 0000:0000 007F:FFFF 8M 8/16/32
Ccs1 0080:0000 OOFF:FFFF 8M 8/16/32
Ccs2 0100:0000 017F:FFFF 8M 8/16/32
Cs3 0180:0000 01FF:FFFF 8M 8/16/32
Cs4 0200:0000 027F:FFFF 8M 8/16/32
Reserved 0280:0000 OFFF:FFFF
SDRAM_CS 1000:0000 11FF:FFFF 32M 8/16/32
Reserved 1200:0000 FFBF:FFFF
Internal SRAM FFC0:0000 FFCO:3FFF 16K 8/16/32
Reserved FFC0:4000 FFCF:FFFF
EIM SRAM (VC5471) FFDO0:0000 FFDO:3FFF 16K 8/16/32
Reserved (VC5470)
Reserved FFDO0:4000 FFDF:FFFF
APl RAM FFE0:0000 FFEO:3FFF 16K 16/32
Reserved FFE0:4000 FFF3:FFFF
API registers FFE4:0000 FFE4:0001 2 16
Reserved FFE4:0002 FFFE:FFFF
EIM (VC5471) FFFF:0000 FFFF.01FF 512 32
Reserved (VC5470)
Reserved FFFF:0200 FFFF:07FF
UART_IRDA FFFF:0800 FFFF:OFFF 2K 32
UART FFFF:1000 FFFF:17FF 2K 32

Architecture 2-23

ARM Memory Space

Table 2-2. ARM Memory Space (Continued)

Name Start Address Stop Address Size in Bytes Data Access

12C FFFF:1800 FFFF:1FFF 2K 32
SPI FFFF:2000 FFFF:27FF 2K 32
GPIO FFFF:2800 FFFF:28FF 256 32
KBGPIO FFFF:2900 FFFF:29FF 256 32
TIMERO FFFF:2A00 FFFF:2AFF 256 32
TIMER1 FFFF:2B00 FFFF:2BFF 256 32
TIMER2 FFFF:2C00 FFFF:2CFF 256 32
INTH FFFF:2D00 FFFF:2DFF 256 32
MEMINT FFFF:2E00 FFFF:2EFF 256 32
CLKM FFFF:2F00 FFFF:2FFF 256 32
SDRAMIF FFFF:3000 FFFF:30FF 256 32
ARM_PLL FFFF:3200 FFFF:32FF 256 32
Reserved FFFF:3300 FFFF:FFFF

2-24

ARM Registers

2.9 ARM Registers

As noted in Table 2—-3, not all of the ARM peripheral memory-mapped registers
have the same base address.

Table 2—-3. ARM Peripheral Memory-Mapped Registers

Register Ar?;rseess Offset Description Type
APIC O0xFFE4:0000 0x0000 API Control Register API
EIM_SCR (VC5471) OXFFFF:0000 0X0000 E'o"f]t'fgrgg‘;tstsetfte Machine (ESM) EIM
EIM_SR (VC5471) OxFFFF:0000 0x0004 EIM Status Register EIM
EIM_CPUTX_BAR (VC5471) OXxFFFF:0000 0x0008 gz;;é(r Descriptors Base Address EIM
EIM_CPURX_BAR (VC5471) OXxFFFF:0000 0x000C gz;s?e): DIESHTHOS EEEE AGTEsE EIM
EIM_BSR (VC5471) OxFFFF:0000 0x0010 Packet Buffer Size Register EIM
EIM_CPUFCR (VC5471) OXFFFF:0000 0x0014 CPU Filtering Control Register EIM
EIM_CPUDAR1 (VC5471) OxFFFF:0000 0x0018 CPU Destination Address Register 1 EIM
EIM_CPUDARO (VC5471) OxFFFF:0000 0x001C CPU Destination Address Register 0 EIM
EIM_MFV1 (VC5471) OxFFFF:0000 0x0020 Multicast Filter Valid Mask Register 1 EIM
EIM_MFVO0 (VC5471) OxFFFF:0000 0x0024 Multicast Filter Valid Mask Register 0 EIM
EIM_MFM1 (VC5471) OXFFFF:0000 0x0028 Multicast Filter Mask Register 1 EIM
EIM_MFMO (VC5471) OxFFFF:0000 0x002C Multicast Filter Mask Register O EIM
EIM_RXTR (VC5471) OxFFFF:0000 0x0030 RX Threshold Register EIM
EIM_CPURXRDY (VC5471) OXFFFF:0000 0x0034 RX CPU Ready Register EIM
EIM_IER (VC5471) OxFFFF:0000 0x0038 EIM Interrupt Enable Register EIM
EIM_ENETO_TX (VC5471) OXFFFF:0000 Daiee COWE D I TR CESE T i EIM
ENETO TX queue
EIM_ENETO_RX (VC5471) OXFFFF:0000 Ox004p Pointerto nex free descriptor in EIM
ENETO RX queue
Reserved OXFFFF:0000 0(3(50004;8_

Architecture 2-25

ARM Registers

Table 2—3. ARM Peripheral Memory-Mapped Registers (Continued)

. Base -
Register Address Offset Description Type
EIM_CPU_TX (VC5471) OXFFFF:0000 Bapae OB ediiee cessie: i CHY EIM
TX queue
EIM_CPU_RX (VC5471) OXFFFF:0000 0x0050 Hointer to nextfree descriptor in CPU EIM
RX queue
EIM_MODE_EO (VC5471) OXFFFF:0000 0x0100 ENETO Mode Register EIM ENETO
EIM_BOSEED_EO (VC5471) OxFFFF:0000 0x0104 Random Backoff Seed Register EIM ENETO
. Random Backoff Count Register
EIM_BOCNT_EO (VC5471) OXFFFF:0000 0x0108 2RO e eurrent random backof) EIM ENETO
Flow Control Pause Count Register
EIM_FLWPAU_EO (VC5471) OxFFFF:0000 0x010C (pause count value to be transmitted EIM ENETO
as a flow control frame)
EIM_FLWCNT _EO (VC5471) OxFFFF:0000 0x0110 ENETO Flow Control Register EIM ENETO
EIM_VTYPE_EO (VC5471) OXFFFF:0000 0x0114 yglt‘:' LAN tagged frame compare EIM ENETO
EIM_SYSERR_EO (VC5471) OxFFFF:0000 0x0118 System Error Interrupt Status Register ~ EIM ENETO
There is no register associated with
the Transmit Descriptor Buffer Ready
EIM_TXBUF_RDY_EO . address. Writing to this address is
(VC5471) OXFFFF:0000 OXOLIC sed to prompt the ENETO DMA EIM ENETO
controller to start processing the next
transmit descriptor.
EIM_TDBA_EO (VC5471) OXFFFF:0000 0x0120 ;f(;zg'rt DESEHIET 222 ACEIEEs EIM ENETO
EIM_RDBA_EO (VC5471) OXFFFF:0000 0x0124 ?2;2‘;’; Descriptor Base Address EIM ENETO
EIM_PARL_EO (VC5471) OXEFFF:0000 0x0128 Ei‘fssﬂ’;"_’g'g” PIEEE ARRIEES RETEET o) v
EIM_PARO_EO (VC5471) OXFFFF:0000 0x012C af:gﬁ'o” Physical Address Register ¢\ engTg
EIM_LARL_EO (VC5471) OXFFFF:0000 0x0130 tﬁg'gg!s';asr' AUEr ATRIEES RERISIET e ey
EIM_LARO_EO (VC5471) OXFFFF:0000 0x0134 tﬁg'gi!o'"'as“ Filter Address Register ¢\ eNETQ
EIM_ADD_EO (VC5471) OXFFFF:0000 0x0138 Address Mode Enable Register EIM ENETO
EIM_DRPC_EO (VC5471) OXEFFF:0000 oxo13c Descriptor Ring Poll Interval Count EIM ENETO

Register

2-26

Table 2-3. ARM Peripheral Memory-Mapped Registers (Continued)

ARM Registers

. Base L
Register Address Offset Description Type
EIM_RAA_EO (VC5471) OxFFFF:0000 0x0140 Read Abort Address Register EIM ENETO
. 0x0200—
Reserved OxFFFF:0000 0x0240
UART_IRDA_RHR OXFFFF:0800 0x0000 Receive Holding Register UART IRDA
UART_IRDA_THR OXFFFF:0800 0x0004 Transmit Holding Register UART IRDA
UART_IRDA_FCR OxFFFF:0800 0x0008 FIFO Control Register UART IRDA
UART_IRDA_SCR OxFFFF:0800 0x000C Status Control Register UART IRDA
UART_IRDA_LCR OXFFFF:0800 0x0010 Line Control Register UART IRDA
UART_IRDA_LSR . Line Status Register
(UART mode) OxFFFF:0800 0x0014 (UART mode) UART IRDA
UART_IRDA_LSR . Line Status Register
(SIR mode) OxFFFF:0800 0x0014 (SIR mode) UART IRDA
UART_IRDA_SSR OxFFFF:0800 0x0018 Supplementary Status Register UART IRDA
UART_IRDA_MCR . .
(UART mode only) OxFFFF:0800 0x001C Modem Control Register UART IRDA
UART_IRDA_MSR OXFFFF:0800 0x0020 Modem Status Register UART IRDA
UART_IRDA_IER . Interrupt Enable Register
(UART mode) OxFFFF:0800 0x0024 (UART mode) UART IRDA
UART_IRDA_IER . Interrupt Enable Register
(SIR mode) OxFFFF:0800 0x0024 (SIR mode) UART IRDA
UART_IRDA_ISR . Interrupt Status Register
(UART mode) OXFFFF:0800 0x0028 (UART mode) UART IRDA
UART_IRDA_ISR . Interrupt Status Register
(SIR mode) OXFFFF:0800 0x0028 (SIR mode) UART IRDA
UART_IRDA_EFR OxFFFF:0800 0x002C Enhanced Feature Register UART IRDA
UART_IRDA_XON1 OxFFFF:0800 0x0030 XON1 Character Register UART IRDA
UART_IRDA_XON2 OxFFFF:0800 0x0034 XON2 Character Register UART IRDA
UART_IRDA_XOFF1 OxFFFF:0800 0x0038 XOFF1 Character Register UART IRDA
UART_IRDA_XOFF2 OXFFFF:0800 0x003C XOFF2 Character Register UART IRDA
UART_IRDA_SPR OxFFFF:0800 0x0040 Scratch-pad Register UART IRDA
UART_IRDA_DIV_115K OXFFFF:0800 0x0044 Divisor for 115 k-baud generation UART IRDA

Architecture 2-27

ARM Registers

Table 2—3. ARM Peripheral Memory-Mapped Registers (Continued)

. Base .

Register Address Offset Description Type
UART_IRDA_DIV_BITRATE OxFFFF:0800 0x0048 Divisor for baud rate generation UART IRDA
UART_IRDA_TCR OxFFFF:0800 0x004C Transmission Control Register UART IRDA
UART_IRDA_TLR OxFFFF:0800 0x0050 Trigger Level Register UART IRDA
UART_IRDA_MDR1 OxFFFF:0800 0x0054 Mode Definition Register 1 UART IRDA
UART_IRDA_MDR2 OxFFFF:0800 0x0058 Mode Definition Register 2 UART IRDA
UART_IRDA_TXFLL OXFFFF:0800 0X005C (T[g’és)m't P (LR (R UART IRDA
UART_IRDA_TXFLH OXFFFF:0800 0X0060 (T,\r/fg];)m't Frame Length Register UART IRDA
UART_IRDA_RXFLL OXFFFF:0800 0x0064 (Ff_escg)“’ed A Lo (REgEEr UART IRDA
UART_IRDA_RXFLH OXFFFF:0800 0X0068 (R,Velg‘;';’ed Frame Length Register UART IRDA
UART_IRDA_SFLSR OxFFFF:0800 0x006C Status FIFO Line Status Register UART IRDA

. Status FIFO Register
UART_IRDA_SFREGL OxFFFF:0800 0x0070 (LS part of the received frame) UART IRDA
UART_IRDA_SFREGH OXFFFF:0800 ox0074 Sw@ls FIFO Register UART IRDA
- — (MS part of the received frame)
UART_IRDA_BLR OxFFFF:0800 0x0078 Begin of File Length Register UART IRDA
UART_IRDA_PULSE_WIDTH OxFFFF:0800 0x007C Pulse Width Register UART IRDA
UART_IRDA_ACREG OxFFFF:0800 0x0080 Auxiliary Control Register UART IRDA
Starting time of the pulse (offset within
UART_IRDA PULSE_START OxFFFF:0800 0x0084 the pulse period) expressed in number UART IRDA
of ARM/div_115k clock cycles.
UART_IRDA_RX_W_PTR OxFFFF:0800 0x0088 RX FIFO write pointer UART IRDA
UART_IRDA_RX_R_PTR OxFFFF:0800 0x008C RX FIFO read pointer UART IRDA
UART_IRDA_TX_W_PTR OxFFFF:0800 0x0090 TX FIFO write pointer UART IRDA
UART_IRDA_TX_R_PTR OxFFFF:0800 0x0094 TX FIFO read pointer UART IRDA
UART_IRDA _ _ L
STATUS. W _PTR OxFFFF:0800 0x0098 Write pointer of status FIFO UART IRDA
DA _INPE OxFFFF:0800 0x009C Read pointer of status FIFO UART IRDA

STATUS_R_PTR

2-28

Table 2-3. ARM Peripheral Memory-Mapped Registers (Continued)

ARM Registers

Register Ac?c?feis Offset Description Type
UART_IRDA_RESUME OXFFFF:0800 0X00AO Feif:;]f;\sfrgis;i;i(szi‘gr‘:”gg’rfédptﬁm> UART IRDA
UART_IRDA_MUX OXFFFF:0800 0X00A4 i‘z'ﬁi%ﬁse;?ngART—'RDA U2 UART IRDA
UART_RHR OXFFFF:1000 0x0000 Receive Holding Register UART Modem
UART_THR OxFFFF:1000 0x0004 Transmit Holding Register UART Modem
UART_FCR OxFFFF:1000 0x0008 FIFO Control Register UART Modem
UART_SCR OxFFFF:1000 0x000C Status Control Register UART Modem
UART_LCR OxFFFF:1000 0x0010 Line Control Register UART Modem
UART_LSR OxFFFF:1000 0x0014 Line Status Register UART Modem
UART_SSR OXFFFF:1000 0x0018 Supplementary Status Register UART Modem
UART_MCR OXFFFF:1000 0x001C Modem Control Register UART Modem
UART_MSR OxFFFF:1000 0x0020 Modem Status Register UART Modem
UART_IER OXFFFF:1000 0x0024 Interrupt Enable Register UART Modem
UART_ISR OxFFFF:1000 0x0028 Interrupt Status Register UART Modem
UART_EFR OXFFFF:1000 0x002C Enhanced Feature Register UART Modem
UART_XON1 OXFFFF:1000 0x0030 XON1 Character Register UART Modem
UART_XON2 OxFFFF:1000 0x0034 XON2 Character Register UART Modem
UART_XOFF1 OxFFFF:1000 0x0038 XOFF1 Character Register UART Modem
UART_XOFF2 OxFFFF:1000 0x003C XOFF2 Character Register UART Modem
UART_SPR OxFFFF:1000 0x0040 Scratch-pad Register UART Modem
UART_DIV_115K OxFFFF:1000 0x0044 Divisor for 115 kbauds generation UART Modem
UART_DIV_BITRATE OxFFFF:1000 0x0048 Divisor for baud rate generation UART Modem
UART_TCR OxFFFF:1000 0x004C Transmission Control Register UART Modem
UART_TLR OxFFFF:1000 0x0050 Trigger Level Register UART Modem
UART_MDR OxFFFF:1000 0x0054 Mode Definition Register UART Modem
UART_UASR OxFFFF:1000 0x0058 UART Autobauding Status Register UART Modem
UART_RDPTR_URX OXFFFF:1000 0x005C RX FIFO Read Pointer Register UART Modem

Architecture 2-29

ARM Registers

Table 2—3. ARM Peripheral Memory-Mapped Registers (Continued)

Register A(?(?rseis Offset Description Type
UART_WRPTR_URX OxFFFF:1000 0x0060 RX FIFO Write Pointer Register UART Modem
UART_RDPTR_UTX OxFFFF:1000 0x0064 TX FIFO Read Pointer Register UART Modem
UART_WRPTR_UTX OxFFFF:1000 0x0068 TX FIFO Write Pointer Register UART Modem
DEVICE_REG OXFFFF11800 0x0000 Doyiof Register (Device ei?e”tiﬁca“"” 12
ADDRESS_REG OXFFFF:1800 0x0004 i"r\]?grf:lsrsggtijre;é('jzrgsssl)a"e device 12c
DATA_WRITE OXFFFF:1800 0x0008 (Dsatl?a\’t\gi\tﬁri?eegfﬁ%'rc bus) 12C
DATA_READ OXFFFF:1800 0Xx000C (DSatl?aFig?ga%e(?ri]sS{: bus) 12c
CMD_REG OxFFFF:1800 0x0010 Command Register 12c
CONF_FIFO OxFFFF:1800 0x0014 Configuration FIFO Register 12c
CONF_CLK OxFFFF:1800 0x0018 Configuration Clock Register 12c
CONF_CLK_REF OXFFFF:1800 0x001C ggg'rgetr’]rc"’:'g;;'s‘ig'r‘ Functional 12C
STATUS_FIFO_REG OxFFFF:1800 0x0020 Status FIFO Register 12c
STATUS_ACTIVITY_REG OxFFFF:1800 0x0024 Status Activity Register 12c
SPI_SET OXFFFF:2000 0x0000 fgrt] ﬁug% ;zgf]Roi%ﬁéesreﬂfsi;ﬁtr%d tothe SPI
SPI_CTRL OxFFFF:2000 0x0004 Control SPI (SPI control register) SPI
SPI_STATUS OxFFFF:2000 0x0008 Status Register SPI
SPI_TX OxFFFF:2000 0x000C Transmit Register SPI
SPI_RX OxFFFF:2000 0x0010 Receive Register SPI
1/O bits:

GPIO_IO OXFFFF:2800 0x0000 Z\;ri;i?;’b‘i;":’::gs"v %Eecg::f:?our;ﬂ as GPIO
when /O is configured as an input

GPIO_CIO OxFFFF:2800 0x0004 GPIO configuration register GPIO
In conjunction with GPIO_IRQB

GPIO_IRQA OxFFFF:2800 0x0008 determines the behavior when GPIO GPIO

pins configured as input IRQ

2-30

Table 2-3. ARM Peripheral Memory-Mapped Registers (Continued)

ARM Registers

. Base L
Register Address Offset Description Type
In conjunction with GPIO_IRQA
GPIO_IRQB OxFFFF:2800 0x000C determines the behavior when GPIO GPIO
pins configured as input IRQ
. Delta Detect Register
GPIO_DDIO OxFFFF:2800 0x0010 (detects changes in the I/O pins) GPIO
GPIO_EN OXFFFF:2800 0x0014 Selects register for muxed GPIOs GPIO
Keyboard I/O bits:
Writeable when KBGPIO is configured
KBGPIO_IO OXFFFF:2900 0x0000 as an output; reads value on I/O pin KBGPIO
when KBGPIO is configured as an
input
KBGPIO_CIO OxFFFF:2900 0x0004 KBGPIO configuration register KBGPIO
In conjunction with KBGPIO_IRQB
KBGPIO_IRQA OxFFFF:2900 0x0008 determines the behavior when KBGPIO
KBGPIO pins configured as input IRQ
In conjunction with KBGPIO_IRQA
KBGPIO_IRQB OxFFFF:2900 0x000C determines the behavior when KBGPIO
KBGPIO pins configured as input IRQ
. Delta Detect Register
KBGPIO_DDIO OxFFFF:2900 0x0010 (detects changes in the KBGPIO pins) KBGPIO
KBGPIO_EN OxFFFF:2900 0x0014 Selects register for muxed KBGPIOs KBGPIO
CNTL_TIMERO OxFFFF:2A00 0x0000 Control TIMERO Register TIMERO
VALUE_TIMO OXFFFF:2A00 0x0004 Current value of TIMERO register TIMERO
CNTL_TIMER1 OxFFFF:2B00 0x0000 Control TIMER1 Register TIMER1
VALUE_TIM1 OxFFFF:2B00 0x0004 Current value of TIMERL1 register TIMER1
CNTL_TIMER2 OxFFFF:2C00 0x0000 Control TIMER2 Register TIMER2
VALUE_TIM2 OXFFFF:2C00 0x0004 Current value of TIMER2 register TIMER2
. Interrupt Register (It stores an
IT_REG OxFFFF:2D00 0x0000 incoming interrupt) INTH
MASK_IT_REG OxFFFF:2D00 0x0004 Mask Interrupt Register INTH
SRC_IRQ_REG OXFFFF:2D00 oxoo0g Source IRQ Register (indicates the INTH
— = active IRQ interrupt)
. Source FIQ Register (indicates the
SRC_FIQ_REG OxFFFF:2D00 0x000C active FIQ interrupt) INTH
Architecture 2-31

ARM Registers

Table 2—3. ARM Peripheral Memory-Mapped Registers (Continued)

Register A(?(?rseis Offset Description Type

Source IRQ (binary coded) Register

(indicates the active interrupt — in
SRC_IRQ_BIN_REG OxFFFF:2D00 0x0010 g:ﬁee‘r ttr?isS?g; sst‘é‘;t‘;‘:%riig:’:fhsjmg INTH

interrupt # having requested a MCU

action.)
INT_CTRL_REG OxFFFF:2D00 0x0018 Interrupt control Register INTH

Interrupt Level Register0 (defines
ILR_IRQ_O OxFFFF:2D00 0x001C interrupt priority level for the INTH

corresponding interrupt)
ILR_IRQ_1 OxFFFF:2D00 0x0020 Interrupt Level Registerl INTH
ILR_IRQ_2 OxFFFF:2D00 0x0024 Interrupt Level Register2 INTH
ILR_IRQ_3 OxFFFF:2D00 0x0028 Interrupt Level Register3 INTH
ILR_IRQ_4 OxFFFF:2D00 0x002C Interrupt Level Register4 INTH
ILR_IRQ_5 OxFFFF:2D00 0x0030 Interrupt Level Register5 INTH
ILR_IRQ_6 OxFFFF:2D00 0x0034 Interrupt Level Register6 INTH
ILR_IRQ_7 OxFFFF:2D00 0x0038 Interrupt Level Register7 INTH
ILR_IRQ_8 OxFFFF:2D00 0x003C Interrupt Level Register8 INTH
ILR_IRQ_9 OxFFFF:2D00 0x0040 Interrupt Level Register9 INTH
ILR_IRQ_10 OXFFFF:2D00 0x0044 Interrupt Level Register10 INTH
ILR_IRQ_11 OxFFFF:2D00 0x0048 Interrupt Level Register1l INTH
ILR_IRQ 12 OXFFFF:2D00 0x004C Interrupt Level Register12 INTH
ILR_IRQ_13 OxFFFF:2D00 0x0050 Interrupt Level Register13 INTH
ILR_IRQ_14 OxFFFF:2D00 0x0054 Interrupt Level Register14 INTH
ILR_IRQ_15 OxFFFF:2D00 0x0058 Interrupt Level Register15 INTH
IRQ_SLEEP_REG OxFFFF:2D00 0x005C IRQ sleep register INTH
CS0_REG OXFFFF:2E00 0x0000 E;gf’s’tg";"fg"reé%ogymcé’nqm range MEMINT
CS1 _REG OXFFEF:2E00 0x0004 i’ggﬂg?'fc?%“?o{ymce"nqgg range MEMINT
CS2_REG OXFFFF:2E00 Oxo00g CXtérnal memory control MEMINT

register for CS2 memory range

2-32

Table 2-3. ARM Peripheral Memory-Mapped Registers (Continued)

ARM Registers

. Base L
Register Address Offset Description Type
. External memory control
CS3_REG OxXFFFF:2E00 0x000C register for Cs3 memory range MEMINT
. External memory control
CS4_REG OXFFFF:2E00 0x0010 register for CS4 memory range MEMINT
. ARM port interface wait-state
API_REG OXFFFF:2E00 0x0014 configuration register MEMINT
SDRAM_REG OXFFFF:2E00 0x0018 SDRAM data bus size control register MEMINT
Bank-switching configuration register
BS_CONFIG OXFFFF:2E00 0x001C (Lelieslisn e e o) ey MEMINT
- cycles for insertion when changing
chip select)
Clock configuration register
CLKM_REG OxFFFF:2F00 0x0000 (individually enables/disables clocking CLKM
for ARM and its peripherals)
DSP_REG OXFFFF:2F00 0x0004 DSP PLL Register CLKM
Interrupt Clock Wakeup Register
(keeps a copy of the normal operation
WAKEUP_REG OXFFFF:2F00 0x0008 configuration; upon waking up, values CLKM
in WAKEUP_REG will get copied into
CLKM_REG)
Defines the divisor for generating the
AUDIO_CLK OxFFFF:2F00 0x000C AudioCLK output from the ARM_PLL CLKM
output.
Reset control register (defines the
CLKM_CNTL_RESET OxFFFF:2F00 0x0010 reset signal to the DSP and CLKM
RESET_OUT pin).
WATCHDOG_STATUS OXFFFF:2F00 Gagls I AR S CLKM
- has occurred.
. Reset register (defines the reset
RESET_REG OxFFFF:2F00 0x0018 signal to the ARM peripherals) CLKM
Indicates whether the ARM is clocking
LOW_POWER_REG OXFFFF:2F00 0x001C at the ARM PLL rate or at CLKM
REFCLK/512.
LOW_POWER_REG_VALUE OxFFFF:2F00 0x0020 Low-power value register CLKM
SDRAM_CONFIG OXFFFF:3000 0x0000 SDRAM configuration register SDRAMIF
SDRAM_REF_COUNT OxFFFF:3000 0x0004 SDRAM refresh counter register SDRAMIF
SDRAM_CNTL OxFFFF:3000 0x0008 SDRAM control register SDRAMIF
Architecture 2-33

ARM Registers

Table 2—3. ARM Peripheral Memory-Mapped Registers (Continued)

Base

Register Address Offset Description Type
SDRAM_INIT_CONF OXFFFF:3000 0x000C izgfe'\r" e Zeftel EilEs) EnEr SDRAMIF
ARM_PLL_REG OxFFFF:3200 0x0000 ARM PLL configuration register ARM_PLL

2-34

ARM Peripherals

2.10 ARM Peripherals

2.10.1 ARM Memory Interface (MEMINT)
The ARM memory interface handles:

(1 External ARM memory access management. It performs:

B ARM read and write access size adaptation to the memory width
(from 8-bit up to 32-bit)

B ARMaccess duration management (wait state insertion) to enable the
connection of slow memory devices

BW Memory control signals generation (chip-selects, write strobe genera-
tion, ...) with five chip-select signals, each corresponding to an ad-
dress range of eight megabytes

1 ARM-to-API memory access management:

B ARM access size adaptation for APl read and write access. A 32-bit
API READ transaction is transformed into two 16-bit read accesses. A
32-bit API WRITE access is transformed into two 16-bit write transac-
tions.

B Address signal timing adaptation to be compliant with the API inter-
face requirement

(1 ARM WAIT and access control flags generation, such as byte-latch, etc.
(This function is transparent to the user.)

The memory interface is designed to work with the ARM processor in Little-
Endian or Big-Endian mode depending on the chip input, BIGEND. Each chip-
select memory range can be configured in either Little- or Big-Endian mode.

2.10.2 SDRAM Memory Interface (SDRAMIF)

The SDRAM interface module effectively sits between the ARM processor and
the SDRAM controller and functions as an isolation module between the two.
It belongs to the memory interface since it interfaces with the MEMINIT and
generates signals that are of memory interface responsibilities. The main fea-
tures of the SDRAM memory interface are:

[Operates with the ARM memory interface (MEMINT) so that SDRAM
memories can be used on the same board with Flash and/or SRAM.

(1 Supports 32-bit-wide and 16-bit wide SDRAM interfaces (32-bit data con-
figuration can be obtained by connecting with a 32-bit-wide SDRAM or by
connecting two 16-bit SDRAMs in parallel)

Architecture 2-35

ARM Peripherals

256M-byte chip-enabled space
Operates at the ARM clock speed

Very flexible programming of SDRAM timing parameters

I I T Ay I

Supports four open pages of SDRAM

2.10.3 Interrupt Handler (INTH)

The interrupt handler provides up to 16 prioritized and maskable interrupts
(IRQO-15) to the ARM core. It receives interrupts from both internal modules
and external chip environment via the GPIO pins. Each incoming interrupt can
be individually masked using dedicated configuration registers.

An Interrupt Level Register is associated with each incoming interrupt to define
a priority to the corresponding interrupt. If several interrupts have the same
priority level, they are sent in a predefined order.

Each interrupt can be routed to one of the two input interrupts of the ARM core:
fast interrupt request (FIQ) and low-priority interrupt request (IRQ).

For details of how the on-chip peripherals are associated with the IRQ lines,
see Figure 4-1 on page[4-5.]

2.10.4 ARM General-Purpose I/0O (GPIO)

2-36

Thirty-six general-purpose 1/0s (GPIOs), configurable in read or write mode
by ARM memory-mapped registers, are provided. Some of the GPIOs are
shared with other signals. Each GPIO is associated with six configuration/sta-
tus bits whose description is given in Table 2—4 and Table 2-5.

ARM Peripherals

Table 2—4. GPIO Control/Status Bits

Bit Name Description

I/O bit.

Writeable when 1/O is configured as an output (cio = 0).
Reads value on I/O pin when I/O is configured as an input
(cio=1)

Configure 1/O
cio 0: output
1: input (default)

gpio_irgA See Table 2-5
gpio_irgB See Table 2-5

Delta detect bit.

If gpio configured as output (cio=0), always reads as 0.
If gpio configured as input (cio=1), reads a 1 if io has
changed since ddio was last cleared.

ddio

Selects register for muxed GPIOs.
0: other signal (default)
gpio_en 1: gpio
Non-shared GPIOs are always available at the I/O pin
independently of the value of gpio_en.

Table 2-5. GPIO_IRQ Bit Definitions

gpio_irgA gpio_irgB Function
0 0 Disable IRQ
0 1 An IRQ is generated on the rising edge.
1 0 An IRQ is generated on the falling
edge.
1 1 An IRQ is generated on the state

change.

The configuration/status bits are accessible through 12 memory-mapped reg-
isters: GPIO_IO, KBGPIO_IO, GPIO_CIO, KBGPIO_CIO, GPIO_IRQA,
KBGPIO_IRQA, GPIO_IRQB, KBGPIO_IRQB, GPIO_DDIO,
KBGPIO_DDIO, GPIO_EN, and KBGPIO_EN.

The 36 GPIOs are divided into two groups: GPIO(19:0) and KBGPIO(15:0).
KBGPIOs are keyboard GPIO pins. GP10(19:0) and KBGPIO(15:0) are basi-
cally the same except that some of the keyboard GPIO pins have pullup resis-
tors.

Architecture 2-37

ARM Peripherals

KBGPIO(15:8) have on-chip pullup resistors connected to their input/output
pins. KBGPIO(15:0) can be used as normal GPIO pins or be configured for
connection of a 8 x 8 keyboard matrix.

2.10.5 Timers (TIMERS)

The VC547x implements three 16-bit timers configurable either in auto-reload
or in one-shot modes. The timers generate interrupts to the ARM when equal
to zero.

The first timer (TIMERQO) is configured by default as a watchdog for the micro-
controller unit (MCU). If this functionality is not required, a specific sequence
must be written into a dedicated register in order to configure the watchdog as
a general-purpose timer.

The two others (TIMER1 and TIMER2) are general-purpose timers. TIMER2
has a dedicated output pin (TIMER_OUT) which generates a low pulse when
a TIMER?2 interrupt occurs.

2.10.6 IRDA Universal Asynchronous Receiver/Transmitter 16C750 (UART-IRDA)

This UART interface is compatible with 16 C750-compliant devices. Itincludes
the slow infrared (SIR) protocol in order to be connected with an infrared trans-
mitter to any external data peripherals with an IrDA-compliant data interface.

The IR function can be disabled and the UART connected through a standard
wired interface.

This UART can be linked to an external PC for concurrent debugging purposes
(software flow control only).

The UART IRDA module integrates two 64-word (9 and 11 bits) receive and
transmit FIFOs and one 8-word (16 bits) status FIFO with programmable trig-
ger levels. The baud rate is internally generated from a programmable divisor.
Transmission parity can be even, odd, or without parity, and the number of stop
bitsis 1, 1.5, or 2.

The receiver can detect break, idle, framing, and parity errors as well as FIFO
overflow. The transmitter can detect FIFO underflow.

All modem operations are controllable via a software interface. In IrDA mode,
this upgraded UART 16C750 includes the following additional features:

(1 IrDA 1.0 SIR support: allows serial communication at baud rates up to
115.2 Kbit/s

(1 Pulse shaping, and pulse recovering: A zero is signaled by sending a
single infrared pulse. A one is signaled by not sending any pulse.

2-38

ARM Peripherals

[The device operation, in IrDA 1.0 SIR, is similar to the operation in UART
mode. The main difference is that the data transfer operations are normal-
ly performed in half-duplex, and the modem control and status signals are
not used

(1 Frame formatting: addition of variable beginning-of-frame (xBOF) charac-
ters and end-of-frame (EOF) characters

[Uplink/downlink cyclic redundancy check (CRC) generation/detection
(1 Asynchronous transparency (automatic insertion of break character)

[8-character status FIFO available to monitor frame length and frame
errors

[Variable frame length for RX and TX IrDA frame

Note: MIR and FIR are not implemented.

2.10.7 Universal Asynchronous Receiver/Transmitter 16C750 (UART-Modem)

This UART 16C750 interface is compatible with the NS 16C750 device and is
devoted to the connection of a PC-based software debugger tool through a
standard wired interface.

The UART Modem module integrates two 64-word (9 and 11 bits) receive and
transmit FIFOs with programmable trigger levels. The baud rate is internally
generated from a programmable divisor.

Transmission parity can be even, odd, or without parity, and the number of stop
bitsis 1, 1.5, or 2.

The receiver can detect break, idle, framing, and parity errors as well as FIFO
overflow. The transmitter can detect FIFO underflow.

All operations are controllable either via a software interface or by using hard-
ware flow control signals.

This upgraded UART 16C750 includes the following additional features:
(1 Hardware flow control (DCD, RTS/CTS)
[Auto-bauding with the possibility to match the baud rate from 1200 to
115.2 Kbits/s.
2.10.8 Serial Peripheral Interface (SPI)

The serial interface is a bidirectional 3-line interface dedicated to the transfer
of data to and from external devices offering a 3-line serial interface.

Architecture 2-39

ARM Peripherals

The SPI interface is full-duplex and is configurable from 1 to 32 bits, providing
three enable signals programmable either as positive/negative active or
edge-/level-sensitive.

This serial port is based on a looped shift-register, thus allowing both transmit
(PISO) and receive (SIPO) modes. The serial port is fully controlled by the
ARM Memory Interface (data write, data read, and activation of serialization
operations).

The serial clock period (TcLkx_spi) is derived from the SPI_clock:

TSPI_clock TSPI_cIock

Tewx sm = 4*PTV ~ 4*[(1)(2)(4)(8)16]

PTV is a programmable value of a prescale clock divider in register SPI_SET
and can take the following values: 1, 2, 4, 8, or 16. For example, if SPI_clock
is equal to 47.5 MHz, CLKX_SPI can be set to 11.875, 5.9375, 2.96875,
1.484375, or 0.7421875 MHz.

2.10.9 Ethernet Interface Module (EIM) (VC5471)

The Ethernet interface module provides a straightforward and effective meth-
od of integrating IEEE802.3/Ethernet MAC functionality onto a processor 1/0
subsystem. The Ethernet interface module provides:

Memory-mapped interface for configuration
Ring buffer chaining

RX and TX status reporting

Internal and external loopback

U

4

a

[J 10- and 100-Mbit/s data rate
4

[0 |EEE802.3/Ethernet MAC with MII for Ethernet connection
U

Address filtering (Unicast, Multicast, Broadcast, or Promiscuous mode)

2.10.10 Master Inter-Integrated Circuit (I12C) Interface

2-40

The Master I12C Interface Module provides an interface between the ARM bus
and the I12C bus. It is through the Master 12C Interface Module that the ARM
bus controls the external peripheral devices on the 12C bus. The Master 12C
Interface Module is compatible with TI 12C-compliant devices and implements
the serial 12C-bus protocol.

ARM Peripherals

The Master I2C Interface Module supports 12C Master-Only mode with:

d
d
a
d
d
a
d

a

A 7-bit address device

An 8-bit subaddress

Master write to slave receiver in single or multiple mode (data loop)
A 16-byte transmit FIFO

Master simple read to slave receiver

Read Combined cycle

A 3-bit programmable prescale internal clock divider and 7-bit program-
mable SCL clock divider to support a wide range of input clock frequen-
cies. The 12C SCL clock frequency are:

B 12C Standard Mode: 100 kHz
B |2C Fast Mode: 400 kHz

3-bit programmable spike filter to provide noise filtering on the 12C input
signal

The module does not support:

d
d
a
d

I2C bus 10-bit addressing
I2C bus CBUS compatibility
Multi-Master 12C

Clock synchronization as a handshake: slave devices are NOT allowed to
hold the SCL line LOW to force the master (VC547x) into a wait state until
the slave is ready for the next transfer.

2.10.11 Clock Management (CLKM)

This module is in charge of the control of the clock activity for the DSP, MCU,
and peripherals. Itincludes configuration registers for DSP and MCU clock fre-
guencies programming.

CLKM also manages the reset of all modules connected to the MCU.

The clock management scheme is shown in Chapter 5.

Architecture 2-41

General-Purpose Peripherals

2.11 General-Purpose Peripherals

2-42

The Joint Test Action Group (JTAG) port is basically used for two purposes:
Tl debug tools and ARM/DSP testing with boundary scan. The JTAG interface
of the chip can be selected in either one of the following two ways:

1)

2)

To access the two processors’ on-chip emulators with a pseudo IEEE
JTAG protocol for emulation purposes. A PC or Workstation can be con-
nected to the interface to set the bi-emulation mode with the ARM core
linked to the DSP core. The ICECrusher module supports the synchro-
nization of the two cores.

EMUO/1 pins are driven internally by the hardware breakpoints, which are
set by the Tl debug tools. This remains high until a breakpoint is hit, at
which point, the tools can be set up to pull the EMUO/1 signals low. The Tl
debugger takes care of putting them back to their respective levels.

The devices can also be set up to react to sensing a low EMUO/1 by setting
these parameters within the debug tools. The reaction that occurs within
the tools is to break the core for debug purposes. In this perspective, JTAG
functions exactly as a DEBUG port.

To dialog with an embedded TAP controller with the instruction set sup-
ports internal SCAN modes used for ARM testing, DSP testing, and logic
testing. JTAG boundary scan and JTAG bypass mode are also supported.

Note that the JTAG port is not intended to be used as general-purpose 1/0
(GPIO) ports.

Clock Frequencies

2.12 Clock Frequencies

2.12.1 DSP Clock

The C54x DSP core clock frequency is derived from the input clock REFCLK
and the frequency ratio multiplier k (where k is a function of n/m), as defined
in Table 2-6.

Table 2—6. C54x DSP Core Clock Frequency

DSP clock = k(REFCLK)

Minimum Maximum
n m k Note About k PLL Input PLL Input
Frequency Timing
1t015 1 k=n1 Integer Values 5 MHz 200 ns
(from 1 to 15)
Noninteger Values
1,3,5,7,9, 11,13, 15 2 k=n/2 (from 0.5 to 7.5 with 10 MHz 100 ns

1.0 granularity)

Noninteger Values
1,3,5,7,9 11, 13, 15 4 k=n/4 (from 0.25 to 3.75 with 20 MHz 50 ns
0.5 granularity)

The DSP clock frequency is dynamically selected in the DSP register CLKMD
(0x0058), supporting a maximum output clock frequency of 100 MHz. In addi-
tion, the ARM can provide control of the DSP PLL through the DSP_REG
(OXFFFF:2F04).

Architecture 2-43

Clock Frequencies

2.12.2 ARM Clock

The ARM core clock frequency is derived from the input clock REFCLK and
the frequency ratio multiplier k (where k is a function of n/m), as defined in
Table 2-7.

Table 2—7. ARM Core Clock Frequency

ARM clock = k(REFCLK)

Minimum Maximum

n m k Note About k PLL Input PLL Input
Frequency Timing
1t015 1 k=n/1 IniEEr ValIEs 5 MHz 200 ns

1,3,5,7,9,11,13,15

1,3,5,7,9 11,13, 15

(from 1 to 15)

Noninteger Values
2 k=n/2 (from 0.5 to 7.5 with 10 MHz 100 ns
1.0 granularity)

Noninteger Values
4 k =n/4 (from 0.25 to 3.75 with 20 MHz 50 ns
0.5 granularity)

2.12.3 Audio Clock

2-44

The ARM clock frequency is dynamically selected in the ARM register
ARM_PLL REG (0OxFFFF:3200), supporting a maximum output clock fre-
qguency of 47.5 MHz. In addition, the ARM clock may be put into a low-power
mode as defined by the LOW_POWER_REG (0xFFFF:2F1C) and
LOW_POWER_REG_VALUE (0xFFFF:2F20) register set.

The AUDIO_CLK frequency is equal to:

faubio_cLk = fRercLk / 2(N+1)

where N is a 11-bit programmable register N = (0...2047).

If the REFCLK frequency is equal to 24.576 MHz, the clock management
scheme allows the generation of one of the following audio related frequen-
cies: 8 kHz (N = 1535), 16 kHz (N = 767), 2.048 MHz (N = 5), 3.072 MHz
(N = 3), 4.096 MHz (N = 2). Such audio frequency (AUDIO_CLK) is available
at an output pin and can be used to clock external audio codecs.

Power-Down Modes

2.13 Power-Down Modes

2.13.1 DSP Power-Down Modes

The DSP subsystem has three power-down modes, which are activated by the
IDLE1, IDLE2, and IDLES instructions. In these modes, the C54x DSP core
enters a dormant state and dissipates considerably less power than in normal
operation.

The IDLE1 mode halts all DSP CPU activities except the DSP system clock.
Because the system clock remains applied to the DSP subsystem peripheral
modules, the DSP peripheral circuits continue operating and the
DSP_CLKOUT pin remains active. Thus, peripherals such as serial ports and
timers can take the CPU out of its power-down state.

The IDLE2 mode halts the DSP subsystem peripherals as well as the DSP
core. Because the DSP subsystem peripherals are stopped in this mode, they
cannot be used to generate the interrupt to wake up the C54x as with IDLE1.
However, power is significantly reduced because the device is completely
stopped. To terminate IDLE2, activate any of the external interrupt pins
(RESET and DSP_INTO) with a 10-ns minimum pulse.

The IDLE3 mode functions like IDLE2 but it also halts the DSP phase-locked
loop (PLL) circuit. IDLE3 is used for a complete shutdown of the C54x. This
mode reduces power dissipation more than IDLE2. Furthermore, the IDLE3
state allows you to reconfigure the DSP PLL externally if the system requires
the C54x to operate at a lower speed to save power. To terminate IDLES3, acti-
vate any of the external interrupt pins (RESET and DSP_INTO) with a 10-ns
minimum pulse.

Architecture 2-45

Power-Down Modes

2.13.2 ARM Power-Down Modes

2-46

The ARM subsystem has two types of power-down modes, which are acti-
vated through register manipulation. In these modes, the ARM subsystem en-
ters adormant state and dissipates considerably less power than in normal op-
eration.

The first power-down mode is a low-power mode involving the manipulation
of the ARM subsystem clock rate. By significantly reducing the ARM subsys-
tem clock frequency through the use of the LOW_POWER_REG
(OXFFFF:2F1C) and the LOW_POWER_VALUE (0xFFFF:2F20) register set,
a substantial reduction in power can be achieved while the whole ARM subsys-
tem continues to operate at a reduced MIP rate. The ARM is capable of enter-
ing and exiting this low-power mode through software control.

The second power-down option is a sleep mode involving the cessation of
clocks to portions of the ARM subsystem. By curtailing clocks driven to por-
tions of the ARM subsystem through the use of the CLKM_REG
(OXFFFF:2F00) and WAKEUP_REG (OxFFFF:2F08) register set, a substan-
tial reduction in power can be achieved in portions of the ARM subsystem that
are not being used. The ARM is capable of entering this sleep mode through
software control, but requires an interrupt to exit.

2.14 Interrupt Management

2.14.1 DSP Interrupts

Interrupt Management

The DSP subsystem interrupts are mapped as shown in Table 2-8.

Table 2—-8. DSP Interrupt Mapping

Name DEC Address HEX Address Function
RS, SINTR 0 00
Reserved 4 04 Reserved
SINT17 8 08 Software interrupt #17
SINT18 12 oC Software interrupt #18
SINT19 16 10 Software interrupt #19
SINT20 20 14 Software interrupt #20
SINT21 24 18 Software interrupt #21
SINT22 28 1C Software interrupt #22
SINT23 32 20 Software interrupt #23
SINT24 36 24 Software interrupt #24
SINT25 40 28 Software interrupt #25
SINT26 44 2C Software interrupt #26
SINT27 48 30 Software interrupt #27
SINT28 52 34 Software interrupt #28
SINT29 56 38 Software interrupt #29
SINT30 60 3C Software interrupt #30
INTO, SINTO 64 40 External user interrupt
Reserved 68 44 Reserved
Reserved 72 48 Reserved
TINT, SINT3 76 4C Timer interrupt
BRINTO, SINT4 80 50 McBSP #0 receive interrupt

(default)

Architecture

Interrupt Management

Table 2—8. DSP Interrupt Mapping (Continued)

Name DEC Address HEX Address Priority Function

BXINTO, SINT5 84 54 8 McBSP #0 transmit
interrupt (default)

Reserved 88 58 9 Reserved

Reserved 92 5C 10 Reserved

Reserved 96 60 11 Reserved

AINT, SINT9 100 64 12 APl interrupt

BRINT1, DMAC2, SINT10 104 68 13 McBSP #1 receive interrupt
(default)

BXINT1, DMAC3, SINT11 108 6C 14 McBSP #1 transmit
interrupt (default)

DMAC4, SINT12 112 70 15 DMA channel 4 interrupt
(default)

DMACS, SINT13 116 74 16 DMA channel 5 interrupt
(default)

Reserved 120-127 78-T7TF — Reserved

2.14.2 MCU Interrupts

2-48

For information on handling ARM interrupts, see Chapter 4, Interrupt Handler.

Chapter 3

Memory Interface (MEMINT)

This chapter explains the function of the TMS320VC547x Memory Interface
(MEMINT), discusses the system and API buses and the external memory in-
terface, provides an overview of SDRAM, and describes the SDRAM interface
(SDRAM IF) and its internal and external controls.

MEMINT is associated with the ARM ™ microcontroller unit (MCU) of the dual-
core (MCU + DSP) TMS320VC547x device.

Topic Page
3.1 Memory Interface (MEMINT) Function 3-2
3.2 System (Internal) Bus i @
3.3 APIBusInterfaceo 3-5
3.4 External Memory Interface i 3-8
3.5 Memory Interface (MEMINT) Registers 3-10
3.6 ARMMEMOrY SPACEttt e e e 3-23
3.7 SDRAM ..ottt 3-25 |
3.8 SDRAM INErfACEttt e et 3-28 |
3.9 SDRAMIFReQISters 3-29
3.10 WaVveformsoiii i 3-37

3-1

Memory Interface (MEMINT) Function

3.1 Memory Interface (MEMINT) Function

The VC547x memory interface (MEMINT) is used to interface to internal ARM
memory as well as to external ARM memories by providing the necessary con-
trol signals, as well as address and data management, to the available internal
and external buses. In addition to interfacing memories to the ARM processor,
the memory interface is also responsible for interfacing ARM peripherals to the
ARM processor.

Table 3-1 lists some of the terms used throughout this chapter and their mean-
ings.

Table 3—-1. MEMINT Terminology

3-2

Term Meaning

Memory Implies ARM memory

Address Implies address on any of the ARM buses (internal or external)
Data Implies data on any of the ARM data buses

System Implies internal

The ARM memory interface provides the following functionality:

i

a

Interfaceto internal address and internal databuses: Thisinvolves ac-
cesses to the on-chip SRAM and peripherals via the internal/system bus.

Interface to APl address and data buses: This involves the API bus that
internally connects the ARM subsystem (ARMSS) with the DSP subsys-
tem (DSPSS).

Interface to synchronous DRAM controller: The SDRAM Controller is
a separate module that exists independently of the Memory Interface
module, MEMINT. Both MEMINT and the SDRAM controller are used to
generate the necessary address, data, and control signals while perform-
ing an access to SDRAM.

Interface to external address and external data buses: This involves
external accesses while accessing Flash (ROM) or SRAM.

System (Internal) Bus

3.2 System (Internal) Bus

The system (or internal) bus implemented on the ARMSS is a 32-bit-wide bus
that supports 8-, 16- and 32-bit accesses. All peripherals on the system bus
are 32-bitdevices. For this reason, the two lower address bits of the ARM proc-
essor address are never used while performing accesses to the peripheral
registers.

Transactions on the system bus by the ARM processor is always done with
zero wait-state internal access.

Table 3—-2 shows the ARM internal memory and ARM peripherals that are ac-
cessed through the system/internal bus via the memory interface.

Memory Interface (MEMINT) 3-3

System (Internal) Bus

Table 3-2. ARM Accesses Through the System/Internal Bus via MEMINT

3-4

Start Address

Stop Address

Module Selected

FFC0-0000

FFD0-0000

FFFF-0000

FFFF-0800
FFFF—1000
FFFF-1800
FFFF—2000
FFFF—2800
FFFF-2900
FFFF-2A00
FFFF-2B00
FFFF—2C00
FFFF—2D00
FFFF—2E00
FFFF—2F00
FFFF-3000

FFFF-3200

FFCO-3FFF

FFDO-3FFF

FFFF-07FF

FFFF—OFFF
FFFF-17FF
FFFF—1FFF
FFFF—27FF
FFFF—28FF
FFFF—29FF
FFFF—2AFF
FFFF—2BFF
FFFF—2CFF
FFFF—2DFF
FFFF—2EFF
FFFF—2FFF
FFFF—30FF

FFFF-32FF

SYSTEM RAM (Internal)

VC5470: Reserved
VC5471: EIM RAM (Internal)

VC5470: Reserved
VC5471: EIM

UART_IRDA
UART_MODEM
12C

SPI

GPIO
KBGPIO
TIMERO
TIMER1
TIMER2
INTH
MEMINT
CLKM
SDRAM_IF

ARM_PLL

API Bus Interface

3.3 API Bus Interface

Operating Speeds

The API bus is an independent bus that is not shared with the system/internal
bus. Unlike the internal bus, the API bus is a 16-bit bus. All 32-bit transactions
are divided into two 16-bit API transactions. 8-bit transactions on the API bus
are not allowed; however, there is no mechanism in place that will inhibit you
from performing an 8-bit transaction. If an 8-bit transaction is exercised via the
API bus, itis transformed into a 16-bit transaction by duplicating the 8-bit data.
This will cause unwanted behavior especially while attempting to write a byte
onto a memory location, resulting in a 16-bit write.

The ARM and DSP cores within the VC547x device can operate at different
speeds. For this reason, a specific wait-state implementation is needed for en-
suring proper communication between the two subsystems. Since the speed
for both cores can be programmed independently of each other’s speed set-
tings, the API wait state should also be programmed accordingly, in order to
synchronize accesses to the shared APl memory by the two subsystems. The
APl interface also utilizes the wait-state generator for inserting dummy cycles
while performing a back-to-back access, and ensuring correct synchronization
of signals between the ARM subsystem and the DSP subsystem.

The API_REG register, part of the MEMINT register file, holds the necessary
programmable fields in order to generate the desired wait state.

For API_REG register definitions, see Section 3.5.2, ARM Port Interface Wait-
State Configuration Register, on page|3-13.}

Computing the Wait State

The total number of wait states generated is computed from the parameters
described in API_REG register. The formula for computing the desired wait
state depends on the type of access that is required (16 vs 32 bits).

For a 16-bit transaction, the desired wait state to be generated (WAIT) is com-
puted using the following equation:

WAIT = API_WS + API_CS -1

For a long access 32-bit transaction, the desired wait state (WAIT) is gener-
ated using the following equation:

WAIT=2*API_ WS+ API_CS+ API BS

Examples for 16- and 32-bit accesses that will compute APl wait states for a
given requirement are shown in Example 3—1 and Example 3-2.

Memory Interface (MEMINT) 3-5

API Bus Interface

If we assume the case where the DSPSS is functioning at a speed which is
twice the frequency of the ARMSS, the API_REG register parameters could
be programmed with a large degree of safety for successful API transaction
in SAM. The following values will satisfy this request:

API_WS =3, AP|_ CS=2,and AP|_BS=1

For APl_REG register definitions, see Section 3.5.2, ARM Port Interface Wait-
State Configuration Register, on page|3-13.}

Example 3—-1. 16-Bit Transaction

The following example demonstrates the waveform diagram that is generated
by programming the API_REG register with the values shown below for a
16-bit transaction:

Type of transaction desired: 16-bit

API_WS =3
API_CS=2
APl BS=1

0 WAIT = API_WS +API_CS -1
=3+2-1
=4

Figure 3—-1. 16-Bit API Write Access With API_WS =3, API_CS =2, API_BS =1

WAIT \ /
API_DS ‘{ S J(
> cs

API_RW / \
X

API_ADD X

API_DATA X

Note: The API_BS value has no effect on the wait state since we are interested only in a 16-bit access.

API Bus Interface

Example 3-2. 32-Bit Transaction

The following example demonstrates the waveform diagram that is generated
by programming the API_REG register with the values shown below for a
32-bit transaction:

Type of transaction desired: 32-bit

API_WS =3
API_CS =2
APl BS =1

O WAIT = 2*API_WS + API_CS + API_BS
=2*3+2+1
=9

Figure 3-2. 32-Bit API Write Access with API_WS =3, API_CS =2, API_BS =1

WAIT \ /

AP| BS +1 —¢ ple ws —|

oS\ / \
X
X

{—cs—#

API_RW /

APLADD X

N

APLDATA X

Itis VERY important to make sure that the user code correctly programs these
parameters. As mentioned previously, in order to program the necessary fields
correctly, the application should know the frequency of the ARM subsystem
and the DSP subsystem.

Itis also important to carefully choose the values set for the parameters since
different combinations of values for the same parameters will yield identical
wait-state values, but with different waveforms. One simple rule that will help
when assigning values to the parameters is to make sure that the value chosen
for API_WS is greater than that for API_CS and API_BS (when performing a
32-bit access).

Memory Interface (MEMINT) 3-7

External Memory Interface

3.4 External Memory Interface

In addition to managing the interface to internal memory and peripherals (via
the use of the API bus and the system/internal bus), the memory interface also
provides management for external accesses.

3.4.1 ROM (Flash) and SRAM

External memory devices supported are ROM (Flash), SRAM, and SDRAM.
The memory interface provides support for 8-, 16-, and 32-bit-wide ROM
(Flash) and SRAM memories. The only exception arises during power-up con-
ditions when the device has to know the data width of the attached memory.
Due to the assumption that an 8-bit-wide memory will result in a large pefor-
mance decrease, the current implementation can only differentiate between
a 16-bit or a 32-bit-wide access during power up. See the section titled Special
Note About CS0 under Figure 3-3 on page[3-11. |

Table 3-3 shows the signals that are used to manage the external memory in-
terface.

Table 3—-3. ROM (Flash) and SRAM Memory Interface Signals

3-8

Bit Signal

ADDI[22:00] ARM Address Bus

DATA[31:00] ARM Data Bus

CSo ARM Chip Select

cs1 ARM Chip Select

cs2 ARM Chip Select

CcS3 ARM Chip Select

CS4 ARM Chip Select

RIW Read/Write Direction Control Signal

m External Byte Enable for Flash or SRAM access

Features

External Memory Interface

The memory interface supports the following features:
[Generating a programmable number of wait states

(1 Generating a programmable number of dummy cycles after an access
takes place

(1 Selection of endianism (big or little)

Write access

L

(1 Automatic insertion of a single wait state during a write while accessing a
zero wait-state memory

[d Handling of different memory device sizes

The above parameters are unique for each selector; i.e., each chip-select sig-
nal (CS0, CS1, CS2, CS4, and SDRAM_CS). Each chip-select signal has its
own set of programmable parameters that is used to control the respective de-
vice, allowing versatility. The exception happens only with the SDRAM chip-
select parameters.

For interfacing with SDRAM, the SDRAM_CS control parameters available
are: Device Size (16- vs 32-bit-wide data access), Dummy Cycle Insertion,
and Endianism Selector.

One register (from the MEMINT register file shown in Table 3—4) for each chip-
select signal holds the programmable fields that are used to identify the type
of device attached to the VC547x.

Memory Interface (MEMINT) 3-9

Memory Interface (MEMINT) Registers

3.5 Memory Interface (MEMINT) Registers

Base address (hex): FFFF:2EQ0

Register width: 32 bits

Table 3—-4. MEMINT Registers

Register Description ,(A)(fjfjre;ss
CSO0_REG External Memory Control Register for CSso memory range 0x0000
CS1_REG External Memory Control Register for cs1 memory range 0x0004
CS2_REG External Memory Control Register for cs2 memory range 0x0008
CS3_REG External Memory Control Register for CSs3 memory range 0x000C
CS4_REG External Memory Control Register for CS4 memory range 0x0010
API_REG ARM Port Interface Wait-State Configuration Register 0x0014
SDRAM_REG SDRAM Data Bus Size Control Register 0x0018
BS_CONFIG Bank-Switching Configuration Register 0x001C

3.5.1 External Memory Control Register for CS0-CS3, CS4 Memory Range

3-10

The external memory control registers (CS0_REG—-CS4_REGQG) are five inde-
pendent programmable registers that are used to customize the interface be-
tweenthe VC547x ARMSS and its external memory (Flash or SRAM) by allow-
ing the user the flexibility to attach memories with different characteristics. The
bit/field functions of each external memory control register are as follows:

WSJ[4:0] holds the values for the additional wait states to be asserted (0 to 31).

DVS[6:5] holds the width of the SRAM or Flash memory. The two-bit field is
sufficientto differentiate among the three supported devices (8-, 16-, or 32-hbit).

WE[7] differentiates between SRAM and Flash. If external memory is SRAM,
WRITE is enabled (Read/Write capability is selected). If external memory is
Flash, WRITE is disabled (Read-Only capability is selected).

BIGENDI8] configures the external memory as big- or little-endian.

Memory Interface (MEMINT) Registers

DC[11:9] inserts additional cycles (up to 7) in order to avoid bus contention
during bank-switching. It works in conjunction with the BS_ CONFIG register.
See Section 3.5.6, Bank-Switching Configuration Register, on pageor
more information.

WS1[12] dictates if an automatic additional wait state is needed while writing
to a zero wait-state external SRAM or external Flash. Note that this applies
only during Write, not Read.

Figure 3—3. External Memory Control Register for CS0—CS3, CS4 Memory Range

(CSO_REG-CS4_REG)

Address (hex): Base = OxFFFF:2E00, Offset = 0x0000 (CSO_REG)
Offset = 0x0004 (CS1_REG)
Offset = 0x0008 (CS2_REG)
Offset = 0x000C (CS3_REG)
Offset = 0x0010 (CS4_REG)

31-16
Reserved
15-13 12 11-9 8 7 6-5 4-0
Reserved WS1 DC BIGEND WE DVS WS
RW-0 RW-1 RW-0 RW-1 RwW-01 RW-1

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-13 Reserved.

Bit 12 WS1. Wait state to be inserted on zero-wait-state device during write
access.
0 No wait state inserted
1 One wait state inserted
Bits 11-9 DC. Number of dummy cycles to be inserted during bank-switching.
Bit 8 BIGEND. Endianism.
0 Little endian
1 Big endian
Bit 7 WE. Write Enable.

0 Write disabled
1 Write enabled

Memory Interface (MEMINT) 3-11

Memory Interface (MEMINT) Registers

Bits 6-5 DVS. Device Size.

00 Reserved (CSO_REG only). See ROMSIZE pin descrip-
tion.

00 8-bit-wide bus (CS1_REG-CS4_REG). See note 3
01 16-bit-wide bus. See note 1

10 32-bit-wide bus. See note 2

11 Reserved

Bits 4-0 WS. Number of wait states.

Notes:
1) 16-bit-wide SDRAM memory can only be made up of a single
16-bit-wide memory. No multiple 8-bit-wide memory support is
available.

2) 32-bit-wide SDRAM memory can be made up of two 16-bit-wide
memories. No single 32-bit-wide memory support is available.
The exception to this is the 64-Mbit 32-bit-wide memory, which is
supported.

3) CS0-CS3 0O Active Low
CS4 O Active High

Special Note About CSO

3-12

The ARM Reset Vector is always at address 0x00000000. Consulting
Table 3-7 indicates that this address is mapped onto external memory. It is
most likely that a Flash memory (SRAM is usually used in place of Flash on
development boards) is attached to the VC547x device at this particular
space, and Chip Select 0 is the signal that will be used to control the attached
memory at this location. Some of the programmable parameters/fields (en-
dianism, size) of this Chip Select register need to be known during power-up
time in order for the ARM core to access the attached memory (Flash) with the
correct physical settings.

During Power Up/Reset, the Memory Interface automatically inserts the maxi-
mum allowable wait states. This is necessary because at boot time, we do not
know the speed of the external device. The default is to assume the slowest
device. The other unknown is the size of the attached memory (most likely
Flash). This information is provided to the ARMSS by sampling the multiplexed
pin (CS3/ROMSIZE16) during power-up time. This pin should be pulled high
or low, depending the size of the attached memory.

Memory Interface (MEMINT) Registers

If CS3/ROMSIZE16 is sampled high, the attached memory is a 32-bit-wide
memory; if CS3/ROMSIZE16 is sampled low, the attached memory is a 16-bit-
wide memory. Similarly, sampling another multiplexed pin, CS4/BIGEND,
identifies the endianism of the memory. If CS4/BIGEND is sampled high, the
attached memory device, controlled by the CSO signal, is operating in Big-En-
dian mode. If CS4/BIGEND is sampled low, the attached memory (Flash) is
operating in Little-Endian mode.This will allow the ARMSS to correctly fetch
program code from the attached memory and perform correct execution.

3.5.2 ARM Port Interface Wait-State Configuration Register

Figure 3—4. ARM Port Interface Wait-State Configuration Register (API_REG)
Address (hex): Base = OXxFFFF:2E00, Offset = 0x0014

31-10 9-6 5-4 3-0
Reserved API_CS API_BS API_WS
RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-10 Reserved. Read as zeros.

Bits 9-6 API_CS. Hold Time. Number of clock cycles API_NRW is valid (i.e.,
high) after release of API_DS.

Bits 5-4 API _BS. One clock cycle less than the total number of clock cycles
API_DS is inactive (i.e., high). Used in back-to-back accesses or in
32-bit accesses.t

Bits 3-0 APl_WS. Number of clock cycles API_DS is maintained (i.e., low).

T The API_BS parameter (field) is useful only for back-to-back accesses (while performing 32-bit
transactions). There is a minimum of one cycle insertion that is added by the system automatical-
ly. For this reason, one clock-cycle value is always subtracted from the desired value. Due to
design limitations, values other than 0 and 1 are not allowed. System may hang if other values
are used.

3.5.3 API Control Register
This ARM register is only 16 bits and must be declared as a short variable.

Figure 3-5. API Control Register (APIC)
Address (hex): Base = OxFFE4:0000, Offset = 0x0000

15-4 3 2 1 0
Reserved HINT DSPINT | APIMODE | Reserved
R-0 W-0 R-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Memory Interface (MEMINT) 3-13

Memory Interface (MEMINT) Registers

Bits 15-4 Reserved. Read zeros.

Bit 3

Bit 2

Bit 1

Bit 0

HINT. Host Interrupt. Read Only. A write does not modify this bit. This
bit is the mirror of the HINT bit (bit 3 of the DSP BSCR register
[0x0029]), which must be toggled from 0 to 1, and back to O in order for
the DSP to create an ARM interrupt.

DSPINT. DSP Interrupt. Write Only. Always read as zero. Writing a 1
generates a DSP AINT/SINT9 interrupt. The bit is automatically
cleared by the hardware after the interrupt is generated.

APIMODE. API Mode. Read Only. A write does not modify this bit.
This bitis the mirror of the APIMODE bit (bit 2 of the DSP BSCR regis-
ter [0x0029]).

0 Shared-Access Mode. Both the DSP and the ARM
may access the APl RAM.

1 Host-Only Mode. The ARM may access the API
RAM, but the DSP may not.

Reserved. Always returns O.

3.5.3.1 DSP and ARM Required Interrupt Methodology

3-14

In order for the interrupts to work between the DSP and the ARM, be sure the
ARM register CPSR has the | and F flag bits cleared in User Mode.

To interrupt the ARM processor from the DSP, pulse the HINT bit (bit 3 of the
DSP register BSCR [0x0029]).

BSCR | = BSCR_HI NT;
for (i=0; i<H NT_PAUSE; i++)
{

/1 pause

}
BSCR &= ~BSCR _HI NT;

To interrupt the DSP processor from the ARM, write a 1 into the DSPINT bit
(bit 2 of the ARM register APIC [0OxFFE4:0000]).

The ARM register APIC must be declared as a short variable.

volatile ulé *APIC = (ul6*)OxFFE40000; // Set bit 2 to
/] interrupt the DSP

*API C | = (ul6) 0x4; /1 Interrupt DSP

Memory Interface (MEMINT) Registers

3.5.4 Bank-Switching Control Register

The following register description is for a DSP subsystem register and should
not be confused with an ARM subsystem register. Please refer to Table 2—1
for a complete list of DSP subsystem registers.

Figure 3—6. Bank-Switching Control Register (BSCR)
DSP Address (hex) = 0029

15-12 11 10-5 4 3 2 1 0
BNKCMP PS-DS Reserved ABMDIS HINT APIMODE Reserved EXIO
RW-1111 RW-1 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 15-12 BNKCMP. Bank Compare. Determines the external memory bank
size. BNKCMP is used to mask the four MSBs of an address. For ex-
ample, if BNKCMP = 1111b, the four MSBs (bits 12-15) are
compared, resulting in a bank size of 4K words. Bank sizes of
4K words to 64K words are allowed. Table 3-5 shows the relationship
between BNKCMP and the address range.

Table 3-5. Relationship Between BNKCMP and Bank Size

BNKCMP

MSBs to Bank Size
Bit 15 Bit 14 Bit 13 Bit 12 Compare (16-Bit Words)
0 0 0 0 None 64K
1 0 0 0 15 32K
1 1 0 0 15-14 16K
1 1 1 0 15-13 8K
1 1 1 1 15-12 4K
Bit 11 PS-DS. Program Read/Data Read Access. Inserts an extra cycle be-

tween consecutive accesses of program read and data read, or data
read and program read.

0 No extra cycles are inserted by this feature

1 One extra cycle is inserted between consecutive data
and program reads.

Bits 10-5 Reserved. These bits are reserved and will retain written values.

Memory Interface (MEMINT) 3-15

Memory Interface (MEMINT) Registers

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

3-16

ABMDIS. API Boot Mode Disable. This bit will force the DSP out of API
Boot Mode. This bit has no effect when DSP_APIBN port is high.
When DSP_APIBN is low, a 0 in this bit enables API Boot Mode and a
1in this bit disables API Boot Mode. Note that a DSP subsystem reset
will clear this bit and thus re-enable the DSP_APIBN port.

0 APl Boot Mode is under the control of the
DSP_APIBN input port

1 DSP_APIBN input port is ignored and the DSP sub-
system is kept out of APl Boot Mode.

HINT. Host Processor Interrupt. This bit enables/disables an interrupt
to the MCU from the DSP. At reset, the HINT bit is cleared. To send a
proper interrrupt to the MCU, the DSP must write a 1 to HINT, delay an
appropriate time, then write a 0 to HINT to create a pulse of an ap-
propriate duration on the interrupt signal to the MCU.

0 Interrupt signal to the MCU is not active
1 Interrupt signal to the MCU is active

APIMODE. Host-Only Mode/Shared-Access Mode (HOM/SAM)
Enable. This bit enables/disables the APl Host-Only Mode. During re-
set, the APIMODE bit is set (HOM is automatically selected); after re-
set, the APIMODE bit is cleared (SAM is automatically selected).

0 The Shared-Access Mode (SAM) is enabled. Both
the DSP and the MCU may access the API RAM.

1 The Host-Only Mode (HOM) is enabled. The MCU
may access the APl RAM; the DSP may not access
the APl RAM. DSP writes to the APl RAM are ig-
nored, and DSP reads from the APl RAM return un-
defined values. DSP IDLE modes have no effect on
MCU accesses to the APl memory when in Host-
Only Mode.

Reserved.

EXIO. External Bus Interface Off. The EXIO bit controls the external-
bus-off function.

0 The external bus interface functions as usual.

1 The address bus, data bus, and control signals be-
come inactive after completing the current bus cycle.
Table 3-6 lists the states of the external interface
signals when the interface is disabled. Note that the
DROM, MP/MC, and OVLY bits in the PMST and the
HM bit of ST1 cannot be modified when the interface
is disabled.

Memory Interface (MEMINT) Registers

Table 3-6. State of Signals When External Bus Interface is Disabled (EXIO = 1)

Signal State
A[19:0] Previous State
D[15:0] High-Impedance
ﬁ, ﬁ, S High Level
m, IOSTRB High Level
RIW High Level
MSC High Level
m High Level

3.5.4.1 DSP and ARM Required Interrupt Methodology

In order for the interrupts to work between the DSP and the ARM, be sure the
ARM register CPSR has the | and F flag bits cleared in User Mode.

To interrupt the ARM processor from the DSP, pulse the HINT bit (bit 3 of the
DSP register BSCR [0x0029]).

BSCR | = BSCR_HI NT;
for (i=0; i<H NT_PAUSE; i ++)

{

/'l pause

}
BSCR &= ~BSCR_HI NT;

To interrupt the DSP processor from the ARM, write a 1 into the DSPINT bit
(bit 2 of the ARM register APIC [OxFFE4:0000]).

The ARM register APIC must be declared as a short variable.

vol atile ulé *APIC = (ul6*)OxFFE40000; // Set bit 2 to
/1 interrupt the DSP

*API C | = (ul6) 0x4; /1 Interrupt DSP

Memory Interface (MEMINT) 3-17

Memory Interface (MEMINT) Registers

3.5.5 SDRAM Data Bus Size Control Register

SDRAM_REG is a programmable register that is used to customize the inter-
face between the ARMSS and the external SDRAM.

DVS[1:0] holds the SDRAM Device-Data bus-width (can select memories be-
tween 16 and 32 bits wide).

DCJ3:2] inserts additional cycles (up to 3) in order to avoid bus contention dur-
ing bank-switching. It works in conjunction with the BS_CONFIG register. See
Section 3.5.6, Bank-Switching Configuration Register, on page 3-19 for more
information.

BIGENDI4] configures the external memory as big- or little-endian.

Figure 3—7. SDRAM Data Bus Size Control Register (SDRAM_REG)

Address (hex): Base = OxFFFF:2EQ0, Offset = 0x0018

Note:

3-18

31-3 4 3-2 1-0
Reserved BIGEND DC DVS
RW-0 RW-0 RW-01

R = Read access; W = Write access; value following dash () = value after reset

Bits 31-3 Reserved.
Bit 4 BIGEND. Endianism
0 Little endian
1 Big endian
Bits 3-2 DC. Number of dummy cycles to be inserted during bank-switching.

Memory Interface (MEMINT) Registers

Bits 1-0 DVS. SDRAM device (bus) size; i.e., data width

00 Reserved
01 16-bit-wide data, see note 1
10 32-bit-wide data, see note 2
11 Reserved

Notes:

1) 16-bit-wide SDRAM memory can only be made up of a single
16-bit-wide memory. No multiple 8-bit-wide memory support is
available.

2) 32-bit-wide SDRAM memory can be made up of two 16-bit-wide
memories. No single 32-bit-wide memory support is available.
The exception to this is the 64-Mbit 32-bit-wide memory. The
64-Mbit memory, which is 32 bits wide, is supported.

3) CS0-CS3 O Active Low
CS4 0O Active High

3.5.6 Bank-Switching Configuration Register

Bus contention usually exists when performing a back-to-back access on two
different banks or two different types of memories operating at different
speeds.

One of the fields (DC) that is found within the Chip Select registers
(CS[4:0]_REG, and SDRAM_REG) holds the number of dummy cycles that
are to be inserted during bank-switching. When two different chip selects are
used to control two different devices or banks of a memory, the BS_CONFIG
register is used to enable/disable the insertion of the dummy cycles, selective-
ly, while memory (device) access changes from one memory (device) to anoth-
ermemory (device). This gives the user much more flexibility by inserting addi-
tional dummy cycles when performing back-to-back access during bank-
switching, thus eliminating the need for additional logic.

Memory Interface (MEMINT) 3-19

Memory Interface (MEMINT) Registers

Figure 3—-8. Bank-Switching Configuration Register (BS_CONFIG)

Address (hex): Base = OxFFFF:2E00, Offset = 0x001C

31-30 29-25 24-20 19-15
Reserved SDRAM matrix CS4 matrix CS3 matrix
RW-0 RW-0 RW-0
14-10 9-5 4-0
CS2 matrix CS1 matrix CSO0 matrix
RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

3-20

Bits 31-30

Bits 29-25

Bits 24-20

Bits 19-15

Reserved. Always return 0.

SDRAM matrix. Insert dummy cycles per SDRAM_REG
(FFFF:2E18) DC[3:2] when switching from the SDRAM bank to the
following defined banks:

Bit 29: CS4 bank

Bit 28: CS3 bank

Bit 27: CS2 bank

Bit 26: CS1 bank

Bit 25: CSO0 bank

CS4 matrix. Insert dummy cycles per CS4_REG (FFFF:2E10)
DC[11:9] when switching from the CS4 bank to the following defined
banks:

Bit 24: Reserved

Bit 23: CS3 bank

Bit 22: CS2 bank

Bit 21: CS1 bank

Bit 20: CSO bank

CS3 matrix. Insert dummy cycles per CS3_REG (FFFF:2EOC)
DC[11:9] when switching from the CS3 bank to the following defined
banks:

Bit 19: Reserved

Bit 18: CS4 bank

Bit 17: CS2 bank

Bit 16: CS1 bank

Bit 15: CSO0 bank

Memory Interface (MEMINT) Registers

Bits 14-10 CS2 matrix. Insert dummy cycles per CS2_REG (FFFF:2E08)
DCJ11:9] when switching from the CS2 bank to the following defined
banks:

Bit 14: Reserved
Bit 13: CS4 bank
Bit 12: CS3 bank
Bit 11: CS1 bank
Bit 10: CSO bank

Bits 9-5 CS1 matrix. Insert dummy cycles per CS1 REG (FFFF:2E04)
DCJ11:9] when switching from the CS1 bank to the following defined
banks:

Bit9: Reserved
Bit8: CS4 bank
Bit 7: CS3 bank
Bit6: CS2 bank
Bit5: CSO bank

Bits 4-0 CSO0 matrix. Insert dummy cycles per CSO_REG (FFFF:2E00)
DC[11:9] when switching from the CSO bank to the following defined
banks:

Bit4: Reserved
Bit3: CS4 bank
Bit2: CS3 bank
Bit1: CS2 bank
Bit0: CS1 bank

Memory Interface (MEMINT) 3-21

Memory Interface (MEMINT) Registers

Chip-Select Sample Configurations

Example 3-3 on page 3-22 shows sample configurations for all six chip se-
lects.

To better understand how this works, consider the explanation of the first row
in Example 3—-3 on page 3-22: Assume that you made access to the memory
location that is controlled by CS0 and your next access is to another memory
location or device that is controlled by any of the other chip selects (CS1, CS2,
CS3, or CS4). You may have different requirements for different devices/me-
mories since the speeds of each device/memory could be different. Bits [4:0]
of BS_CONFIG register would handle all possible cases for additional cycle
insertion when access moves from a device/memory controlled by Chip Se-
lect 0 to a device/memory controlled by another chip select. A single bit for
each chip select will either enable or disable the additional cycle insertion be-
fore enabling the next access to devices controlled by the other chip selects.
Avalue of one enables and a value of zero disables the dummy cycle insertion.

Referring to the bit definition of the BS_CONFIG register in the first row of
Example 3-3 (for Chip Select 0 matrix), and assuming that the last access per-
formed was at a location that is within the Chip Select 0 space and the next
access to be made is to a device/memory location controlled by Chip Selects 2
or 4, then the additional cycles equal to the amount programmed onto the DC
field of the corresponding chip-select register is inserted before allowing the
next access. This way, no two devices will be driving the bus at the same time.

Example 3—-3. Sample Configurations for Chip Selects

Configuration Description

BS_CONFIG[4:0] = 01010 Insert dummy cycle when switching from CSO0 to CS2 or CS4
BS_CONFIG[9:5] = 00011 Insert dummy cycle when switching from CS1 to CS0 or CS2
BS_CONFIG[14:10] = 00000 Never insert dummy cycle when switching from CS2
BS_CONFIG[19:15] = 00000 Never insert dummy cycle when switching from CS3
BS_CONFIG[24:20] = 01101 Insert dummy cycles when switching from CS4 to CS0 or CS2 or CS3
BS_CONFIG[29:25] = 00001 Insert dummy cycle when switching from SDRAM to CS0O

Note that during insertion of dummy cycles, NO chip select will be active in order to make sure that there
is no device driving the bus.

3-22

3.6 ARM Memory Space

ARM Memory Space

The ARM memory space is shared between internal memory, the External
Memory Interface, the SDRAM Interface, and the ARM peripherals (see
Table 3-7). The Memory Interface provides five chip-select signals in addition
to the SDRAM interface that has its own chip-select signal.

Table 3-7. ARM Memory Space

Start Address

Stop Address

Allocated Size

Data Access

in Bytes
€S0 0000:0000 007F:FFFF 8M 8/16/32
Cs1 0080:0000 OOFF:FFFF 8M 8/16/32
Ccs2 0100:0000 017F:FFFF 8M 8/16/32
CS3 0180:0000 O1FF:FFFF 8M 8/16/32
CS4 0200:0000 027F:FFFF 8M 8/16/32
Reserved 0280:0000 OFFF:FFFF
SDRAM_CS 1000:0000 11FF:FFFF 32M 8/16/32
Reserved 1200:0000 FFBF:FFFF
Internal SRAM FFCO0:0000 FFCO:3FFF 16K 8/16/32
Reserved FFCO0:4000 FFCF:FFFF
EIM SRAM (VC5471) FFDO0:0000 FFDO:3FFF 16K 8/16/32
Reserved (VC5470)
Reserved FFDO0:4000 FFDF:FFFF
APl RAM FFE0:0000 FFEO:3FFF 16K 16/32
Reserved FFE0:4000 FFF3:FFFF
API registers FFE4:0000 FFE4:0001 2 16
Reserved FFE4:0002 FFFE:FFFF
EIM (VC5471) FFFF:0000 FFFF.07FF 2K 32
Reserved (VC5470)
UART_IRDA FFFF:0800 FFFF:OFFF 2K 32
UART FFFF:1000 FFFF:17FF 2K 32
12C FFFF:1800 FFFF:1FFF 2K 32
SPI FFFF:2000 FFFF:27FF 2K 32

Memory Interface (MEMINT) 3-23

ARM Memory Space

Table 3—7. ARM Memory Space (Continued)

Start Address Stop Address Allocated Size Data Access

in Bytes
GPIO FFFF:2800 FFFF:28FF 256 32
KBGPIO FFFF:2900 FFFF:29FF 256 32
TIMERO FFFF:2A00 FFFF:2AFF 256 32
TIMER1 FFFF:2B00 FFFF:2BFF 256 32
TIMER2 FFFF:2C00 FFFF:2CFF 256 32
INTH FFFF:2D00 FFFF:2DFF 256 32
MEMINT FFFF:2E00 FFFF:2EFF 256 32
CLKM FFFF:2F00 FFFF:2FFF 256 32
SDRAMIF FFFF:3000 FFFF:30FF 256 32
ARM_PLL FFFF:3200 FFFF:32FF 256 32
Reserved FFFF:3300 FFFF:FFFF

Note: As shown in Table 3-7, each chip-select signal controls a specific range of memory.

3-24

3.7 SDRAM

3.7.1

Introduction

SDRAM

Synchronous dynamic random-access memories (SDRAMs) are DRAMs that
have all of the conventional controls and data fully synchronized on a clock in-
put.

The SDRAM interface provides support for 16- and 32-bit configurations. Al-
though 8-bit data accesses are allowed, connecting a single 8-bit SDRAM ex-
ternally is not allowed. 16-bit configurations (for 8-, 16-, and 32-bit data ac-
cesses via a 16-bit data bus) can only be obtained by using a 16-bit-wide
SDRAM. 32-bit configurations (for 8-, 16-, and 32-bit accesses via a 32-bit
bus) can only be obtained by placing two 16-bit-wide SDRAMs in parallel. The
one exception to this is the 64-Mbit, 32-bit-wide SDRAM memory. Due to cost
savings, the 64-Mbit, 32-bit-wide SDRAM is the only 32-bit-wide SDRAM that
is supported. When needed, other sizes can be made up of multiple 16-bit-
wide SDRAM memories.

In order to differentiate between the two types of buses used (16-bit vs 32-bit),
the SDRAM interface memory register should be programmed accordingly, re-
flecting the real device size used.

SDRAM'’s synchronous design provides a simple user interface compared to
standard DRAMSs, which are basically asynchronous memories. SDRAM op-
erations are determined by commands sampled on an active edge of the
SDRAM clock.

Other differences between standard DRAMs and SDRAMs are the Burst mode
and the Mode register. The Burst mode is a high-speed access mode that uses
an internal address generator to supply the first column address. The following
addresses are internally generated. The mode register is used to store valid
operational parameters like burst length and CAS latency.

Memory Interface (MEMINT) 3-25

SDRAM

3.7.2 SDRAM IF Overview

The SDRAM interface (IF) receives all the parameters it needs from an exter-
nal controller, which also manages external requests, refresh, clock gating,
and the data bus.

The main features of the SDRAM memory interface are:

(1 It operates as part of the ARM memory interface (MEMINT) allowing
SDRAM memories to be used on the same board with Flash and/or
SRAM.

Supports 32-bit-wide and 16-bit-data-wide SDRAM interfaces
Up to 256M-bit chip-enabled (CE) space
Operates at the ARM clock speed

Flexible programming of SDRAM parameters

I Ny T N I

Supports up to four open pages of SDRAM

The SDRAM interface module is part of the memory interface. It effectively sits
between the ARM processor and an SDRAM controller. The SDRAM interface
receives and interprets read/write commands from the ARMSS and sends
them with correct timing to the SDRAM controller, which in turn generates the
correct combination on I/O pins. Connecting SDRAMS to the VC547x only re-
quires programming the appropriate SDRAM interface parameters.

Programming the SDRAM IF

3-26

The SDRAM interface is programmed through several dedicated registers.
SDRAM_REG of the memory interface is used to select the appropriate
SDRAM device size and the endianness used while reading and writing data.
Inside the SDRAM interface submodule itself, CONFIG, REFRESH, CON-
TROL, and INIT_CONF registers are used for programming other SDRAM
parameters. The SDRAM interface provides support for both 16- and 32-bit
configurations.

The 16-bit data configuration can be obtained from a single 16-bit-wide
memory. The 32-bit data configuration can be obtained by connecting two
16-bit-wide memories in parallel. The Memory Interface register,
SDRAM_REG, should also be programmed accordingly to reflect the real de-
vice data width used externally (32- or 16-bit). The sizes of the SDRAM sup-
ported are 16M bits, 64M bits, 128M bits, and 256M bits. This device informa-
tion needs to be programmed in the CONFIG register of the SDRAM interface
submodule.

SDRAM

Utilization of SDRAM

Precharge

Utilization of SDRAM inside the VC547x requires initialization of the SDRAM
interface. The VC547x SDRAM interface has limited burst access capabilities.
For all 32-bit-wide accesses, the SDRAM interface will burst-terminate after
each doubleword. If appropriately programmed, the SDRAM interface will per-
form a 2-word burst for all 16-bit-wide accesses.

Access begins with the registration of an ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address bits registered coincident
with the ACTIVE command are used to select the bank and row to be ac-
cessed. SDRAM_BA[1:0] (multiplexed with ADD[19:18]) are used to select the
bank and SDRAM_A[12:0]T (multiplexed with ADD[12:0]) are used to select
the ROW. The address bits SDRAM_A[9:0]* registered coincident with the
READ or WRITE command are used to select the starting column location for
the burst access. SDRAM_BA[1:0] select a particular bank that the READ or

WRITE is going to take place.
T SDRAM_A[12:0] is used for 256M bits.
SDRAM_A[11:0] is used for 64 and 128M bits.
SDRAM_A[10:0] is used for 16M bits.
¥ Column width depends on the physical data width of the device.

Autoprecharge does not apply in full-page burst mode. Before opening a differ-
ent ROW, a PRECHARGE command is used to deactivate the open row in a
particular bank or all banks. SDRAM_A10 is used to indicate the type of pre-
charge that takes place. If SDRAM_A10 is LOW then the current bank that is
being accessed will be precharged. If SDRAM_A10 is HIGH, then all BANKs
will be precharged. Once a bank is precharged, it will not be available until the
precharge time, TRP, is completed. All this is transparent to the user since the
SDRAM controller will handle the necessary control signal generation. The
user is responsible for programming the SDRAM Interface registers with the
correct values so that proper control signals are generated accordingly.

Memory Interface (MEMINT) 3-27

SDRAM Interface

Initialization

SDRAM must be initialized prior to normal operation. After applying power and
stable clock, the initialization process begins by programming the
SDRAM_REG register’ (most importantly data width). Then, the SDRAM in-
terface registers are programmed and the initialization state machine is kick-
started (by writing a 1 to the SDRAM_INIT field of the SDRAM_CNTL register)
to make the SDRAM ready for operation. A minimum of 100-us delay is re-
quired to make sure that initialization procedure has taken place properly. This
is achieved by programming the INIT_NOP_MAX_CNT field of the
SDRAM_INIT_CONEF register with cycle count that would at least make up a
100-ps time. See section 3.9 for registers definitions. The SDRAM controller
will setthe READY field within the SDRAM_CNTL register as an indication for
the user that the SDRAM is ready for operation.

tThe SDRAM_REG register could also be the last register of the SDRAM to program. You must
only make sure that it is programmed appropriately before reading or writing from the SDRAM.

The following steps are needed for initializing the SDRAM interface:

(1 Programming of SDRAM_REG in the memory interface module

[Programming of SDRAM parameters in the SDRAMIF submodule

[Write a 1 to the SDRAM_INIT bit of the SDRAM_CNTL register

(1 Waituntilalisread inside the READY bit of the SDRAM_CNTL register.

See section 3.5.5 for register definitions of the SDRAM_REG register and see
section 3.9 for register definitions of the SDRAM Interface Registers.

3.7.3 Supported Devices

The SDRAM IF has been designed to support 16M-bit, 64M-bit, 128M-bit, and
256M-bit SDRAM memories.

3.8 SDRAM Interface

3-28

The TMS320VC547x SDRAM interface supports 2-bank 16M-bit SDRAM and
4-bank 64M-/128M-/256M-bit SDRAM, providing an interface to high-speed
and high-density memory.

SDRAM IF Registers

3.9 SDRAM IF Registers

Base address (hex): FFFF:3000

Bit width: 32 bits

Table 3-8. SDRAM IF Registers

Register Description ggfgféss
SDRAM_CONFIG SDRAM Configuration Register 00h
SDRAM_REF_COUNT SDRAM Refresh Counter Register 04h
SDRAM_CNTL SDRAM Control Register 08h

SDRAM_INIT_CONF

SDRAM Initialization Refresh Counter Register 0Ch

SDRAM_REG

SDRAM_CS is one of the SDRAM control signals used to select SDRAM me-
mories when the VC547x device is required to perform accesses.
SDRAM_REG is the register used to customize the behavior of the
SDRAM_CS signal while interfacing to different types of SDRAM memories.
The SDRAM_REG register, part of the MEMINT register file, is used to indicate
the data width of the SDRAM data bus as well as the endianism type of access
that is used during READ and WRITE operations.

SDRAM_REG is a programmable register that is used to customize the inter-
face between the ARMSS and the external SDRAM.

For SDRAM_REG definitions, see Section 3.5.5, SDRAM Data Bus Size Con-

trol Register, on page|3-18.]

Memory Interface (MEMINT) 3-29

SDRAM IF Registers

3.9.1 SDRAM Configuration Register

Figure 3-9. SDRAM Configuration Register (SDRAM_CONFIG)

Base address = OxFFFF:3000, Offset Address = 0x0000

31-21
Reserved
RW-0
20-19 18 17 16 15 14
SD_SIZE SD_BANK SD _CDIV | OPT_ON_OFF | SD_CKE Reserved
RwW-0 RW-0 RW-0 RW-0 RO-0
13 12 11-9 8-7
SDRAM_
32 BIT SD_SLFR SD_TRAS SD_TRP
RwW-0 RW-0 RW-0 RW-0
6-3 2-0
SD_TRC SD_TCAS
RW-0 RW-0

Note: R = Read access; W = Write access; O = Read only; value following dash (=) = value after reset

Bits 31-21 Reserved. These bits are reserved (read as zeros).

Bits 20-19 SD_SIZE. Size of the SDRAM memory.

00 16M bits (size of row 11)
01 64M bits (size of row 12)
10 128M bits (size of row 12)
11 256M bits (size of row 13)

Bit 18 SD_BANK. Number of banks.

0 Two banks (for 16M bits)
1 Four banks (for 64M bits, 128M bits, and 256M bits)

3-30

Bit 17

Bit 16

Bit 15

Bit 14

Bit 13

Bit 12

SDRAM IF Registers

SD_CDIV. Clock divider

0 No division
1 SDRAM_CLK = SDRAM_CLK_IN/2

OPT_ON_OFF. SDRAM Controller optimization flag. Should be set to
OFF for normal SDRAM operation. ON is a debug feature.

0 Optimization off

1 Optimization on

SD_CKE. Clock Enable. This read-only bit monitors the signal
GPIO5/SDRAM_CKE as defined below.

0 Clock disabled

1 Clock enabled

Reserved.

SDRAM_32_BIT. Selects between 32-bit-wide or 16-bit-wide memo-
ries.
0 16-bit-wide memories are used

1 A single 32-bit-wide memory is used (only applies for
64-Mbit device)

SD_SLFR. Self-refresh request.

When in self-refresh mode, the SDRAM retains data without external
clocking. Once self-refresh mode is engaged, the SDRAM provides its
own internal clocking, causing it to perform its own refresh cycles.

0 Exit self-refresh mode
1 Enter self-refresh mode

To enter self-refresh mode:

1. Configure GPIO5/SDRAM_CKE for CKE mode.
(GPIO_EN [FFFF:2814] bit 5, GPIO_EN_5 = 0)

2. Configure GPIO5/SDRAM_CKE for output mode.
(GPIO_CIO [FFFF:2804] bit 5, GPIO_CIO_5=0)

3. Put the SDRAM into self-refresh mode (SDRAM_CONFIG
[FFFF:3000] bit 12, SD_SLFR = 1). When activated, this
bit will drive the GPIO5/SDRAM_CKE line low and force

the autorefresh logic to produce one more refresh cycle.
This sequence will put the SDRAM into self-refresh mode.

Memory Interface (MEMINT) 3-31

SDRAM IF Registers

3-32

Bits 11-9

Bits 8—7

To exit self-refresh mode:

1. The SDRAM is still in self-refresh mode until the ARM
produces the first autorefresh. Properly set up the clock
delay time before the first autorefresh is issued after the
ARM exits self-refresh mode. (SDRAM_CONFIG
[FFFF:3000] bits[11:9], SD_TRAS)

2. Force the ARM to exit self-refresh mode and restart the
autorefresh process. (SDRAM_CONFIG [FFFF:3000]
bit 12, SD_SLFR =0)

SD_TRAS. RAS latency in SDRAM clock cycles.

The minimum amount of time that the SDRAM should remain in self-
refresh mode (once it has entered this mode). When the SDRAM is in
self-refresh mode, the SDRAM is capable of retaining data even if the
rest of the system is down without external clocking (minimum 42 ns,
which gives 2 cycles at 47.5 MHz).

000 2 SDRAM clock cycles
001 3 SDRAM clock cycles
010 4 SDRAM clock cycles
011 5 SDRAM clock cycles
100 6 SDRAM clock cycles
101 7 SDRAM clock cycles
110 8 SDRAM clock cycles
111 9 SDRAM clock cycles

SD_TRP. TRP latency in SDRAM clock cycles.

Delay (latency), in clock cycles, for availability of a next row access
within a bank(s) once the row has been deactivated, i.e., precharged.
(minimum 21.05 ns , which gives 1 cycle at 47.5 MHz)

00 2 SDRAM clock cycles
01 3 SDRAM clock cycles
10 4 SDRAM clock cycles
11 5 SDRAM clock cycles

SDRAM IF Registers

Bits 6-3 SD_TRC. TRC latency in SDRAM clock cycles.

The minimum time interval between successive ACTIVE commands
to the same bank (minimum 70 ns , which gives 4 cycles at 47.5 MHz)

0000 2 SDRAM clock cycles
0001 3 SDRAM clock cycles
0010 4 SDRAM clock cycles
0011 5 SDRAM clock cycles
0100 6 SDRAM clock cycles
0101 7 SDRAM clock cycles
0110 8 SDRAM clock cycles
0111 9 SDRAM clock cycles
1000 10 SDRAM clock cycles
1001 11 SDRAM clock cycles
1010 12 SDRAM clock cycles
1011 13 SDRAM clock cycles
1100 14 SDRAM clock cycles
1101 15 SDRAM clock cycles
1110 16 SDRAM clock cycles
1111 17 SDRAM clock cycles

Bits 2-0 SD_TCAS. CAS latency in SDRAM clock cycles.

Specifies the READ to data-out delay.

001 CASlatency=1
010 CASlatency =2
011 CASlatency =3

Delay (latency), in clock cycles, between the registration of a READ
command and the availability of the first piece of output data.

Note: In order to maximize random short read performances, itis rec-
ommended that the lowest allowed CAS latency value be used.

Memory Interface (MEMINT) 3-33

SDRAM IF Registers

3.9.2 SDRAM Refresh Counter Register

Figure 3-10. SDRAM Refresh Counter Register (SDRAM_REF_COUNT)

Base address = OxFFFF:3000, Offset Address = 0x0004

31-19 18-16 15-0
Reserved DIVIDER REFRESH_COUNTER
RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash () = value after reset

Bits 31-19

Bits 18-16

Bits 15-0

3-34

Reserved. These bits are reserved (read as zeros).

DIVIDER. SDRAM refresh counter predivider.

000 divide by 1
001 divide by 2
010 divide by 4
011 divide by 8
100 divide by 16
101 divide by 32
110 divide by 64
111 divide by 128

Since the resolution of the REFRESH_COUNTER field is large, the
pre-divider can be used (but not useful) for the VC547x device. This
field is better left in its default value (zero) so that the SDRAM clock is
not scaled.

REFRESH_COUNTER. Refresh counter value in SDRAM clock
cycles.

This value is loaded when the refresh down counter goes through zero
or when it starts.

The value that is loaded here is determined based on the type and the
speed of the SDRAM used. The formula to calculate this value is:

TREF / (RowTotal * SDRAM_CLK Period)

TREF is the required refresh time interval (usually in milliseconds) to
refresh a single bank.

SDRAM IF Registers

RowTotal is the total number of rows within all banks.
SDRAM_CLK Period is one SDRAM clock period value.

For a 16M-bit SDRAM that requires a refresh every 64 ms, with the
SDRAM clk equal to the CPU clock running at 47.5 MHz (21.05 ns):

Since a 16M-bit SDRAM has 2 banks and the row resolution is
11 bits, this implies that we have a total of 2 * 211 = 4096 Rows.
REFRESH_COUNTER Value 64*10—-3/(4096 * 21.05*10-9)
742.28

Any value less than 742.28 (e.g., 700) will be a good value to use for
this scenario.

3.9.3 SDRAM Control Register

Figure 3—11.SDRAM Control Register (SDRAM_CNTL)

Base address = OxFFFF:3000, Offset Address = 0x0008

31-2 1 0
Reserved READY SDRAM_INIT
RW-0 R-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-2

Bit 1

Bit 0

Reserved. These bits are reserved (read as zeros).

READY. This bitis used by the Initialization State Machine to indicate
to the user when the initialization has completed and the SDRAM is
ready for Read/Write operation.

0 SDRAM not ready
1 SDRAM ready

SDRAM_INIT. SDRAM initialization bit. This bit is used to kick-start
the Initialization State Machine to start initializing the SDRAM once all
register programming has taken place.

0 Do not initialize SDRAM
1 Initialize SDRAM (self-clearing bit)

Memory Interface (MEMINT) 3-35

SDRAM IF Registers

3.9.4 SDRAM Initialization Refresh Counter Register

Figure 3—-12. SDRAM Initialization Refresh Counter Register (SDRAM_INIT_CONF)

Base address = OxFFFF:3000, Offset Address = 0x000C

31-18 17-14 13-0
Reserved INIT_REF_MAX_CNT INIT_NOP_MAX_CNT
RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-18 Reserved. These bits are reserved (read as zeros).

Bits 17-14 INIT_REF_MAX_CNT.

A counter used to store the total number of autorefresh cycles that
must be performed once the SDRAM is in IDLE state, i.e., past the
100-ps delay (during initialization phase) and all bank precharge has

taken place. Any value above five will be satisfactory.

Bits 13-0 INIT_NOP_MAX_CNT.

Clock cycle count that is equivalent to a minimum of 100-pus time. Dur-
ing this time, the Initialization State Machine applies the NOP com-

mand to the SDRAM, as is required by SDRAMSs.

3-36

Waveforms

3.10 Waveforms

3.10.1 Waveforms of Read/Write Operations With Rows Enabled/Disabled
3.10.1.1 Write Waveform With Bank Already Activated

Figure 3—13. Write Operation With Row Already Enabled — Parameters: tcas = 2, trc = 4,
trp=1

SDRAM_NCS \ /
SDRAM_Data X X

SDRAM_DQM ob11 X 0b00 X 0b11
SDRAM_OP nop X Write X bst X nop
SORAW FAS / \
s /NC/ \
SDRAM_WE / \ /\

Memory Interface (MEMINT) 3-37

Waveforms

3.10.1.2 Read Waveform With Bank Already Activated

Figure 3—-14. Read Operation With Row Already Activated — Parameters: tcas = 2, trc = 4,
trp=1

e /NN NN\ NN\ NSNS

SDRAM_NCS \ /

—\ . S\ .

SDRAM_Data High-Z Data High-Z
N > g { > g

SDRAM_DQM 0b11 X 0b0O0 X 0b11

SDRAM_OP nop X Read X bst X nop

SDRAM_RAS / \
SDRAM_CAS M
SDRAM_WE / \ /_\

3-38

Waveforms

3.10.1.3 Write Waveform With Bank Not Activated

Figure 3—15. Write Operation With Row Disabled — Parameters: tcas =2, trc =4, trp=1

SDRAM_NCS \ /

SDRAM_Data X X

SDRAM_DQM Obi1 X 0b00 X 0b11

SDRAM_OP nop X Act X nop X Write X bst X nop

SDRAM_RAS / \ /
SDRAM_CAS / \ / \

SDRAM_WE

Memory Interface (MEMINT) 3-39

Waveforms

3.10.1.4 Read Waveform With Bank Not Activated

Figure 3—-16. Read Operation With Row Disabled — Parameters: tcas = 2, trc = 4

ANV WAV WA WA WA W

SDRAM_NCS \ /

— . .

SDRAM_Data High-Z: Data High-Z==—
_ > g { »—Hig
SDRAM_DQM ob11 X 0b00 X Obi1

SDRAM_OP nop X Act X nop X Read X bst X nop

SDRAM_RAS / \ /
SDRAM_CAS / \ / \

SDRAM_WE

3-40

Waveforms

3.10.2 Waveforms With External Transactions (8-, 16-, and 32-Bit Devices)

The following waveforms show external transactions for 8-, 16-, and 32-bit de-
vices with different write, wait-state, and endianness parameters.

Figure 3—17. 8-Bit Device Transaction in Little Endian

WAIT

ADD[22:0] X oxo000 X X 0x0001 X 0x0000 X X
RAW \ / N/ \ /

0b1110
BEB.0] Ob1111 X 0b1110 X 0billl)é)@(omno 0b1111
0b1111

o n_/ |

8-bit device in little endian 8-bit device in little endian
8-bit access with one wait state 16-bit access with zero wait state

Figure 3—18. 32-Bit Write Access on 8-Bit Big-Endian Device With One Wait State

T\ /
pooizzo) X w000 X owooor X owoo0z X oxoo0s X
oniszol X X X X X

N2 2 N2 U

BE[3:0] 0b1111 X 0b1110)O(0b1110)O(0b1110)O(0b1110 X 0b1111
OE _/ \—

8-bit device in big endian]
32-bit write access with one wait state

Memory Interface (MEMINT) 3-41

Waveforms

Figure 3—-19. 32-Bit Write Access on 8-Bit Little-Endian Device With One Wait State

WAT O\ /
poozzo) X ooos X ooz X oot X o0 X
oamsza X X X X X

N A N AN AN 2

BE[3:0] 0b1111 X 0b1110)O(0b1110)O(0b1110)O(0b1110 X 0b111l
OE _/ \—

8-bit device in little endian)
32-bit write access with one wait state

3-42

Waveforms

Figure 3-20. 8-Bit Accesses on 32-Bit Device

LTS VLA VAVAVAVAVAVAVAVAVAVAVA

ADDI[22:0] X ox0000 X ox0001 X o0x0002 X o0x0003 X X

DATA[31:0] X X X X X X
cs@ojcss \ o
N N YA A N
€& __/ |

Four 8-bit write accesses on consecutive addresses on 32-bit device with one wait state

Memory Interface (MEMINT) 3-43

Waveforms

Figure 3-21. 16-Bit accesses on 32-Bit Device

ARM_CLK_N_ADV _/__/__/__/__/__/__
ADDJ[22:0] X oxo000 X oxo002 X
DATA[31:0] X X X

csEolcss \ /S

rRW \ /\ Yo

BE[3:0] 0b1111 X 0b1100)O(0b1100 X Obl11l

OE \
Two 32-bit write accesses on consecutive addresses
on 32-bit device with one wait state

3-44

Waveforms

Figure 3-22. 32-Bit Accesses on 32-Bit Device

o N/ N/
ADDJ[22:0] X oxo000 X ox0004 X
DATA[31:0] X X X
CS[3:0]/CS4 _\ /—
RW — \ /\ /S

BE[3:0] O0b1111 X 0b000O)O(oboooo X Ob1111

OE \
Two 32-bit write accesses on consecutive addresses
on 32-bit device with one wait state

Memory Interface (MEMINT) 3-45

Chapter 4

Interrupt Handler

This chapter provides a functional description of the Interrupt Handler (INTH)
in the TMS320VC547x DSP device, describes the ARM™ microcontroller unit
(MCU) interrupt requests, and shows the MCU accessible registers.

The Interrupt Handler is associated with the ARM ™ microcontroller unit (MCU)
of the dual-core (MCU + DSP) VC547x device.

Topic Page
4.1 Functional DesCriptionc.uiiiii i 4-2
4.2 MCU INTEITUPES .o e e e 4-3
4.3 ARM Memory-Mapped Registersiiiiiiiiiiinnann. 4-7

Functional Description

4.1 Functional Description

The ARM7 owns two interrupt lines: IRQ (low-priority interrupt request) and
FIQ (fast interrupt request). To the ARM processor, the FIQ interrupt is of high-
er priority than the IRQ interrupt, and the IRQ interrupt is automatically masked
when entering the FIQ handler (by hardware).

Passing Interrupts to the ARM Processor

In the VC547x, sources of interrupts do not go directly to the ARM processor;
instead, they go through the interrupt handler, which is fully programmable and
provides up to 16 prioritized and maskable interrupts (IRQ0-15) to the ARM
core. Therefore, itis the software’s responsibility to configure the interrupt han-
dler for correct passing of interrupts to the ARM processor.

The ARM core receives interrupts from internal modules and from the external
chip environment. External interrupts are received by the interrupt handler via
the general-purpose I/O (GPIO) pins. Each incoming interrupt can be individu-
ally masked using the Mask Interrupt register. One Interrupt Level Register
(ILR) is associated with each incoming interrupt. Each interrupt can be individ-
ually configured for falling edge enable of an input interrupt line of the ARM
core by setting the appropriate bit in the corresponding ILR. All on-chip periph-
erals are associated with the irg_lines (see Figure 4-1). (The input pins to the
interrupt handler are all named irg_lines, but indeed, you have to set up the
interrupt handler to define where each input line goes. You can route it to either
IRQ or FIQ and define the priority and the active level. It is inside the interrupt
handler that you decide, by software, if an interrupt should be an FIQ or an

IRQ.)

Management of FIQ and IRQ Interrupts

The management of the FIQ and IRQ interrupts is done in parallel inside the
interrupt handler module. In addition, IRQ and FIQ outputs can be reset by
software using dedicated bits in the Control register.

The ILR is also responsible for assigning a priority to the corresponding inter-
rupt. If several interrupts have the same priority level, they are sentin a prede-
fined order. (See section 4.3.7, Interrupt Level Registers (Read/Write).)

MCU Interrupts

In addition, the ARM clock must time this module. The latency from an incom-
ing interrupt to the output interrupt generation depends on the number of inter-
rupts arriving at the same time.

(1 Ifthere is only one, the latency is five ARM clock cycles.

[[fallinterrupts become active at the same time and are routed to the same
output interrupt, the latency can reach 3 + N x 2 ARM cycles (where
N = number of incoming interrupts).

A part of the power management function is also implemented in this module.

4.2 MCU Interrupts

In the VC547x device, the IRQO-IRQ15 INTH input lines are associated with
the on-chip peripherals as shown in Table 4-1 and Figure 4-1. The ARM7
core has two interrupt requests: IRQ and FIQ. The INTH input interrupts
(IRQO0-IRQ15) can be individually routed to either of the two ARM interrupt re-
quests by setting the appropriate bit in the configuration register.

Table 4-1. ARM Peripherals Interrupt Mapping

IRQ Request Interrupt
IRQO Watchdog TIMERO interrupt
IRQ1 TIMERL interrupt
IRQ2 TIMERZ2 interrupt
IRQ3 GPIOO interrupt
IRQ4 Ethernet interface interrupts (VC5471)

1. transmit interrupt

2. receive interrupt

3. system error
Reserved (VC5470)

IRQ5 KBGPIO[7:0] interrupts

Interrupt Handler 4-3

MCU Interrupts

Table 4-1. ARM Peripherals Interrupt Mapping (Continued)

IRQ Request

Interrupt

IRQ6

IRQ7

IRQ8
IRQ9
IRQ10
IRQ11
IRQ12

IRQ13

IRQ14

IRQ15

UART interrupts

1.

©ONoGOHWN

error on receive line

receive timeout

received character

character to transmit

status change

received XOFF/special character detected
CTS/RTS deactivation

CTS/RxD activity detection (only in OFF mode)

UART_IRDA interrupts

1.
2.
3.
4.
5.
6.
7.

error on receive line

receive timeout

received character

character to transmit

status change

received XOFF/special character detected
CTS/RTS deactivation

KBGPIO[15:8] interrupts

GPIO3 interrupt

GPIO2 interrupt

I12C interrupts

GPIO1 interrupt

SPI interrupts

1.
2.

received data
data to transmit

GPIO[19:4] interrupts

API interrupt

4-4

MCU Interrupts

Figure 4-1. ARM Peripheral Interrupt Mapping Diagram

TIMERO_INT |
{ TIMERO |
TIMERL_INT |
~IRQO | TIMER1 |
" IRQ1 TIMERZ_INT |
< [TMER2 |
IRQ2
RQ3 EIM_INT (VC5471) EIM (VC5471)
_ IRQ4 | Reserved (VC5470)
~ IRQ5 UART_INT | —
__ " IRQ6 | ' |
IRQ —— < IDA_INT |
_— INTH IRQ7 : { UARTIDA |
FIQ ——] < ,
~ IRQ8 /1. KBGPIO(I5:8)_INT
~ IRQ9) —_—
<R | — GPIO3_INT
IRQ10
< | GPIO2_INT
IRQ11
< GPIOL_INT
IRQ12 | =
< GPIO
~ IRQ13 L KBGPIO(7:0)_INT
~ IRQ14 (N
: IRQ15 | L GPIO(19:4)_INT
— GPIOO_INT
12C_INT |
| 12C |
SPLINT |
{ SPI |
APLINT |
| AP |

4.2.1 Internal Registers

Internal registers are not accessible by the MCU. One group is dedicated for
processing IRQs and the other for processing FIQs.

1) Processed IRQ (P_IRQ)—Processed FIQ (P_FIQ): Each time an Interrupt
has been processed (to determine if it is the next interrupt to be sent to the
MCU), the corresponding bit is set to 1.

2) NextIRQ (N_IRQ) — Next FIQ (N_FIQ): Holds the next incoming interrupt
to be sent to IRQ or FIQ.

Interrupt Handler 4-5

MCU Interrupts

4.2.2

4-6

Interrupt Sequence

This section describes the sequence in which interrupts occur. Because the
IRQ and FIQ treatments are exactly identical, the following sequence only de-
scribes the IRQ interrupt:

a

a

One or several incoming interrupts go down, setting the corresponding bit
or bits in the Interrupt register.

At this time, there are two possible cases:

B Thereis only one incoming interrupt that is active: If IRQ is not
already active, the interrupt handler sends an IRQ.

B Thereareseveralincominginterrupts that are active: In this case,
the interrupt handler must determine which is the new interrupt to be
serviced. To do this, it compares the priority level of an interrupt with
the one held in a dedicated internal register (N_IRQ) and stores the
one having the highest priority in N_IRQ. It continues this operation
until all active interrupts have been processed. If IRQ is not already
active, the interrupt handler sends an IRQ.

When an IRQ is sent, the Source IRQ register is updated (indicating the
interrupt contained in N_IRQ) and the priority resolver is reset (and re-
started if necessary)

To know which incoming interrupt has requested an MCU action, the soft-
ware must read the Source IRQ register. (Only one bit of this register can
be active at any time; this bit indicates the active IRQ interrupt.) After that,
the software runs the corresponding subroutine.

To finish this sequence, MCU software must set a dedicated bit
(NEW_IRQ_AGR) in the Control register in order to reset the IRQ output
and the Source IRQ register, and thus, to allow a new IRQ generation.

ARM Memory-Mapped Registers

4.3 ARM Memory-Mapped Registers
Base address (hex): FFFF:2D00
Register width: 32 bits

All of these registers are controlled directly by the internal VC547x system bus.

Table 4-2. ARM Memory-Mapped Registers

Offset
Register Description Address
IT_REG Interrupt Register 00h
MASK_IT_REG Mask Interrupt Register 04h
SRC_IRQ_REG Source IRQ Register 08h
SRC_FIQ_REG Source FIQ Register 0Ch
Reserved 10h
INT_CTRL_REG Interrupt Control Register 18h
ILR_IRQ_O Interrupt Level Register O 1Ch
ILR_IRQ_1 Interrupt Level Register 1 20h
ILR_IRQ_2 Interrupt Level Register 2 24h
ILR_IRQ_3 Interrupt Level Register 3 28h
ILR_IRQ_4 Interrupt Level Register 4 2Ch
ILR_IRQ_5 Interrupt Level Register 5 30h
ILR_IRQ_6 Interrupt Level Register 6 34h
ILR_IRQ_7 Interrupt Level Register 7 38h
ILR_IRQ_8 Interrupt Level Register 8 3Ch
ILR_IRQ_9 Interrupt Level Register 9 40h
ILR_IRQ_10 Interrupt Level Register 10 44h
ILR_IRQ_11 Interrupt Level Register 11 48h
ILR_IRQ_12 Interrupt Level Register 12 4Ch
ILR_IRQ_13 Interrupt Level Register 13 50h
ILR_IRQ_14 Interrupt Level Register 14 54h

Interrupt Handler 4-7

ARM Memory-Mapped Registers

Table 4-2. ARM Memory-Mapped Registers (Continued)

Offset
Register Description Address
ILR_IRQ_15 Interrupt Level Register 15 58h
IRQ_SLEEP_REG IRQ Sleep Register 5Ch

4.3.1 Interrupt Register

In case of an edge-sensitive interrupt, the Interrupt register stores an incoming
interrupt. When the MCU accesses SRC_IRQ_REG or SRC_FIQ_REG regis-
ter, the bit corresponding to the interrupt which has requested MCU action is

reset.

The MCU can also clear each bit individually. To do this, the MCU must write
a zeroto the corresponding bits atthe IT_REG address (the other bits will keep
their previous value). This can be used just before the MCU unmasks some
interrupts, and thus, “forgets” some interrupt occurrences.

The MCU can read this register. For an incoming edge-sensitive interrupt, the
read value corresponds to the value held in the storage element.

Figure 4-2. Interrupt Register (IT_REG)
Base address = OxFFFF:2D00, Offset Address = 0x0000
31-16
Reserved

15 14 13 12 11 10 9 8
IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0
IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQO
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

4-8

ARM Memory-Mapped Registers

Bits 31-16 Reserved.
Bit 15 IRQ15. It stores an incoming interrupt.

Read access:

— Edge-sensitive Value held in the storage element
interrupt:

Write access:

0 IRQ15 is cleared

1 IRQ15 keeps its previous value
O O
Bit 0 IRQO. It stores an incoming interrupt.

Read access:

— Edge-sensitive Value held in the storage element
interrupt:

Write access:
0 IRQO is cleared
1 IRQO keeps its previous value

Interrupt Handler 4-9

ARM Memory-Mapped Registers

4.3.2 Mask Interrupt Register
Each incoming interrupt can be individually masked by this register.

MASK _IT_REG operates after IT_REG. This means that occurrences of in-
coming interrupts are always stored in IT_REG.

Figure 4-3. Mask Interrupt Register (MASK_IT_REG)
Base address = OxFFFF:2D00, Offset Address = 0x0004

31-16
Reserved
15 14 13 12 11 10 9 8
IRQ_15_ IRQ_14 IRQ_13_ IRQ_12_ IRQ_11_ IRQ_10_ IRQ 9 IRQ 8 _
MSK MSK MSK MSK MSK MSK MSK MSK
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
IRQ 7 MSK | IRQ_6_ MSK | IRQ 5 MSK | IRQ 4 MSK | IRQ_3 MSK | IRQ_2 MSK | IRQ_1_MSK | IRQ_0_MSK
RwW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
Note: R = Read access; W = Write access; value following dash (=) = value after reset
Bits 31-16 Reserved.
Bit 15 IRQ_15 MSK. Disable IRQ_15 interrupt
g g
Bit 0 IRQ_0_MSK. Disable IRQ_O0 interrupt

4-10

ARM Memory-Mapped Registers

4.3.3 Source IRQ Register

Indicates the active IRQ interrupt. Only one bit of this register is active at a giv-

en time.

Figure 4-4. Source IRQ Register (SRC_IRQ_REG)
Base address = OxFFFF:2D00, Offset Address = 0x0008

31-16
Reserved
15 14 13 12 11 10 9 8
IRQ15_ IRQ14 IRQ13_ IRQ12_ IRQ11_ IRQ10_ IRQ9_ IRQ8_

IRQ IRQ IRQ IRQ IRQ IRQ IRQ IRQ
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

IRQ7_IRQ IRQ6_IRQ IRQ5_IRQ IRQ4_IRQ IRQ3_IRQ IRQ2_IRQ IRQ1_IRQ IRQO_IRQ

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (-) = value after reset

Bits 31-16 Reserved.

Bit 15 IRQ15_IRQ. Indicates the active IRQ interrupt.
0 IRQ15 is not the active interrupt
1 IRQ15 is the active interrupt

O O

Bit 0 IRQO_IRQ. Indicates the active IRQ interrupt.
0 IRQO is not the active interrupt
1 IRQO is the active interrupt

Interrupt Handler

4-11

ARM Memory-Mapped Registers

4.3.4 Source FIQ Register

Indicates the active FIQ interrupt. Only one bit of this register is active at a
given time.

Figure 4-5. Source FIQ Register (SRC_FIQ_REG)
Base address = OxFFFF:2D00, Offset Address = 0x000C

31-16
Reserved
15 14 13 12 11 10 9 8
IRQ15 IRQ14_ IRQ13_ IRQ12_ IRQ11_ IRQ10_ IRQ9_ IRQ8_

FIQ FIQ FIQ FIQ FIQ FIQ FIQ FIQ
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

IRQ7_FIQ IRQ6_FIQ IRQ5_FIQ IRQ4_FIQ IRQ3_FIQ IRQ2_FIQ IRQ1_FIQ IRQO_FIQ

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

Note: R = Read access; value following dash (-) = value after reset

4-12

Bits 31-16 Reserved.

Bit 15 IRQ15_FIQ. Indicates the active FIQ interrupt.
0 IRQ15 is not the active interrupt
1 IRQ15 is the active interrupt

O O

Bit 0 IRQO_FIQ. Indicates the active FIQ interrupt.
0 IRQO is not the active interrupt
1 IRQO is the active interrupt

ARM Memory-Mapped Registers

4.3.5 Interrupt Control Register

Figure 4—6. Interrupt Control Register (INT_CTRL_REG)
Base address = OxFFFF:2D00, Offset Address = 0x0018

31-2 1 0
Reserved NEW_FIQ_AGR NEW_IRQ_AGR
RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-2 Reserved.

Bit 1 NEW_FIQ_AGR. New FIQ agreement.
Reset FIQ output. Clear source FIQ register. Enables a new FIQ gen-
eration

Reset by internal logic.

Bit 0 NEW_IRQ_AGR. New IRQ agreement.
Reset IRQ output. Clear source IRQ register. Enables a new IRQ gen-
eration

Reset by internal logic.

Note: IRQ (FIQ) output and SRC_IRQ_REG and SRC_IRQ_BIN_REG
(SRC_FIQ_REG) registers are reset only if the bit in the Interrupt register
(IT_REG) corresponding to the interrupt having requested MCU action is al-
ready cleared or masked.

For an edge-sensitive interrupt, the Interrupt register bit is deactivated when
readingthe SRC_IRQ_REG or SRC_IRQ _BIN_REG (SRC_FIQ_REG)regis-
ters.

4.3.6 IRQ Sleep Register

Figure 4-7. IRQ Sleep Register (IRQ_SLEEP_REG)
Base address = OxFFFF:2D00, Offset Address = 0x005C

31-1 0
Reserved IRQ_SLEEP
RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Interrupt Handler 4-13

ARM Memory-Mapped Registers

Bits 31-1 Reserved.

Bit 0 IRQ_SLEEP. When set to 1, stops the state machine. Should be set
to 0 for normal usage

4.3.7 Interrupt Level Registers (Read/Write)
There is one ILR_IRQ register per incoming IRQ interrupt.

Base address = OxFFFF:2D00

Table 4-3. Offset Addresses of Interrupt Level Registers 0-15 (ILR_IRQ 0 — ILR_IRQ_15)

Corresponding

Offset Address (Hex) Name Interrupt
0x001C ILR_IRQ_O irq_0
0x0020 ILR_IRQ_1 irg_1
0x0024 ILR_IRQ_2 irq_2
0x0028 ILR_IRQ 3 irq_3
0x002C ILR_IRQ 4 irq_4
0x0030 ILR_IRQ 5 irq_5
0x0034 ILR_IRQ_6 irq_6
0x0038 ILR_IRQ 7 irq_7
0x003C ILR_IRQ 8 irq_8
0x0040 ILR_IRQ_9 irq_9
0x0044 ILR_IRQ_10 irg_10
0x0048 ILR_IRQ_11 irq_11
0x004C ILR_IRQ_12 irq_12
0x0050 ILR_IRQ 13 irq_13
0x0054 ILR_IRQ_14 irq_14
0x0058 ILR_IRQ 15 irq_15

Since all ILR_IRQ registers are the same, only ILR_IRQ_0 is shown (see
Figure 4-8).

4-14

ARM Memory-Mapped Registers

4.3.8 Interrupt Level Register O

Figure 4-8. Interrupt Level Register 0 (ILR_IRQ_0)

Base address = OxFFFF:2D00, Offset Address = 0x001C (see Table 4-3 for
other offset addresses)

31-6 5 4-1 0
Reserved SENSE_EDGE PRIORITY FIQ
RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-6 Reserved.
Bit 5 SENSE_EDGE.

0 The corresponding interrupt is disabled.

1 The corresponding interrupt is falling-edge sensitive en-

abled.

Bits 4-1 PRIORITY. Defines the priority level when the corresponding interrupt

is routed to IRQ.

0 Is the highest priority level

N-1 Is the lowest priority level
Bit 0 FIQ.

0 The corresponding interrupt is routed to IRQ.

1 The corresponding interrupt is routed to FIQ.

Predefined Order in Case of Identical Priority Level

Assuming that all interrupts have the same priority level and are active at the
same moment, the order of servicing will be: IRQ_15, IRQ_14, IRQ_O.

Interrupt Handler 4-15

Chapter 5

Clock Management Module

This chapter provides an overview of the clock management module, de-
scribes the three modes of clock operation for both the DSP and ARM subsys-
tems, shows the clock module registers, and discusses the phase-locked loop
(PLL) clock source.

Topic Page
5.1 Clock Management Module Overview 5-2
5.2 Clock Module Register Tables E
5.3 DSP Subsystem Control ...t 5-7
5.4 ARM Subsystem Control e 5-11
5.5 Phase-Locked Loop (PLL) ..., 5-22

5-1

Clock Management Module Overview

5.1 Clock Management Module Overview

The ARM subsystem clock management module in the VC547x device is in
charge of controlling clock activity for the DSP, MCU, and peripherals. It in-
cludes configuration registers for DSP and MCU clock frequency program-
ming. The clock module also manages the reset of all modules connected to
the MCU.

Specifically, the clock module is responsible for managing the clock used in-
side the ARM subsystem. This module also manages the different reset sig-
nals found inside the ARM subsystem as well as the DSP clock generator dur-
ing a start-up or reset condition. Once the ARM subsystem clock module initial-
izesthe DSP clock generator operation, the DSP can change its clock frequen-
cy by reprogramming its own CLKMD register. Both the ARM and DSP PLLs
are software-programmable resulting in a high level of flexibility to generate
independent clock frequencies used by both subsystems. The ARM subsys-
tem clock module is software controllable through a set of registers that allow
application software to selectively stop any clock, reset a module, and control
the DSP PLL, as well as the boot mode of the DSP, through control of the
MPNMC and APIBN signals.

Both the ARM PLL and the DSP PLL are software-programmable. Immediate-
ly following reset or power-up, the content of the respective registers
(PLL_REG_ARM and CLKMD_DSP) for both subsystems depends upon the
status of the programmable ports on their respective PLLs. For the ARM sub-
system, these ports are hardwired so that programmable capability of the de-
fault mode is not available. For the DSP subsystem, the programmable ports
to the DSP PLL are connected to the output of a register that is controlled by
ARM. This allows the DSP PLL default values to be programmable under con-
trol of the ARM subsystem; and consequently, the ARM subsystem initializes
the DSP clock generator via software. The six ports that are connected to each
PLL initialize the PLLMUL, the PLLNDIV, and the PLLON/OFF fields of the
these registers.

5.1.1 Clock Operation Modes

The three possible modes of clock operation for both subsystems are:
(1 PLL mode (sometimes known as Normal mode)
(1 Divide (DIV) mode

(] Low-Power mode

Clock Management Module Overview

The normal mode makes use of the PLL and eventually of the voltage con-
trolled oscillator (VCO) to generate the desired clock frequency output. The
Divide mode does not use the PLL orthe VCO, but divides down the input clock
signal (REFCLK) by 2. This mode of operation should not be used for the nor-
mal mode of operation.

In Low-Power mode, the input clock (REFCLK) is divided by the content of the
LOW_POWER_REG_VALUE register to generate clock output. The values
that are allowed in the LOW_POWER_REG_VALUE register are
(512 £ x<1023), and 0. When the value 0 is used, the clock is stopped. For
this reason, values between 512 and 1023 should be used when a clock signal
with a divide by 512 frequency is required by an application.

It is possible to read and write all described registers, which are aligned on
32-bit addresses in the VC547x’s memory map. All unused bits are read as 0
by the software.

5.1.2 Features Controlled by the Clock Management Module
(J Control of DSP PLL signals

Control of DSP boot mode

Control of DSP reset

Control of stop bit for all ARM subsystem modules

Control of RESET for all ARM subsystem modules

Control of WAKEUP for all ARM subsystem modules

Control of external NRESET signal

Control of AUDIO clock generation

Control of AUDIO clock stop mechanism

Control of input source clock

Control of low-power clock

Iy Ny AN A A

Control of the PLL VOLTAGE CONTROLLED OSCILLATOR (PLL-VCO)

Clock Management Module 5-3

Clock Management Module Overview

Figure 5-1. Clock Management Module

A\ 4

+2(N+1)

AUDIO_CLK

(if REFCLK=24.576 MHz)

4.096 MHz (N=2)
3.072 MHz (N=3)
2.048 MHz (N=5)
16 KHz (N=767)

8 KHz (n=1535) > McBSP1
— >
REFCLK ’ Shutdown
A) 20 MHz Y > McBSPO
B) 24.576 MHz »! PLL DsP DSP_clock
C) 25 MHz —
» DSP
D) 22 MH
) z D=512
> =D L Select_ARM_clk »| TIMER DsP
7.5 MHz
> > ARM_clock
R ARM
’ v EIM_clock
> PLL_ARM > (vC5471) | [(EIM (VCB471)
A > Rsvd (VC5470)
Shutdown > IDA_clock
Asynchronous > UART IrDA
wake—-u
I P > UART_clock
nterrupts Power UART
from —» INTH > down I
peripherals module > : SPI_clock -
> 12C_clock
R 12C
> TIMER_clock
R TIMER
> GPIO_clock
R GPIO

5-4

Clock Module Register Tables

5.2 Clock Module Register Tables

5.2.1 CLKM Module Registers
Base address (hex): FFFF:2F00

Register width: 32 bits

Table 5-1. Clock Module (CLKM) Registers

Register Description ggszss
CLKM_REG Clock Configuration Register 00h
DSP_REG DSP Phase-Locked Loop Register 04h
WAKEUP_REG Interrupt Clock Wakeup Register 08h
AUDIO_CLK Audio Rate Register 0Ch
CLKM_CNTL_RESET Reset Control Register 10h
WATCHDOG_STATUS Watchdog Status Register 14h
RESET_REG Reset Register 18h
LOW_POWER_REG Low-Power Mode Register 1Ch
LOW_POWER_REG_VALUE Low-Power Value Register 20h
5.2.2 PLL_REG Register (ARMSS)
Base address (hex): FFFF:3200
Register width: 32 bits
Table 5-2. PLL_REG Register (ARMSS)
Register Description ggfgféss
ARMSS PLL_REG Clock Control Register 00h

Clock Management Module 5-5

Clock Module Register Tables

5.2.3 CLKMD Register (DSPSS)
Address (hex): 0058

Register width: 32 bits

Table 5-3. CLKMD Register (DSPSS)

Register Description

Address

DSPSS CLKMD Clock Control Register

0058h

5-6

DSP Subsystem Control

5.3 DSP Subsystem Control

Within the VC547x device, the ARM subsystem (ARMSS) has a master role
to the DSP subsystem (DSPSS). It sees the DSP subsystem as a peripheral/
slave and has the power to control much of its functionality. Two responsibili-
ties of the ARM subsystem are initializing the DSP PLL during power-up time
and reset, and controlling the DSP Boot mode. The ARMSS makes use of one
of its memory-mapped register, DSP_REG, to control these tasks. The con-
tents of the DSP_REG drives the internal ports (not available externally) con-
nected to the DSPSS with the appropriate state, as itis programmed, resulting
in a flexible/programmable control. Figure 5-2 illustrates the DSP_REG regis-
ter.

5.3.1 DSP Phase-Locked Loop Register

Figure 5-2. DSP Phase-Locked Loop Register (DSP_REG)

Address (hex): Base = OxFFFF:2F00, Offset = 0x0004

31-11 10 9 8
Reserved | DSP_MPNMC DSP_APIBN DSP_PLL_SHUTOFF
RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
DSP_PLL_ | DSP_PLL_ DSP_PLL_ DSP_PLL_ | DSP_PLL_ | DSP_PLL_ |DSP PLL |DsP PLL_
FRRSN FRPLL_DIVN FRPLLONOFF FRDIVO FRDIV1 FRDIV2 FRDIV3 | FRDIVN
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset
Bits 31-11 Reserved.

Bit 10

Bit 9

Bit 8

DSP_MPNMC.

0 microcontroller mode
1 microprocessor mode
DSP_APIBN.

0 API boot mode
1 not APl boot mode
DSP_PLL_SHUTOFF.

0 DSP PLL not shut off
1 DSP PLL shut off

Clock Management Module 5-7

DSP Subsystem Control

Bit 7 DSP_PLL_FRRSN.

0 DSP PLL reset active

1 DSP PLL reset inactive

Bit 6 DSP_PLL_FRPLL_DIVN. Port value PLLNDIV of DSP PLL module.

Bit 5 DSP_PLL_FRPLLONOFF. Port value PLLON/OFF of DSP CLKMD
register.

Bit 4 DSP_PLL_FRDIVO. Port value PLLMUL B-12 of DSP CLKMD
register.

Bit 3 DSP_PLL_FRDIV1. Port value PLLMUL B-13 of DSP CLKMD
register.

Bit 2 DSP_PLL_FRDIV2. Port value PLLMUL B-14 of DSP CLKMD
register.

Bit 1 DSP_PLL_FRDIV3. Port value PLLMUL B-15 of DSP CLKMD
register.

Bit 0 DSP_PLL_FRDIVN. Port value PLLDIV B-11 of DSP CLKMD
register.

Bits 10 and 9 of the DSP_REG register control the DSP boot mode. When the
DSP comes out of reset, it begins executing DSP code from DSP program
space at address OxFF80. Based on the status of DSP_MPNMC and
DSP_APIBN, the DSP boot program at this location can be downloaded by the
ARMSS or it can already be residing in DSP memory. Table 5-4 shows the
available DSP boot modes that can be achieved by programming these two
fields appropriately. When choosing the APl memory mode, the ARMSS is re-
sponsible for downloading the required boot code to the DSP starting at DSP
program memory address 0xFF80, and for holding the DSP in reset long
enough to finish downloading the DSP program boot code.

Table 5-4. DSP Boot Mode

DSP_MPNMC DSP_APIBN DSP Boot Memory
0 0 APl memory
0 1 On-chip RAM
1 0 APl memory
1 1 External DSP memory

DSP Subsystem Control

Bit 8, DSP_PLL_SHUTOFF, is used to enable and disable the input clock to
DSP PLL. When the DSP PLL is shut off (disabled), the voltage controlled os-
cillator is turned off. While in this stage, the DSP can operate in DIV or Power-
Down mode. Note that the DIV mode is forbidden for normal use, employed
only for test purposes and PLL lock-up time stage, and should be avoided.

Bits 7 to 0 are used to hold the state of the attached internal pins to the DSP
PLL. This also programs the DSP CLKMD register fields with default values.
These fields initialize the PLLMUL, PLLCOUNT, and PLLON/OFFF fields of
the CLKMD registers. For a more detailed description of the CLKMD register
and its field definitions, see section 5.5.2, CLKMD Clock Control Register
(DSPSS).

Bit6,DSP_PLL_ FRPLL_DIVN, will selectif the DSP clock generator operates
in DIV mode or PLL mode. During Reset DIV mode is chosen.

Bit 5, DSP_PLL_FRPLLONOFF, will select if the voltage controlled oscillator
(VCO) is turned on or off. During reset, the VCO is turned off.

Bits 4to 1, DSP_PLL_FRDIVO0,1,2,3, will initialize one of the required fields
(used in conjunction with PLLDIV and PLLNDIV) to define the frequency multi-
plier to the input clock (REFCLK). Since DSP_PLL_FRPLL_DIVN (bit 6) is O
during reset, any value between 0 and 14 results in a Divide-by-Two mode of
operation.

Note: The only other available option for this field is a divide-by-4 option
(REFCLK/4), and this can be chosen by programming this field value to 15.

The state of bit-field O initializes one of the required fields (the others are
PLLMUL and PLLNDIV) to define the frequency multiplier to the input clock.
During reset, the state of this value does not affect the operation of the DSP
clock generatorwhen bit6, DSP_PLL_FRPLL_DIVN, is setto zero configuring
the DSP PLL to operate in DIV mode.

Note: The state of this field determines if the DSP frequency multiplier, k, is
to be aninteger or non-integer value when the DSP clock generator is con-
figured to function in PLL mode (which is also known as the normal mode).

As shown in the DSP_REG definition, upon reset (from the RESET values
shown), the DSP subsystem is ready to boot from APl memory space with its
PLL module held in reset, its analog part disabled, and its frequency multiplier
programmed in Divide-by-Two mode.

The DSP_REG register is used to program the DSP PLL during reset or power-
up time. In order to control the duration of time that the DSP is held in reset and
also to control the external reset signal to external peripherals, the ARMSS
makes use of another memory-mapped register, CLKM_CNTL_RESET.

Clock Management Module 5-9

DSP Subsystem Control

5.3.2 Reset Control Register

The CLKM_CNTL_RESET register is used to control DSP reset as well as the
external reset signal, RESET, to external peripherals. The CLKM_CNTL_RE-
SET register resets the DSP via an internal DSP pin connected to the ARM
subsystem. This register has only two fields, each with a single bit. The

CLKM_CNTL_RESET register is illustrated in Figure 5-3.

Figure 5-3. Reset Control Register (CLKM_CNTL_RESET)
Address (hex): Base = OxFFFF:2F00, Offset = 0x0010

31-2 1 0
Reserved EXTERNAL _ DSP_
NRESET NRESET
RW-0 RW-1

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-2 Reserved.

Bit 1 EXTERNAL_NRESET.

0 RESET_OUTis 1
1 RESET_OUT is 0

Bit 0 DSP_NRESET.

0 DSP released from reset
1 DSP held in reset

By resetting/setting the state of DSP_NRESET, the DSP can be released/held

in reset, respectively.

The EXTERNAL_NRESET is used to generate an appropriate reset signal to

external peripherals via the external pin, RESET_OUT.

Note: The status of the DSP_NRESET signal is set upon power-up, reset, or
during a watchdog reset, while the EXTERNAL_NRESET signal is only reset

during power-up or reset.

5-10

ARM Subsystem Control

5.4 ARM Subsystem Control

The DSP is one of the slave devices that is controlled by the ARMSS and is
seen as a peripheral. The ARMSS has other peripherals that are under its con-
trol that also require clock sources. The ARMSS supplies these peripherals
with clock sources and controls the operation of the clocks independently via
two additional ARM memory-mapped registers, CLKM_REG and WAKE-
UP_REG. Figure 5-4 shows CLKM_REG and Figure 5-5 shows
WAKEUP_REG.

5.4.1 Clock Configuration Register

Figure 5—4. Clock Configuration Register (CLKM_REG)
Address (hex): Base = OxFFFF:2F00, Offset = 0x0000

31-13 12 11 10 9 8
R g ARM_ SPI_ 12C_ UART_MODEM_ UART_IRDA_
eserve CLK_STOP CLK_STOP CLK_STOP CLK_STOP CLK_STOP
RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
EIM_
CLK_STOP
WATCHDOG_ TIMERL_ TIMER2_ (VC5471) IRQ_ ARMIO_ SDRAM_ AUDIO_
CLK_STOP CLK_STOP CLK_STOP CLK_STOP CLK_STOP CLK_STOP CLK_STOP
Reserved
(VC5470)
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-13 Reserved. Always return 0.

Bit 12 ARM_CLK_STOP. Operate the ARM logic clock as defined below.
0 Block clock active
1 Block clock stopped
Bit 11 SPI_CLK_STOP. Operate the Serial Port Interface logic clock as de-
fined below.
0 Block clock active
1 Block clock stopped
Bit 10 [2C_CLK_STOP. Operate the 12C logic clock as defined below.
0 Block clock active
1 Block clock stopped

Clock Management Module 5-11

ARM Subsystem Control

Bit 9 UART_MODEM_CLK_STOP. Operate the UART Modem logic clock
as defined below.
0 Block clock active
1 Block clock stopped
Bit 8 UART_IRDA_CLK_STOP. Operate the UART IrDA logic clock as de-
fined below.

0 Block clock active
1 Block clock stopped

Bit 7 WATCHDOG_CLK_STOP. Operate the Timer 0 logic (configured as
a watchdog timer) clock as defined below.

0 Block clock active
1 Block clock stopped
Bit 6 TIMER1_CLK_STOP. Operate the Timer 1 logic clock as defined be-
low.
0 Block clock active
1 Block clock stopped
Bit 5 TIMER2_CLK_STOP. Operate the Timer 2 logic clock as defined be-
low.
0 Block clock active

1 Block clock stopped

Bit 4 EIM_CLK_STOP (VC5471). Operate the Ethernet Interface logic
clock as defined below.

0 Block clock active
1 Block clock stopped

Reserved (VC5470).

Bit 3 IRQ_CLK_STOP. Operate the Interrupt logic clock as defined below.
0 Block clock active
1 Block clock stopped
Bit 2 ARMIO_CLK_STOP. Operate the ARM I/O logic clock as defined be-
low.
0 Block clock active

1 Block clock stopped

5-12

ARM Subsystem Control

SDRAM_CLK_STOP. Operate the SDRAM logic clock as defined be-
low.

0 Block clock active

1 Block clock stopped
AUDIO_CLK_STOP. Operate the Audio Rate logic clock as defined
below.

0 Block clock active

1 Block clock stopped

5.4.2 Interrupt Clock Wakeup Register

The contents of the WAKEUP_REG is transferred inside the CLKM_REG
each time a wake-up condition occurs. A wake-up condition in the VC547x de-
vice is triggered each time an interrupt is detected. If an application decides
not to use a specific module, it has to stop the clock by writing the correspond-
ing bitin the CLKM_REG as well as in the WAKEUP_REG register. By not do-
ing so and after the first interrupt detection, the WAKEUP_REG register is
transferred inside the CLKM_REG, thus re-enabling the module clock.

Since the ARMSS has total control of its peripherals, it has to have the ability
to control its peripheral reset mechanism independently. It is also possible for
any ARMSS peripheral to control the reset signals for other peripherals, with
the exception of the processors ARMSS and DSPSS. This is accomplished via
another ARM memory-mapped register, RESET_REG. Figure 5-5 shows
WAKEUP_REG.

Figure 5-5. Interrupt Clock Wakeup Register (WAKEUP_REG)
Address (hex): Base = OxFFFF:2F00, Offset = 0x0008
12 1 10 9 8
ARM_ SPI_ 12C_ UART_MODEM_ UART_IRDA_
WAKEUP WAKEUP WAKEUP WAKEUP WAKEUP
RW-0 RW-0 RW-0 RW-0 RW-0
7 5 4 3 2 1 0
EIM_
WAKEUP
WATCHDOG _ TIMER1_ TIMER2_ (VC5471) IRQ_ ARMIO_ SDRAM_ AUDIO_
WAKEUP WAKEUP WAKEUP WAKEUP WAKEUP WAKEUP WAKEUP
Reserved
(VC5470)
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Clock Management Module 5-13

ARM Subsystem Control

5-14

Bits 31-13
Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Reserved. Always return 0.

ARM_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into ARM_CLK_STOP (bit 12 of CLKM_REG
[FFFF:2F00)).

SPI_WAKEUP. An ARM interrupt received will force a write of the con-
tents of this bit into SPI_CLK_STOP (bit 11 of CLKM_REG
[FFFF:2F00])).

12C_WAKEUP. An ARM interrupt received will force a write of the con-
tents of this bit into 12C_CLK_STOP (bit 10 of CLKM_REG
[FFFF:2F00]).

UART_MODEM_WAKEUP. An ARM interrupt received will force a
write of the contents of this bitinto UART_MODEM_CLK_STOP (bit 9
of CLKM_REG [FFFF:2F00]).

UART_IRDA_WAKEUP. An ARM interrupt received will force a write
of the contents of this bit into UART_IRDA_CLK_STOP (bit 8 of
CLKM_REG [FFFF:2F00]).

WATCHDOG_WAKEUP. An ARM interrupt received will force a write
of the contents of this bit into WATCHDOG_CLK_STOP (bit 7 of
CLKM_REG [FFFF:2F00]).

TIMER1_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into TIMER1_CLK_STOP (bit 6 of CLKM_REG
[FFFF:2F00]).

TIMER2_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into TIMER2_CLK_STOP (bit 5 of CLKM_REG
[FFFF:2F00]).

EIM_WAKEUP (VC5471). An ARM interrupt received will force a write
of the contents of this bit into EIM_CLK_STOP (bit 4 of CLKM_REG
[FFFF:2F00)).

Reserved (VC5470).

IRQ_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into IRQ_CLK_STOP (bit 3 of CLKM_REG
[FFFF:2F00]).

ARMIO_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into ARMIO_CLK_STOP (bit 2 of CLKM_REG
[FFFF:2F00]).

SDRAM_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into SDRAM_CLK_STOP (bit 1 of CLKM_REG
[FFFF:2F00]).

ARM Subsystem Control

Bit 0 AUDIO_WAKEUP. An ARM interrupt received will force a write of the
contents of this bit into AUDIO_CLK_STOP (bit 0 of CLKM_REG
[FFFF:2F00]).

5.4.3 Reset Register
Rules for proper reset:

(1 Block clocks must be operational as defined in CLKM_REG (FFFF:2F00)
and WAKEUP_REG (FFFF:2F08).

(1 The reset is clock synchronous and must be acitve for at least one clock
cycle and is recommended to be active for eight clock cycles.

Figure 5—6. Reset Register (RESET_REG)
Address (hex): Base = OxFFFF:2F00, Offset = 0x0018

31-11 10 9 8
Reserved SPI 12C_ UART_MODEM_
RESET RESET RESET
RW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
EIM_
RESET
UART_IRDA_ | WATCHDOG_ TIMER1_ TIMER2_ (VC5471) IRQ_ ARMIO_ SDRAM_
RESET RESET RESET RESET RESET RESET RESET
Reserved
(VC5470)
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-11 Reserved. Always return 0.

Bit 10 SPI_RESET. Reset for the Serial Port Interface logic including regis-
ters defined as type SPI.
0 Block reset active
1 Block operational
Bit 9 I2C_RESET. Reset for the 12C logic including registers defined as type
12C.
0 Block reset active
1 Block operational

Clock Management Module 5-15

ARM Subsystem Control

5-16

Bit 8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

UART_MODEM_RESET. Reset for the UART Modem logic including
registers defined as type UART Modem.

0 Block reset active

1 Block operational

UART_IRDA_RESET. Reset for the UART IrDA logic including regis-
ters defined as type UART IRDA.

0 Block reset active
1 Block operational

WATCHDOG_RESET. Reset for the Timer 0 logic (configured as a
watchdog timer) including registers defined as type TIMERO.

0 Block reset active

1 Block operational

TIMER1_RESET. Reset for the Timer 1 logic including registers de-
fined as type TIMERL.

0 Block reset active

1 Block operational
TIMER2_RESET. Reset for the Timer 2 logic including registers de-
fined as type TIMER2.

0 Block reset active

1 Block operational
EIM_RESET (VC5471). Reset for the Ethernet Interface logic includ-
ing registers defined as type EIM and EIM ENETO.

0 Block reset active
1 Block operational

Reserved (VC5470).

IRQ_RESET. Reset for the Interrupt logic including registers defined
as type INTH.

0 Block reset active

1 Block operational

ARMIO_RESET. Reset for the ARM 1I/O logic including registers de-
fined as type GPIO and KBGPIO.

0 Block reset active
1 Block operational

ARM Subsystem Control

Bit 0 SDRAM_RESET. Reset for the SDRAM logic including registers de-
fined as type SDRAMIF.

0 Block reset active
1 Block operational

The ARMSS clock module is also responsible for the generation and control
ofthe AUDIO_CLK frequency, which is also generated from the external refer-
ence clock (REFCLK).

5.4.4 Audio Rate Register

Figure 5-7. Audio Rate Register (AUDIO_CLK)

Address (hex): Base = OxFFFF:2F00, Offset = 0x000C

31-12 11-0
Reserved AUDIO_CLK_CMP
RW-0

Note: R =Read access; W = Write access; value following dash (-) = value after reset

Bits 31-12 Reserved.

Bits 11-0 AUDIO_CLK_CMP. Provides the comparison value for AUDIO_CLK
generation. The clock reference is the input clock REFCLK.

The AUDIO_CLK register provides a way to set the AUDIO output frequency
by setting the comparison value that toggles the output. The clock that is used
is always the input clock (REFCLK) of the VC547x device. The output wave-
form of the Audio Clock has a duty cycle of 50% provided the input clock,
REFCLK, has a duty cycle of 50%.

The formula to compute the output frequency is

freq_audio_clk = (ref_clk_freq / (audio_clk_cmp + 1) x 2) where
freq_audio_clk is the Audio Clock frequency to be generated,
ref_clk_freq is the Input Clock (REFCLK) frequency, and

audio_clk_cmp is a divisor value (between 0 and 4095), from the
AUDIO_CLK register.

When not in use, the Audio Clock can be disabled by clearing the appropriate
bit values found in the CLKM_REG and WAKEUP_REG registers.

Clock Management Module 5-17

ARM Subsystem Control

5.4.5 Watchdog Status Register

The clock module also hosts a watchdog status register, WATCHDOG_STA-
TUS, which is used to identify the module that caused a reset. The watchdog
timer orthe ARMSS can resetthe VC547x device. The WATCHDOG_STATUS
register is an ARM memory-mapped register that keeps track of the module
that caused the last reset until it is read. When the register content is read to
learnthe resetinitiator (ARMSS or watchdog), the WATCHDOG_STATUS reg-
ister is cleared automatically. The reset value for this register during power-up
time is zero, which indicates that the reset was caused by the ARMSS.

Figure 5-8. Watchdog Status Register (WATCHDOG_STATUS)

Address (hex): Base = OxFFFF:2F00, Offset = 0x0014

31-1 0
Reserved WATCHDOG_STATUS
RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-1 Reserved.

Bit 0 WATCHDOG_STATUS.
0 no reset from watchdog
1 reset from watchdog

5-18

ARM Subsystem Control

5.4.6 Low-Power Mode Register

The LOW_POWER_REG register is used to control the additional clock mode
operation of the ARMSS. In the Low-Power mode, the clock generated is a
scaled version of the external input clock (REFCLK) where the frequency of
the generated clock is extremely low. The highest frequency clock generated
in this mode is always REFCLK frequency /512 . The duty cycle of this gener-
ated clock can be modified by using a value between 512 and 1023. With a
value of 512, the duty cycle is 1/512. With a value of 1023, it is 50 percent.

LOW_POWER_REG is used to select between the normal (PLL) mode, divide
(DIV) mode, and Low-Power mode. The normal mode is defined as the mode
where we use the output of the subsystem PLL module (applies for both the
ARMSS and DSPSS) as input to the clock module. Divide-by-Two is the mode
where the input clock to the clock module is the input clock REFCLK divided
by two. The Low-Power mode is defined as the mode where the input of the
clock module is the low-power clock, which is also derived from the input clock
(REFCLK) scaled by the value stored in the ARM memory-mapped register
(LOW_POWER_VALUE_REG). Note that the DSPSS only functions in the
Normal/PLL mode and in the DIV mode. Figure 5-9 illustrates the
LOW_POWER_REG register.

Figure 5-9. Low-Power Mode Register (LOW_POWER_REG)

Address (hex): Base = OxFFFF:2F00, Offset = 0x001C

31-2 1 0
Reserved SWITCH_TO_DIV_BY_2 | SWITCH_TO_LOW_POWER
RW-1 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-2 Reserved.
Bit 1 SWITCH_TO_DIV_BY_2.

0 normal mode

1 use Divide-by-Two mode
Bit O SWITCH_TO_LOW_POWER.

0 normal mode

1 switch to low-power mode

Clock Management Module 5-19

ARM Subsystem Control

Recall that there is another register—CLKMD for DSP PLL, and PLL_REG for
the ARMSS—that controls the mode of operations (between Normal/PLL
mode and DIV mode) and their voltage controlled oscillators. The Low-Power
mode applies to the ARMSS. Care must be taken when changing from one
mode to another since control overlap exists between the two ARMSS clock
module control registers.

In order to change mode from Normal/PLL mode to DIV mode within the
ARMSS the corresponding programming of fields is done inthe PLL_REG reg-
ister not in the LOW_POWER_REG register. It is not supported to switch
from normal mode to DIV mode using the LOW_POWER_REG.

Upon reset, the default mode is the Divide-by-Two mode. This mode is merely
provided for production test purposes and should not be used in the normal
mode of operations. Standard operation is to go from Divide-by-Two mode to
normal mode after setting the PLL in its operational mode (by programming
the respective subsystem PLL control registers). If the application needs to go
in a Divide-by-Two mode, it has to use the PLL Divide-by-Two mode.

By setting 1 to the SW TCH_TO_LOW POAER field (bit 0) in the LOW_POW-
ER_REG register, the ARMSS clock module will switch its current clock source
mode to the Low-Power clock mode. It is perfectly allowed to go from normal
mode to Low-Power mode and from Low-Power mode to normal mode via this
field. However, itis not supported to switch from Low-Power mode to Divide-
by-Two mode using the LOW_POWER_REG register.

5.4.7 Low-Power Register Value Register

As explained above, the Low-Power clock mode is a scaled frequency of the
input reference clock (REFCLK) with the REFCLK frequency divided by the
content of the memory-mapped register, LOW_POWER_REG_VALUE.

Figure 5-10. Low-Power Register Value Register (LOW_POWER_REG_VALUE)

Address (hex): Base = OxFFFF:2F00, Offset = 0x0020

31-10 9-0
Reserved LOW_POWER_CNT
RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-10 Reserved.

Bits 9-0 LOW_POWER_CNT. Low-power counter value.

5-20

ARM Subsystem Control

The LOW_POWER_REG_VALUE is used to define the divider value that gen-
erates the low-power clock for the Low-Power mode. It is not allowed to pro-
gram a value less than the binary value 1000000000. This means that the mini-
mum frequency division factor is 512. In the event a value less than 512 is put
into the LOW_POWER_REG_VALUE, the low-power clock is stopped or dis-
abled and there is no clock source for the ARMSS. The maximum division fac-
toris 1023. The division factor is used to obtain the clock frequency in the Low-
Power mode.

The formula used is freq_low_power =freq_refclk /low_power_cnt where
m freq_low_power is the clock frequency in Low-Power mode,
m freq_refclk is the input reference clock (REFCLK), and

® |ow_power_cntis the division factor set to obtain the desired low-
power frequency.

The duty cycle of this clock is not kept the same as the input clock REFCLK.

Clock Management Module 5-21

Phase-Locked Loop (PLL)

5.5 Phase-Locked Loop (PLL)

Both subsystems (ARMSS and DSPSS) make use of independent PLLs to
generate their clock source from a common external clock source applied to
the VC547x device via REFCLK pin. The PLL_REG register of the ARMSS
and the CLKMD register of the DSPSS together provide a way to control and
generate independent final clock sources to be used by the subsystems. Note
that the ARMSS has an additional Low-Power clock mode of operation which
is controlled by another additional register, LOW_POWER_REG.

The PLL in the ARM subsystem provides an interface between the ARM pro-
cessor and the PLL voltage controlled oscillator (PLL-VCO). This control is
done using the PLL_REG register.

5.5.1 PLL_REG Register (ARMSS)

PLL_REG is one of the clock control registers within the ARMSS located in the
ARM_PLL memory space.

Figure 5-11.PLL Clock Control Register (PLL_REG) — ARMSS
Address (hex): Base = OxFFFF:3200, Offset = 0x0000

31-16 15-12 11
Reserved PLLMUL PLLDIV
RW-0 RW-0
10-3 2 1 0
PLLCOUNT PLLON_OFF PLLNDIV STATUS
RW-1 RW-0 RW-0 R-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-12 PLLMUL. Defines the PLL factor k.

Bit 11 PLLDIV. In conjunction with plindiv and k, defines the PLL dividing
factor m.

Bits 10-3 PLLCOUNT. A counter that starts decrementing from its preset value
as soon as PLLNDIV is set to 1.

Bit 2 PLLON_OFF. In conjunction with PLLNDIV, enables the PLL analog
part (VCO).

5-22

Bit 1

Bit 0

Phase-Locked Loop (PLL)

PLLNDIV. Sets the PLL/DIV mode.

0 Divider (DIV) mode
1 PLL mode
STATUS. (Read-only).

0 DIV mode: the output clock is the input clock multiplied by
the PLL
1 PLL mode: the output clock is the input clock multiplied by

the PLL multiplication ratio

Note: Writing to PLLCOUNT, PLLON/OFF, PLLDIV, and PLLMUL fields is pos-
sible only when the STATUS bit is set to zero (DIV mode).

PLLMUL[3:0] in conjunction with PLLDIV and PLLNDIV defines the frequency
multiplier, k. As you will observe in the following paragraph, k is the final com-
puted value that will be used as the multiplying value in order to get the final
output clock.

PLLDIV, in conjunction with PLLMUL[3:0] and PLLNDIV, defines the PLL fre-
guency dividing factor. When PLLNDIV is set to zero (i.e., clock operation is
in divide mode), the setting of PLLDIV does not play a role in calculating the
value of k. When PLLNDIV is set to one (i.e., clock operation is in PLL mode),
the value of PLLDIV affects the multiplier value, k, causing it to be either an
integer value or a non-integer value, depending on values programmed in the
fields of PLLMUL[3:0] and PLLDIV. Table 5-5 shows the conditions for the
above statements to be met as well as the restriction imposed on the values
to be programmed in the above fields.

Table 5-5. Conditions Affecting PLL Frequency Dividing Factor

PLLNDIV PLLDIV PLLMUL Multiplier “k” Note on “k”
0 (Div Mode) X (don'’t care) 0-14 0.5 0.5
0 (Div Mode) X (don't care) 15 0.25 0.25
1 (PLL Mode) 0 0-14 PLLMUL + 1 Int Values (1 — 15)
1 (PLL Mode) 0 15 1 Single Int Value: 1
(Bypass Mode)
1 (PLL Mode) 1 0 or Even (PLLMUL + 1) /2 Non-Int values in
increment of 1.0.
[0.5-7.5]
1 (PLL Mode) 1 Odd PLLMUL/ 4 Non-Int values in

increment of 0.50
[0.25 — 3.75]

Clock Management Module 5-23

Phase-Locked Loop (PLL)

PLLCOUNT][7:0] specifies the number of input clock cycles—REFCLK—(in in-
crements of 16 cycles) for the PLL lock timer to count before the PLL begins
clocking the processor after the PLL is started. This programmable lock timer
provides a convenient method of automatically delaying clocking of the device
by the PLL until lock is achieved.

The PLL lock timeris a counter loaded from the PLLCOUNT]7:0] field. The lock
time is activated when the clock generator operating mode is switched from
DIV mode to PLL mode. The timer can be preset to any value from 0 to 255,
and its input clock is REFCLK divided by 16. The resulting lock-up delay can
therefore be set from 0 to 255 x 16 REFCLK cycles. The PLL requires a maxi-
mum of 30 us for lock-up time (for input frequencies between 5 MHz and
140 MHz) and appropriate values that generate this amount or greater (which
is a function of the input clock frequency REFCLK) should be programmed in
the PLLCOUNT [7:0]. During this lock up period, the clock generator continues
to operate in DIV mode. When the PLL lock time has decremented to 0, the
respective PLL will be the source of the final output clock that is used by the
particular subsystem.

PLLON/OFF enables or disables the voltage controlled oscillator (VCO). The
VCO is required to run while the clock generator is operating in PLL mode; this
is not a requirement while the clock generator is operating in DIV mode.

Table 5-6. VCO Operating States

5-24

PLLON/OFF PLLNDIV VCO
0 0 Off
0 1 On
1 0 On
1 1 On

PLLNDIV determines whether the clock generator works in PLL mode orin DIV
mode, thus defining the frequency multiplier k in conjunction with PLLMUL and
PLLDIV.

PLLNDIV = 0: Divider (DIV) mode

PLLNDIV = 1: PLL mode

PLLSTATUS indicates the mode that the clock generator is operating in
STATUS =0: Divider (DIV) mode

STATUS = 1: PLL mode

Phase-Locked Loop (PLL)

5.5.2 CLKMD Clock Control Register (DSPSS)

The DSPSS clock control register, CLKMD, has an identical use as the
ARMSS clock control register, PLL_REG. The only difference between the two
is that the register size for the DSPSS is 32 bits wide (of which the high 16 are
reserved).

The following register description is for a DSP subsystem register and should
not be confused with an ARM subsystem register. Please refer to Table 2—-1
for a complete list of DSP subsystem registers.

Figure 5-12. CLKMD Clock Control Register (CLKMD) — DSPSS

DSP Address (hex) = 0058

31-16 15-12 11
Reserved PLLMUL PLLDIV
RW-0 RW-0
10-3 2 1 0
PLLCOUNT PLLON_OFF PLLNDIV STATUS
RW-1 RW-0 RW-0 R-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-12 PLLMUL. Defines the PLL factor k.

Bit 11 PLLDIV. In conjunction with plindiv and k, defines the PLL dividing
factor m.

Bits 10-3 PLLCOUNT. A counter that starts decrementing from its preset value
as soon as pllindiv is set to 1.

Bit 2 PLLON_OFF. In conjunction with pllindiv, enables the PLL analog part
(VCO).

Bit 1 PLLNDIV. Sets the PLLDIV mode.

0 Divider (DIV) mode
1 PLL mode

Clock Management Module 5-25

Phase-Locked Loop (PLL)

Bit 0 STATUS. (Read-only).
0 DIV mode: the output clock is the input clock multiplied by
the PLL
1 PLL mode: the output clock is the input clock multiplied by

the PLL multiplication ratio

5-26

Chapter 6

Timer Module

This chapter provides a description of the three timers implemented on the
TMS320VC547x device, discusses the watchdog function, shows the timer
registers, and gives an overview of programming the timers.

The timers discussed in this chapter are associated with the ARM™ microcon-
troller unit (MCU) of the dual-core (MCU + DSP) VC547x device.

Topic Page
6.1 Timer Module Introduction i, 6-2
2 MIVISM secannnnananneasnannbaanansaaaanneaaaannaaanannaaaanac 6-3
6.3 TIMER1and TIMER2, 6-7
6.4 ProgrammingtheTimers, @
6.5 Read Timer Operationsooiiiiiiiiiiiiiennnnn.. @

6-1

Timer Module Introduction

6.1 Timer Module Introduction

The TMS320VC547x implements three 16-bit timers configurable in Auto-
Reload or One-Shot mode with on-the-fly read capability. The timers are on-
chip down counters that generate interrupts to the ARM CPU each time the
counter decrements to zero.

The first timer (TIMERQO) is configured by default as a watchdog for the micro-
controller unit (MCU). If this functionality is not required, a specific sequence
must be written into a dedicated register in order to configure the watchdog as
a general-purpose timer.

The two other timers (TIMER1 and TIMER?2) are general-purpose timers.

As noted in Table 6-1, not all of the Timer module registers have the same
base address.

Table 6-1. Timer Module Registers

Base Offset
Name Address Address Description
(hex) (hex)
CNTL_TIMERO OxFFFF:2A00 0x0000 TIMERO Control Register
READ_TIMO OxFFFF:2A00 0x0004 TIMERO Current Value Register
CNTL_TIMER1 OxFFFF:2B00 0x0000 TIMER1 Control Register
READ_TIM1 OxFFFF:2B00 0x0004 TIMER1 Current Value Register
CNTL_TIMER2 OxFFFF:2C00 0x0000 TIMER2 Control Register
READ_TIM2 OxFFFF:2C00 0x0004 TIMER2 Current Value Register

6-2

6.2 TIMERO

TIMERO

By default, TIMERO is configured as a watchdog timer. The watchdog is de-
signed to detect user programs stuck in infinite loops resulting in loss of pro-
gram control, such as runaway programs.

On power up, the LOAD_TIM field of the CNTL_TIMERQO register is set to the
maximum value (OxFFFF) and the Watchdog mode is enabled but the watch-
dog is not started. The timer is started by setting the ST bit of CNTL_TIMERO
register to one.

Once the watchdog is started, the user’s program must write periodically into
the LOAD_TIM field of the CNTL_TIMERQO register before the counter under-
flows, in order to reload the timer with a new value. Note that in order to avoid
undefined results, the PTV, AR, and LOAD_TIM fields (of the CNTL_TIMER
register) must not be programmed when the timer is running and it is therefore
mandatory that the start bit (ST) be at zero while programming the PTV, AR,
and LOAD_TIM bit fields in order to have correct behavior.

Since itis impossible to write a new value if the ST bit is one, the following pro-
gramming sequence must be followed in order to prevent the watchdog timer
from going into an underflow condition:

1) Write the sequence OxF5 followed by OxAO into the WDS field of
CNTL_TIMERO to disable the watchdog mode.

2) Write O to the ST bit of CNTL_TIMERO to stop the timer.

3) Write a new value in the LOAD_TIM field of CNTL_TIMERO (this new val-
ue can be different or it can be the same as the previous value in
LOAD_TIM).

4) Write a 1 to the TM bit of CNTL_TIMERO to switch back to the watchdog
mode.

5) Write a 1 to the ST bit of CNTL_TIMERO to restart the timer.

This programming sequence makes it more difficult to disable the watchdog
timer; however, there is no protection in the clock module that would prevent
the software application from stopping the watchdog timer’s clock. A counter-
underflow resets the ARM core and all modules controlled by it, including
TIMERO.

Timer Module 6-3

TIMERO

In the Watchdog mode, the value of the prescaler field (PTV of CNTL_TIMER
register) is fixed at seven. Thus, the time from writing a new value to counter
underflow is comprised between:

256 x Telk to 16,777,216 x Telk. (Tint = Telk x (LOAD_TIM +1) x 2(PTV+1))

For a clock frequency of 928 kHz, the timer interrupt period is 276 us<t<18s.

6.2.1 Disabling the Watchdog Function

TimerO may be configured as a general-purpose timer by writing a predefined
sequence (OxF5 followed by OxAQ) in the WDS field of the CNTL_TIMERO reg-
ister.

Receiving OxF5 initializes a sequence decoder. Once in this state if the next
write is different from the 0xAOQ, the state machine resets the ARM core.

TIMERO functions exactly like TIMER1 or 2 when it is configured as a general-
purpose timer.

6.2.2 Re-Enabling the Watchdog Function

It is possible to come back to the default mode (Watchdog timer) by writing a
one in the TM bit of the CNTL_TIMERQO register. In this case, the value loaded
into the LOAD_TIM register is set to the maximum value (OxFFFF) as on
power-up.

TIMERO

6.2.3 Timer0 Control Register

Figure 6-1. Timer0 Control Register (CNTL_TIMERO)
Address (hex): Base = FFFF:2A00, Offset = 0x0000

31-30 29-22 21 20-5 4 3 2-0
Reserved WDS | ™ | LOAD_TIM | AR | ST | PTV
RW-0 RW-1 W-1 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-30 Reserved.

Bits 29-22 WDS. Watchdog disable.
Writing a predefined sequence (0OxF5 followed by 0xAO) in this field
disables the watchdog functionality.
After having received OxF5, if the second write access is different from
0xAO, the ARM core is reset

Bit 21 TM. Timer mode.

Write access:
0 Writing a 0 in this bit has no effect
1 Switch back TIMER mode to WATCHDOG

Read access:
Status of TIMER mode

0 Timer is used as a general-purpose timer
1 Timer is used as a watchdog timer

Bits 20-5 LOAD_TIM. Load timer value.

Bit 4 AR. Auto-Reload timer.

0 One-Shot timer
1 Auto-Reload timer

Bit 3 ST. Start timer bit. If ar = 0, this bit is automatically reset by internal
logic when timer is equal to zero.

0 Stop timer
1 Start timer

Timer Module 6-5

Bits 2-0 PTV. Prescale clock timer value.

000 2
001 4
010 8
011 16
100 32
101 64
110 128
111 256

The Prescaler, along with the load timer value, is used to set up the timer inter-
rupts period. See section 6.3.1, Timer Interrupt Period, for more information.

The timer is started by setting the ST bit to one. When the timer is configured
as ageneral-purpose timer, itis stopped by resetting the ST bit to zero. Howev-
er, TIMERO cannot be stopped while in the Watchdog mode; ie., writing a zero
to bit ST has no effect if the TM bit is set to one. To stop a Watchdog timer, the
timer must first be switched to be a general-purpose timer (writing the prede-
fined sequence 0xF5 followed by 0xAO into the WDS field), then a zero must
be written to the ST bit.

If the auto-reload (AR) bit is disabled, the timer decrements from the loaded
value to zero and then stops. In the other case (AR = 1), the timer continues
by loading a new value from the LOAD_TIM field into the READ_TIMO register.

6.2.4 Timer0 Current Value Register

Figure 6—2. Timer0 Current Value Register (READ_TIMO)

Address (hex): Base = 0xFFFF:2A00, Offset = 0x0004

31-16 15-0
Reserved | TIMER VALUE
R-1

R = Read access; W = Write access; value following dash () = value after reset

Bits 31-16 Reserved.

Bits 15-0 TIMER VALUE. Current value of timer

The READ_TIMO register shows the current reading of the timer.

All three timers have on-the-fly read capability.

TIMER1 and TIMER2

6.3 TIMER1 and TIMER2

TIMER1 and TIMER2 are both general-purpose timers. General-purpose tim-
ers are started by setting a dedicated bit to one (ST in CNTL_TIMER register)
and stopped by resetting this bit.

If the auto-reload bit is disabled (AR in CNTL_TIMER register), the timer
decrements from the loaded value to zero and then stops. In the other case
(AR=1), the timer continues.

A new value (from the LOAD_TIM field of the CNTL_TIMER register) is loaded
into the timer when it passes through zero or when it starts.

When the timer is stopped, the content of the decrementer is not affected so
it is possible to read the value of the timer after it stops.

A programmable clock divider reduces the frequency of the clock used by the
timer.

An interrupt is produced when the corresponding timer is equal to zero.

6.3.1 Timer Interrupt Period
The timer interrupt period is defined by:
[The value of the prescaler field (PTV of CNTL_TIMER register)
(1 The value of the load timer field (LOAD_TIM of CNTL_TIMER register)

The timer interrupt period is as follows:

PTV Freq uency
Divisor

0 2

1 4

2 8

3 16
4 32
5 64
6 128
7 256

Tint = Telk x (LOAD_TIM +1) x 2(PTV+1)

Timer Module 6-7

TIMER1 and TIMER2

6.3.2 TIMER1 and TIMER2 Control Registers

TIMER1 and TIMER2 registers are exactly the same. For this reason, only one
register is shown in Figure 6-3

Figure 6-3. Timerl,2 Control Registers (CNTL_TIMER1,2)

CNTL_TIMER1 — Address (hex): Base = OxFFFF:2B00, Offset = 0x0000
CNTL_TIMER2 —Address (hex): Base = 0xFFFF:2C00, Offset = 0x0000

31-21 20-5 4 3 2-0
Reserved LOAD_TIM | AR | ST PTV
Ww-1 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-21 Reserved.

Bits 20-5 LOAD_TIM. Load timer value.
Bit 4 AR. Auto-reload timer.
0 One-Shot timer
1 Auto-Reload timer
Bit 3 ST. Start timer bit. If ar = 0, this bit is automatically reset by internal
logic when timer is equal to zero.
0 Stop timer
1 Start timer
Bits 2-0 PTV. Prescale clock timer value.
000 2
001 4
010 8
011 16
100 32
101 64
110 128
111 256

The Prescaler, along with the load timer value, is used to set up the timer inter-
rupts period. See section 6.3.1, Timer Interrupt Period, for more information.

General-purpose timers are started by setting the ST bit to one; they are
stopped by resetting the ST bit to zero.

TIMER1 and TIMER2

If the auto-reload (AR) bit is disabled, the timer decrements from the loaded
value to zero and then stops. In the other case (AR = 1), the timer continues

by loading a new value from the LOAD_TIM field into the corresponding
READ_TIM register.

6.3.3 TIMER1 and TIMER2 Current Value Registers

READ_TIM1and READ_TIM2 registers are exactly the same. For this reason,
only one register is shown in Figure 6—4.

Figure 6—4. Timerl,2 Current Value Registers (READ_TIM1,2)

READ_TIM1 — Address (hex): Base = OxFFFF:2B00, Offset = 0x0004
READ_TIM2 — Address (hex): Base = 0xFFFF:2C00, Offset = 0x0004

31-16 15-0

Reserved | TIMER VALUE

RW-1

R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-30 Reserved.

Bits 15-0 TIMER VALUE. Current value of timer.

The READ_TIM register shows the current reading of the timer.

All three timers have on-the-fly read capability.

Timer Module 6-9

Programming the Timers

6.4 Programming the Timers

In order to avoid undefined results, the PTV, AR, and LOAD_TIM fields (of
CNTL_TIMER register) must not be programmed when the timer is running.

It is mandatory that the start bit (ST) be at zero while programming the
LOAD_TIM field in order to have correct behavior.

6.5 Read Timer Operations

6-10

The VC547x bus system allows a read of all registers while the timer is running.

Chapter 7

General-Purpose I/0 Module (GPIO)

This chapter provides a functional description of the general-purpose I/O mod-
ule (GPIO) and shows all GPIO and KBGPIO registers.

GPIlOis associated withthe ARM ™ microcontroller unit (MCU) of the dual-core
(MCU + DSP) TMS320VC547x device.

Topic Page
7.1 Functional Descriptioniiiiiii i 7-2
7.2 GPIO/KBGPIO REQISIErS . ..ottt 7-4
7.3 Input/Outputs of GPIOModule 7-19

7-1

Functional Description

7.1 Functional Description

This module provides 36 general-purpose input/outputs (1/0s) configurable in
read or write mode by internal registers. The 36 general-purpose 1/Os are split
into 2 groups: GPIO(19:0) and KBGPIO(15:0). KBGPIOs (15:8) have on-chip
pullup resistors connected to their input/output pins. KBGPIOs (15:0) can be
used as normal GPIO pins or be configured for connection of 8x8 keyboard
matrix as shown in Section 7.2.3, Keyboard Connection, on page|7-17.]

7.1.1 General-Purpose I/O (GPIO)

GPIOs are programmed by the micro controller using two separate chip se-
lects. One is for the GPIO (cs_gpi o_i) and one is for KBGPIO (cs_kbd_i).

For the VC547x device, the following mapping is done:
(1 cs_gpi o_i mapped to address OxFFFF-2800 to OXFFFF-28FF
[cs_kb_i mapped to address OXFFFF-2900 to OxFFFF-29FF

The two groups of GPIOs basically share the same functionality except the
way interrupts are made available to the interrupt handler. Interrupts can be
generated for rising, falling, or state changes, as well as being disabled.

Individual interrupts are available for GP100, GPIO1, GPIO2, and GPIO3.
Grouped interrupts are available for GPIO (19:4), KBGPIO (15:8), and
KBGPIO (7:0).

Some of the GPIOs are shared with other signals. Each GPIO is associated
with six configuration/status bits described in Table 7-1 and Table 7-2.

The configuration/status bits are accessible through 12 memory-mapped reg-
isters listed in Section 7.2.

Table 7-1. GPIO Control/Status Bits

Functional Description

Bit Name Description
I/O bit:
io Writeable when 1/O is configured as an output (cio = 0)
Reads value on I/O pin when I/O is configured as an input
(cio=1)
Configured 1/0
cio 0: output
1: input (default)
gpio_irgA GPIO interrupt configuration. See Table 7—2
gpio_irqB GPIO interrupt configuration. See Table 7-2
Delta detect bit:
ddio If GPIO configured as output (cio = 0) always read as 0
If GPIO configured as input (cio = 1), reads 1 if io has
changed since ddio was last cleared
Selects signal for muxed GPIOs
0: other I/O signal (default)
gpio_en 1: gpio

Non-shared GPIOs are always available at the I/O pin
independently of the value of gpio_en

Table 7-2. GPIO_IRQ Bit Definitions

gpio_irgB gpio_irgA Function
0 0 Disable IRQ
0 1 An IRQ is generated on the rising edge
1 0 An IRQ is generated on the falling edge
1 1 An IRQ is generated on the state change

General-Purpose 1/0 Module (GPIO) 7-3

GPIO/KBGPIO Registers

7.2 GPIO/KBGPIO Registers

There are 12 memory-mapped GPIO/KBGPIO registers.

GPIO Registers
Base address (hex): FFFF:2800

Register width: 32 bits

Table 7-3. GPIO Registers

Register Description Zf:ifjreetss
GPIO_IO GPIO Input/Output Register 00h
GPIO_CIO GPIO Configuration Register 04h
GPIO_IRQA GPIO Interrupt Request Register A 08h
GPIO_IRQB GPIO Interrupt Request Register B 0Ch
GPIO_DDIO GPIO Delta Detect Register 10h
GPIO_EN GPIO Mux Select Register 14h
KBGPIO Registers
Base address (hex): FFFF:2900
Register width: 32 bits
Table 7-4. KBGPIO Registers
Register Description ggfjfetss
KBGPIO_IO KBGPIO Keyboard Input/Output Register 00h
KBGPIO_CIO KBGPIO Configuration Register 04h
KBGPIO_IRQA KBGPIO Interrupt Request Register A 08h
KBGPIO_IRQB KBGPIO Interrupt Request Register B 0Ch
KBGPIO_DDIO KBGPIO Delta Detect Register 10h
KBGPIO_EN KBGPIO Mux Select Register 14h

7-4

7.2.1 GPIO Registers

Figure 7-1. GPIO_|O Register

GPIO/KBGPIO Registers

Address (hex): Base = OxFFFF:2800, Offset = 0x0000

31-20 19 18 17 16
Reserved GPIO_IO_19 | GPIO_IO_18 | GPIO_IO_17 | GPIO_IO_16
RW-0 RW-0 RW-0 RW-0 RW-0
15 14 13 12 11 10 9 8
GPIO_IO_15 | GPIO_IO_14 | GPIO_IO_13 | GPIO_IO_12 | GPIO_IO_11 | GPIO_IO_10 | GPIO_IO_9 | GPIO_lO_8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
GPIO_IO_7 | GPIO_IO_6 | GPIO_IO_5 | GPIO_IO_4 | GPIO_IO_3 | GPIO_IO_2 | GPIO_IO_1 | GPIO_IO_0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
Note: R =Read access; W = Write access; value following dash (=) = value after reset
Bits 31-20 Reserved. These bits are reserved (read as zeros).
Bit 19 GPIO_I019. Writeable when 1/O is configured as output (gpio_ciol9
is 0). Reads value on GPI019 pad when 1/O is configured as input
(gpio_ciol9 is 1).
Bits 18-0 GPIO_1018:0. Same as gpio_io19.

General-Purpose 1/0 Module (GPIO) 7-5

GPIO/KBGPIO Registers

Figure 7-2. GPIO_CIO Register

Address (hex): Base = OxFFFF:2800, Offset = 0x0004

31-20

19 18 17 16
Reserved GPIO_CIO_19 | GPIO_CIO_18 | GPIO_CIO_17 | GPIO_CIO_16
RW-0 RW-1 RW-1 RW-1 RW-1
15 14 13 12 11 10 9 8
GPIO_CIO_15 | GPIO_CIO_14 | GPIO_CIO_13 | GPIO_CIO_12 | GPIO_CIO_11 | GPIO_Clo_10 | GPIO_CIO 9 | GPIO_CIO_8
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
GPIO_Cl0_7 | GPIO_ClO_6 | GPIO_ClIO 5 | GPIO_Clo_4 | GPIo_clo 3 | GPIO_Clo 2 | GPIO_CIO_ 1 | GPIO_CIO 0
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

Note:

7-6

R = Read access; W = Write access; value following dash (=) = value after reset

GPIO19 configured as output
GPI1019 configured as input (default)

Bits 31-20

Bit 19 GPIO_CIlO19.
0
1

Bits 18-0

GPIO_CIl018:0. Same as gpio_ciol9.

Reserved. These bits are reserved (read as zeros).

Figure 7-3. GPIO_IRQA Register
Address (hex): Base = OxFFFF:2800, Offset = 0x0008

GPIO/KBGPIO Registers

31-20 19 18 17 16
GPIO_IRQA_ GPIO_IRQA_ | GPIO_IRQA_ GPIO_IRQA_
Reserved 19 18 17 16
RW-0 RW-0 RW-0 RW-0 RW-0
15 14 13 12 11 10 9 8
GPIO_IRQA_ | GPIO IRQA_ | GPIO IRQA_ | GPIO_ IRQA_ | GPIO IRQA_ | GPIO IRQA_ | GPIO_IRQA_ | GPIO_IRQA_
15 14 13 12 11 10 9 8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
GPIO_IRQA_ | GPIO_IRQA | GPIO IRQA_ | GPIO_IRQA_ | GPIO_IRQA_ | GPIO_IRQA_ | GPIO_IRQA | GPIO_IRQA_
7 6 5 4 3 2 1 0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note:

Bit 19

Bits 18-0

R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-20

Reserved. These bits are reserved (read as zeros).

GPIO_IRQA19. In conjunction with gpio_irgB19, determines the be-
havior when GPI1019 configured as input IRQ.

GPIO_IRQA18:0. Same as gpio_irgA19.

General-Purpose 1/0 Module (GPIO)

7-7

GPIO/KBGPIO Registers

Figure 7-4.

GPIO_IRQB Register

Address (hex): Base = OxFFFF:2800, Offset = 0x000C

31-20 19 18 17 16
GPIO_IRQB_ | GPIO_ IRQB_ | GPIO IRQB_ | GPIO_IRQB_
Reserved 19 18 17 16
RW-0 RW-0 RW-0 RW-0 RW-0
15 14 13 12 11 10 9 8
GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_
15 14 13 12 11 10 9 8
RW-0 RW-0 RwW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_ | GPIO_IRQB_
7 6 5 4 3 2 1 0
RW-0 RW-0 RwW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note:

Interpretation of the IRQA and IRQB values is done according to Table 7-5.

Bits 31-20

Bit 19

Bits 18-0

R = Read access; W = Write access; value following dash (=) = value after reset

Reserved. These bits are reserved (read as zeros).

GPIO_IRQB19. In conjunction with gpio_irqA19, determines the be-
havior when GPIO19 configured as input IRQ.

GPIO_IRQB18:0. Same as gpio_irqB19.

Table 7-5. IRQA/IRQB Value Interpretations

7-8

gpio_irgB gpio_irgA Function
0 0 Disable IRQ
0 1 IRQ generated on rising edge
1 0 IRQ generated on falling edge
1 1 IRQ generated on state change

GPIO/KBGPIO Registers

Figure 7-5. GPIO_DDIO - Delta Detect Register
Address (hex): Base = OxFFFF:2800, Offset = 0x0010
31-20 19 18 17 16
Reserved GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_
19 18 17 16
RW-0 RW-0 RW-0 RW-0 RW-0
15 14 13 12 11 10 9 8
GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_
15 14 13 12 n 10 9 8
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_ | GPIO_DDIO_
7 6 5 4 3 2 1 0
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-20

Bit 19

Bits 18-0

GPIO_DDIO19. Delta detect bit;
If gpio_ciol9 = 0, always read as 0.
If gpio_cio19 =1, reads 1 if gpio19 has changed since this bit was last

cleared.

Write a 1 to clear gpio_ddiol9.

GPIO_DDIO18:0. Same as gpio_ddio19.

General-Purpose 1/0 Module (GPIO)

Reserved. These bits are reserved (read as zeros).

7-9

GPIO/KBGPIO Registers

GPIO_EN — GPIO Enable

This bit selects if a GPIO will be muxed with other I/Os. By default, the other
functionality is selected. This bit controls the output multiplexers on the
VC547x device. For GPIOs that are not shared, this bit has no meaning.

Figure 7-6. GPIO_EN Register

Address (hex): Base = OxFFFF:2800, Offset = 0x0014

31-20 19 18 17 16
Reserved GPIO_EN_19 | GPIO_EN 18 | GPIO_EN 17 | GPIO_EN_16
RW-0 RW-1 RW-1 RW-1 RW-1
15 14 13 12 11 10 9 8

GPIO_EN_15 | GPIO_EN_14 | GPIO_EN 13 | GPIO_EN_12 | GPIO_EN_11 | GPIO_EN_10 | GPIO_EN 9 GPIO_EN_8

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

7 6 5 4 3 2 1 0

GPIO_EN_7 | GPIO_EN_6 GPIO_EN_5 GPIO_EN_4 GPIO_EN_3 GPIO_EN_2 GPIO_EN_1 GPIO_EN_O

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-20 Reserved. These bits are reserved (read as zeros).
Bit 19 GPIO_ENZ19. Selects signal for muxed GPIOs.

0 other 1/O signal

1 GPIO
Bits 18-0 GPIO_EN18:0. Same as gpio_enl19

Non-shared GPIOs are always available independent of the value of
gpio_en.

7-10

GPIO/KBGPIO Registers

7.2.2 KBGPIO Registers

Figure 7-7. KBGPIO_IO Register
Address (hex): Base = OxFFFF:2900, Offset = 0x0000

31-16
Reserved
RW-0
15 14 13 12 11 10 9 8
KBGPIO_IO15 | KBGPIO_I014 | KBGPIO_IO13 | KBGPIO_1012 | KBGPIO_I011 | KBGPIO_I010 | KBGPIO_109 | KBGPIO_IO8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
KBGPIO_IO7 | KBGPIO_IO6 | KBGPIO_IO5 | KBGPIO_ 104 | KBGPIO_IO3 | KBGPIO_I02 | KBGPIO_IO1 | KBGPIO_IO0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note:

R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved. These bits are reserved (read as zeros).

Bit 15 KBGPIO_IO15. Writeable if I/O is configured as output (kbgpio_cio
is 0). Reads value on KBGPIO15 pad in I/O is configured as input
(kbgpio_cio is 1).

Bits 14-0 KBGPIO_1014:0. Same as kbgpio_iol5.

General-Purpose 1/0 Module (GPIO) 7-11

GPIO/KBGPIO Registers

Figure 7-8. KBGPIO_CIO Register

Address (hex): Base = OxFFFF:2900, Offset = 0x0004

31-16
Reserved
RW-0
15 14 13 12 11 10 9 8
KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_
clo1s 1014 1013 1012 1011 1010 109 108
RwW-1 RwW-1 Rw-1 RW-1 RwW-1 RwW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_ KBGPIO_
107 106 105 104 103 102 101 100
RwW-1 RwW-1 Rw-1 RW-1 RwW-1 RwW-1 RW-1 RW-1

Note: R = Read access; W = Write access; value following dash (=) = value after reset

7-12

Bits 31-16

Bit 15

Bits 14-0

Reserved. These bits are reserved (read as zeros).

KBGPIO_CIO15.

0
1

KBGPIO_CIO14:0. Same as kbgpio_ciol5.

KBGPIO15 configured as output

KBGPIO15 configured as input (default)

Figure 7-9. KBGPIO_IRQA Register

GPIO/KBGPIO Registers

Address (hex): Base = OxFFFF:2900, Offset = 0x0008

31-16
Reserved
RW-0
15 14 13 12 11 10 9 8
KBGPIO_IRQA | KBGPIO IRQA | KBGPIO IRQA | KBGPIO IRQA | KBGPIO IRQA | KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA
15 14 13 12 u 10 9 8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA | KBGPIO_IRQA
7 6 5 4 3 2 1 0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
Note: R =Read access; W = Write access; value following dash (=) = value after reset
Bits 31-16 Reserved. These bits are reserved (read as zeros).
Bit 15 KBGPIO_IRQA15. In conjunction with kbgpio_irgB15, determines
the behavior when KBGPIO15 configured as input IRQ.
Bits 14-0 KBGPIO_IRQA14:0. Same as kbgpio_irgA15.

General-Purpose 1/0 Module (GPIO) 7-13

GPIO/KBGPIO Registers

Figure 7-10. KBGPIO_IRQB Register

Address (hex): Base = OxFFFF:2900, Offset = 0x000C

31-16
Reserved
RW-0
15 14 13 12 11 10 9 8
KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB
15 14 13 12 u 10 9 8
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2 1 0
KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB | KBGPIO_IRQB
7 6 5 4 3 2 1 0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note:

R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved. These bits are reserved (read as zeros).

Bit 15 KBGPIO_IRQB15. In conjunction with kbgpio_irgA15, determines
the behavior when KBGPIO15 configured as input IRQ.

Bits 14-0 KBGPIO_IRQB14:0. Same as kbgpio_irgB15.

Interpretation of the IRQA and IRQB values is made according to Table 7-6.

7-14

GPIO/KBGPIO Registers

Table 7-6. KBGPIO_IRQA/IRQB Value Interpretations

kbgpio_irgB kbgpio_irgA Function
0 0 Disable IRQ
0 1 IRQ generated on rising edge
1 0 IRQ generated on falling edge
1 1 IRQ generated on state change

Figure 7-11.KBGPIO_DDIO - Delta Detect Register

Address (hex): Base = OxFFFF:2900, Offset = 0x0010

31-16
Reserved
RW-0
15 14 13 12 11 10 9 8
KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO
15 14 13 12 u 10 9 8
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO | KBGPIO_DDIO
7 16 5 4 3 2 1 0
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

Note:

Bits 31-16

Bit 15

Bits 14-0

R = Read access; W = Write access; value following dash (=) = value after reset

Reserved. These bits are reserved (read as zeros).

KBGPIO_DDIO15. Delta detect bit:

If kbgpio_ciol5 =1, always read as 0.

If kbgpio_ciol5 =0, reads 1 if io15 has changed since this bit was last
cleared.

Write a 1 to clear gpio_ddiol9.

KBGPIO_DDIO14:0. Same as kbgpio_ddiol5.

General-Purpose 1/0 Module (GPIO) 7-15

GPIO/KBGPIO Registers

KBGPIO_EN — KBGPIO Enable

This bit selects if a KBGPIO will be muxed with other 1/0Os. By default, the other
I/O functionality is selected. This bit controls the output multiplexers on the
VC547x device. For KBGPIOs that are not shared, this bit has no meaning.

Figure 7-12. KBGPIO_EN Register
Address (hex): Base = OxFFFF:2900, Offset = 0x0014

31-16
Reserved
RW-0
15 14 13 12 11 10 9 8
KBGPIO_EN15 | KBGPIO_EN14 | KBGPIO_EN13 | KBGPIO_EN12 | KBGPIO_EN11 | KBGPIO_EN10 | KBGPIO_EN9 | KBGPIO_ENS
RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1
7 6 5 4 3 2 1 0
KBGPIO_EN7 | KBGPIO_ENI6 | KBGPIO_EN5 | KBGPIO_EN4 | KBGPIO_EN3 | KBGPIO_EN2 | KBGPIO_EN1 | KBGPIO_ENO
RW-1 RW-1 RW-1 RwW-1 RW-1 RW-1 RwW-1 RwW-1
Note: R = Read access; W = Write access; value following dash (-) = value after reset

7-16

Bits 31-16 Reserved. These bits are reserved (read as zeros).
Bit 15 KBGPIO_EN15. Selects register for muxed GPIOs.
0 other I/O signal
1 KBGPIO
Bits 14-0 KBGPIO_EN14:0. Same as kbgpio_en15.

Non-shared GPIOs are always available independent of the value of
kbgpio_en.

GPIO/KBGPIO Registers

7.2.3 Keyboard Connection

The keyboard can be connected to the chip using:
(1 KBGPIO(15:8) pins configured as input (cio=1) for row lines

(1 KBGPIO(7:0) pins configured as output (cio=0) pins for column lines with
the io bit setto O

If more keys are required, extra columns can be added using some of the spare
GPIO pins.

If a key button of the keyboard matrix is pressed, the corresponding row and
column lines are shorted together.

All input pins KBGPIO(15:8) are pulled up to VCC by the internal PU resistors
and all output pins KBGPIO(7:0) are driving a low level (since io should have
been set to 0). Any action on a button will generate an interrupt to the ARM.
Upon interrupt reception the ARM SW shall write the cio bits of the column lines
KBGPIO(7:0) with the sequence described below, while reading the io bits of
the row lines KBGPIO(15:8).

This sequence allows the detection of simultaneously pressed keys.

Table 7—7. Keyboard Scanning Sequence

IDLE Keyboard Scanning IDLE

cio bit cio bit cio bit
KBGPIO(0) 0 1 0 1 1 1 1 1 1 1 0
KBGPIO(1) 0 1 1 0 1 1 1 1 1 1 0
KBGPIO(2) 0 1 1 1 0 1 1 1 1 1 0
KBGPIO(3) 0 1 1 1 1 0 1 1 1 1 0
KBGPIO(4) 0 1 1 1 1 1 0 1 1 1 0
KBGPIO(5) 0 1 1 1 1 1 1 0 1 1 0
KBGPIO(6) 0 1 1 1 1 1 1 1 0 1 0
KBGPIO(7) 0 1 1 1 1 1 1 1 1 0 0

General-Purpose 1/0 Module (GPIO) 7-17

GPIO/KBGPIO Registers

Figure 7-13. Keyboard Connection

IT_Kbd

N

cio bit
0 bit=0 % KBGPIO(0)
io bit = P
cio hit j
KBGPIO(1
cio bit
o bit=0 % KBGPIO(2)
io bit = P
cio hit
io bit = 0 % KBGPIO(3)
io bit =0 —
o] P
cio bit
o bit=0 % KBGPIO(4)
t=0—j
10 DI /
cio bit
o bit=0 % KBGPIO(5)
io bit = P
cio hit
% KBGPIO(6)
iobit=0 _/
cio bit
% KBGPIO(7)

io bit =0 —

7-18

\

KBGPIC
KBGPIC
KBGPIC
KBGPIC
KBGPIC
KBGPIC
KBGPIC
KBGPIC

7.3 Input/Outputs of GPIO Module

Table 7-8. GPIO Module I/Os

Input/Outputs of GPIO Module

Name Function Direction Size
add_i Address IN 3
data_i Data bus IN 20
data o Data bus ouT 32
nrw_i Not Read Write IN 1
cs_gpio_i GPIO chip select IN 1
cs kb i KBGPIO chip select IN 1
nreset_i Reset timer module — Active at low level IN 1
clk GPIO and KBGPIO clock IN 1
gpio_i GPIO input IN 20
gpio_o GPIO output ouT 20
gpio_en_o GPIO enable output ouT 20
gpio_io_enable_o GPIO 1I/O output ouT 20
nirq_gpio_0_o GPIO bit 0 IRQ output ouT 1
nirq_gpio_1 o GPIO bit 1 IRQ output ouT 1
nirq_gpio_2_o GPIO bit 2 IRQ output ouT 1
nirq_gpio_3_o GPIO bit 3 IRQ output ouT 1
nirq_gpio_19 4 o OR of GPIO bit 19 to bit 4 IRQ output ouT 1
gpiokb_i KBGPIO input IN 16
gpiokb_o KBGPIO output ouT 16
gpiokb_en_o KBGPIO enable output ouT 16
gpiokb_io_enable_o KBGPIO i/o configuration output ouT 16
nirgq_gpiokb_15 8 o OR of KBGPIO bit 15 to 8 IRQ output ouT 1
nirq_gpiokb_7_0_o OR of KBGPIO bit 7 to 0 IRQ output ouT 1
test_mode Test mode IN 1
test_si Test Scan Input IN 1
test_so Test Scan Output ouT 1

General-Purpose 1/0 Module (GPIO) 7-19

Chapter 8

UART IRDA Module

This chapter explains the features of the UART IRDA module, shows the appli-
cable registers, and discusses the serial infrared (SIR) mode and the universal
asynchronous receiver/transmitter (UART) mode.

UART IRDA is associated with the ARM™ microcontroller unit (MCU) of the
dual-core (MCU + DSP) VC547x device.

Topic Page
8.1 General DesCriptiont 8-2
8.2 Main Featuresot @
8.3 1/O Description E
8.4 Register Mapping/Descriptionsouiiiiiiiinn... @
8.5 UART IRDA Functional Block Diagram @
8.6 Serial Infrared Mode and Protocol @
8.7 Functional Descriptionsiiiiiiiiiiii @

8-1

General Description

8.1 General Description

The UART IRDA module on the VC547x device is a universal asynchronous
receiver/transmitter that can be used in two different operating modes: UART
modem mode (UART mode) and IrDA serial infrared mode (SIR mode). This
UART interface is compatible with 16C750-compliant devices. It includes the
SIR protocol in order to be connected with an infrared transmitter to any exter-
nal data peripherals with an IrDA-compliant data interface. The IR function can
be disabled and the UART connected through a standard wired interface. This
UART can be linked to an external PC for concurrent debugging.

In the UART modem mode, the UART IrDA module transmits characters sent
to it by the ARM on the TX pin, and receives characters from the RX pin. In the
SIR mode, transmissions are done by pulses generated by the UART and
transformed into infrared pulses by a transceiver.

IrDA/SIR Background

IrDA is a standard defined by the IrDA consortium (Infrared Data Association).
It specifies a way to wirelessly transfer data via infrared radiation. The IrDA
specifications include standards for both the physical devices and the proto-
cols they use to communicate with each other. The IrDA standards have arisen
from the need to connect various mobile devices together. (Primary use for
IrDA is to link notebooks or various personal communicators; however, even
video cameras are sometimes equipped with an IrDA interface.) IrDA devices
communicate using infrared LEDs.

SIR/FIR Physical Layer Specifications

The serial IrDA (SIR) physical layer specification defines a short-range in-
frared asynchronous serial transmission mode with one start bit, eight data
bits, and one stop bit. The maximum data rate is 115.2 Kbps (half-duplex). The
primary benefit of this scheme is that existing serial hardware can be used very
cheaply. This is one of the reasons for the widespread availability of IrDA.
Compared to SIR, the Fast IrDA (FIR) physical layer specification defines
short-range, low-power operation at 4 Mbps (half-duplex). All FIR devices are
also required to support SIR operation.

The UART IrDA module on the VC547x device supports only the SIR protocol
for IrDA communication.

Main Features

8.2 Main Features

The UART IRDA module integrates two 64-word (9 and 11 bits) receive and
transmit FIFOs and one 8-word (16 bits) status FIFO with programmable trig-
ger levels. Hardware buffering allows higher transmission speed without data
loss and without requiring frequent attention from the ARM. The baud rate is
internally generated from a programmable divisor.

J UART mode:

Under the UART mode, the module is configurable to send even, odd, or
no parity, and 1, 1.5, or 2 stop bits. The word length for both TX and RX can
be configured between five and eight bits. The receiver can detect break,
idle or framing errors, FIFO overflow, and parity errors. The transmitter can
detect FIFO underflow. All modem operations are controllable via a soft-
ware interface.

1 IrDA SIR mode:

The protocol used is the serial infrared (SIR) protocol, defined as a stan-
dard (www.irda.org)
8.2.1 UART Mode Features
[Line break generation and detection
O Interrupt system control
(] Baud rates up to 6.25M baud are supported
U

Only software flow control

UART IRDA Module 8-3

Main Features

8.2.2

IrDA SIR Mode Features

4

L

Frame format: addition of variable beginning-of-frame (xBOF) characters
and end-of-frame (EOF) characters

Uplink/downlink CRC generation/detection
Asynchronous transparency (automatic insertion of break character)

8-character status FIFO available to monitor frame length and frame er-
rors

Variable frame length for RX and TX IrDA frame

Sd_mode: output shutdown. When the UART/IrDA is in transmission, the
pin is set to high; otherwise, the pin is maintained low. Software manages
this functionality

IrDA 1.0 SIR support, allows serial communication at baud rates from
2.4K baud to 115.2K baud.

Pulse shaping and pulse recovering. Sending a single infrared pulse sig-
nals a zero. A one is signaled by not sending any pulse. The width of the
pulse is programmable.

The device operation, in IrDA 1.0 SIR mode, is similar to the operation in
UART mode. The format of the serial data is similar to the UART data for-
mat. Each data word is sent with a zero value start bit followed by
eight data bits, and ending with at least one stop bit with a binary value of
one. The main differences are that the data transfer operations are nor-
mally performed in half-duplex, and the modem control and status signals
are not used.

8.3 1/0O Description

Table 8-1. UART_IRDA Signals

I/O Description

Signal I/O Function
CK16X_IRDA /0 16X serial transmission clock
TXIR_IRDA I/10 Infrared transmit pulse
TX_IRDA I/0 Transmit data
RXIR_IRDA 110 Infrared receive pulse
RX_IRDA I/O Receive data
SD_IRDA I/0 IRDA transceiver shutdown mode

UART IRDA Module 8-5

Register Mapping/Descriptions

8.4 Register Mapping/Descriptions

8.4.1 UART IRDA Module Registers

Base address (hex): FFFF:0800

Register width: 32 bits

Table 8-2. UART IRDA Module Registers

. N Offset

Register Description Address
UART_IRDA_RHR . . .
(UART Mode) Receive Holding Register (UART Mode) 00h
UART_IRDA_RHR . . .
(SIR Mode) Receive Holding Register (SIR Mode) 00h
UART_IRDA_THR Transmit Holding Register 04h
UART_IRDA_FCR FIFO Control Register 08h
UART_IRDA_SCR Status Control Register 0Ch
UART_IRDA_LCR . .
(UART Mode) Line Control Register (UART Mode Only) 10h
UART_IRDA_LSR . .
(UART Mode) Line Status Register (UART Mode) 14h
UART_IRDA_LSR . .
(SIR Mode) Line Status Register (SIR Mode) 14h
UART_IRDA_SSR Supplementary Status Register 18h
UART_IRDA_MCR Modem Control Register 1Ch
UART_IRDA_MSR Modem Status Register 20h
UART_IRDA_IER .
(UART Mode) Interrupt Enable Register (UART Mode) 24h
UART_IRDA_IER .
(SIR Mode) Interrupt Enable Register (SIR Mode) 24h
UART_IRDA_ISR .
(UART Mode) Interrupt Status Register (UART Mode) 28h
SR IRk SIS Interrupt Status Register (SIR Mode) 28h

(SIR Mode)

8-6

Register Mapping/Descriptions

Table 8-2. UART IRDA Module Registers (Continued)

Register Description ggfgfgss
UART_IRDA_EFR Enhanced Feature Register 2Ch
UART_IRDA_XON1 XON1 Character Register 30h
UART_IRDA_XON2 XON2 Character Register 34h
UART_IRDA_XOFF1 XOFF1 Character Register 38h
UART_IRDA_ XOFF2 XOFF2 Character Register 3Ch
UART_IRDA_SPR Scratch-Pad Register 40h
UART_IRDA_DIV_115K Divisor for 115K-Baud Generation 44h
UART_IRDA DIV_BIT_RATE Divisor for Baud-Rate Generation 48h
UART_IRDA_TCR Transmission Control Register (UART Mode ach
(UART Mode) Only)

UART_IRDA_TLR Trigger Level Register 50h
UART_IRDA MDR1 Mode Definition Register 1 54h
UART_IRDA_MDR2 Mode Definition Register 2 58h
UART_IRDA_TXFLL Transmit Frame Length Register — LSB 5Ch
UART_IRDA_TXFLH Transmit Frame Length Register — MSB 60h
UART_IRDA_RXFLL Received Frame Length Register — LSB 64h
UART_IRDA_RXFLH Received Frame Length Register — MSB 68h
UART_IRDA_SFLSR Status FIFO Line Status Register 6Ch
UART_IRDA_SFREGL Status FIFO Register — LSB 70h
UART_IRDA_SFREGH Status FIFO Register — MSB 74h
UART_IRDA BLR Beginning-of-File-Length Register 78h
UART_IRDA_PULSE_WIDTH Pulse Width Register 7Ch
UART_IRDA_ACREG Auxiliary Control Register 80h
UART_IRDA_START_POINT Start Point for IR Transmission 84h
UART_IRDA_WRPTR_URX Write Pointer of RX FIFO 88h
UART_IRDA_RDPTR_URX Read Pointer of RX FIFO 8Ch

UART IRDA Module

8-7

Register Mapping/Descriptions

Table 8-2. UART IRDA Module Registers (Continued)

Register Description ,(A);fjre;ss
UART_IRDA_WRPTR_UTX Write Pointer of TX FIFO 90h
UART_IRDA_RDPTR_UTX Read Pointer of TX FIFO 94h
UART_IRDA WRPTR_STA Write Pointer of Status FIFO 98h
UART_IRDA _RDPTR_STA Read Pointer of Status FIFO 9Ch
UART_IRDA_RESUME Resume Register AOh

8.4.2 Special Access Registers

It is important to note here that some registers need special conditions to be
accessed in write and/or read mode.

0 UART_IRDA MCRJ[7:5] and UART_IRDA_ FCRJ[5:4] can only be written
when UART_IRDA_EFR[4] =1

(10 UART_IRDA TCR and UART_IRDA TLR can only be written when
UART_IRDA_MCR[6] =1

0 UART_IRDA WRPTR_URX, UART_IRDA_RDPTR_URX,
UART_IRDA_WRPTR_UTX, UART_IRDA_RDPTR_UTX,
UART_IRDA_WRPTR_STA, and UART_IRDA_RDPTR_STA can only be
accessed when UART_IRDA_SCR[0] =1

All the other registers can be accessed unconditionally.

8.4.3 Register Mapping
(] Base address is OXxFFFF:0800
[J Writing and reading in registers depends on the selected mode:

B UART mode (UART_IRDA_MDR1[2:0] = 000)
B I'DA mode (UART_IRDA_MDR1[2:0] = 001)

Register Mapping/Descriptions

8.4.4 Receive Holding Register

This register holds the received word that is to be read by the MCU. Received
datais stored in a 64-word FIFO. The first unread word is presented to the RHR
and replaced by the second unread word after an RHR access. If the FIFO is
disabled, the RHR register will contain the received data in the same way. If
an overflow occurs, received data will not be written into the FIFO, and conse-
quently, will not be read through RHR.

UART Mode

Bits 8, 9, and 10 of RHR indicate which kind of error has occurred on current
read data.

Figure 8-1. Receive Holding Register (UART_IRDA_RHR) — UART Mode
Address (hex): Base = FFFF:0800, Offset = 0x0000

31-11 10 9 8
Reserved RX_BI RX_FE RX_PE
R-0 R-0 R-0 R-0
7-0
RHR
R-U

Note: R = Read access; value following dash (=) = value after reset; U = Undefined

Bits 31-11 Reserved. Read as zeros.

Bit 10 RX_BI.

No break condition

1 A break was detected while receiving read data
(i.e., RX_IRDA input signal was low for one character
frame)
Bit 9 RX_FE.
0 No framing error in read data
1 A framing error occurred while receiving read data

(i.e., received data did not have a valid stop bit)

UART IRDA Module 8-9

Register Mapping/Descriptions

Bit 8 RX_PE.
0 No parity error in read data
1 A parity error occurred while receiving read data
Bits 7-0 RHR. Receive holding register (contains the first unread byte of the

64-byte RX FIFO). If overflow occurs, data is not overwritten in FIFO.

SIR Mode

Figure 8-2. Receive Holding Register (UART_IRDA_RHR) — SIR Mode
Address (hex): Base = FFFF:0800, Offset = 0x0000

31-9 8
Reserved EOF
R-0 R-0
7-0
RHR
R-U

Note: R = Read access; value following dash (-) = value after reset; U = Undefined

Bits 31-9 Reserved. Read as zeros.
Bit 8 EOF. End-of-frame bit.
0 Not end
1 End of frame
Bits 7-0 RHR. Receive holding register (contains the first unread byte of the

64-byte RX FIFO). If overflow occurs, data is not overwritten in FIFO.

8.4.5 Transmit Holding Register

This register stores data to be sent. Once it is written by the CPU, data is trans-
mitted to the transmitter FIFO and waits for its parallel-to-serial translation be-
fore being shifted onto the TX_IRDA output pin. If the FIFO is disabled, you
should be sure that the TX FIFO is not full (SSR[0]) before writing to THR be-
cause you can overwrite data to send.

8-10

Register Mapping/Descriptions

Figure 8-3. Transmit Holding Register (UART_IRDA_THR)
Address (hex): Base = FFFF:0800, Offset = 0x0004

31-8

Reserved

wW-0

7-0

THR

W-U

Note: W = Write access; value following dash (-) = value after reset; U = Undefined

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 THR. Transmit holding register (64-byte FIFO).

8.4.6 FIFO Control Register

Note that bits 4 and 5 can only be written when EFR[4] = 1.
(UART_IRDA_EFR[4] enables/disables writingto UART_IRDA_FCRI[5:4] and
UART_IRDA_MCRJ[7:5].)

Figure 8-4. FIFO Control Register (UART_IRDA_ FCR)
Address (hex): Base = FFFF:0800, Offset = 0x0008

31-8
Reserved
W-0
7-6 5-4 3 2 1 0
RX_FIFO_TRIG TX_FIFO_TRIG Reserved | RX_FIFO_CLEAR TX_FIFO_CLEAR | FIFO_EN
W-0 W-0 W-0 W-0 W-0 W-0

Note: W = Write access; value following dash (-) = value after reset

UART IRDA Module 8-11

Register Mapping/Descriptions

Bits 31-8 Reserved. Read as zeros.
Bits 7-6 RX_FIFO_TRIG. Sets the trigger level for the RX FIFO.
00 8 bytes
01 16 bytes
10 32 bytes
11 60 bytes
Bits 5-4 TX_FIFO_TRIG. Sets the trigger level for the TX FIFO
if UART_IRDA_EFR(4) = 1.
00 8 bytes
01 16 bytes
10 32 bytes
11 56 bytes
Bit 3 Reserved. Read as zero.
Bit 2 RX_FIFO_CLEAR.
0 No change
1 Clears the RX FIFO and resets its counter logic to zero
Bit 1 TX_FIFO_CLEAR.
0 No change
1 Clears the TX FIFO and resets its counter logic to zero
Bit 0 FIFO_EN.

0 Disables the TX and RX FIFOs
1 Enables the TX and RX FIFOs

8.4.7 Status Control Register
Figure 8-5. Status Control Register (UART_IRDA_SCR)

Address (hex): Base = FFFF:0800, Offset = 0x000C

31-8 7 6
Reserved FIFO_INIT_STATUS | FIFO_INIT
RW-0 R-0 W-0
5 4 3 2-1 0
Reserved RX_CTS_WAKE_UP_ENABLE | TX EMPTY CTL_IT | Reserved | FIFO_PTR_ACCESS_EN
W-0 W-0 W=0 W=0 W-=0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

8-12

Bits 31-8

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bits 2-1

Bit O

Register Mapping/Descriptions

Reserved. Read as zeros.

FIFO_INIT_STATUS.

0 Initialization of FIFOs is not finished if
UART_IRDA_SCR(6) =1

1 Initialization of FIFOs is finished. Clear on a read

FIFO_INIT.

0 FIFOs are not initialized

1 FIFOs are initialized to zero. This bit auto-clears

Reserved. Read as zero.

RX_CTS_WAKE_UP_ENABLE.
0 Disables the wake-up interrupt and clears

UART_IRDA_SSR[1]

1 Waits for the falling edge of input pin RX_IRDA to gener-
ate an interrupt

TX_EMPTY_CTL_IT.

0 Normal mode for UART_IRDA_THR interrupt

1 The UART_IRDA_THR interrupt is generated when the
TX FIFO and TX shift register are empty

Reserved. Read as zeros.

FIFO_PTR_ACCESS_EN.

Disables FIFO'’s pointer access through registers

1 Enables FIFQO’s pointer access through
UART_IRDA WRPTR_URX, UART_IRDA_RDPTR_URX,
UART_IRDA_WRPTR_UTX, UART_IRDA_RDPTR_UTX,
UART_IRDA_WRPTR_STA, UART_IRDA_RDPTR_STA

UART IRDA Module 8-13

Register Mapping/Descriptions

8.4.8 Line Control Register (UART Mode Only)

Figure 8-6. Line Control Register (UART_IRDA_LCR) — UART Mode
Address (hex): Base = FFFF:0800, Offset = 0x0010

31-7

Reserved

RW-0

6 5 4 3 2

1-0

BREAK_EN PARITY_TYPE2 PARITY_TYPE1 PARITY_EN NB_STOP

CHAR_LENGTH

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
Note: R = Read access; W = Write access; value following dash (-) = value after reset
Bits 31-7 Reserved. Read as zeros.
Bit 6 BREAK_EN. Break Control Bit.
0 No break
1 Forces the transmitter output to go low to alert the com-
munication terminal
Bit 5 PARITY_TYPE2. Selects the forced parity format if
UART_IRDA LCR(3)=1
0 No forced parity
1 If UART_IRDA_LCR(4) = 0, the parity bit is forced to 1 in

the TX and RX data. If UART_IRDA_LCR(4) = 1, the par-
ity bit is forced to 0 in the TX and RX data

Bit 4 PARITY_TYPEL.

0 Odd parity is generated (if bit 3 = 1)
1 Even parity is generated (if bit 3 =1)

Bit 3 PARITY_EN.

0 No parity

1 A parity bit is generated during transmission and the

receiver checks for received parity

Bit 2 NB_STOP. Number of stop bits

0 1 stop bit (word length =5, 6, 7, 8 bits)

1 1.5 stop bits (word length = 5)
2 stop bits (word length = 6, 7, 8)

8-14

Register Mapping/Descriptions

Bits 1-0 CHAR_LENGTH. Word length for TX and RX
00 5 bits
01 6 bits
10 7 bits
11 8 bits

8.4.9 Line Status Register

UART Mode

Bit 7 indicates if there is an error in RX FIFO, which means that the UART re-
ceived data with a framing error, parity error, or a break indication. This bit
stays at one until no more errors remain in the FIFO, which means until all data
with errors has been read.

Figure 8—7. Line Status Register (UART_IRDA LSR) — UART Mode
Address (hex): Base = FFFF:0800, Offset = 0x0014

31-8
Reserved
R-0
7 6 5 4-2 1 0
RX_FIFO_STS | TX_SR_E TX_FIFO_E Reserved RX_OE RX_FIFO_E
R-0 R-1 R-1 R-0 R-0 R-0

Note: R = Read access; value following dash () = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 RX_FIFO_STS.
0 Normal operation
1 At least one parity error, framing error, or breaking indica-

tion in the RX FIFO. Cleared when no more errors are
present in the FIFO

Bit 6 TX_SR_E.
0 Transmitter hold and shift registers are not empty
1 Transmitter hold and shift registers are empty

UART IRDA Module 8-15

Register Mapping/Descriptions

SIR Mode

Bit 5

Bits 4-2

Bit 1

Bit 0

TX_FIFO_E.

0
1

Transmitter hold register is not empty

Transmitter hold register is empty. The processor can load
up to 64 bytes of data into THR if the TX FIFO is enabled.

Reserved. Read as zeros.

RX_OE.

No overrun error

Overrun error has occurred. Set when the character being
held in the RX shift register is not transferred to the RX
FIFO. This case can only occur when RX FIFO is full.

RX_FIFO_E.

0
1

No data in the RX FIFO
At least one data character in the RX FIFO

Figure 8-8. Line Status Register (UART_IRDA_LSR) — SIR Mode

Address (hex): Base = FFFF:0800, Offset = 0x0014

31-8
Reserved
R-0
7 6 5 4 3 2 1 0
STS_FIFO_ RX_LAST_ | FRAME_TOO_
THR_EMPTY FULL BYTE LONG ABORT CRC STS_FIFO_E | RX_FIFO_E
R-1 R-0 R-1 R-0 R-0 R-0 R-0 R-1

Note: R = Read access; value following dash (-) = value after reset

8-16

Bits 31-8

Bit 7

Reserved. Read as zeros.

THR_EMPTY.

0
1

TX hold register is not empty

TX hold register is empty. The processor can load up to
64 bytes of data into THR if the TX FIFO is enabled.

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Register Mapping/Descriptions

STS_FIFO_FULL.

0
1

Status FIFO not full
Status FIFO full

RX_LAST BYTE.

Did not receive the last byte of a frame from the FIFO

Received the last byte of a frame from the FIFO. This bit
is set when the last byte of a frame is read. Cleared on a
read of the UART_IRDA LSR.

FRAME_TOO_LONG.

0 No frame_too_long error
1 Frame-too-long error at the top of the STATUS FIFO (next
character to be read). This is set to 1 when a frame ex-
ceeding the maximum length set by UART_IRDA RXFLL
and UART_IRDA_RXFLH registers has been received.
When the error is detected, current frame reception is ter-
minated. Reception is stopped until the next START flag is
detected.
ABORT.
0 No abort pattern error in frame
1 Abort pattern error is received
CRC.
0 No CRC error in frame
1 CRC error in the frame at the top of the STATUS FIFO
(next character to be read).
STS_FIFO_E.
0 Status FIFO empty
1 Status FIFO not empty
RX_FIFO_E.
0 At least one data in the RX FIFO
1 No data in RX FIFO

UART IRDA Module 8-17

Register Mapping/Descriptions

8.4.10 Supplementary Status Register

Figure 8-9. Supplementary Status Register (UART_IRDA_SSR)
Address (hex): Base = FFFF:0800, Offset = 0x0018

31-8
Reserved
R-0
7-2 1 0
Reserved RX_CTS_WAKE_UP_STS | TX_FIFO_FULL
R-0 R-0 R-0

Note: R = Read access; value following dash (-) = value after reset

Bits 31-2 Reserved. Read as zeros.
Bit 1 RX_CTS_WAKE_UP_STS. Enabled if UART_IRDA_SCR(4) = 1.
0 No falling edge event on RX_IRDA pin

1 A falling edge event occurred on RX_IRDA pin
Bit 0 TX_FIFO_FULL.

0 TX FIFO not full
1 TX FIFO full

8.4.11 Modem Control Register
Note that bits 5, 6, and 7 can be written only when UART _IRDA_EFR[4] = 1.

Figure 8-10. Modem Control Register (UART_IRDA_MCR)
Address (hex): Base = FFFF:0800, Offset = 0x001C

31-8
Reserved
RW-0
7 6 5 4 3-0
CLKSEL TCR_TLR XON_EN MODE Reserved
RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

8-18

Bits 31-8

Bit 7

Bit 6

Bit 5

Bit 4

Bits 3-0

Reserved. Read as zeros.

CLKSEL.

0 No action
1 Divides clock input by four

TCR_TLR.

0 No action

Register Mapping/Descriptions

1 Enables access to the UART_IRDA_TCR and

UART_IRDA_TLR registers
XON_EN.

0 Disables XON Any function
1 Enables XON Any function

MODE.

0 Normal operating mode

1 Internal loopback mode. UART_IRDA_MCRJ1:0] is looped

into UART_IRDA_MSR[5:4]

Reserved. Read as zeros.

8.4.12 Modem Status Register

Figure 8-11.Modem Status Register (UART_IRDA_MSR)

Address (hex): Base = FFFF:0800, Offset = 0x0020

31-0

Reserved

R-0

Note: R = Read access; value following dash (=) = value after reset

Bits 31-0

Reserved. Read as zeros.

UART IRDA Module 8-19

Register Mapping/Descriptions

8.4.13 Interrupt Enable Register

UART Mode

The interrupt enable register is used to enable or disable any interrupt. There
are five types of interrupts. You should be aware that the RHR interrupt enable
is necessary in order to obtain a time-out interrupt (see the UART_IRDA_ISR
register in section 8.4.14).

Figure 8-12. Interrupt Enable Register (UART_IRDA_IER) — UART Mode

Address (hex): Base = FFFF:0800, Offset = 0x0024

31-8
Reserved
RW-0
7-6 5 4 3 2 1 0
Reserved XOFF_IT | Reserved | Reserved LINE_STS IT THR_IT RHR_IT
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-6 Reserved. Read as zeros.
Bit 5 XOFF_IT.
0 Disables the XOFF interrupt
1 Enables the XOFF interrupt
Bit 4 Reserved. Read as zero.
Bit 3 Reserved. Read as zero.
Bit 2 LINE_STS_IT.
0 Disables the receiver line status interrupt
1 Enables the receiver line status interrupt
Bit 1 THR_IT.

0 Disables the THR interrupt
1 Enables the THR interrupt

8-20

Register Mapping/Descriptions

Bit 0 RHR_IT.
0 Disables the RHR interrupt
1 Enables the RHR interrupt

SIR Mode

Figure 8-13. Interrupt Enable Register (UART_IRDA_IER) — SIR Mode

Address (hex): Base = FFFF:0800, Offset = 0x0024

31-8

Reserved

RW-0
7 6 5 4 3 2 1 0
EOF_ |LINE_STS_ [TX_UNDERRUN_ |[STS_FIFO_TRIG_ | RX_OVERRUN_ | LAST RX_BYTE_ | THR_ [RHR_
IT IT IT IT IT IT IT IT
RW- RW-0 RW-0 RW-0 RW-0 RW-0 RW- RW-
0 0 0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 EOF_IT.
0 Disables the received EOF interrupt
1 Enables the received EOF interrupt
Bit 6 LINE_STS_IT.
0 Disables the receiver line status interrupt
1 Enables the receiver line status interrupt
Bit 5 TX_UNDERRUN_IT.
0 Disables the TX underrun interrupt
1 Enables the TX underrun interrupt
Bit 4 STS_FIFO_TRIG_IT.
0 Disables the status FIFO trigger level interrupt
1 Enables the status FIFO trigger level interrupt

UART IRDA Module 8-21

Register Mapping/Descriptions

Bit 3 RX_OVERRUN_IT.
0 Disables the RX overrun interrupt
1 Enables the RX overrun interrupt
Bit 2 LAST_RX _BYTE_IT.

0 Disables the last-byte-in-RX-FIFO interrupt
1 Enables the last-byte-in-RX-FIFO interrupt

Bit 1 THR_IT.

0 Disables the THR interrupt
1 Enables the THR interrupt

Bit 0 RHR_IT.
0 Disables the RHR interrupt
1 Enables the RHR interrupt

8.4.14 Interrupt Status Register

UART Mode

Allinterrupts have a priority level. See Section 8.7.2, Interrupts, for more infor-
mation on the management, priority, and clearing of interrupts.

Figure 8-14. Interrupt Status Register (UART_IRDA_ISR) — UART Mode
Address (hex): Base = FFFF:0800, Offset = 0x0028

31-8
Reserved
R-0
7 6 5-1 0
FCR_MIRROR | FCR_MIRROR IT_TYPE IT_PENDING
R-0 R-0 R-0 R-1

Note: R = Read access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 FCR_MIRROR. Mirrors the content of FCR(0)
Bit 6 FCR_MIRROR. Mirrors the content of FCR(0)

8-22

Register Mapping/Descriptions

Bits 5-1 IT_TYPE. Interrupts by priority

00011 Receiver line status error (priority level 1)

00110 RX time out (priority level 2)
00010 RHR interrupt (priority level 2)
00001 THR interrupt (priority level 3)

01000 XOFF/Special character interrupt (priority level 4)

Bit 0 IT_PENDING.

0 An interrupt (except the one defined by

UART_IRDA_SCR(4)) is pending. IRQ is active.

1 No interrupt (except maybe the one defined by
UART_IRDA_SCR(4)) is pending. IRQ is active.

SIR Mode

Figure 8-15. Interrupt Status Register (UART_IRDA_ISR) — SIR Mode
Address (hex): Base = FFFF:0800, Offset = 0x0028

31-8
Reserved
R-0
7 6 5 4 3 2 1 0
RX_FIFO_
EOF_IT | LINE_STS_IT [TX_UE_IT STS_FIFO_IT RX_OE_IT LAST BYTE IT THR_IT | RHR_IT
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
Note: R =Read access; value following dash (-) = value after reset
Bits 31-8 Reserved. Read as zeros.
Bit 7 EOF_IT.
0 Receiver EOF interrupt inactive
1 Receiver EOF interrupt active
Bit 6 LINE_STS_IT.
0 Receiver line status interrupt inactive
1 Receiver line status interrupt active
UART IRDA Module 8-23

Register Mapping/Descriptions

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

TX_UE_IT.

0 TX underrun interrupt inactive

1 TX underrun interrupt active
STS_FIFO_IT.

0 Status FIFO trigger level interrupt inactive
1 Status FIFO trigger level interrupt active
RX_OE_IT.

0 RX overrun interrupt inactive

1 RX overrun interrupt active

RX_FIFO_LAST BYTE_IT.

0 Last byte in RX FIFO interrupt inactive

1 Last byte in RX FIFO interrupt active
THR_IT.

0 THR interrupt inactive

1 THR interrupt active

RHR_IT.

0 RHR interrupt inactive

1 RHR interrupt active

8.4.15 Enhanced Feature Register

This register enables or disables enhanced features that concern flow control,
except bit 4, which enables write operation onto MCR and FCR. You should
note that XON1 and XON2 (and XOFF1 and XOFF2) must be different if the
software flow control is used.

8-24

Register Mapping/Descriptions

Figure 8-16. Enhanced Feature Register (UART_IRDA_EFR)
Address (hex): Base = FFFF:0800, Offset = 0x002C

31-8
Reserved
RW-0
7-6 5 4 3-0
Reserved SPECIAL_CHAR_DETECT | ENHANCED_EN SW_FLOW_CONTROL
RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset

Bits 31-6 Reserved. Read as zeros.
Bit 5 SPECIAL_CHAR_DETECT.
0 Normal operating mode
1 Enables special character detection. Received character

is compared to XOFF2. If a match occurs, the received
character is transferred to RX FIFO and
UART_IRDA_ISR[4] is set to 1.

Bit 4 ENHANCED_EN. Enhanced functions write enable.
0 Disables writing to UART_IRDA_FCR[5:4],
UART_IRDA_MCRJ[7:5]

1 Enables writing to UART_IRDA_FCR[5:4],
UART_IRDA_MCRJ7:5]

Bits 3-0 SW_FLOW_CONTROL. Software flow control.

00XX No transmit flow control

01XX Transmit XON2, XOFF2

10XX Transmit XON1, XOFF1

11XX Transmit XON1, XON2, XOFF1, XOFF2

XX00 No receive flow control

XX01 Receiver compares XON2, XOFF2

XX10 Receiver compares XON1, XOFF1

XX11 Receiver compares XON1, XON2, XOFF1, XOFF2

Note: XON1/XON2 and XOFF1/XOFF2 must be set to
different values if the software flow control is used

UART IRDA Module 8-25

Register Mapping/Descriptions

8.4.16 XON1 Character Register

Figure 8-17. XON1 Character Register (UART_IRDA_XON1)
Address (hex): Base = FFFF:0800, Offset = 0x0030

31-8

Reserved

RW-0

7-0

XON_WORD1

RW-0

Note: W= Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XON_WORDL1. Used to store the 8-bit XON1 character.

8.4.17 XON2 Character Register

Figure 8-18. XON2 Character Register (UART_IRDA_XON2)
Address (hex): Base = FFFF:0800, Offset = 0x0034

31-8

Reserved

RW-0

7-0

XON_WORD2

RW-0

Note: W= Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XON_WORD?2. Used to store the 8-bit XON2 character.

8-26

Register Mapping/Descriptions

8.4.18 XOFF1 Character Register

Figure 8-19. XOFF1 Character Register (UART _IRDA_XOFF1)
Address (hex): Base = FFFF:0800, Offset = 0x0038

31-8

Reserved

RW-0

7-0

XOFF_WORD1

RW-0

Note: W= Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XOFF_WORDL1. Used to store the 8-bit XOFF1 character.

8.4.19 XOFF2 Character Register

Figure 8-20. XOFF2 Character Register (UART_IRDA XOFF2)
Address (hex): Base = FFFF:0800, Offset = 0x003C

31-8

Reserved

RW-0

7-0

XOFF_WORD2

RW-0

Note: W= Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XOFF_WORD?2. Used to store the 8-bit XOFF2 character.

UART IRDA Module 8-27

Register Mapping/Descriptions

8.4.20 Scratch Pad Register

This register has no control function. Itis intended as a scratch pad to be used
by the programmer for holding temporary data.

Figure 8-21. Scratch Pad Register (UART_IRDA_SPR)
Address (hex): Base = FFFF:0800, Offset = 0x0040

31-8

Reserved

RW-0

7-0

SPR_WORD

RW-0

Note: R = Read access; W= Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 SPR_WORD. Scratch pad register.

8.4.21 Divisor for 115K-Baud Generation Register

This 9-hit register is used to store the divisor needed to obtain a 115K-baud
rate.

0 UART mode

The reset value (412) is the divisor needed at 47.5 MHz
(47 500 000/115 200 = 412).

1 SIR mode

The same method can be followed, but most of the time it is necessary to
calculate the register values of UART_IRDA_DIV_115K and
UART_IRDA_BIT_RATE in order to get a precise pulse width (see sec-
tion 8.6.4)

8-28

Register Mapping/Descriptions

Figure 8-22. Divisor for 115K-Baud Generation Register (UART_IRDA_DIV_115K)
Address (hex): Base = FFFF:0800, Offset = 0x0044

31-9

Reserved

RW-0

8-0

DIV_115K

RW-110110010

Note: R = Read access; W= Write access; value following dash (-) = value after reset

Bits 31-9 Reserved. Read as zeros.

Bits 8-0 DIV_115K. div_115k = (fclk / 115200).
div_115k is the divisor needed to obtain the 115k-baud rate; it is the
clock speed (in Hz) divided by 115200.

8.4.22 Divisor for Baud-Rate Generation Register

] UART mode

This 7-bit register represents the needed divisor to obtain the right speed
from 115K baud. For example, 0000010 will give 115K/2 = 57600 baud

1 SIR mode

This register must be adapted the same way as the
UART_IRDA_DIV_115K register.

Figure 8-23. Divisor for Baud-Rate Generation Register (UART_IRDA_DIV_BIT_RATE)
Address (hex): Base = FFFF:0800, Offset = 0x0048

31-7

Reserved

RW-0

6-0

DIV_BITRATE

RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset

UART IRDA Module 8-29

Register Mapping/Descriptions

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 DIV_BITRATE. div_bit_rate = div_115k / bit rate.
div_bit_rate is the divisor needed to obtain the desired speed.

8.4.23 Transmission Control Register (UART Mode Only)

This register is used to store the receive FIFO threshold level to start and stop
transmission during software flow control. This register can be written only if
UART_IRDA_MCR][6] = 1.

Figure 8-24. Transmission Control Register (UART_IRDA_TCR) — UART Mode
Address (hex): Base = FFFF:0800, Offset = 0x004C

31-8
Reserved
RW-0
-4 3-0
RX_FIFO_TRIG_START RX_FIFO _TRIG_HALT
RW-0 RW-1

Note: R = Read accesss; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-4 RX_FIFO_TRIG_START. Receive FIFO trigger level to restore
transmission.

0000 0 byte
0001 4 bytes
0010 8 bytes

1111 60 bytes

Bits 3-0 RX_FIFO_TRIG_HALT. Receive FIFO trigger level to stop transmis-
sion.

0000 0 byte
0001 4 bytes
0010 8 bytes
1111 60 bytes

8-30

Register Mapping/Descriptions

8.4.24 Trigger Level Register

This register is used to store the programmable transmit and receive FIFO trig-
ger levels used for IRQ generation. Trigger levels from 4 to 60 can be pro-
grammed with a granularity of 4.

Note that TLR can be written only if MCR[6] = 1.

If TLR[7:4] = 0000, the programmable RX trigger levels are disabled and trig-
ger RX levels in FCR[7:6] are enabled.

If TLR[3:0] = 0000, the programmable TX trigger levels are disabled and trig-
ger TX levels in FCR[5:4] are enabled.

Note that for the TX FIFO, the TLR represents the number of empty spaces
in the FIFO above which the THR interrupt will be activated. For example, if
TLR[3:0] = 1111, and if there are four or less bytes in the transmit FIFO, the
THR interrupt will be activated. If TLR[3:0] = 0001, and if there are 60 or less
bytes in the transmit FIFO, the interrupt will be activated.

Figure 8-25. Trigger Level Register (UART _IRDA_TLR)

Address (hex): Base = FFFF:0800, Offset = 0x0050

31-8

Reserved

RW-0

7-4 3-0

RX_FIFO_TRIG_RHR

TX_FIFO_TRIG_THR

RW-0

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-4 RX_FIFO_TRIG_RHR. RX FIFO trigger level to generate RHR inter-
rupt. It represents the number of empty spaces in the FIFO above
which the RHR interrupt will be activated.

0000 Use UART_IRDA_FCR][7:6] trigger level
0001 4 bytes

0010 8 bytes

1111 60 bytes

UART IRDA Module

8-31

Register Mapping/Descriptions

Bits 3-0 TX_FIFO_TRIG_THR. TX FIFO trigger level to generate THR inter-
rupt. It presents the number of empty spaces in the FIFO above which
the THR interrupt will be activated.

0000 Use UART_IRDA_FCR[5:4] trigger level
0001 4 bytes
0010 8 bytes

1111 60 bytes

8.4.25 Mode Definition Register 1

Figure 8-26. Mode Definition Register 1 (UART_IRDA_MDR1)
Address (hex): Base = FFFF:0800, Offset = 0x0054

31-8
Reserved
RW-0
7-3 2-0
Reserved MODE_SELECT
RW-0 Rw-1

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-3 Reserved. Read as zeros.
Bits 2-0 MODE_SELECT. Mode select.
000 UART mode
001 SIR mode
111 Reset mode

All other values are reserved

8-32

Register Mapping/Descriptions

8.4.26 Mode Definition Register 2

Figure 8-27. Mode Definition Register 2 (UART_IRDA_MDR?2)
Address (hex): Base = FFFF:0800, Offset = 0x0058

31-8
Reserved
RW-0
7.3 2-1 0
Reserved STS_FIFO_TRIG Reserved
RW-0 RW-0 Rw-U

Note: R =Read access; W = Write access; value following dash (-) = value after reset; U = Undefined

Bits 31-3 Reserved. Read as zeros.
Bits 2-1 STS FIFO_TRIG. Status FIFO threshold select.
00 1 character
01 4 characters
10 7 characters
11 8 characters
Bit O Reserved.

UART IRDA Module 8-33

Register Mapping/Descriptions

8.4.27 Transmit Frame Length Register (LSB)

Figure 8-28. Transmit Frame Length Register — LSB (UART_IRDA_TXFLL)

Address (hex): Base = FFFF:0800, Offset = 0x005C

31-8

Reserved

W-0

7-0

TXFLL

W-0

Note: W= Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-0 TXFLL. LSB register used to specify the frame length for transmis-
sion.

8.4.28 Transmit Frame Length Register (MSB)

Figure 8-29. Transmit Frame Length Register — MSB (UART_IRDA_TXFLH)

Address (hex): Base = FFFF:0800, Offset = 0x0060

31-8

Reserved

W-0

7-0

TXFLH

W-0

Note: W= Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-0 TXFLH. MSB register used to specify the frame length for transmis-
sion.

8-34

Register Mapping/Descriptions

8.4.29 Receive Frame Length Register (LSB)

Figure 8-30. Receive Frame Length Register — LSB (UART_IRDA_RXFLL)
Address (hex): Base = FFFF:0800, Offset = 0x0064

31-8

Reserved

W-0

7-0

RXFLL

W-0

Note: W= Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 RXFLL. LSB register used to specify the frame length in reception.

8.4.30 Receive Frame Length Register (MSB)

Figure 8-31. Receive Frame Length Register - MSB (UART _IRDA_RXFLH)
Address (hex): Base = FFFF:0800, Offset = 0x0068

31-8

Reserved

W-0

7-0

RXFLH

wW-0

Note: W= Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 RXFLH. MSB register used to specify the frame length in reception.

UART IRDA Module 8-35

Register Mapping/Descriptions

8.4.31 Status FIFO Line Status Register

Figure 8-32. Status FIFO Line Status Register (UART _IRDA_ SFLSR)

Address (hex): Base = FFFF:0800, Offset = 0x006C

31-8
Reserved
R-0
7-5 4 3 2 1 0
Reserved OE_ERROR FRAME_LENGTH_ERROR | ABORT_DETECT | CRC [Reserved
R-0 R-0 R-0 R-0 R-0 R-U
Note: R = Read access; value following dash (-) = value after reset; U = Undefined
Bits 31-5 Reserved. Read as zeros.
Bit 4 OE_ERROR.
0 No error
1 Overrun error occurred in RX FIFO when frame at top of
FIFO was received
Bit 3 FRAME_LENGTH_ERROR.
0 No error
1 Frame length error in frame at top of FIFO
Bit 2 ABORT_DETECT.
0 No error
1 Abort detected in frame at top of FIFO
Bit 1 CRC.
0 No error
1 CRC error in frame at top of FIFO
Bit 0 Reserved.

8-36

Register Mapping/Descriptions

8.4.32 Status FIFO Register

The frame lengths of received frames are written into the status FIFO. This in-
formation can be read by reading the SFREGL and SFREGH registers (these
registers do not physically exist). The least significant bits (LSBs) are read
from the SFREGL register, and the most significant bits (MSBs) are read from
SFREGH. Reading these registers does not alter the status FIFO read pointer.
These registers should be read before the pointer is incremented by reading
the SFLSR.

Figure 8-33. Status FIFO Register — LSB (UART_IRDA_SFREGL)

Address (hex): Base = FFFF:0800, Offset = 0x0070

31-8

Reserved

R-0

7-0

SFREGL

Note:

R-0

R = Read access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 SFREGL. LSB part of the frame length for the received frame.

Figure 8-34. Status FIFO Register — MSB (UART_IRDA_SFREGH)

Address (hex): Base = FFFF:0800, Offset = 0x0074

31-8

Reserved

R-0

7-0

SFREGH

Note:

R-0

R = Read access; value following dash (-) = value after reset

UART IRDA Module 8-37

Register Mapping/Descriptions

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 SFREGH. MSB patrt of the frame length for the receive frame.

8.4.33 Beginning-of-File Length Register

Note that BLR(6) is used to select whether COh or FFh start patterns are to be
used when multiple start flags are required in SIR mode. If only one start flag
is required, it will always be COh. If n start flags are required, then either (n— 1)
COh or (n —1) FFh flags will be sent (if BLR(6) is 1 or O, respectively), followed
by a single COh flag (immediately preceding the first data byte).

Figure 8-35. Beginning-of-File Length Register (UART_IRDA_ BLR)
Address (hex): Base = FFFF:0800, Offset = 0x0078

31-8
Reserved
RW-0
7 6 5-0
STS_FIFO_RESET BOF_TYPE NB_XBOF
RW-0 RW-1 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 STS_FIFO_RESET. Status FIFO reset. This bit is self-clearing.
Bit 6 BOF_TYPE. BOF type. SIR flag select.
0 OxFF
1 0xCO
Bits 5-0 NB_XBOF. Number of xBOF to be transmitted at the beginning of an

IRDA frame (0—63). The main purpose of the parameter is to provide a
delay at the beginning of each frame for devices with long interrupt la-
tency.

8-38

Register Mapping/Descriptions

8.4.34 Pulse Width Register

Figure 8-36. Pulse Width Register (UART_IRDA PULSE_WIDTH)
Address (hex): Base = FFFF:0800, Offset = 0x007C

31-8

Reserved

RW-0

7-0

PULSE_WIDTH

RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset
Bits 31-8 Reserved. Read as zeros.
Bits 7-0 PULSE_WIDTH. Width of the pulse in number of ARM/div_115k clock

cycles. Example: If ARM clock frequency/div_115k = 5 MHz,
pulse_width = 8 generates a pulse width of 1.6 ps.

8.4.35 Auxiliary Control Register

Figure 8-37. Auxiliary Control Register (UART_IRDA_ACREG)
Address (hex): Base = FFFF:0800, Offset = 0x0080

31-7
Reserved
RW-0
6 5-3 2 1 0
SD_MODE Reserved SCTX_EN |ABORT EN| EOT EN
RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

UART IRDA Module 8-39

Register Mapping/Descriptions

Bits 31-7

Bit 6

Bits 5-3

Bit 2

Bit 1

Bit O

Reserved. Read as zeros.

SD_MODE. Output pin to control transmission.

0 SD_IRDA pin is set to high
1 SD_IRDA pin is set to low

Reserved. Read as zeros.

SCTX_EN. When the CPU writes 1 to this bit, the TX state machine
starts frame transmission. This bit is self_clearing.

ABORT_EN. Frame abort.

The CPU can abort transmission of a frame by writing 1 to this bit. Nei-
ther the end flag nor the CRC bits are appended to the frame. The
CPU should reset the TX FIFO before transmitting the next frame.

EOT_EN. End of transmission.

The CPU should write 1 to this bit just before writing the last byte to the
FIFO in set_EOT bit frame closing method. This bit automatically gets
cleared when the CPU writes to the THR.

8.4.36 Start Point for IR Transmission

Figure 8-38. Start Point for IR Transmission (UART_IRDA_START_POINT)

Address (hex): Base = FFFF:0800, Offset = 0x0084

31-8

Reserved

RW-0

7-0

PULSE_START

Note:

8-40

RW-0

R = Read access; W= Write access; value following dash (=) = value after reset

Bits 31-8

Bits 7-0

Reserved. Read as zeros.

PULSE_START. Start point for IR transmission (in function of bit rate).

Register Mapping/Descriptions

8.4.37 Access to Read and Write Pointers

Access to read and write pointers is enabled by setting UART_IRDA_SCRJ0]
to 1.

Figure 8-39. Write Pointer of RX FIFO (UART_IRDA_WRPTR_URX)

Address (hex): Base = FFFF:0800, Offset = 0x0088

31-7

Reserved

RW-0

60

RX_WRITE_PTR

RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 RX_WRITE_PTR. Write pointer of RX FIFO. Can be accessed only if
UART_IRDA_SCR[0] = 1.

Figure 8-40. Read Pointer of RX FIFO (UART_IRDA_RDPTR_URX)

Address (hex): Base = FFFF:0800, Offset = 0x008C

31-7

Reserved

RW-0

6-0

RX_READ_PTR

RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 RX_READ_PTR. Read pointer of RX FIFO. Can be accessed only if
UART_IRDA_SCR|0] = 1.

UART IRDA Module 8-41

Register Mapping/Descriptions

Figure 8-41. Write Pointer of TX FIFO (UART_IRDA_WRPTR_UTX)
Address (hex): Base = FFFF:0800, Offset = 0x0090

31-7

Reserved

RW-0

6-0

TX_WRITE_PTR

RW-0

Note: R = Read access; W= Write access; value following dash (-) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 TX_WRITE_PTR. Write pointer of TX FIFO. Can be accessed only if
UART_IRDA_SCR[0] = 1.

Figure 8-42. Read Pointer of TX FIFO (UART_IRDA _RDPTR_UTX)
Address (hex): Base = FFFF:0800, Offset = 0x0094

31-7

Reserved

RW-0

6-0

TX_READ_PTR

RW-0

Note: R = Read access; W= Write access; value following dash (-) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 TX_READ_PTR. Read pointer of TX FIFO. Can be access only if
UART_IRDA_SCRJ[0] = 1.

8-42

Register Mapping/Descriptions

Figure 8-43. Write Pointer of Status FIFO (UART_IRDA_WRPTR_STA)
Address (hex): Base = FFFF:0800, Offset = 0x0098

31-8
Reserved
RW-0
7-4 3-0
Reserved STATUS_WRITE_PTR
RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-4 Reserved. Read as zeros.

Bits 3-0 STATUS_WRITE_PTR. Write pointer of status FIFO. Can be ac-
cessed only if UART_IRDA_SCR[0] = 1.

Figure 8-44. Read Pointer of Status FIFO (UART_IRDA_RDPTR_STA)
Address (hex): Base = FFFF:0800, Offset = 0x009C

31-8
Reserved
RW-0
7-4 3-0
Reserved STATUS_READ_PTR
RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-4 Reserved. Read as zeros.

Bits 3-0 STATUS_READ_PTR. Read pointer of status FIFO. Can be ac-
cessed only if UART_IRDA_SCR[0] = 1.

UART IRDA Module 8-43

Register Mapping/Descriptions

8.4.38 Resume Register

Figure 8-45. Resume Register (UART_IRDA_ RESUME)
Address (hex): Base = FFFF:0800, Offset = 0x00A0

31-8

Reserved

R-0

7-0

DI

R-0

Note: R = Read access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 DIl. Dummy read to restart the transmission or reception.

8-44

8.5 UART IRDA Functional Block Diagram

Figure 8-46. Function Block Diagram

ARM
bus

UART IRDA Functional Block Diagram

TX FIFO
_ || FFO
<« | control | | RXFIFO
Control
Status FIFO
» TX_O
< RX_I
TX R
Mux| . RX | serial
TXIR
. RXR | MR

UART IRDA Module

8-45

Serial Infrared Mode and Protocol

8.6 Serial Infrared Mode and Protocol

8-46

In serial infrared mode (SIR), data transfer takes place between the CPU and
peripheral devices allowing serial communication at baud rates of up to
115.2 Kbit/s. A SIR transmit frame starts with start flags (either a single COh,
multiple COh or a single COh preceded by a number of FFh flags) followed by
data frame, CRC-16 (16-bit cyclic redundancy check field), and ends with a
stop flag (C1h).

Note that UART _IRDA BLR][6] is used to select whether COh or FFh start pat-
terns are to be used when multiple start flags are required.

[Transmission:

The transmit state machine attaches start flags, CRC-16 and stop-flags. It
checks the outgoing data to establish if data transparency is required.

SIR transparency is carried out if the outgoing data (between the start and stop
flags) contains COh, C1h or 7Dh. If one of these is about to be transmitted, the
state machine sends an escape character (7Dh) first, then inverts the fifth bit
of the real data to be sent, and sends this data immediately after the 7Dh char-
acter.

(] Reception:

Onreceive, the receive state machine recovers the receive clock, removes the
start flags, removes any transparency from the incoming data, and determines
frame boundary with reception of the stop flag. It also checks for errors such
as: frame abort (7Dh character followed immediately by a C1h stop flag, with-
out transparency), CRC error and frame-length error. At the end of a frame re-
ception, the CPU reads the LSR (line status register) to find out the errors, if
any, of the received frame.

Data can be transferred both ways simultaneously by the module, but transmit
and receive should not take place at the same time according to the standard.

The infrared pulse width output is determined by the standard in function of the
baud rate frequency (see Section 8.6.4).

Note that if back-to-back frames are to be received by this device in SIR mode,
the transmitting device must send at least 2 start flags at the start of every
frame.

Serial Infrared Mode and Protocol

8.6.1 CRC Generation

Figure 8-47. IrDA Frame Format

XxBOF

Begin of File Address Control Information End of File

N x 8 bits

8 bits 8 bits 8 bits M x 8 bits 8 bits

The CRC polynomial to apply is 1 + X5 + X12 + X16,

The CRC needs to be applied on the address (A), control (C), and informa-
tion (l) bytes. The data is sent to CRC block LSB first.

The CRC is initialized to all ones.
The one’s complement of the CRC is transmitted rather than the CRC itself.

The two words of CRC are written in the FIFO in reception.

8.6.2 Asynchronous Transparency

Prior to transmitting a byte, the UART_IRDA controller examines each byte in
the payload and the CRC field (between BOF and EOF). For each byte equals
to OxCO (BOF), OxC1 (EOF), 0x7D (control escape) it does the following:

1 Intransmission:
B Inserts a control escape (CE) byte preceding the byte
B Complements bit 5 of the byte (i.e., exclusive ORs the byte with 0x20)

The byte sent for the CRC computation is the initial byte written in the TX
FIFO (before the XOR with 0x20).

1 Inreception:
For the address, control, information, and FCS fields:

B Compares the byte with the CE byte. If it is not equal, sends it to the
CRC detector and stores it in the RX FIFO (store not required for the
last two bytes)

B If equal to CE, discards the CE byte
B Complements bit 5 of the byte following the CE

B Sendsthe complemented byte to the CRC detector and storesitin the
RX FIFO (store not required in the last two bytes)

UART IRDA Module 8-47

Serial Infrared Mode and Protocol

8.6.3 Abort Sequence

The transmitter may decide to prematurely close a frame. The transmitting sta-
tion aborts by sending a CE byte immediately followed by a flag sequence
0x7DCL1. The abort pattern closes the frame without an FCS field or an ending
flag.

It is possible to abort a transmission frame by programming
UART_IRDA_ACREG[1].

When this bit is setto 1, 7Dh and C1h are transmitted and the frame is not ter-
minated with CRC or stop flags.

The receiver treats a frame as an aborted frame when a 7Dh character fol-
lowed immediately by a C1h character has been received without transparen-

cy.

8.6.4 Pulse Shaping

8-48

The following describes programmable pulse shaping:

[The pulse width is entirely programmable, depending on the two divisors
UART_IRDA_DIV_115K and UART_IRDA_DIV_BIT_RATE

[The principleis to calculate the value of these divisors to reach the desired
frequency and the right pulse width at the same time

[The objective is to reach 115 200 bauds with a 50-MHz frequency and to
send 1.6-ps pulse width

1.6 ps corresponds to 625 000 Hz.
[The goal is to get 625 kHz as precision step

Table 8-3 gives the values for the divisors and the value for the
UART_IRDA_PULSE_WIDTH register to obtain the expected pulse as a func-
tion of frequency, baud rates and pulse width.

Serial Infrared Mode and Protocol

Table 8-3. Pulse Shaping at a Frequency of 50 MHz

Encoder

Ba(l:((ég?te Pulse Width 1;;5823;?;:(UART _irda_pulse_width
115.2 1.63 ps 16 x 27 5
57.6 3.26 us 27 x 32 6
38.4 4.88 ps 27 x 48 9
19.2 9.77 us 81 x 32 6
9.6 19.53 pus 65 x 80 15
2.4 78.13 ps 651 x 32 6

Notes: 1) (1Stcounter = uart_irda_bit_rate and 2nd counter = uart_irda_div_115k)
2) Baud rate and pulse width values are directly taken from the IrDA standard.

3) 1< start_point < value(UART_IRDA_DIV115K - 1)
1< pulse width < value(UART_IRDA_115K — 1) — value(START_POINT)

Serial data from the transmit state machine is encoded to transmit data to the
optoelectronics. While the serial data input to the TXD is high, the output
(TXIR) is always low, and the counter used to form a pulse on TXIR is continu-
ously cleared.

After TXD resets to 0, TXIR rises when the div_bit_rate counter reaches the
start point value of the ©pulse (start value is set in
UART_IRDA_START_POINT). TXIR falls when div_bit_rate counter (counts
from O to DIV_115K-1) reaches pulse width value (set in
UART_IRDA_PULSE_WIDTH register).

In the following example, the register values are set to:

UART_IRDA_START_POINT = 7
UART_IRDA_PULSE_WIDTH = 4
UART_IRDA_DIV_115K = 15

UART IRDA Module 8-49

Serial Infrared Mode and Protocol

Figure 8-48. Encoder Timing Diagram

TXD

RX_bit_rate_counter____ 0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10X11X12X13X14X15X 16
Bit_rate_enable I‘ Il II

TXIR \
\

-
Y —

\
Pulse width —

Decoder

After reset, RXD is high. When a rising edge is detected on RXIR, RXD falls
on the next rising edge on the next rising edge of clk. RXD stays low until
RX_bit_rate_counter reaches its maximum value and then returns to high as
required by the IrDA specification. As long as no pulses (rising edges) are de-
tected on the RXIR, RXD remains high.

Figure 8-49. Decoder Timing Diagram

RXIR _|_:_| }

RX_bit_rate_counter 0 o@e@a@a@@@m@@@@@

—_

RXD \ i_

It is possible for jitter or slight frequency differences to cause the next falling
on RXIR to be missed for one counter cycle. In that case, a 1-clock-wide pulse
appears on RXD between consecutive zeros. Thus, it is important for the re-
ceiver block to strobe the RX in the middle of the bit time to avoid latching this
1-clock-wide pulse.

8-50

Serial Infrared Mode and Protocol

8.6.5 Address Checking

In SIR mode, only frames intended for the device are written into the RX FIFO,
if address checking has been enabled. This is to avoid receiving frames not
meant for this device in a multipoint infrared environment. It is possible to pro-
gram two frames addresses that the UART/IrDA module will receive with
XON1/ADDR1 and XON2/ADDR?2 registers.

Selecting address1 checking is done by setting UART _IRDA_EFR[1]to 1, and
address2 by setting UART_IRDA_EFR[0] to 1. Setting EFR(1:0) to 0 disables
all address checking operations. If both bits are set, the incoming frame will
be checked for both address1 and address?2.

If address checking is disabled, all received frames will be written into the re-
ception FIFO.

UART IRDA Module 8-51

Functional Descriptions

8.7 Functional Descriptions

8.7.1 Trigger Levels

8.7.2

Interrupts

The UART provides independent programmable trigger levels for both receiv-
er and transmitter interrupt generation. In the UART mode, trigger levels can
be accessed throughthe UART _IRDA_ FCR and UART_IRDA_TLR registers.
These trigger levels are activated upon the enabling of the RHR and THR inter-
rupts in the UART_IRDA_IER register. In the SIR mode, the Status FIFO trig-
ger levelinterrupt can be accessed through UART_IRDA MDRZ2[2:1] bits, and
other triggers can be accessed in the same method as in the UART mode.

Interrupts in SIR and UART mode are independent. They are both activated
with the IER register, but different in SIR or UART mode, even it they have the
same address.

The UART IrDA module generates interrupts to the ARM through the interrupt
line, IRQ. Allinterrupts can be enabled or disabled through the interrupt enable
register (UART_IRDA_IER). The interrupt status can be checked at any time
by reading the interrupt status register (UART_IRDA_ISR).

8.7.2.1 Problem Definition

There are two interrupt conditions, which can cause undesirable UART IrDA
logic behavior. These two interrupt conditions can be found in IT_TYPE
(bits 5:1) of UART_IRDA ISR (FFFF:0828) as defined below:

(1 00110 => RX timeout (priority level 2)
[0 00010 => RHR interrupt (priority level 2)

Without the workaround defined below, it would appear that the only way to
clear the previously defined interrupt conditions would be to reset the UART
IrDA logic module.

8.7.2.2 Problem Workaround

8-52

(1 When any UART IrDA interrupt is received, check the IT_TYPE for either
an RX timeout or RHR interrupt as defined above.

[Ifthe interrupt has been set due to either the RX timout or RHR interrupt,
then perform the following maneuvers to reset the interrupt condition:

B Disable all the interrupts by writing zero ‘0’ into UART_IRDA_IER
(FFFF:0824).

UART mode

Functional Descriptions

B Read from UART_IRDA_RHR (FFFF:0800) until the FIFO is empty.
The FIFO will be empty when UART_IRDA_LSR (FFFF:0814) is read
with ‘0’ in RX_FIFO_E (bit 0).

B Enable desired interrupts by writing into the UART_IRDA_IER

(FFFF:0824).

B Return to normal operation.

[Ifthe interrupt has been set due to any other interrupt condition, then the
interrupt can be reset normally.

There are five different possible interrupts, prioritized to four levels.

When an interrupt is generated, the UART_IRDA_ISR register indicates that
an interrupt is pending by bringing UART_IRDA_ISR[0] to zero, and provides
the type of interrupt through UART_IRDA_ISR[5:1]. Table 8-4 gives you the
priority, ISR coding, type, source, and clear method for all interrupts in UART

mode.

Table 8-4. Interrupts in UART Mode

UART_ISR[5-0] P['eovrgly Interrupt Type Interrupt Source Interrupt Reset Method
000001 None None None None
000110 1 Receiver line Overrun, framing error, Framing, parity, or break:
status parity error, or break read all erroneous
detection occurred in characters from the
characters in the RX RX FIFO.
FIFO
Overrun: read LSR.
001100 2 RX time-out Stale data in RX FIFO Read RHR
000100 2 RHR interrupt ~ RX FIFO not empty if Read RHR until interrupt
FIFO disabled condition disappears
RX FIFO above trigger
level in other cases
000010 3 THR interrupt TX FIFO empty if FIFO Write to THR until
disabled interrupt condition
disappears
TX FIFO below trigger
level in other cases
010000 4 XOFF interrupt Receive XOFF character Receive XON character

or special character

or read ISR

UART IRDA Module

8-53

Functional Descriptions

SIR mode

In SIR mode, there are eight possible interrupts with no priority.

Table 8-5 gives you the ISR coding, type, source, and clear method for all in-
terrupts in SIR mode.

Table 8-5. Interrupts in SIR Mode

UART_IRDA_ISR Bit Interrupt Type

Interrupt Source

Interrupt Reset Method

0 RHR interrupt

1 THR interrupt

5 Last byte in
RX FIFO

3 RX overrun

4 Status FIFO
interrupt

5 TX underrun

Receiver Line
Status interrupt

7 Received EOF

DRDY (data ready)
(FIFO disable)

RX FIFO above trigger level
(FIFO enable)

TFE (TX FIFO empty)
(FIFO disable)

TX FIFO below trigger level
(FIFO enable)

Last byte of frame in RX FIFO

Write to RHR when RX FIFO
full

Status FIFO trigger level
reached

THR empty before EOF sent

CRC, abort or frame length er-
ror written into status FIFO

Received End of Frame

Read RHR until condition
disappears

Read UART_IRDA_ISR

Write to THR until interrupt
condition disappears

Read UART_IRDA_ISR

Read UART_IRDA_ISR

Read UART_IRDA_RESUME

Read Status FIFO register
(UART_IRDA_SFLSR)

Read UART_IRDA_RESUME

Read Status FIFO
(UART_IRDA_SFLSR)

Read UART_IRDA_ISR

8.7.3 Features Available in UART Mode
8.7.3.1 Time-Out and Break Conditions

Time-Out

A time-out occurred if the receiver line RX_IRDA has been high for a time
equivalent to four times the programmed word length plus 12 bits, and if the
RHR register is not read during this time.

Break Condition

A break is detected if the RX line has been high for a time equivalent to word
length plus 1 bit if there is no parity, or plus 2 bits in other cases.

8-54

Functional Descriptions

8.7.3.2 Software Flow Control

RX

TX

The principle of software flow control is the same as that for hardware flow con-
trol: Transmissions are accepted or rejected by the receiving UART as a func-
tion of its RX FIFO pointer position from the trigger levels set. The UART IRDA
module does not support hardware flow control; only the UART Modem mod-
ule does. For more information, see section 9.6.4, Hardware Flow Control.

When software flow control is activated, the UART compares incoming data
with the programmed XOFF1 or XOFF2 character (in some cases, it can be
XOFF1 followed by XOFF2). When the correct XOFF characters are received,
transmission is halted after completing transmission of the current character.
XOFF detection also sets ISR[4], if enabled.

To resume transmission, an XON character must be received, detected, and
compared to the programmed XON character. (In some cases it can be XON2
following XON1). When the correct XON is detected, the transmission is re-
sumed and the XOFF interrupt disappears.

The software flow control characters are not stored in RX FIFO once they are
recognized. However, if there is one error (framing, parity, break) in them,
those characters will be treated as normal data and will not be recognized as
XOFF/XON characters.

If EFR[1:0] = “11”, which means that XOFF1/XOFF2 (XON1/XON2) must be
received sequentially, the UART only recognizes the completely received cou-
ples as the control characters. If the first received character is recognized as
XOFF1 but the subsequent character is not recognized as XOFF2, then both
the XOFF1 and the subsequent character are written in RX FIFO as normal
characters. It is the same case for XON1 and XONZ2.

An XOFF1 or XOFF2 character is transmitted when the RX FIFO has passed
the stop-trigger level programmed in TCR[3:0] (XOFF1 followed by XOFF2in
some cases).

An XON1 or XON2 character is transmitted when the RX FIFO reaches the
start-trigger level programmed in TCR[7:4] (XONL1 followed by XON2 in some
cases).

UART IRDA Module 8-55

Functional Descriptions

General Features

It is important to note that if software flow control is disabled after sending
XOFF, the XON will be sent automatically to enable normal transmission to
proceed. The same occurs if the software flow combination changes after hav-
ing sent XOFF: the original XON will be send. For example, if the couple
XOFF1/XON1 was selected for software control, and if the user change to
XOFF2/XON2 after having send XOFF1, XON1 will be sent when RX FIFO
reaches the start trigger in spite of XOFF2/XON2 selection.

Transmission of the software flow control characters follows the same protocol
as data, which means that the word’s size, parity type, and number of stop bits
defined for data will be used for control transmission. If the control characters
are defined for 8 bits and the transmission is, for example, defined for 6 bits,
there is no problem because the six LSBs of the control character will be sent
by the transmitter UART and will be compared to the six LSBs of the control
character stored in the receiving UART.

8.7.4 Features Available in SIR Mode

8.7.4.1 Frame Closing

There are two ways by which a transmission frame can be properly terminated.

1) Frame length method: This method is selected when
UART_IRDA_MDR1(7) = 0. The CPU writes the frame-length value to
TXFLL and TXFLH registers. The device automatically attaches end flags
to the frame once the number of bytes transmitted becomes equal to the
frame-length value.

2) Set EOT bhit method: Set-EOT bit method is selected when
UART_IRDA_MDR!(7)=1. The CPU writes 1 to UART_IRDA_ACREG(0)
(EOT bhit) just before it writes the last byte to the TX FIFO. When the CPU
writes the last byte to the TX FIFO, the device internally sets the tag bit for
that particular character in the TX FIFO. As the TX state machine reads
data from the TX FIFO, it uses this tag-bit information to attach end flags
and properly terminate the frame.

8.7.4.2 Store and Control Transmission (SCT)

8-56

In SCT, the CPU first starts writing data into the TX FIFO. Then after it writes
a part of a frame, it writes a 1 to UART_IRDA_ACREG(2) (deferred TX start)
to starttransmission. SCT is enabled when MDR1(5) = 1. This method of trans-
mission is different in comparison to the normal mode where transmission of
data starts immediately after data is written to the TX FIFO. SCT is useful to
send short frames without TX underrun.

Functional Descriptions

8.7.4.3 Underrun During Transmission

Underrun in transmission occurs when the TX FIFO becomes empty before
the end of the frame is transmitted. When underrun occurs, the device closes
the frame with end—flags but attaches an incorrect CRC value. The receiving
device will detect a CRC error and discard the frame, and it can then ask for
a re-transmission. Underrun also causes an internal flag to be set which dis-
ables further transmission. Before the next frame can be transmitted, the sys-
tem CPU must:

] Resetthe TX FIFO

(0 Readthe UART_IRDA RESUME register. This clears the internal flag

8.7.4.4 Overrun During Receive

8.7.4.5 Status FIFO

Overrun occurs during receive if the RX state machine tries to write data into
the RX FIFO when itis already full. When overrun occurs, the device interrupts
the CPU with UART_IRDA_ISR(3) and discards the remaining portion of the
frame. Overrun also causes an internal flag to be set which disables further
reception. Before the next frame can be received, the system CPU must:

] Resetthe RX FIFO

(1 Read the UART_IRDA_RESUME register. This clears the internal flag

In SIR mode, a status FIFO is used to record the received frame status. When
a complete frame is received, the length of the frame and the error bits associ-
ated with the frame are written into the STATUS FIFO.

The frame length and error status can be read by reading SFREGL/H and
SFLSR. Reading the SFLSR causes the read pointer to be incremented. The
status FIFO is eight entries deep and therefore can hold the status of eight
frames.

The CPU uses the frame length information to locate the frame boundary in
the received frame data. The CPU can screen bad frames using the error-sta-
tus information, and later request the sender to resend only the bad frames.

UART IRDA Module 8-57

Chapter 9

UART Modem Interface

This chapter explains the features of the UART Modem module, shows the ap-
plicable registers, and provides a functional description that includes trigger
levels, interrupts, break and time-out conditions, hardware and software flow
control, and the Autobauding mode.

The UART Modem Interface is associated with the ARM™ microcontroller unit
(MCU) of the dual-core (MCU + DSP) VC547x device.

Topic Page
9.1 General DesCriptiont 9-2
9.2 Main Features @
9.3 /O DESCIIPLION oottt e 9-4
9.4 Register Mapping/Descriptions, 9-5
9.5 Functional Block Diagramiiiiiinn.. 9-32
9.6 Functional Descriptions i, 9-33

9-1

General Description

9.1 General Description

The UART modem module is a universal asynchronous receiver/transmitter
that transmits characters sent to it by the ARM™ microcontroller unit (MCU)
on the TX pin, and receives characters from the RX pin. It enables serial com-
munication between the ARM and other outside devices.

The UART contains a transmitter (parallel-to-serial converter) and a receiver
(serial-to-parallel converter) each clocked separately. The parallel side of the
UART is connected to the ARM bus. It converts the parallel data (so called be-
cause they are stored, retrieved, and transferred eight or more bits at a time)
from the ARM to serial asynchronous data communictions (in which data is
sent and received one bit at a time) for transmission over a data link such as
an EIA-232 cable or modem connection. The UART interface in the VC547x
is compatible with the NS16C750 device. This UART is devoted to the connec-
tion of a PC-based software debugger tool through a standard wired interface.

9.2 Main Features

This module contains a 64-word (9 and 11 bits)-deep FIFO for received char-
acters and another 64-word FIFO for transmitted characters with program-
mable trigger levels for the FIFOs. Hardware buffering allows higher transmis-
sion speed without data loss and without requiring frequent attention from the
ARM.

The module is configurable to send even, odd, or no parity,and 1, 1.5, or 2 stop
bits. The number of data bits can be configured between five and eight bits.
Break characters can be generated and detected.

The baud rate is internally generated by a programmable divisor.

All transmitting parameters can be detected in reception mode by an auto-
bauding mechanism that recognizes speed, word size, parity, and the number
of stop bits.

Data flow control can be managed either in hardware (auto-RTS, auto-CTS)
or in software with XON/XOFF character detection. Note: Only the UART Mo-
dem module, not the UART IRDA module, has the hardware flow control
mechanism. Hardware flow control relieves the ARM of excessive software
overhead.

All the UART features (even autobauding) are completely independent of
clock-speed, which allows an all-system frequency up to 50 MHz.

General Description

9.2.1 UART Mode Features

a

(I Iy BN

L

The UART supports five modem signals:
B TX: Output — transmit data

B RX: Input — receive data

B RTS: Output — request to send

W CTS: Input — clear to send

W DCD: Output — data carrier detected

Line break generation and detection

Interrupt system control

Loopback capabilities for internal test

Baud rates up to 6.25 Mbaud are supported (at 50 MHz)

Autobauding supports speeds between 1200 baud and 115.2K baud, and
a 7- or 8-bit word size

Hardware flow control (DCD, RTS/CTS)

UART Modem Interface 9-3

I/O Description

9.3 1/O Description

Table 9-1. Modem I/O Signals

Signal 110 Function
RX_MODEM | Modem serial data input
CTS_MODEM | Modem clear to send input signal. Active-low
TX_MODEM (0] Modem serial data output
RTS_MODEM (0] Modem request to send output signal. Active-low
DCD_MODEM (0] Modem carrier detect output. Active-low

9-4

9.4 Register Mapping/Descriptions

9.4.1 UART Modem Module Registers

Base address (hex): FFFF:1000

Register width: 32 bits

Table 9-2. UART Modem Module Registers

Register Mapping/Descriptions

Register Description g;fgreéss
UART_RHR Receive Holding Register 00h
UART_THR Transmit Holding Register 04h
UART_FCR FIFO Control Register 08h
UART_SCR Status Control Register 0Ch
UART_LCR Line Control Register 10h
UART_LSR Line Status Register 14h
UART_SSR Supplementary Status Register 18h
UART_MCR Modem Control Register 1Ch
UART_MSR Modem Status Register 20h
UART_IER Interrupt Enable Register 24h
UART_ISR Interrupt Status Register 28h
UART_EFR Enhanced Feature Register 2Ch
UART_XON1 XON1 Character Register 30h
UART_XON2 XON2 Character Register 34h
UART_XOFF1 XOFF1 Character Register 38h
UART_XOFF2 XOFF2 Character Register 3Ch
UART_SPR Scratch-Pad Register 40h
UART_DIV_115K Divisor for 115K-Baud Generation 44h
UART_DIV_BIT_RATE Divisor for Baud-Rate Generation 48h
UART_TCR Transmission Control Register 4Ch

UART Modem Interface

9-5

Register Mapping/Descriptions

Table 9—2. UART Modem Module Registers (Continued)

Register Description ,(A);fjreéss
UART_TLR Trigger-Level Register 50h
UART_MDR Mode Definition Register 54h
UART_UASR UART Autobauding Status Register 58h
UART_RDPTR_URX RX FIFO Read Pointer Register 5Ch
UART_WRPTR_URX RX FIFO Write Pointer Register 60h
UART_RDPTR_UTX TX FIFO Read Pointer Register 64h
UART _WRPTR_UTX TX FIFO Write Pointer Register 68h

9.4.2 Special Access Registers

It is important to note here that some registers need special conditions to be
accessed in write mode.

1 UART_MCR[7:5] and UART_FCR[5:4] can only be written when
UART_EFR[4] = 1.

(10 UART_TCR and UART_TLR can only be written when UART_MCR][6] = 1.

O UART_WRPTR_URX, UART_RDPTR_URX, UART_WRPTR_UTX, and
UART_RDPTR_UTX can only be written when UART_SCRJ0] = 1.

All the other registers can be accessed unconditionally.

9.4.3 Receive Holding Register

This register holds the received word that is to be read by the MCU. Received
data is stored in a 64-word FIFO and the first unread word is presented to the
RHR, replaced by the second unread word after an RHR access. If the FIFO
is disabled, the RHR register will contain the received data in the same way.
If an overflow occurs, received data will not be written into the FIFO, and con-
sequently, will not be able to be read through RHR.

Bits 8, 9, and 10 of RHR indicate which kind of error has occurred on current
read data.

Figure 9-1.

Register Mapping/Descriptions

Receive Holding Register (UART_RHR)
Address (hex): Base = OxFFFF:1000, Offset = 0x0000

31-11 10 9 8
Reserved RX_BI RX_FE RX_PE
R-0 R-0 R-0 R-0
7-0
RHR
R-U

Note: R = Read access; value following dash (-) = value after reset; U = Undefined

Bits 31-11 Reserved. Read as zeros.
Bit 10 RX_BI.
0 No break condition
1 A break was detected while receiving read data (i.e.,
RX_MODEM input signal was low for one character
frame)
Bit 9 RX_FE.
0 No framing error in read data
1 A framing error occurred while receiving read data (i.e.,
received data did not have a valid stop hit)
Bit 8 RX_PE.
0 No parity error in read data
1 A parity error occurred while receiving read data
Bits 7-0 RHR. Receive holding register (contains the first unread byte of the

64-byte RX FIFO). If overflow occurs, data is not overwritten in FIFO.

UART Modem Interface 9-7

Register Mapping/Descriptions

9.4.4 Transmit Holding Register

This register stores data to send. Once it is written by the CPU, data is trans-
mitted into the transmitter FIFO, and waits for its parallel-to-serial translation
before being shifted onto the TX_MODEM output pin. If the FIFO is disabled,
you should be sure that the TX FIFO is not full (SSR[0]) before writing to THR
because you can overwrite data to send.

Figure 9-2. Transmit Holding Register (UART_THR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0004

31-8

Reserved

W-0

7-0

THR

w-uU

Note: W = Write access; value following dash (=) = value after reset; U = Undefined

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 THR. Transmit holding register (64-byte FIFO)

Register Mapping/Descriptions

9.4.5 FIFO Control Register

Note that bits 4 and 5 can only be written when EFR[4] = 1. (UART_EFR[4]
enables/disables writing to UART_FCR[5:4] and UART_MCR][7:5].)

Figure 9-3. FIFO Control Register (UART_FCR)
Address (hex): Base = OxFFFF:1000, Offset = 0x0008

31-8
Reserved
Ww-0
7-6 5-4 3 2 1 0
RX_FIFO_TRIG TX_FIFO_TRIG Reserved | RX_FIFO_CLEAR TX_FIFO_CLEAR | FIFO_EN
W-0 W-0 W-0 W-0 W-0 W-0

Note: W = Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-6 RX_FIFO_TRIG. Sets the trigger level for the RX FIFO.
00 8 bytes
01 16 bytes
10 32 bytes
11 60 bytes
Bits 54 TX_FIFO_TRIG. Sets the trigger level for the TX FIFO if EFR(4) = 1.
00 8 bytes
01 16 bytes
10 32 bytes
11 56 bytes
Bit 3 Reserved. Read as zero.
Bit 2 RX_FIFO_CLEAR.
0 No change
1 Clears the RX FIFO and resets its counter logic to zero
Bit 1 TX_FIFO_CLEAR.

0 No change
1 Clears the TX FIFO and resets its counter logic to zero

UART Modem Interface 9-9

Register Mapping/Descriptions

Bit O FIFO_EN.

0 Disables the TX and RX FIFOs
1 Enables the TX and RX FIFOs

9.4.6 Status Control Register

The FIFO initialization writes zeros into the TX and RX FIFO in order not to
have unknown values in some registers, like RHR, before a word’s reception.

To initialize FIFO, bit 6 of the SCR register must be set to one and must stay
as one until initialization has ended. Once initialization has ended, SCR[6]
goes to zero and SCR][7] goes to one, indicating FIFO initialization is finished.
SCR][7] is cleared on a read.

Figure 9—4. Status Control Register (UART_SCR)

Address (hex): Base = OxFFFF:1000, Offset = 0x000C

31-8 7 6
Reserved FIFO_INIT_STATUS | FIFO_INIT
RW-0 R-0 W-0
5 4 3 2-1 0
Reserved RX_CTS_WAKE_UP_ENABLE | TX_EMPTY_CTL_IT | Reserved | FIFO_PTR_ACCESS_EN
W-=0 W-0 W-0 W-0 W-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 FIFO_INIT_STATUS.
0 Initialization of FIFOs is not finished if SCR(6) = 1
1 Initialization of FIFOs is finished. Clear on a read
Bit 6 FIFO_INIT. Initialize FIFO bit.
0 FIFOs are not initialized
1 FIFOs are initialized to zero. This bit auto-clears
Bit 5 Reserved. Read as zero.

9-10

Bit 4

Bit 3

Bits 2-1

Bit O

Register Mapping/Descriptions

RX_CTS_WAKE_UP_ENABLE.

0 Disables the wake-up interrupt and clears UART_SSR(1)

1 Waits for the falling edge of input pins RX_MODEM or
CTS_MODEM to generate an interrupt

TX_EMPTY_CTL_IT.

0 Normal mode for UART_THR interrupt

1 The UART_THR interrupt is generated when TX FIFO
and TX shift register are empty

Reserved. Read as zeros.

FIFO_PTR_ACCESS_EN.

Disables FIFO’s pointer access through registers

1 Enables FIFO’s pointer access through
UART_WRPTR_URX, UART_RDPTR_URX,
UART_WRPTR_UTX, and UART_RDPTR_UTX

9.4.7 Line Control Register

Figure 9-5. Line Control Register (UART_LCR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0010

31-7
Reserved
RW-0
6 5 4 3 2 1-0
BREAK_EN PARITY_TYPE2 PARITY_TYPE1 PARITY_EN NB_STOP CHAR_LENGTH
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-7

Bit 6

Reserved. Read as zeros.

BREAK_EN. Break control bit.

0 No break

1 Forces the transmitter output to go low to alert the com-
munication terminal

UART Modem Interface 9-11

Register Mapping/Descriptions

Bit 5 PARITY_TYPE2. Selects the forced parity format if
UART_LCR(3) = 1.
No forced parity

1 If UART_LCR(4) = 0, the parity bit is forced to 1 in the TX
and RX data. If UART_LCR(4) = 1, the parity bit is forced
to 0 in the TX and RX data.

Bit 4 PARITY_TYPEL.

0 Odd parity is generated (if bit 3 = 1)
1 Even parity is generated (if bit 3 =1)

Bit 3 PARITY_EN.
0 No parity
1 A parity bit is generated during transmission and the
receiver checks for received parity
Bit 2 NB_STOP. Number of stop bits.

0 1 stop bit (word length =5, 6, 7, 8 hits)

1 1.5 stop bits (word length = 5)
2 stop bits (word length = 6, 7, 8)

Bits 1-0 CHAR_LENGTH. Word length for TX and RX.
00 5 bits
01 6 bits
10 7 bits
11 8 bits

9-12

Register Mapping/Descriptions

9.4.8 Line Status Register

Bit 7 indicates if there is an error in RX FIFO, which means that the UART re-
ceived data with a framing error, parity error, or a break indication. This bit
stays at one until no more errors remain in the FIFO, (i.e., until all data with
errors is read).

Figure 9—6. Line Status Register (UART_LSR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0014

31-8
Reserved
R-0
7 6 5 4-2 1 0
RX_FIFO_STS | TX SR_E | TX_FIFO_E Reserved RX_OE RX_FIFO_E
R-0 R-1 R-1 R-0 R-0 R-0

Note: R = Read access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 RX_FIFO_STS.
0 Normal operation
1 At least one parity error, framing error, or break indication
in the RX FIFO. Cleared when no more errors are present
in the FIFO
Bit 6 TX_SR_E.
0 Transmitter hold and shift registers are not empty
1 Transmitter hold and shift registers are empty
Bit 5 TX_FIFO_E.
0 Transmitter hold register is not empty
1 Transmitter hold register is empty. The processor can load
up to 64 bytes of data into THR if the TX FIFO is enabled
Bits 4-2 Reserved. Read as zeros.
Bit 1 RX_OE.
0 No overrun error
1 Overrun error has occurred. Set when the character being

held in RX shift register is not transferred to the RX FIFO.
This case can only occur when RX FIFO is full

UART Modem Interface 9-13

Register Mapping/Descriptions

Bit 0 RX_FIFO_E.

0 No data in the RX FIFO.
1 At least one data character in the RX FIFO.

9.4.9 Supplementary Status Register

Figure 9-7. Supplementary Status Register (UART_SSR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0018

31-8
Reserved
R-0
7-2 1 0
Reserved RX_CTS_WAKE_UP_STS | TX_FIFO_FULL
R-0 R-0 R-0

Note: R = Read access; value following dash (-) = value after reset

Bits 31-2 Reserved. Read as zeros.
Bit 1 RX_CTS_WAKE_UP_STS. Enabled if UART_SCR[4] = 1.
0 No falling edge event on either RX_MODEM or CTS_MO-
DEM
1 A falling edge occurred on RX_MODEM or CTS_ MODEM
Bit 0 TX_FIFO_FULL.

0 TX FIFO not full
1 TX FIFO full

9-14

Register Mapping/Descriptions

9.4.10 Modem Control Register
Note that bits 5, 6 and 7 can be written only when UART_EFR[4] = 1.

Figure 9—8. Modem Control Register (UART_MCR)
Address (hex): Base = OxFFFF:1000, Offset = 0x001C

31-8
Reserved
RW-0
7 6 5 4 3-2 1 0
CLKSEL TCR_TLR XON_EN LOOPBACK_EN Reserved RTS DCD
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 CLKSEL.
0 No action
1 Divide clock input by four
Bit 6 TCR_TLR.
0 No action
1 Enables access to the UART_TCR and UART_TLR
registers
Bit 5 XON_EN.
0 Disables XON any function
1 Enables XON any function
Bit 4 LOOPBACK_EN.
0 Normal operating mode
1 Internal loopback mode. UART_MCR[1:0] is looped into
UART_MSR[5:4]
Bits 3-2 Reserved. Read as zeros.
Bit 1 RTS. RTS control if auto-RTS is disabled. If auto-RTS is enabled, the

RTS output is controlled by hardware flow control.

0 Forces RTS_MODEM to be inactive (high)
1 Forces RTS_MODEM to be active (low)

UART Modem Interface 9-15

Register Mapping/Descriptions

Bit O

DCD.

0 Forces DCD_MODEM signal to be inactive (high)
1 Forces DCD_MODEM signal to be active (low)

9.4.11 Modem Status Register

Figure 9-9. Modem Status Register (UART_MSR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0020

31-8
Reserved
R-0
7-6 5 4 3-2 1 0
Reserved NDSR_STS | NCTS_STS Reserved DSR_STS CTS_STS
R-0 R-0 R-Input R-0 R-0 R-0
Signal

Note: R = Read access; value following dash (-) = value after reset

Bits 31-6

Bit 5

Bit 4

Bits 3-2

Bit 1

Bit 0

9-16

Reserved. Read as zeros.
NDSR_STS. In loop-back mode, it is equivalent to UART_MCR(0).

NCTS_STS. This bitis the complement of the CTS_MODEM input. In
loopback mode, it is equivalent to UART_MCR(1).

Reserved. Read as zeros.

DSR_STS.

0 UART_MCR(0) has NOT changed state in loopback mode

1 UART_MCR(0) has changed state in loopback mode.
Cleared on a read

CTS_STS.

0 CTS_MODEM input (or UART_MCR(1) in loopback
mode) has NOT changed state

1 CTS_MODEM input (or UART_ MCR(1) in loopback
mode) has changed state. Cleared on a read

Register Mapping/Descriptions

9.4.12 Interrupt Enable Register

The Interrupt Enable register is used to enable or disable any interrupt. There
are seven types of interrupts. You should be aware that the RHR interrupt en-
able is necessary in order to obtain a time-out interrupt (see Section 9.4.13,
Interrupt Status Register).

Figure 9-10. Interrupt Enable Register (UART_IER)

Address (hex): Base = OxFFFF:1000, Offset = 0x0024

31-8

Reserved

RW-0
7 6 5 4 3 2 1 0
CTS_IT RTS_IT XOFF_IT Reserved | MODEM_STS_IT | LINE_STS IT | THR.IT RHR_IT
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

CTS_IT.

0 Disables the CTS interrupt

1 Enables the CTS interrupt
RTS_IT.

0 Disables the RTS interrupt
1 Enables the RTS interrupt
XOFF_IT.

0 Disables the XOFF interrupt
1 Enables the XOFF interrupt

Reserved. Read as zero.

MODEM_STS_IT.

0 Disables the UART_MSR interrupt
1 Enables the UART_MSR interrupt

UART Modem Interface 9-17

Register Mapping/Descriptions

Bit 2 LINE_STS_IT.

0 Disables the UART_LSR interrupt
1 Enables the UART_LSR interrupt

Bit 1 THR_IT.

0 Disables the THR interrupt
1 Enables the THR interrupt

Bit 0 RHR_IT.

0 Disables the RHR interrupt
1 Enables the RHR interrupt

9.4.13 Interrupt Status Register

Allinterrupts have a priority level. See Section 9.6.2, Interrupts, for more infor-
mation on the management, priority, and clearing of interrupts.

Figure 9—11.Interrupt Status Register (UART _ISR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0028

31-8
Reserved
R-0
7 6 5-1 0
FCR_MIRROR FCR_MIRROR IT_TYPE IT_PENDING
R-0 R-0 R-0 R-1

Note: R = Read access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 FCR_MIRROR. Mirrors the content of FCR(0)
Bit 6 FCR_MIRROR. Mirrors the content of FCR(0)

9-18

Register Mapping/Descriptions

Bits 5-1 IT_TYPE. Interrupts by priority.

00011 Receiver line status error (Priority level 1)
00110 RX time out (Priority level 2)
00010 RHR interrupt (Priority level 2)
00001 THR interrupt (Priority level 3)
00000 Modem status interrupt (Priority level 4)
01000 XOFF/special character interrupt (Priority level 5)
10000 CTS, RTS change of state (Priority level 6)
Bit 0 IT_PENDING.
0 An interrupt (except the one defined by UART_SCR(4)) is
pending. IRQ is active

1 No interrupt (except the one defined by UART_SCR(4)) is
pending. IRQ is active

9.4.14 Enhanced Feature Register

This register enables or disables enhanced features related to flow control, ex-
cept bit 4, which enables write operation onto MCR and FCR. Note that XON1
and XON2 (and XOFF1 and XOFF2) must be different if software flow control
is used.

Figure 9-12. Enhanced Feature Register (UART_EFR)
Address (hex): Base = OxFFFF:1000, Offset = 0x002C

31-8
Reserved
RW-0
7 6 5 4 3-0
AUTO_CTS_EN | AUTO_RTS_EN | SPECIAL_CHAR_DETECT | ENHANCED_EN SW_FLOW_CONTROL
RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 AUTO_CTS_EN. Auto-CTS enable bit.
0 Normal operating mode
1 Auto-CTS flow-control enable (i.e., transmission is halted

when CTS is inactive.

UART Modem Interface 9-19

Register Mapping/Descriptions

Bit 6

Bit 5

Bit 4

Bits 3-0

9-20

AUTO_RTS_EN. Auto-RTS enable bit.

0
1

Normal operating mode

Auto-RTS flow control enable (i.e., RTS goes inactive
when RX FIFO halt-trigger level is reached, and goes ac-
tive when restore trigger is reached.

SPECIAL_CHAR_DETECT.

Normal operating mode

Enables special character detection. Received character
is compared to XOFF2. If a match occurs, the received
character is transferred to RX FIFO and UART_ISR(4) is
setto 1l

ENHANCED_EN. Enhances the write enable function.

0
1

Disables writing to UART_FCR][5:4], UART_MCR[7:5]
Enables writing to UART_FCR[5:4], UART_MCR[7:5]

SW_FLOW_CONTROL. Selection of software flow control.

00XX
01XX
10XX
11XX
XX00
XX01
XX10
XX11

No transmit flow control

Transmit XON2, XOFF2

Transmit XON1, XOFF1

Transmit XON1, XON2, XOFF1, XOFF2

No receive flow control

Receiver compares XON2, XOFF2

Receiver compares XON1, XOFF1

Receiver compares XON1, XON2, XOFF1, XOFF2

Note: XON1/XON2 and XOFF1/XOFF2 must be set to
different values if the software flow control is used.

Register Mapping/Descriptions

9.4.15 XON1 Character Register

Figure 9—13. XON1 Character Register (UART_XON1)

Address (hex): Base = OxFFFF:1000, Offset = 0x0030

31-8

Reserved

RW-0

7-0

XON_WORD1

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XON_WORDL1. Used to store the 8-bit XON1 character.

9.4.16 XON2 Character Register

Figure 9—14. XON2 Character Register (UART_XONZ2)

Address (hex): Base = 0xFFFF:1000, Offset = 0x0034

31-8

Reserved

RW-0

7-0

XON_WORD2

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XON_WORD?2. Used to store the 8-bit XON2 character.

UART Modem Interface

9-21

Register Mapping/Descriptions

9.4.17 XOFF1 Character Register

Figure 9-15. XOFF1 Character Register (UART_XOFF1)

Address (hex): Base = OxFFFF:1000, Offset = 0x0038

31-8

Reserved

RW-0

7-0

XOFF_WORD1

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XOFF_WORDL. Used to store the 8-bit XOFF1 character.

9.4.18 XOFF2 Character Register

Figure 9-16. XOFF2 Character Register (UART_XOFF2)

Address (hex): Base = OxFFFF:1000, Offset = 0x003C

31-8

Reserved

RW-0

7-0

XOFF_WORD2

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 XOFF_WORD?2. Used to store the 8-bit XOFF2 character.

9-22

Register Mapping/Descriptions

9.4.19 Scratch-Pad Register

This register does not have a control function. It is intended as a scratch-pad
to be used by the programmer for holding temporary data.

Figure 9—17. Scratch-Pad Register (UART_SPR)
Address (hex): Base = OxFFFF:1000, Offset = 0x0040

31-8

Reserved

RW-0

7-0

SPR_WORD

RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 SPR_WORD. Scratch pad register.

9.4.20 Divisor for 115k-Baud Generation

This 9-bit register is used to store the divisor needed to obtain a 115K-baud
rate. The reset value (434) is the divisor needed at 50 MHz
(50,000,000/115,200 = 434).

Figure 9—18. Divisor for 115K-Baud Generation (UART_DIV_115K)
Address (hex): Base = OxFFFF:1000, Offset = 0x0044

31-9

Reserved

RW-0

8-0

DIV_115K

RW-110110010

Note: R =Read access; W = Write access; value following dash (=) = value after reset

UART Modem Interface 9-23

Register Mapping/Descriptions

Bits 31-9 Reserved. Read as zeros.

Bits 8-0 DIV_115K.
div_115k = (fclk / 115200)
Div_115k is the divisor needed to obtain the 115K baud rate; it is the
clock speed (in Hz) divided by 115200.

9.4.21 Divisor for Baud-Rate Generation

This 7-bit register represents the divisor needed to obtain the desired speed
from 115K baud; for example, 0000010 gives 115K baud/2 = 57500 baud.

Figure 9-19. Divisor for Baud-Rate Generation (UART_DIV_BIT_RATE)

Address (hex): Base = OxFFFF:1000, Offset = 0x0048

31-7

Reserved

RW-0

6-0

DIV_BITRATE

RW-0000001

Note: R = Read access; W = Write access; value following dash (=) = value after reset
Bits 317 Reserved. Read as zeros.
Bits 6-0 DIV_BITRATE.

div_bit_rate = div_115K / bit rate.
Div_bit_rate is the divisor needed to obtain the desired speed.

9-24

Register Mapping/Descriptions

9.4.22 Transmission Control Register

Thisregister is used to store the receive FIFO threshold levels to start and stop
transmission during hardware or software flow control.

This register can be written only if MCR[6] = 1

Figure 9—20. Transmission Control Register (UART_TCR)
Address (hex): Base = OxFFFF:1000, Offset = 0x004C

31-8
Reserved
RW-0
7-4 3-0
RX_FIFO_TRIG_START RX_FIFO_TRIG_HALT
RW-0 RW-1111

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-4 RX_FIFO_TRIG_START. Receive FIFO trigger level to restore trans-
mission.

0000 0 bytes
0001 4 bytes
0010 8 bytes

O O
1111 60 bytes
Bits 3-0 RX_FIFO_TRIG_HALT. Receive FIFO trigger level to stop transmis-
sion.

0000 0 bytes

0001 4 bytes

0010 8 bytes
0 0

1111 60 bytes

UART Modem Interface 9-25

Register Mapping/Descriptions

9.4.23 Trigger-Level Register

This register is used to store the programmable transmit and receive FIFO trig-
ger levels used for IRQ generation. Trigger levels from 4 to 60 can be pro-
grammed with a granularity of 4.

Note that TLR can be written only if MCR[6] = 1.

If TLR[7:4] = 0000, the programmable RX trigger levels are disabled and trig-
ger RX levels in FCR[7:6] are enabled.

If TLR[3:0] = 0000, the programmable TX trigger levels are disabled and trig-
ger TX levels in FCR[5:4] are enabled.

Note that for the TX FIFO, the TLR represents the number of empty spaces
in the FIFO above which the THR interrupt will be activated. For example, if
TLR[3:0] = 1111, and if there are four or less bytes in the transmit FIFO, the
THR interrupt will be activated. If TLR[3:0] = 0001, and if there are 60 or less
bytes in the transmit FIFO, the interrupt will be activated.

Figure 9-21. Trigger-Level Register (UART_TLR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0050

31-8

Reserved

RW-0

7-4 3-0

RX_FIFO_TRIG_RHR

TX_FIFO_TRIG_THR

Note:

9-26

RW-0 RW-0
R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 74 RX_FIFO_TRIG_RHR. RX FIFO trigger level to generate RHR inter-
rupt.
0000 Use UART_FCRJ[7:6] trigger level
0001 4 bytes
0010 8 bytes

O a

1111 60 bytes

Register Mapping/Descriptions

Bits 3-0 TX_FIFO_TRIG_THR. TX FIFO trigger level to generate THR inter-
rupt. It presents the number of empty spaces in the FIFO above which
the THR interrupt will be activated.

0000 Use UART_FCRJ5:4] trigger level
0001 4 bytes
0010 8 bytes
0 |
1111 60 bytes

9.4.24 Mode Definition Register

To change the UART mode, you must set MDR[2:0] to the reset state and then
to the new mode in order to avoid undefined behavior. The reset mode resets
transmission, reception, and autobaud parameter detection, but not TX and
RX FIFO pointers.

Figure 9-22. Mode Definition Register (UART_MDR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0054

31-8
Reserved
RW-0
7-3 2-0
Reserved MODE_SELECT
RW-0 RW-111

R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-3 Reserved. Read as zeros.
Bits 2-0 MODE_SELECT.
000 UART mode
010 Autobauding mode
111 Reset mode

All other values are reserved

UART Modem Interface 9-27

Register Mapping/Descriptions

9.4.25 UART Autobauding Status Register

This register determines the speed, word size, parity, and stop-bit number in
Autobauding mode. Parameters are detected and the UART is ready to re-
ceive or transmit data only when UASR is not null. Parameters are detected
after receiving the AT or at characters, which are not stored in the RX FIFO.

Figure 9—23. UART Autobauding Status Register (UART_UASR)

Address (hex): Base = OxFFFF:1000, Offset = 0x0058

31-8
Reserved
RW-0
7-6 5 4 3-0
PARITY_TYPE BIT_BY_CHAR STOP_BIT SPEED
RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-6 PARITY_TYPE.
00 No parity identified
01 space parity (0 forced)
10 even parity
11 odd parity
Bit5 BIT_BY_CHAR. Word’s size.
0 7-bit character identified
1 8-bit character identified
Bit 4 STOP BIT.
0 1 stop bit identified
1 2 stop bits identified

9-28

Register Mapping/Descriptions

Bits 3-0 SPEED. Speed identifier.
0000 no speed identified
0001 115200 baud
0010 57600 baud
0011 38400 baud
0100 28800 baud
0101 19200 baud
0110 14400 baud
0111 9600 baud
1000 4800 baud
1001 2400 baud
1010 1200 baud

9.4.26 RX FIFO Read Pointer Register

Note that this register can be written only if SCR[0] = 1.

Figure 9-24. RX FIFO Read Pointer Register (UART_RDPTR_URX)

Address (hex): Base = OxFFFF:1000, Offset = 0x005C

31-7

Reserved

RW-0

6-0

RX_READ_PTR

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 RX_READ_PTR. Read pointer of RX FIFO.

UART Modem Interface 9-29

Register Mapping/Descriptions

9.4.27 RX FIFO Write Pointer Register

Note that this register can be written only if SCR[0] = 1.

Figure 9-25. RX FIFO Write Pointer Register (UART_WRPTR_URX)
Address (hex): Base = 0xFFFF:1000, Offset = 0x0060

31-7

Reserved

RW-0

6-0

RX_WRITE_PTR

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 RX_WRITE_PTR. Write pointer of RX FIFO.

9.4.28 TX FIFO Read Pointer Register

Note that this register can be written only if SCR[0] = 1.

Figure 9-26. TX FIFO Read Pointer Register (UART_RDPTR_UTX)
Address (hex): Base = OxFFFF:1000, Offset = 0x0064

31-7

Reserved

RW-0

6-0

TX_READ_PTR

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 TX_READ_PTR. Read pointer of TX FIFO.

9-30

Register Mapping/Descriptions

9.4.29 TX FIFO Write Pointer Register

Note that this register can be written only if SCR[0] = 1.

Figure 9-27. TX FIFO Write Pointer Register (UART_WRPTR_UTX)
Address (hex): Base = OxFFFF:1000, Offset = 0x0068

31-7

Reserved

RW-0

6-0

TX_WRITE_PTR

RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-0 TX_WRITE_PTR. Write pointer of TX FIFO.

UART Modem Interface 9-31

Functional Block Diagram

9.5 Functional Block Diagram

Figure 9—28. UART Modem Interface Block Diagram

Modem signals

v

. X
“ FIFO
PN FIFO
bl control
. RX
bl FIFO
ARM « 1 control
bus
<“«—> Serial » TX_MODEM
RX_MODEM
<«—»| Autobaud

9-32

Functional Descriptions

9.6 Functional Descriptions

9.6.1 Trigger Levels

9.6.2

Interrupts

The UART provides independent programmable trigger levels for both receiv-
er and transmitter interrupt generation. Trigger levels can be set through the
UART_FCRand UART_TLRregisters. These trigger levels are activated upon
the enabling of the RHR and THR interrupts in the UART_IER register.

The UART generates interrupts to the ARM through the interrupt line, IRQ. All
interrupts can be enabled or disabled through the interrupt enable register
(UART_IER). The interrupt status can be checked at any time by reading the
interrupt status register (UART_ISR).

There are seven different types of interrupts, prioritized to six levels.

When an interrupt is generated, the UART _ISR register indicates that an inter-
rupt is pending by bringing UART _ISR[0] to zero. The interrupt status register
also provides the type of interrupt through UART _ISR[5:1]. Table 9-3 lists the
priority, ISR coding, type, source, and clear method for all interrupts.

Note that the XOFF interrupt is reset only by receiving an XON character and
by reading the UART _ISR register for the special character detection.

UART Modem Interface 9-33

Functional Descriptions

Table 9-3. UART Modem Interrupts

ISR[5-0] P[gjvrletly Interrupt Type Interrupt Source Interrupt Reset Method
000001 None None None None
000110 1 Receiver line status ~ Overrun, framing error, Framing, parity, or break:
parity error, or break read all erroneous
detection occurred in characters from the
characters in the RX FIFO RX FIFO.
Overrun: read LSR
001100 2 RX timeout Stale data in RX FIFO Read RHR
000100 2 RHR interrupt RX FIFO not empty if Read RHR until interrupt
FIFO disabled condition disappears
RX FIFO above trigger
level in other cases
000010 3 THR interrupt TX FIFO empty if FIFO Write to THR until
disabled interrupt condition
disappears
TX FIFO below trigger
level in other cases
000000 4 Modem status MSR[3:0] not null Read MSR
010000 5 XOFF interrupt Receive XOFF character/ Receive XON character /
special character read ISR
100000 6 CTS, RTS RTS or CTS pin change Read ISR

state from active to
inactive

9.6.3 Break and Time-Out Conditions

9.6.3.1 Time-Out

9.6.3.2 Break Condition

9-34

A time-out occurs if the receiver line RX_Modem has been high for a time
equivalent to four times the programmed word length plus 12 bits, and if the
RHR register is not read during this time.

Abreak s detected if the RX line has been low for a time equivalent to the word
length plus one bit if there is no parity, or plus two bits in other cases.

Functional Descriptions

9.6.4 Hardware Flow Control

Hardware flow control is composed of auto-CTS and auto-RTS, which are en-
abled or disabled independently by programming EFR[7:6].

In auto-CTS mode, the CTS pin must be active (low level) before the module
can transmit data. If CTS becomes inactive during a transmission, the UART
will finish sending the current word and will wait for CTS to become active
again to empty its TX FIFO.

In auto-RTS mode, the RTS pin is active (low level) until the stop trigger is
reached by the RX FIFO, and then is inactive until the start trigger is reached.
This means that RTS is activated when there is enough room in the FIFO to
receive data and is deactivated when the RX FIFO is sufficiently full.

It is important to note that the stop trigger must be set at a higher level than
the start trigger if the hardware flow control is used.

The stop trigger is represented by TCR[3:0] and the start trigger by TCR[7:4].

9.6.5 Software Flow Control

9.6.5.1 RX

The principle of software flow control is the same as that for hardware flow con-
trol: Transmissions are authorized by the receiving UART as a function of its
RX FIFO pointer position from the trigger levels set.

When software flow control is activated, the UART compares incoming data
with the programmed XOFF1 or XOFF2 character (in some cases, it can be
XOFF1 followed by XOFF2). When the correct XOFF characters are received,
transmission is halted after completing transmission of the current character.
XOFF detection also sets ISR[4], if enabled.

To resume transmission, an XON character must be received, detected, and
compared to the programmed XON character (in some cases, it can be XON2
following XON1). When the correct XON is detected, the transmission is re-
sumed and XOFF interrupt disappears.

The software flow control characters are not stored in RX FIFO once they are
recognized. However, if there is one error (framing, parity, break) in them,
those characters will be treated as normal data and will not be recognized as
XOFF/XON characters.

UART Modem Interface 9-35

Functional Descriptions

9.6.52 TX

If EFR[1:0] = 11, which means that XOFF1/XOFF2 (XON1/XON2) must be re-
ceived sequentially, the UART only recognizes the completely received cou-
ples as the control characters. If the first received character is recognized as
XOFF1 but the subsequent character is not XOFF2, then both the XOFF1 and
the subsequent characters are written into RX FIFO as normal characters. The
similar case applies for XON1 and XON2 characters.

An XOFF1 or XOFF2 character is transmitted when the RX FIFO has passed
the stop-trigger level programmed in TCR [3:0] (XOFF1 followed by XOFF2
in some cases).

An XON1 or XON2 character is transmitted when the RX FIFO reaches the
start-trigger level programmed in TCR[7:4] (XONL1 followed by XON2 in some
cases).

9.6.5.3 General Features

It is important to note that if software flow control is disabled after sending
XOFF, the XON will be automatically sent to enable normal transmission to
proceed. The same occurs if the software flow combination changes after hav-
ing sent XOFF: the original XON will be send. For example, if the couple
XOFF1/XONL1 is selected for software control, and if the user changes to
XOFF2/XON2 after having sent XOFF1, XON1 will be sent when the RX FIFO
reaches the start trigger, in spite of the XOFF2/XON2 selection.

The software flow control character transmission follows the same protocol as
data, which means that the word size, parity type, and number of stop bits de-
fined for data will be used for control transmission. If the control characters are
defined for eight bits and the transmission is, for example, defined for six bits,
there is no difficulty because the six less significant bits of the control character
will be sent by the transmitter UART and will be compared to the six less signifi-
cant bits of the control character stored in the receiving UART.

Note that software flow control and hardware flow control should not be en-
abled simultaneously.

9.6.6 Autobauding Mode

9-36

The UART_MDR [2:0] register needs to be set to 010 in order to activate the
autobauding mode.

In this mode, the UART has to recognize the transmission speed, the parity
type, the number of stop bits, and the word size on two receiving characters,
AT or at.

Functional Descriptions

During this sequence’s reception, break condition, framing, and parity errors
are not detected. If the character or the parameters are not identified, nothing
is stored in the RX FIFO and the UART will not receive anything.

The good detection in autobauding is based on the value of the
UART_DIV_115K register.

Until parameters are detected, UASR register bits 3 to 0 are set to zero, which
means that no speed is identified. Receiving parameters must not be taken
into consideration before these bits change.

Whatever appends the AT or at chainis not stored in RX FIFO. Non-null values
in the UASR register indicate that the UART is aware of the parameters that
have been detected and is ready to receive and transmit data.

In Autobauding mode, the transmitting parameters are determined by auto-
bauding. The LCR register has no specific function except in the case of break
transmission.

You should be aware that 5-bit and 6-bit character transmissions cannot be
recognized when in autobauding mode.

The At and at sequences are not recognized.
Each error forces the system to a new A or a acquisition.

After parameters are recognized in the reception state, the entire received se-
quence is pushed into the RX FIFO, including the final <CR>.

<CR> (13 in ASCII) is the final character for the Autobauding mode. Once it
is stored in RX FIFO, the transmission parameters are cleared, UASR goes
to null value, and the UART resumes speed/number-of-bits/parity/number-of-
stop bits acquisition.

UART Modem Interface 9-37

Chapter 10

Serial Port Interface (SPI)

This chapter describes the operation of the serial port interface (SPI) and in-
cludes register definitions and timing diagrams.

The SPI is associated with the ARM™ microcontroller unit (MCU) of the dual-
core (MCU + DSP) VC547x device.

Topic Page
10.1 SPIMain Features ..ottt i, @
10.2 SPIGeneral Descriptionciiiiiiiiiiii.. @
10.3 SPII/O DesCription ...ttt @
10.4 SPIREGISIEIS\ttt et 10-5 |
10.5 SPIProtocol Descriptiono 10-10

10-1

SPI Main Features

10.1 SPI Main Features

The serial interface is a bidirectional 3-line interface dedicated to the transfer
of data to and from external devices offering a 3-line serial interface.

This interface is specified to be compatible with the UMA1018M Philips, the
FUJITSU MB15F02 and the SIEMENS PMB2306T synthesizers, and the Tl
VEGA and AD7015 GSM analog-to-digital and digital-to-analog (A/D—D/A) de-

vices.

This serial port is based on a looped shift-register, thus allowing both transmit
(PISO) and receive (SIPO) modes.

The serial port is fully controlled by the VC547x System Interface bus (data
write, data read, and activation of serialization operations).

10.2 SPI General Description

The SPI consists of a data path and a control path connected to external de-
vices by six pins as shown in Figure 10-1.

Figure 10-1. SPI Block Diagram

MCUDI

MCUDO —«¢

CLKX_SPI—¢
MCUENO —4
MCUEN1 4+
MCUEN2 4

A 4

A 4

32-bit system interface bus

A 4

A 4

SPI
|—>- SPI_RX
REG SR | 4
(FILO shifty [
+ SPI_TX <
SPI_SET <
Clock and serial
port
configuration/
control SPI_CTRL <
Read/write
status SPI_STATUS <
reporting
IRQ
SPI_clock —€—

N7

— interrupts to ARM
— SPI module clock

(from CLKM module)

10-2

SPI General Description

Data/Clock Communications

Data is communicated to devices interfacing the SPI via the data output (MCU-
DO) pin for transmit and the data input (MCUDI) pin for receive. Clocking infor-
mation is communicated via the CLKX_SPI. Up to three external devices can
be connected to the SPI interface. MCUENI (i = 0, 1, or 2) can be used to indi-
vidually enable the connecting devices. The ARM core communicates with the
SPI through 32-bit-wide control registers accessible via the system interface
bus.

ARM CPU Read/Write Operations

The ARM CPU reads the received data from the SPI Receive register
(SPI_RX) and writes the data to be transmitted to the SPI Transmit register
(SP1_TX). Data written to SP1_TX is shifted out to the MCUDO pin via the inter-
nal shift register (REG_SR).

On the reception side, data received on the MCUDI pin is also shifted into the
internal REG_ SR register and then copied to SPI_RX. This internal shift regis-
ter is based on a loop (FILO principle). Therefore, even though only one shift
register is available for both transmit and receive, a read process can be done
simultaneously with a write process. Also, the concurrent write process can be
dummied if no data has to be transmitted. See Section 10.5.2 for more informa-
tion on the receive protocol.

Control Configuration

The remaining registers that are accessible to the ARM CPU configure the
control mechanism of the SPI and also do transmission/reception status re-
porting. Notification of important events/interrupts to the ARM is done through
the interrupt line, IRQ, which is handled by the Interrupt Handler module.

Serial Port Interface (SPI) 10-3

SPI I/O Description

10.3 SPI I/O Description

Table 10-1. ARM Serial Port Interface Signals

10-4

Signal Direction Description
MCUDI IN SPI serial data input
MCUDO ouT SPI serial data output
CLKX_SPI ouT SPI serial clock
MCUENO ouT Enables device 0
MCUEN1 ouT Enables device 1
MCUEN2 ouT Enables device 2

SPI Registers

10.4 SPI Registers

The serial port offers input and output registers for, respectively, the loading
of data to serialize (TRANSMIT) and the reading of data parallelized
(RECEIVE).

Base address (hex): FFFF:2000

Register width: 32 bits

Table 10-2. SPI Registers

Register Description ggfjreetss
REG_SRT Internal Shift Register ——=
SPI_SET SPI Setup Register 00h
SPI_CTRL SPI Control Register 04h
SPI_STATUS SPI Status Register 08h
SPI_TX SPI Transmit Register 0Ch
SPI_RX SPI Receive Register 10h

t REG_SR is an internal register that is not directly accessible by the ARM core.

10.4.1 SPI Setup Register

SPI|_SET is dedicated to the configuration of the serial port.

Figure 10-2. SPI Setup Register (SPI_SET)
Address (hex): Base = FFFF:2000, Offset = 0x0000

31-14 13 12 11 10 9 8
Reserved L2 L1 LO P2 P1 PO
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
7 6 5 4 3 2-0
C2 C1 Co MSK1 MSKO PTV
RW-0 RW-0 RW-0 RwW-1 RW-1 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Serial Port Interface (SPI) 10-5

SPI Registers

Bits 31-14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

Bit 6

10-6

Reserved. Read as zeros.

L2

0
1

L1.

LO.

P2.

P1.

PO.

c2.

C1.

0
1

. Format of enable signal MCUEN2 for device 2.

Level trigger
Edge trigger

Format of enable signal MCUENL1 for device 1.

Level trigger
Edge trigger

Format of enable signal MCUENQO for device 0.

Level trigger
Edge trigger

Format of enable signal MCUEN2 for device 2.
Negative level
Positive level

Format of enable signal MCUENL1 for device 1.

Negative level
Positive level

Format of enable signal MCUENO for device O.

Negative level
Positive level

Active edge of the clock for device 2.
Falling edge
Rising edge

Active edge of the clock for device 1.

Falling edge
Rising edge

SPI Registers

Bit 5 CO. Active edge of the clock for device 0.
0 Falling edge
1 Rising edge
Bit 4 MSK1. Disable interrupt for Read/Write cycle.
0 Interrupt active
1 Interrupt disabled
Bit 3 MSKO. Disable interrupt for write cycle.
0 Interrupt active
1 Interrupt disabled
Bits 2-0 PTV. Prescale clock divisor.
000 1
001 2
010 4
011 8
100 16
101 32
110 64

111 Reserved

10.4.2 SPI Control Register

SPI_CTRL is dedicated to the activation of the serial port and starts the opera-
tion of the interface as soon as one of its two bits is set. It defines:

[WRITE activation of the serial port (transmit only)
[READ activation of the serial port (simultaneously receive and transmit)
[Number of bits to transfer (in the range of 1 to 32)

[0 External device address (between 0 and 2)

Figure 10-3. SPI Control Register (SPI_CTRL)

Address (hex): Base = FFFF:2000, Offset = 0x0004

31-9 87 6-2 1 0
Reserved AD NB WR RD
RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset

Serial Port Interface (SPI) 10-7

SPI Registers

Bits 31-9 Reserved. Read as zeros.
Bits 8-7 AD. Index of the addressed device (3-device maximum)
00 Device number 0
01 Device number 1
10 Device number 2
11 Reserved
Bits 6-2 NB. Word size (from 1 to 32 bits) transmission of NB+1 bits.

00000 1-bit transmit
00001 2-bit transmit

o O
11111 32-bit transmit
Bit 1 WR. Write process activation
0 Not active
1 Active
Bit 0 RD. Read and write process activation (toggle at 1)
0 Not active
1 Active

10.4.3 SPI Status Register

This register shows the status of data transmission and reception.

Figure 10-4. SPI Status Register (SPI_STATUS)
Address (hex): Base = FFFF:2000, Offset = 0x0008

31-2 1 0
Reserved WE RE
R-0 R-0 R-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-2 Reserved. Read as zeros.

Bit 1 WE. Write end.
0 The serialization is not completed
1 The serialization is completed

10-8

SPI Registers

Bit 0 RE. Read end.
0 The loading of the SPI Receive register is not com-
pleted
1 The loading of the SPI Receive register is completed

10.4.4 SPI Transmit Register

Data to transmit is loaded in the register SPI_TX, which is accessible by the
interface bus in read or write.

Figure 10-5. SPI Transmit Register (SPI1_TX)
Address (hex): Base = FFFF:2000, Offset = 0x000C

31-0

DATA_TX

RW-0

Note: R =Read access; W= Write access; value following dash (-) = value after reset

Bits 31-0 DATA_TX. Data to transmit.

10.4.5 SPI Receive Register

Received data is accessible from the interface bus.

Figure 10-6. SPI Receive Register (SPI_RX)
Address (hex): Base = FFFF:2000, Offset = 0x0010

31-0

DATA_RX

R-0

Note: R = Read access; W= Write access; value following dash (-) = value after reset

Bits 31-0 DATA_RX. Received data.

Serial Port Interface (SPI) 10-9

SPI Protocol Description

10.5 SPI Protocol Description

The serial port is configured using the SPI_SET register.

After the loading of the transmit register, the serialization and parallelization
processes are started by setting to one either the RD bit or the WR bit of the
control register.

Aread process is always simultaneous with a write process because the inter-
nal shift register is based on a loop (filo principle); however, the concurrent
write process can be dummied if no data has to be transmitted.

The external transfer of a word starts as soon as the transmit clock is gener-
ated. The transmitted data word is shifted out on the rising or falling edge of
the transmission clock (CLKX_SPI); whereas, the received data word is
shifted in on the falling or rising edge of CLKX_SPI (complementary edge).
The loading of the word in the external device is then validated on either:

[The deactivation of the enable signal (MCUEN:I) (rising or falling edge) or

(1 The highlevel/low level of the enable signal (MCUEN!I) (load enable of the
receiver latch), depending on the value of the P (negative/positive level)
and L (level/edge trigger) parameters in the SPI_SET register

An interrupt can be generated (depending on the setup register) at the end of
the write or read/write cycle.

The IRQ request is cleared when the MCU reads the status register.

Figure 10-7. Protocol Waveforms

SPI_CTRL write
MCU write

SPI_TX [

X

SPITX (31.0)]

REG_SR [XXX Feesrers]

clkx spl— AN NNV WAVAVAVAN
MCUENi =™\ /
d31 do
mcupl L XO0KKOOOOOOOOOOONKNKK |
d31 do
MCUDO [3XXXXXXOOMXHMXHNIONK |
IRQ \ /+— Status
SPI_STATUS | X WE or RE =1 |register
- read
SPI_RX | D4 BPI_RX (310 I
MCU Read
MCU Read

10-10

SPI Protocol Description

10.5.1 Transmit Protocol

The serialization protocol of a word is as follows:

1)
2)

3)

4)

5)

6)

7

8)

10.5.2 Receive Protocol

Initialization: MCU writes in Setup register => write in SPI_SET
Loading of the Data Word: MCU writes word => write in SPI_TX

Start of the Serialization: MCU set WR bit in Control register
=> write in SPI_CTRL

Upon WR Setting: Then REG_SR <— SPI_TX
activate serialization on the rising edge of SPI_clock (internal clock)

Select external device on the rising (C = 1) or falling edge (C = 0) of
SPI_clock.

For example, select external device serial PORTi => MCUENi = 0 if
SPI_CTRL [8:7] = 00.

Data Serialization:
activate CLKX_SPI
LoopifromOton
MCUDO=REG_SR(n-i)
End Loop
deactivate CLKX_SPI

Deselect external device serial PORTi => MCUENi =1 (if P = 0 in
SPI_SET)

Interrupt Generation

The parallelization protocol of a word is as follows:

1)

2)

3)

4)

Initialization: MCU writes in Setup register => write in SPI_SET

Loading of the dummy data word
MCU writes word => write in SPI_TX

Start of the concurrent parallelization/serialization: MCU set RD bitin con-
trol register => write in SPI_CTRL

Upon RD setting then REG_SR <—REG_TX activate parallelization/seri-
alization on the rising edge of SPI_clock (internal clock)

Serial Port Interface (SPI) 10-11

SPI Protocol Description

5) Select external device on the rising (C=1) or falling edge (C=0) of
SPI_clock.
For example, select external device serial PORTi => MCUENi = 0 if
SPI_CTRL [8:7] = 00.

6) Data Serialization:
activate CLKX_SPI
LoopifromOton
MCUDO = REG_SR(n-i)
REG_SR(i) = MCUDI
End Loop
deactivate CLKX_SPI

7) Deselect external device serial PORTi => MCUENi = 1 (f P = 0 in
SPI_SET)

8) Interrupt Generation

9) Reading of received data word by the MCU
MCU reads total part => read SPI_RX

Notes: 1) It is important to note that the MSB bits of a word are first trans-
mitted. If an 8-bit word must be transmitted, write them into
SPI_TX[31:24].

Notes: 2) By design, the read process requires two data transfers because
the external device needs to receive first the address of the data to
be read before being able to transmit this data to the MCU.
However, in case of consecutive read processes or read and write
processes, the processes can be piped, thus saving the dummy
transfer which can be replaced by an effective transfer.

10.5.3 Transmission Mode Waveforms

10-12

The serial interface is active as soon as the transmit clock is activated.

The transmitted data word is shifted out on the rising or falling edge of the
transmission clock (CLKX_SPI); whereas, the received data word is shifted in
on the falling or rising edge of CLKX_SPI (complementary edge).

On the deactivation of the enable signal:
[The transmitted word is stored in the external device

(1 The received word is stored in the receive register of the serial port
(SPI1_RX) if the read mode has been selected (bit O of register SPI_CTRL)

SPI Protocol Description

Figure 10-8. Case C=0, DO on Rising Edge, DI on Falling Edge, P=0, L=0

1 32
CLKX_SPI /IH_||_||_||_||_ ||_||_||_||_||_||—||4/—
internal internal

MCUENi | 1 !
L

v
Mcupo | O.0.00.0.0.0.0.0.060.0.0 Gl

mcup! | 0090000000600 Gl

msb Isb |

Store WORD
Figure 10-9. Case C=1, DO on Falling Edge, DI on Rising Edge, P=1, L=0
1 32
CLKX_SPI SRR NRNREpEpNY* -
interndl internal
MCUENi ;;
v

MCUDO I

mcup! | 0000000000000,
Isb
\

msb
\

Store WORD

Figure 10-10. Case C=0, DO= on Falling Edge, DI on Rising Edge, P=1, L=1

1 32
CLKX_SPI /l“||||||||_"-||||||||||||||4.F
internal internal

MCUENi |

Mcupo | < 0000900000000 I
mcupi | @...........

msbh |

Store WORD

Serial Port Interface (SPI) 10-13

Chapter 11

Master I12C Interface

This chapter provides a general description of the I2C Interface, shows the ap-
plicable registers, describes the 12C bus protocol and Master 12C interface re-
sets, and discusses interrupt, FIFO, and clock management.

The Master 12C Interface is associated with the ARM™ microcontroller unit
(MCU) of the dual-core (MCU + DSP) TMS320VC547x device.

Topic Page
11.1 Master 12C Interface Module General Description @
11.2 /O DESCription @
11.3 Register Descriptionso, @
11.4 FIFOManagement i @
11.5 Master 12C Interface RESELSovvviiniririniiiiaannn..] @
11.6 Clock Management i @
11.7 Interrupt Managementttty @

111

Master 12C Interface Module General Description

11.1 Master 12C Interface Module General Description

11.1.1 Overview

The Master Inter-Integrated Circuit (12C) Interface Module provides an inter-
face between the VC547x system-interface bus and the I2C bus. The VC547x
system bus, through the Master 12C Interface Module, can control the external
peripheral devices on the 12C bus.

Fundamentally, the Master 12C Interface Module is a parallel-to-serial and
serial-to-parallel converter. The parallel data received from the VC547x bus
has to be converted to a suitable serial form for external peripheral devices on
the I2C bus. Also, the serial data received from the 12C bus has to be converted
to a suitable parallel form for the VC547x bus.

The Master 12C Interface supports write cycles and simple and combined read
cycles.

11.1.2 Main Features

11-2

The Master I2C Interface Module supports the 12C Master-Only mode with:
[7-bit address DEVICE
(] 8-bit subaddress

(1 Master write to slave receiver in single- or multiple-mode (data loop)
16-byte-deep transmit FIFO

[Master simple read to slave receiver
(1 Read combined cycle

[3-bit programmable prescale internal clock divider and 7-bit program-
mable SCL clock divider to supports a wide clock frequency range of mod-
ule input clock signals. The I2C SCL clock frequencies are:

B 12C Standard mode: 100 kHz
B 12C Fast mode: 400 kHz

[3-bit programmable spike filter to provide 12C bus input signal-noise filter-
ing ability

[Error handling capability during 12C bus access

Master |12C Interface Module General Description

The Master I2C Interface Module does not support:

U

I T I

I2C bus 10-bit addressing

I2C bus CBUS compatibility
Multimaster 12C

I2C bus high-speed mode: 3.4 MHz

I2C bus master reads slave immediately after first byte (sequential read
mode)

11.1.3 Special Considerations

11.1.3.1 FIFO Reset

There are two problems which have been identified in the 12C logic. These
problems are listed below.

a
a

Required FIFO reset prior to any 12C operation

Inability to generate “Not Acknowledge”

For any 12C serial activity (this includes reads as well as writes), a reset must
be performed to the FIFO prior to the start of each operation. There appears
to be a logic bug, which leaves the FIFO in an unhealthy state following any
I2C usage. The following workaround appears to have good results.

1)
2)
3)

4)
5)
6)
7

Reset the FIFO (CMD_REG [FFFF:1810] bit 0, SOFT_RESET = 1).
Delay while the reset works through the FIFO.

Remove the FIFO reset (CMD_REG [FFFF:1810] bit O,
SOFT_RESET = 0).

Delay once again.
Reload the FIFO size (CONF_FIFO_REG [FFFF:1814], FIFO_SIZE).
Load the FIFO (DATA_WRITE_REG [FFFF:1808], DATA_WRITE).

Assuming the following registers are prepared:

W Type of FIFO operation (CMD_REG [FFFF:1810] bit 2, RW or
bit 3, COMB_READ).

B The Device Address (DEVICE_REG [FFFF:1800], DEVICE).

M The Register Address (ADDRESS_REG [FFFF:1804], AD-
DRESS).

Master I2C Interface 11-3

Master 12C Interface Module General Description

8) Then the I2C FIFO operation can be started (CMD_REG [FFFF:1810]
bit 1, START).

11.1.3.2 Not Acknowledge

The Not Acknowledge bit transferred from the Master to the Slave is a critical
element of all Read operations, but is not used in any Write operation. This is
illustrated in Figure 11-1.

Figure 11-1.12C Write Operation

Byte Write
Device Address Write Data
¢ N (A
w|=z - Rz S8
SDA [£Z a2 &3]3

Page or Sequential Write

Device Address Write Data 1 Write Data 1 Write Data n—1 Write Data n

(Al (N o N (N N

0z i o P —|» (= clx— |2 —[»[= Ll PR N0}
SDA |z1g BIFI2|8 823 BRI =8 8|2|@ 81218

Stﬂt = SDA from '1'b to '0'b when SLC is high
Transfer from R/W ='0'b for write

|:| Master to Slave ACK ='0b

Stop = SDA from '0’b to '1’b when SLC is high

Transfer from
Slave to Master

For all Read operations, the Not Acknowledge bit transferred from the Master
to the Slave clearly defines the successful capture of the last byte transferred
by the Slave to the Master. It also informs the Slave that the Master cannot ac-
cept anymore read data.

Unfortunately, the VC547x sends an Acknowledge in place of the Not Ac-
knowledge bit. This is highly inappropriate behavior, since the Slave device
believes that a Sequential Read operation is now in progress. As the VC547x
device does not have a read FIFO, it is incapable of accepting anymore than
one byte during any given Read operation. Worse yet, many Slave devices re-
quire the Not Acknowledge signal to appropriately complete a Read operation
and without it, they may simply hang.

11-4

Master |12C Interface Module General Description

Figure 11-2.12C Read Operation

Byte Read
Device Address Read Data
(Al (N
0|= ~o[>(= — 2| @
SDA 5[z %El;’g: Aelk

%

Sequential Read

Device Address Read Data 1 Read Data 2 Read Data n-1 Read Data n
4 N 4 N N 4 N Al
0|z Il P P [l P S e |2 — 2|2 — 2| @
SDA €2 BEIZ1E 5812 B[=5 B[8|Z 28l
=

Q

Combined Read

Device Address Write Data Device Address Read Data
(A Al (A Al 4 A Al 4 A Al
Transfer from Start = SDA from '1'b to '0’b when SLC is high
Master to Slave R/W ="1'b for read, '0’b for write
ACK ="0b
Transfer from Stop = SDA from '0’b to '1’b when SLC is high
Slave to Master ACK="1b

@ Problem area
in Master

11.1.4 Standard 12C Bus Protocol

Note: Support for Master 12C Interface Module

This section describes the standard 12C bus protocol and lists the common
terminology used (Table 11-1). Not all features described or listed in this
section are supported on the Master I2C Interface Module of the VC547x.

Master I2C Interface 11-5

Master 12C Interface Module General Description

|2C Bus

Bus Lines

11-6

The I12C bus is a multimaster synchronous serial bus that includes an arbitra-
tion procedure to prevent data corruption if more than one master simulta-
neously initiates a data transfer. The bit-transfer rate can be up to 100 kbit/s
in the standard mode. (An extension to the 12C bus specification defines the
fast mode that allows a bit-transfer rate of up to 400 kbit/s.)

Each device connected to the bus is recognized by a unique 7-bit address (a
10-bit address is defined in the extended 12C bus specification) and can oper-
ate as either a transmitter or receiver. In addition, devices can also be consid-
ered as masters or slaves when performing data transfers.

Only two bidirectional bus lines are required: a serial data line (SDA) and a se-
rial clock line (SCL). The output stage of the devices that are connected to the
I2C bus must have an open drain to perform the wired-AND function. The ar-
bitration procedure developed relies on the wired-AND connection of all 12C
interfaces to the 12C bus. The clock signals during arbitration are a synchro-
nized combination of the clocks generated by the masters using the wired-
AND connection to the SCL line. The master devices always generate the
clock signals on the 12C bus, and each master provides its own clock signal.
The clock signal from the master onto the 12C bus can only be altered when
itis stretched by a slow-slave device holding down the clock line, or by another
master when arbitration occurs.

The data on the SDA line must be stable during the high period of the clock.
The high or low state of the data line can only change when the clock signal
on the SCL line is low. Data is transferred with the most significant bit (MSB)
first. Every data character transmitted must be eight bits long, but the number
of bytes-per-transfer is unrestricted. Each byte has to be followed by an ac-
knowledge bit. The first byte of the transfer includes the 7-bit address of the
slave, and the LSB is the data direction bit (R/W). An LSB R/W to 0 indicates
a transmit from the master to the slave and, if set to 1, indicates a transmit to
the master from the slave.

All initial transmissions include seven address bits and one R/W bit, with the
exception of the general call address and the start byte procedure.

Table 11-1 provides definitions of I2C terminology and explanations of events
occurring on the 12C bus.

I2C Bus Terminology

Table 11-1.

Master |12C Interface Module General Description

I2C Bus Terminology

Term

Description

Transmitter

Receiver
Master
Slave

Multimastert

ArbitrationT

Synchronization

Start condition

Stop condition

Acknowledge bit

The device that sends the data to the bus.
The device that receives the data from the bus.

The device that initiates a transfer, generates clock
signals, and terminates a transfer.

The device addressed by a master.

More than one master can attempt to control the bus at
the same time without corrupting the message.

Procedure to ensure that if more than one master
simultaneously tries to control the bus, only one is
allowed to do so and the message is not corrupted (the
first master to produce a one when the other produces
a zero will lose the arbitration).

Procedure to synchronize the clock signals of two or
more devices; The low period of the SCL clock line is
determined by the device with the longest clock-low
period. The high period of the SCL line is determined
by the device with the shortest clock-high period.

A high-to-low transition on the SDA line while SCL is
high defines a start condition (S). The start condition is
always generated by the master. The bus is
considered to be busy after the START condition.

A low-to-high transition on the SDA line while SCL is
high defines a stop condition (P). The stop condition is
always generated by the master. The bus is
considered to be free after the STOP condition.

An addressed receiver is obliged to generate an
acknowledge or a non-acknowledge bit after a byte
has been received (during the 9th SCL clock cycle).
— The receiver pulls down the SDA line during the
acknowledge clock pulse so that it remains stable low
during the high period of this clock pulse. This
indicates an acknowledge, and the transfer can then
continue.

— The receiver leaves the SDA line high during the
acknowledge clock pulse to indicate a
non-acknowledge. The master can then generate a
stop condition to abort the transfer.

Master I2C Interface 11-7

I/O Description

Table 11-1. 12C Bus Terminology (Continued)

Term Description

The general call address is for addressing every de-
General call addresst vice connected to the I2C bus. It consists of a
“00000000” address byte sent after the start condition.

The Start-Byte Procedure consists of :
— a start condition (S)
Start Byte — a start byte (00000001)
— an acknowledge clock pulse
— a restart condition (Sr)

10-Bit AddressingT Defined in the Extended 12C bus specification.

T Features not supported by the Master I2C Interface Module.

The documentation, 12C Bus and How To Use It (including specifications), is
issued by Philips Semiconductors and should be consulted for a complete de-
scription of the 12C bus.

11.2 1/O Description

Table 11-2. 12C Signals

Signal 1/0 Function
SDA 110 I2C serial data
SCL 110 I2C serial clock

11-8

Register Descriptions

11.3 Register Descriptions

The Master 12C Interface Module has 10 registers for communication between
the VC547x bus and the 12C bus.

Base address (hex): FFFF:1800

Bit width: 32 bits

Table 11-3. Master 12C Register Descriptions

Register Description gggre;ss
DEVICE_REG Device Register 00h
ADDRESS_REG Address Register 04h
DATA_WRITE_REG Data Write Register 08h
DATA_READ_REG Data Read Register 0Ch
CMD_REG Command Register 10h
CONF_FIFO_REG Configuration FIFO Register 14h
CONF_CLK_REG Configuration Clock Register 18h
CONF_CLK_REF_REG Configuration Clock Functional Reference 1Ch
Register
STATUS_FIFO_REG Status FIFO Register 20h
STATUS_ACTIVITY_REG Status Activity Register 24h

Master I2C Interface 11-9

Register Descriptions

11.3.1 Device Register

At the beginning of an I2C bus read/write access, the Device register is loaded
with the 7-bit slave device identification information.

Figure 11-3.Device Register (DEVICE_REG)

Address (hex): Base = FFFF:1800, Offset = 0x0000

31-8
Reserved
RW-0
7 6-0
Reserved DEVICE
RW-1 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.
Bit 7 Reserved. Read as one.
Bits 6-0 DEVICE. Device identification code for 12C bus slave device.

11.3.2 Address Register

Figure 11-4.Address Register (ADDRESS_REG)
Address (hex): Base = FFFF:1800, Offset = 0x0004

31-8

Reserved

RW-0

7-0

ADDRESS

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 ADDRESS. I12C slave device internal register address.

11-10

Register Descriptions

11.3.3 Data Write Register

The Data Write register is the input register of the 16-byte transmit FIFO.

Figure 11-5.Data Write Register (DATA_WRITE_REG)

Address (hex): Base = FFFF:1800, Offset = 0x0008

31-8

Reserved

RW-0

7-0

DATA_WRITE

Note:

RW-0[0]

R = Read access; W = Write access; value following dash (-) = value after hard reset; value in brackets [] = value after
soft reset

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 DATA_WRITE. Data to write on 12C bus.

11.3.4 Data Read Register

Figure 11-6.Data Read Register (DATA_READ_REG)

Address (hex): Base = FFFF:1800, Offset = 0x000C

31-8

Reserved

R-0

7-0

DATA_READ

Note:

R-0[0]

R = Read access; value following dash (-) = value after hard reset; value in brackets [] = value after soft reset

Master I2C Interface 11-11

Register Descriptions

Bits 31-8 Reserved. Read as zeros.

Bits 7-0 DATA_READ. Data to read on I2C bus.

11.3.5 Command Register

Figure 11-7.Command Register (CMD_REG)

Address (hex): Base = FFFF:1800, Offset = 0x0010

31-7
Reserved
RW-0
6-5 4 3 2 1 0
Reserved IRQ_MSK COMB_READ RwW START SOFT_RESET
RW-1 RW-0 RW-1 RW-0 RW-0 RW-1[1]

Note: R =Read access; W = Write access; value following dash (-) = value after hard reset; value in brackets [] = value after

soft reset

Bits 31-7 Reserved. Read as zeros.

Bits 6-5 Reserved. Read as ones.

Bit 4 IRQ_MSK. Interrupt masking bit.
0 Interrupt request is disabled
1 Interrupt request is enabled

Bit 3 COMB_READ. Simple or combined read access.
0 A master read immediately, if RW =1
1 A combined read access, if RW =1

Bit 2 RW. Read Not Write Bit.
0 I2C bus write access
1 I2C bus read access

Bit 1 START. Start the 12C transmission (toggle bit).

Note: the START toggle bit is activated when writing a 1. This bit
does not need to be released to 0. Writing a 0 means no action.

11-12

Register Descriptions

Bit O SOFT_RESET. Reset the FIFO.
0 No reset soft
1 Reset soft

11.3.6 Configuration FIFO Register

Figure 11-8.Configuration FIFO Register (CONF_FIFO_REG)
Address (hex): Base = FFFF:1800, Offset = 0x0014

31-8
Reserved
RW-0
-4 3-0
Reserved FIFO_SIZE
R-1 RW-1

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-8 Reserved. Reads return zeros.
Bits 7-4 Reserved. Reads return ones.
Bits 3-0 FIFO_SIZE. Size of the FIFO (16 max) to generate the FIFO_FULL.

When FIFO_SIZE = 000, read 1 value in the FIFO.
When FIFO_SIZE = n, read n+1 value in the FIFO.

11.3.7 Configuration Clock Register

Figure 11-9.Configuration Clock Register (CONF_CLK_REG)
Address (hex): Base = FFFF:1800, Offset = 0x0018

31-8
Reserved
RW-0
7-6 5-3 2-0
Reserved SPK_F PTV
RW-1 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Master I2C Interface

11-13

Register Descriptions

Bits 31-8 Reserved. Read as zeros.
Bits 7-6 Reserved. Read as ones.
Bits 5-3 SPK_F. Spike filter factor.

000 No filtering

001 Checks signal stability for 2 master clock
010 Checks signal stability for 3 master clock
011 Checks signal stability for 4 master clock
100 Checks signal stability for 5 master clock
101 Checks signal stability for 6 master clock
110 Checks signal stability for 7 master clock
111 Checks signal stability for 8 master clock

Bits 2-0 PTV. Prescale clock divider factor.

000 Divisor 1 =2
001 Divisor 1=4
010 Divisor 1 =8
011 Divisor_1 = 16
100 Divisor_1 = 32
101 Divisor_1 = 64
110 Divisor_1 = 128
111 Divisor_1 = 256

11.3.8 Configuration Clock Functional Reference Register

Figure 11-10. Configuration Clock Functional Reference Register
(CONF_CLK_REF_REG)

Address (hex): Base = FFFF:1800, Offset = 0x001C

31-8
Reserved
RW-0
7 6-0
Reserved CLK_REF
R-1 RW-0001010

Note: R = Read access; W = Write access; value following dash (=) = value after reset

11-14

Register Descriptions

Bits 31-8 Reserved. Reads return zeros.
Bit 7 Reserved. Reads return one.
Bits 6-0 CLK_REF. Functional clock reference.

0000001 Divisor 2 =1
0000010 Divisor_2 =2
0000011 Divisor_ 2 =3

1111110 Divisor_2 = 126
1111111 Divisor_2 =127

CLK_FUNC_REF = I12C_clk/(divisor_1*[divisor_2+1])
SCL_OUT = CLK_FUNC_REF /2

11.3.9 Status FIFO Register

Figure 11-11.Status FIFO Register (STATUS_FIFO_REG)

Address (hex): Base = FFFF:1800, Offset = 0x0020

31-8
Reserved
R-0
7-6 5-2 1 0
Reserved READ_CPT FIFO_EMPTY | FIFO_FULL
R-1 R-0[0] R-1[1] R-0[0]

Note: R =Read access; value following dash (-) = value after hard reset; value in brackets [] = value after soft reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-6 Reserved. Read as ones.
Bits 5-2 READ_CPT. Indicates the FIFO count value.
Bit 1 FIFO_EMPTY. Indicates if the FIFO is empty.

0 FIFO not empty
1 FIFO empty

Master I2C Interface

11-15

Register Descriptions

Bit 0 FIFO_FULL. Indicates if the FIFO is full.

0 FIFO not full
1 FIFO full

11.3.10 Status Activity Register

Figure 11-12. Status Activity Register (STATUS_ACTIVITY_REG)

Address (hex): Base = FFFF:1800, Offset = 0x0024

31-8
Reserved
R-0
7-4 3 2 1 0
Reserved INTERRUPT IDLE ERROR_DEVICE ERROR_DATA
R-1 R-0[0] R-0[0] R-0[0] R—0[0]

Note: R = Read access; value following dash (-) = value after hard reset; value in brackets [] = value after soft reset

Bits 31-8 Reserved. Read as zeros.
Bits 7-4 Reserved. Read as ones.

Bit 3 INTERRUPT. Interrupt bit.

0 I2C bus transfer is not completed or 12C Module is in Idle
mode

1 I2C bus transfer is completed or aborted on non-acknowl-
edge

Bit 2 IDLE. Indicates whether the 12C bus transfer is completed or not.

Bit 1 ERROR_DEVICE. Indicates an error on device transmission.

0 No error is detected during the device address transmit
1 Error is detected during the device transmit

Bit 0 ERROR_DATA. Indicates an error on the sub-address or data trans-
mission.

0 No error is detected during 12C bus access
1 Error is detected during 12C bus access

11-16

FIFO Management

11.4 FIFO Management

A FIFO is used in the Master 12C Interface to buffer transmit data. This buffer
has a maximum depth of 16 bytes.

The register CONF_FIFO_REG defines the number (FIFO_SIZE) of data to
transmit on the 12C bus, and consequently, the number of data to be loaded
in the FIFO.

When FIFO_SIZE = N,

W If configured in write-access mode, the interface reads n+1 data
in the FIFO

B N+1 data can be loaded in the FIFO before FIFO is reported as full
(FIFO_FULL = 1)

The FIFO includes two counters, one for write data and one for read data.
These two counters are independent, and therefore, allow a transmission start
without reloading the FIFO content.

Figure 11-13. FIFO Management State

reset_rd_cpt=0 reset_rd_cpt=1
reset_wr_cpt=0 reset_wr_cpt=0

rw=0 and start=1 RESET_WR_

CPT_FIFO

rd_cpt=fifo_size or
error_device=1 or
error=1

RESET RD_

FIFO_READ
CPT_FIFO -

reset_rd_cpt=0 reset_rd_cpt=0
reset_wr_cpt=1 reset_wr_cpt=0

Master I2C Interface 11-17

Master 12C Interface Resets

11.5 Master 12C Interface Resets

Hardware Reset

Software Reset

The Master 12C Interface Module provides for both hardware and software re-
sets.

The Master 12C Interface Module hardware reset is derived from the VC547x
reset.

The Master software reset is activated by the SOFT_RESET bit in the com-
mand register (CMD_REG). This reset is limited to the FIFO counter (wr_cpt
and rd_cpt), FIFO state machine, and the contents in the FIFO.

Inthe VC547x device, the 12C module can also be putin reset mode by control-
ling the module input nreset_i signal, which is an output of the clock and reset
management module (see Chapter 5, Clock Management Module).

Itis strongly recommended that you do not use the soft reset bit of the 12C Mod-
ule. Instead, you should use the corresponding reset bit inside the VC547x
clock module.

11.6 Clock Management

There is no clock management provided inside the 12C Interface Module; how-
ever, itis possible in the VC547x device to shut down the 12C clock (see Chap-
ter 5, Clock Management Module).

11.7 Interrupt Management

11-18

An interrupt is generated after every read or write 12C bus transfer and when
an error occurs during a transmission. An interrupt line can be masked with the
dedicated programmable control bit (IRQ_MSK) in the command register
(CMD_REG).

Chapter 12

Ethernet Interface Module (EIM)

This chapter describes the Ethernet interface module (EIM), its registers, inter-
faces, memory, and operation.

The EIM is associated with the ARM™ microcontroller unit (MCU) of the dual-
core (MCU + DSP) TMS320VC5471 device.

Topic Page
12.1 EIM OVEIVIEW ...ttt et 12-2 |
12.2 EthernetInterface Signals 12-5
12.3 ENET Functional Description, 12-6
12.4 EIM Descriptors Structureccooviiiiiiiinnna... 12-22
12.5 EIM Peripheral Register Tables 12-29
12.6 ESM Peripheral Registers ...t 12-32
12,7 ENETOReQISerso 12-46
12.8 EIM Packet RAM Structurecooiiiiiiiiiia... 12-59
12.9 EIM ESM Functional Description, 12-67
12,20 EIM OPEration''eete ettt e et 12-77 |
12.11ENET Operationttt 12-80

12-1

EIM Overview

12.1 EIM Overview

12.1.1 General Description

12-2

The Ethernet Interface Module (EIM) provides a straightforward and effective
method of integrating an IEEE802.3/Ethernet MAC functionality onto a proc-
essor 1/0 subsystem. EIM filters packets for the ARM host system.The main
features of the EIM are:

[ENET module implementing 10/100 Mbit/s Ethernet media access con-
troller (MAC) operation

Fully compliant with IEEE Std 802.3 for 10/100 Mbit/s
Full- and half-duplex mode
Media-independent interface (Mll)

Flow control support in full-duplex mode

[Hardwired State Machine for Ethernet packet transfers without CPU proc-
essor intervention

(1 Packet memory for temporary storage of TX and RX packets plus control
information stored in a descriptor ring software structure

[J 16K bytes of internal packet-memory-mapped in ARM memory. The pack-
et memory is accessible in 8/16/32 bits in one cycle (zero wait state)

[local packet memory bus allowing internal packet transfer without ARM
CPU bus occupation

The Ethernet interface module (EIM) consists of four primary blocks: ENET
module, the Ethernet state machine (ESM), the Packet Memory, and the local
bus interface.

Figure 12—1 shows a block diagram of the EIM.

EIM Overview

Figure 12-1. EIM Block Diagram

) MIIO
2X {>
32x72-bit < > ENETO > PHY O
internal FIFO —> module
A 4
16:(@; <) Local bus L > Ethernet
PACKETS h g interface | state machine
memory >
y N
\ 4
L+ EIM

Y

CPU system bus
interface

Packet Channels

The EIM Module handles packet routing between two packet channels that are
mapped as follows:

(1 Ethernet MAC port connected to PHY interface (called ENETO port)
[One virtual port connected to the LCC layer of the ARM software (called
CPU port)
Configuring the CPU Port

The CPU portis configurable through a matching destination register, a match-
ing multicast address mask register, and two logical address registers.

Each port can be independently enabled/disabled. Routing rules are defined
for each port.

Ethernet Interface Module (EIM) 12-3

EIM Overview

Routing Rules for Packets Coming From the ENET
The routing rule for packets coming from the ENET is:
[0 Packets matching one of the enabled CPU matching rules (unicast, broad-
cast, logical) are sent to the CPU port
Routing Rules for Packets Coming From the CPU
The routing rule for packets coming from the CPU is:

[All packets are sent to the ENETO port (ENETO is designhated for connec-
tion to the LAN)

12-4

12.2 Ethernet Interface Signals

Ethernet Interface Signals

Table 12-1. Ethernet Interface Signals (ENETO MII Interface Signals)

Signal

Direction

Function

COoLOo

CRSO

TCLKO

RCLKO

RXDO[3:0]

RXDVO

RXERO

TXENO

TXERO

TXDO[3:0]

IN

IN

IN

ouT

ouT

ouT

MII collision: COLL from PHY. Indicates a
collision has been detected on media.

MII carrier sense: CRS from PHY. Indicates
that a carrier is present on the media.

MIl transmit clock: TCLK from PHY. TX
reference clock generated by the PHY.

MiII receive clock: RCLK from PHY. RX
reference clock generated by the PHY

MIlI RX data: RXD from PHY. Nibble-wide
data interface presenting received data from
PHY to the MAC synchronous to RCLK. In
SNI mode, bit O carries the serial data stream.

MIl RX data valid: RXDV from PHY. Indicates
that the data on RXD is valid.

MIl RX error: RXER from PHY. Indicates an
error detected in the RX data stream by the
PHY.

MII TX enable: TXEN to PHY. Indicates to
PHY that the MAC is transmitting data.

MIl TX error: TXER to PHY. Indicates to PHY
that a coding error is sent. This is asserted
synchronously with TCLK

MIl TX data: TXD to PHY. When Mll is in
nibble mode, data is sent one nibble at a time.
When in SNI mode, data is sent serially on
TXD[O].

Ethernet Interface Module (EIM) 12-5

ENET Functional Description

12.3 ENET Functional Description

The Ethernet core (ENET) provides a straightforward and effective method of
integrating an IEEE 802.3/Ethernet port onto an ARM subsystem. An inte-
grated DMA provides advanced buffer management allowing multiple packets
to be moved without ARM processor intervention.

12.3.1 ENET Overview

12-6

32-bit ARM bus interface (big-endian)

32-bit intelligent bus master DMA interface for ring buffer management
Ring buffer chaining

RX and TX status reporting

10/100 MBps bit rate

Programmable full-/half-duplex MII/SNI

Internal loopback

Full-duplex flow control

Address filtering

O o U U o o od od oo

256-byte TX FIFO divided into four 64-byte partitions
1 256-byte RX FIFO divided into four 64-byte partitions

Important Note: the integrated DMA allows the transfer of packets based on
a software descriptors ring structure between a host memory and the internal
ENET FIFO. In a typical standalone implementation, the host memory is the
generic CPU memory. Thisis notthe case with EIM. The host memory is a ded-
icated local memory and the DMA has no visibility over other ARM CPU
memory areas. This dedicated local memory is a 16K-byte RAM called the
Packet Memory. See Section 12.8, EIM Packet RAM Structure, on page 12-59
for more information.

The ENET core consists of five primary blocks: the Buffer Memory Unit (FIFO
function and flow control), the Media Access Controller (MAC), Control Regis-
ter Interface, DMA controller, and Statistics block.

ENET Functional Description

Figure 12-2. ENET Module Functional Block Diagram

TX, RX,
Err IRQ
Data out
Data in
d_nrw
d_mas
d_bl
d_nwait

—Start DMA

—DR base address
—Poll counter value

RDY, DAV

EN, RIW R P hndshk R Coll
J Valid - Data 4 TCLK
: sof, eof R : sof, eof : TXEN
DMA | Byteent | Buffer ™ pyecnt - TVD[0..3]
I/E < Dat > memory [< > MAC CRS
< ata »| (FIFO) —>
P RX dav RXD[0..3]
b RXDV
—Reset enable
—Flow control RCLK
-VLAN tag
A
Configuration
DR
status TXstats
Control -
register —_Underflow Stats
interf
errace . —Overflow _ RX stats

12.3.2 Buffer Memory Unit (FIFO)

The Buffer Memory Unitis provided to decouple system memory access timing
from packet timing. Without the buffer, interrupts and data transfers would
have to be treated at relatively high priority to prevent underrun or overrun con-
ditions. In addition to buffering, the Buffer Memory Unit takes care of network
retries, runs, and flow control within the ENET module. The Buffer Memory
Unitis a collection of state machines which implement the FIFO pointer main-
tenance, full and empty flag maintenance, and DMA control signals. The
memory is divided into RX and TX buffer space implemented as a single port
SRAM for area efficiency. Access is provided through a simple arbitration
scheme with ARM host given highest priority while guaranteeing RX/TX MAC
access at least once every 64 bit times. Each buffer is organized as 32x72 bit
words. Each access provides 8 bytes of data and 1 byte of flag information.

Figure 12-3. Buffer Organization

Flags 71:64

Data high Data low

714—>» 64|63 <

> 32|31 <«

v
o

Ethernet Interface Module (EIM) 12-7

ENET Functional Description

Figure 12—-4. Single-Port RAM

8 bytes flag + 64 bytes data 8 x 72 bit words

II 8 bytes flag + 64 bytes data 8 x 72 bit words

8 bytes flag + 64 bytes data 8 x 72 bit words
8 bytes flag + 64 bytes data 8 x 72 bit words
8 bytes flag + 64 bytes data 8 x 72 bit words

II 8 bytes flag + 64 bytes data 8 x 72 bit words

8 bytes flag + 64 bytes data 8 X 72 bit words

8 bytes flag + 64 bytes data 8 x 72 bit words

The buffers act as a circular queue with all accesses occurring on word bound-
aries. The DMA controller makes the Buffer Memory access and allocation
scheme transparent to the user of the ENET module.

The flag information is generated by the MAC interfaces and passed with the
data through the buffer memory, providing useful status and control informa-
tion. The flag field is used internally by the Buffer Memory Unit to communicate
with the MAC. Start-of-Frame, End-of-Frame, and byte count are primary ex-
amples of the type of information contained in the flag field.

12.3.3 DMA Controller

12-8

The DMA controller is responsible for moving packet data between the system
memory (16K-byte packet memory) and the Buffer Memory Unit (FIFO). The

DMA memory interface protocol and timing are the same as the ARM MCU
memory interface timing.

The movement of packet data is controlled by two very specific data structures
in packet memory called Descriptor Rings. In general, the DR data structures
provide flexible packet management allowing variable memory buffer sizes
and locations. The DR also provides a means to synchronize shared owner-
ship of data buffers in memory between DMA and ARM host. Each ring con-
sists of a variable number of descriptors that can be chained to handle long
packets in multiple data buffer areas. The location of the descriptor rings in

ENET Functional Description

packet memory is programmable using ENET configuration registers. One
descriptorring is for transmit operations and the other is for receive operations.
The bit format of the RX and TX descriptors are very similar. The formats of
each are described in more detail in Section 12.4, EIM Descriptors Structure,
on page 12-22.

12.3.4 Control Registers Interface

The Control Registers Interface is a generic 32-bit CPU compatible interface
that is used primarily to configure the ENET registers prior to processing pack-
ets.

The list of ENET registers is available in Section 12.5.

12.3.5 Media Access Controller (MAC)

The MAC is a full-featured, configurable, 802.3-compliant controller. Half-/
Full-duplex configuration is controlled by setting the Duplex bit in the Mode
register. See Section 12.7 for definitions of the ENET peripheral registers.
When the Duplex bitis setto one, the MAC operates in full-duplex mode. While
operating in the full-duplex mode, transmit is independent of carrier sense
(MCRS) status. When the Duplex bit is set to zero, the MAC operates in the
half-duplex mode. While operating in half-duplex mode, the Ml receiver is dis-
abled when the MTXEN signal is active.

12.3.5.1 Data Reception

The MAC Receive Block implements all the required IEEE 802.3 standards for
either 10-Mbit/s operation or 100-Mbit/s operation. When operating at
10 Mbit/s, the 10/100-Mbit/s port can operate either in nibble-serial or bit-
serial interface mode (as set by the MWIDTH bit of the Mode register). The
MAC block implements reception of data from the MIl, handles receive path
control and identification of errors. The MAC is also capable of operating in
1-Mbit/s and below range in support of applications such as home PNAs, pro-
vided that protocol compliance is maintained.

The Internal Memory Interface Block takes the data from the MAC control
block and places the frame data, with the associated 8-bit status flag field, in
the data buffer for transfer to the Buffer Memory Unit (FIFO).

Ethernet Interface Module (EIM) 12-9

ENET Functional Description

Figure 12-5. Media Access Controller (MAC) Receive Block Functional Diagram

Nibble 64
CRC shifter Buffer
A
Internal
) e—» data output
Link. —1 10100 to FIFO
Mbit/s
Bit rate > converter MUX
select Flag
_ generator Buffer
Data input l
[3-0] 8
C.ontrol . R Internal
signals < "| Rxframe sm RXFIFOSM |<«——» FIFO control
Duplex « > and statistics
select information

Preamble and SFD

CRC Check

12-10

Preamble & Start of Frame Delimiter (SFD) handling is accomplished after the
MAC becomes active upon detection of valid data on the MIl by monitoring the
receive data valid (RDV) and receive data (RD[3:0]) signals. A valid preamble
and a valid 8-bit Start of Frame Delimiter (SFD) are used to establish the start
of an incoming packet. Once alignment is established, the preamble and SFD
bytes are stripped and not forwarded with the remaining frame. At least one
nibble of 1010 of the preamble must be present prior to the SFD of 1011 with
the valid RDV signal for the MAC to recognize a start of frame. If no preamble
is present prior to the SFD, the MAC will not recognize the beginning of an in-
coming frame. Once the MAC recognized the 1010 of the preamble, it will look
for the SFD of 1011, regardless of the length of the preamble, or go to idle if
RDV becomes invalid.

Upon packet reception, cyclic redundancy check (CRC) is checked. If the CRC
is valid, then the EOF flag value is set to indicate good CRC and the CRC is
passed along with the frame to the Buffer Memory FIFO. If the CRC is bad,
then the EOF flag value is set to indicate CRC Error and the CRC is passed
along with the frame to the Buffer Memory. The Buffer Memory FIFO uses EOF
to construct completion status before it writes to Descriptor Word 0.

ENET Functional Description

64-Byte Frame Requirement

Nibble Dribble

The MAC enforces the minimum 64-byte frame requirement upon a receive.
Even if the frame was a well formed frame, any frame less than 64 bytes long
is discarded from the Buffer Memory one word at a time, and not forwarded
to the ARM host. In this event, an error status is reported via the Status field
(short frame) of Receive Descriptor Word 0, and the received byte count is set
to zero. No data from the short frame will be passed to the system’s Packet
Memory.

Nibble Dribble (non-octet alignment error) is allowed on receive and the data
is passed intact. The CRC is aligned on the last valid byte boundary. A maxi-
mum of one nibble may be appended to the end of a frame without causing
CRC failures.

The MAC is configured to receive the extended frame type that is currently be-
ing defined within the IEEE 802.1 working group. Any incoming frame will be
truncated to 1536 bytes no matter what the actual length.

DA, SA, and Type Fields

IFG

Independent of packet length, the destination address (DA), source ad-
dress (SA), and Type fields are not modified by the MAC and are always for-
warded with the packet. The destination address is examined according to the
addressing mode set in Address Mode Enable register. If the DA is accepted,
the frame data will be forwarded to the Packet Memory location, pointed to by
Descriptor Words 2 and 3. If the DA address field contains an address not en-
abled by the Address Mode Enable register, the frame will be flushed from
Buffer Memory FIFO and no other action will be taken.

On a receive for both 10-Mbit/s operation and 100-Mbit/s operation, there is
no enforcement of Inter-Frame Gap (IFG). A frame received that is not spaced
with the appropriate IFG interval (96 bit times) is processed and passed intact
through the MAC and is reported as normal received packets. The minimum
IFG is the time to complete the receive cycle and return to idle. The time is de-
pendent on the receive data as follows:

(1 If the frame is 64 bytes or less and a collision occurred, then IFG is
1-8 ARM CLK cycles plus 2 RCLK cycles

1 Ifthe frame is greater than 64 bytes and a collision occurred, then IFG is
3 ARM CLK cycles plus 2 RCLK cycles

Ethernet Interface Module (EIM) 12-11

ENET Functional Description

(1 For any good frame, IFG is 2 RCLK cycles

Since ENET can not do full-frame buffering, all frames are passed to Pack-
et Memory following address filtering regardless of error conditions.

Receive Status Reporting

Receive status reporting includes:

[Non-octet Alignment Error: This is also called Nibble Dribble. The MAC

12-12

detects an alignment error when it receives a non-integral number of oc-
tets. This condition should result in a CRC error as well. Alignment error
is reported in Descriptor Word 0 frame status field. The DMA controller will
setthe LIF bit and then set ownership of the descriptor entry back to ARM.

Overrun (overflow): An overrun condition can occur when the DMA con-
troller finds that the ownership of the next receive descriptor entry is set
to ARM preventing the controller from emptying the Buffer Memory FIFO.
Upon the Buffer Memory going full, the MAC will cease to receive data
from the MII port and will not attempt to transfer any additional data to the
Buffer Memory Module. The MAC does not exert any back pressure to the
inbound MIl in an attempt to slow down the incoming Frames. There is no
flexible allocation of FIFO depth within the Buffer Memory Module.

In some cases, the overrun status will not be able to be logged into the des-
criptor ring status since the ARM host has the ownership. The
SYS_ERR_IRQ interrupt will be activated when overrun occurs. The ARM
host canreadthe SE_STATUS register to determine the cause of the inter-
rupt.

During overrun conditions, the DMA controller empties the Buffer Memory
when itis able to (when the host relinquishes descriptor ownership, for ex-
ample).

CRC Error: A CRC error occurs when the CRC field of the Ethernet frame
does not match the MAC’s computed CRC. The two values are compared
at the end of the frame.

CRCerrorisreported inthe Descriptor Word O frame status field. The DMA
controller sets the LIF bit and then sets ownership of the descriptor entry
back to the ARM.

Collisions can cause CRC errors. If other bits are set, it is possible to infer
when the collision occurred. For example, if the CRC error bit is set in the
RX descriptor status with the short frame bit set and zero bytes in the byte
countfield, then a collision is likely to have occurred in the first 64 bits of the
RX packet.

ENET Functional Description

If anormal collision occurs, it will be within the first 64 bytes of the RX pack-
et. The MAC automatically purges any data sent to the Buffer Memory
FIFO.

Short Frame: Short frames consist of less than 64 octets (excluding fram-
ing bits, but including CRC). The MAC automatically purges short frames
from the Buffer Memory FIFO. A Short Frame error is reported in the Des-
criptor Word 0 frame status field. The DMA controller sets the FIF and LIF
bits and then sets ownership of the descriptor entry back to the ARM host.
There is no receive data associated with short frames.

If a receive error occurs within the first 64 bits (8 bytes), then the short
frame bit will not be set. The MAC ignores the frame.

Late Collision: Late Collisions are any collisions occurring after the initial
64 bytes have been received. The MAC does not detect the error as a late
collision but rather as a CRC, alignment, or long frame error. As such,
there is no status bit for late collision. If late collision occurs, it will be re-
ported as one or more of these other errors. Also, the MAC will not back
out of the Buffer Memory Module. The data is saved in the Buffer Memory
FIFO and then forwarded to system packet memory via the DMA controller
with some error status bits set. Purging of the errant frame is the responsi-
bility of the higher level control. The DMA controller sets the LIF bit and
then sets ownership of the descriptor entry back to ARM.

Long Frame: A Long Frame is a frame with more than 1518 octets (ex-
cluding framing bits but including CRC). A Long Frame error is reported
in Descriptor Word 0 frame status field. The DMA controller sets the LIF
bit and then sets ownership of the descriptor entry back to the ARM host.
Long Frame errors coinciding with a CRC error are called RX Jabber er-
rors. RX Jabber errors are reported by setting both the Long Frame error
bit and the CRC error bit.

Miss: Miss conditions are based on frame destination address compari-
sons. Itis notan error but rather a status condition indicating that the frame
is being accepted only because the snoop addressing mode was enabled
and no other addressing modes produced an address match. This bit can
only be set if snoop mode is enabled. See Address Mode Enable register
bit 3. After the DMA controller finishes sending BYTES of data to the RX
descriptors buffer space, the DMA controller sets the FIF bit and then sets
ownership of the descriptor entry back to the host. The LIF bit is also set
if a full frame was received.

Virtual LAN (VLAN) Address Detect: If the value of the VTYPE field in
the received data matches the contents of the VLAN tag register, the
VLAN status bit is set in the RX descriptor word.

Ethernet Interface Module (EIM) 12-13

ENET Functional Description

12.3.5.2 Data Transmission

The MAC transmit block takes the data from the Buffer Memory and serializes
it, then implements all the IEEE 802.3 standards requirements for either
10-Mbit/s operation or 100-Mbit/s operation. It implements identification of
transmit errors, and transmits the data to the MIl.

Figure 12—6. Media Access Controller (MAC) Transmit Block Functional Diagram

Bit
rate
select

Data
input
[3-0]

Control signals

12-14

Duplex select

. 4 Nibble 64
10-/100-mbit/s [shifter [Buffer =
converter
CRC
Internal
¢ data input
Y from FIFO
) Flag
] MUx information Buffer [—
8
<+—> Internal
TX frame SM TXFIFOSM |«— FIFO Colntljol
and statistics
information

If the packet data stored in the descriptor word transmit buffer is less than
64 bytes long, then it is not a valid Ethernet frame. If the packet is less than
64 bytes, the PAD_CRC_EN bit of TX descriptor word 1 must be set to com-
mand ENET to create a valid frame. If PAD_CRC_EN is set, packets greater
than 59 bytes have only CRC appended. The 4 bytes of CRC make the packet
length at least 64 bytes long. Packets less than 60 bytes are padded with data
and have a new CRC. For frames that have pad data inserted, the CRC is ap-
pended after the pad using the padded data in the calculation of the CRC val-
ue. The pad is placed in the data field. The transmit frame is padded by bytes
with the value 00(h). In frames longer than 60 bytes, a CRC is appended after
the last data in the frame.

CRC can be appended to the end of any transmit frame if PAD_CRC_EN is
set. This allows the minimum frame size of 64 bytes (512 bits) for 802.3 Ether-
net standard to be guaranteed. Pad insertion is controlled on a frame by frame
basis by setting the PAD_CRC_EN bit in Descriptor Word 1.

Invalid frames (frames less than 14 bytes or less than 64 bytes with
pad_crc_en off) are ignored. They are never read from system packet
memory. The descriptor word ownership is set back to the ARM host and the
system error TX_FE is set in the system error interrupt register and a system
error interrupt occurs.

ENET Functional Description

Transmit Error Handling
Transmit error handling involves:

[LossofCarrier Error: This error indicates that the carrier sense condition
was lost during transmission or was never asserted when attempting to
transmit a frame. The ENET skips over the rest of the frame (chained des-
criptors), resetting the ownership bit back to the host, and writes loss of
carrier status in the descriptor that has LIF set. ENET then looks for the
next new frame to transmit (the next FIF with ownership set to ENET).

Since loss of carrier only happens due to a jabber indication from the PHY,
the MAC does not start checking for LOC error until the end of a slot-time. If
the frame is a 64-byte frame, it would appear that checking is happening at
CRC time.

Carrier sense error-checking is disabled in full-duplex mode.

[Underrun Error: Ifthe host does not provide data to the MAC after atrans-
mission has started, the transmission is stopped and the MAC generates
a transmit Underrun status. The ENET skips over the rest of the frame
(chained descriptors), resetting the ownership bit back to host, and writes
loss of carrier status in the descriptor that has LIF set. An inverse CRC is
currently appended to the outgoing fragment of the abruptly cut frame, and
the MAC resumes operation when a new frame is available for transmis-
sion. An underrun situation on the MAC is a serious failure; and therefore,
the status collection must report this to the control engine. The MAC looks
for the next Start Of Frame flag and resynchronizes its transmit process
to the next frame.

The ENET does not attempt to retransmit a frame after an underrun oc-
curs. An Underrun error is reported in the Descriptor Word O frame status
field as well as the System Error Interrupt Status Register. The DMA con-
troller sets the ownership bit back to the ARM host and activates
SYS_ERR_IRQ.

[CRC Error: On transmission, CRC is checked. If the generated CRC is
found to correspond to the value found in the frame, no errors are reported
to the status field of Descriptor Word 0, and the frame finishes transmis-
sion. If the generated CRC is different than the CRC in the frame, then an
error is reported to the DMA controller and the frame finishes transmission
with a CRC field of the inverse of the calculated CRC.

The ENET does not attempt retransmission following a CRC error since
the cause of the CRC error is most likely to be in the frame data itself. The
retry limit for TX frames with CRC errors is considered to be 1 (one). Upon
detection of a CRC error, the DMA controller skips over any remaining

Ethernet Interface Module (EIM) 12-15

ENET Functional Description

12-16

descriptors in the frame and sets the CRC status bit when LIF is found.
Unless there is an error in the packet BYTE count, CRC Error bits are only
set in descriptors with LIF=1, due to the nature of CRC.

Collision Errors: The ENET MAC detects several types of transmit colli-
sions. Each are handled in a slightly different manner and are outlined sep-
arately below. All error checking is done when in half-duplex mode. Colli-
sion detection error checking is disabled in full-duplex mode.

Normal Collisions: In case of a collision occurring before 64 bytes
(512 bit times), the MAC generates a 32-bit JAM pattern of all ones. It
reads the internal backoff random number generator register value and
counts down to zero. (The MAC implements the IEEE Std 802.3 binary ex-
ponential backoff algorithm.) Once the counter is decremented to zero,
then the MAC tries to retransmit the frame. The frame is discarded after
15 failed transmit attempts (initial attempt plus 14 retries). The frame is
purged from the Buffer Memory FIFO and the Exceed Retry Limit bit is set
in the descriptor word O status field. The DMA controller then sets descrip-
tor ownership back to the ARM host and continues to the next descriptor
entry. If the next descriptor does not have the FIF bit set (the discarded
frame was part of a long frame consisting of multiple descriptor entries),
it sets the ownership bit of the descriptor back to the ARM host and contin-
ues to the next descriptor until it finds either FIF set to 1 or the ownership
bit set to ARM.

If 1to 14 collisions are encountered, the frame will be transmitted success-
fully (assuming Descriptor Word 1 BYTES field = 64). Upon completion of
the frame, the Collision bit of the descriptor word 0 status field is setto 1,
but Exceed Retry remains set to 0.

Automatic retransmission due to collisions is handled completely between
the Buffer Memory and the MAC. If the MAC encounters 1 < n < 15 colli-
sions, it rereads the last 64 bytes of data from the Buffer Memory FIFO.
Collision statistics will be saved for later reporting when the transmission
of the BYTES of data for the current descriptor completes.

Late Collisions: A late collision is reported if a collision condition occurs
more than one slot time (64 bytes or 512 bit times) after the transmit pro-
cess was initiated. In this event, the frame is dropped. As with all transmit
errors except normal collisions, the ENET does not attempt retransmis-
sion. As the DMA controller skips over the remainder of the frame’s des-
criptor entries, it sets the ownership bits back to the ARM host until it finds
FIF =1, indicating a new frame. A late collision is reported when the DMA
controller closes the descriptor. If the LIF bit is set, the collision bit may be
set as well.

ENET Functional Description

Excessive Collisions: Ifthe frame transmission encounters a normal col-
lision on the 15th retry, then the frame transmission is stopped and the
frame is purged from the Buffer Memory. The DMA controller skips ahead
to the descriptor with the LIF bit set, and then writes status (exceed retry
and collision). The ENET returns ownership back to the ARM host and
continues to the next descriptor entry.

Heartbeat (SQE): Heartbeat is a self-test of collision detection logic in the
PHY. This test is also called Signal Quality Error. If the SQE mode of the
PHY is enabled, the PHY creates a simulated collision during the Inter-
frame Gap (IFG) following every transmission. The PHY activates the
MCOL signal for a short period. If the MAC does not see MCOL go active
within a specific time after the end of the transmission, the MAC flags an
SQE error that is reported by the DMA controller to the descriptor word 0
status register before setting the ownership back to the ARM host.

Heartbeat is only valid in half-duplex mode. The MAC automatically dis-
ables the SQE check when in full-duplex mode.

Exceed Retry: Exceed Retry when set to one indicates that the transmis-
sion failed. This bit is always set in combination with another status bit ex-
plaining the nature of the failure.

No Last-in-Frame (LIF) Indicator: If the frame has no Last-In-Frame indi-
cator and the next frame in the next descriptor entry has no First-In-Frame
indicator, the MAC continues to transmit on the wire until a carrier sense
error is indicated by the MIl. Upon detection of this error, the MAC will read
out the data from the transmit Buffer Memory until the next Last-In-Frame
or First-In-Frame is found. It should be noted that the DMA controller does
not keep track of a running frame byte count. This is done by the MAC
while the transmit is proceeding. The DMA controller only keeps track of
byte counts on descriptor by descriptor basis.

No First-in-Frame (FIF) Indicator: The DMA controller behaves in a simi-
lar manner if the LIF bit was set in the previous descriptor entry and the
next descriptor entry does not have the FIF bit set (when ownership bit is
set to ENET). The DMA control immediately activates SYS_ERR_IRQ,
sets the descriptor ownership back to the ARM host, and proceeds to the
next descriptor entry. In this case, however, there is no data for the MAC
to transmit.

Ethernet Interface Module (EIM) 12-17

ENET Functional Description

12.3.6 Statistics Block

12.3.7 Loopback

12.3.8 Flow Control

12-18

The statistics block ensures that the correct status is reported as TX and RX
frames are closed. It provides different functions for TX and RX status. But in
both cases it monitors the TX and RX status buses coming from the MAC. The
statistics block maintains RX queues to match the data queues in the Buffer
Memory. Since the Buffer Memory can store up to 4 independent RX packets
in its queue, the RX statistics block stores up to 4 sets of status. The DMA con-
troller pops the RX status queue as it reads the data from the receive data buff-
ers. TX status is different in that no queue is necessary, since only one packet
will be transmitted at a time. Due to the DMA controller functionality, multiple
TX packets are never queued up in Buffer Memory, even if they are short pack-
ets.

The statistics block also contains some logic for determining when a packet
has completed transmission. The statistics block sends a packet completion
signal to the DMA controller, which then reads the completion status and
closes the TX descriptor.

Loopback can be done non-intrusively while in normal operation. This mode
can only be done in half-duplex/serial mode (MWIDTH = 0). It allows trans-
mitted data to be looped back onto the receive channel. This mode can be con-
trolled on a frame-by-frame basis by setting the loopback bit of Descriptor
Word 1. The DMA controller automatically marks looped backed packets from
packets received normally by setting the loopback bit in the RX descriptor
word 1.

Flow Control in compliance with IEEE Std. 802.3 is implemented in the ENET
Buffer Memory subsystem. Itis used for full-duplex mode only. Loading the TX
Flow Pause countregister is all it takes to command the ENET to generate flow
control frames for transmission. A write to the pause count register triggers a
flow control frame to be generated in between outgoing data frames. Re-
sponding (TX pause) to the receipt (RX) of a flow control frame requires the
FLW_EN bit of the Flow Control register to be set.

ENET Functional Description

12.3.8.1 TX Pause Operation

Upon receipt of a valid Flow Control Frame, the count value of the payload is
loaded into the specified channel pause counter. Each channel is handled in-
dependently, with separate pause counters and separate pause control
circuitry. Each channel may have Flow Control either enabled or disabled inde-
pendent of the state of other channels. (Note: ENET currently has only one
channel).

Any channel that has Flow Control disabled, upon receiving a flow control
frame, purges that frame. If Flow Control is enabled, then the frame is acted
upon and will be filtered, not passing into memory.

Initiation of the pause period begins immediately following the completion of
any current TX frames, orimmediately ifthe TX channelisidle. Once the pause
period is complete, it does not repeat until the receipt of another flow control
frame.

12.3.8.2 Generation of TX Flow Control Command Frame

Flow Control Command frames are automatically generated in the Buffer
Memory module. A Flow Control Command Frame is initiated by writing a
count value to the Flow Control Count register.

If the channel is currently transmitting a frame, the Flow Control Frame is held
off until the current frame is completed. Any other frames pending in the buffer
for the channel are held off until the Flow Control Frame is transmitted com-
pletely. Flow Control Commands may be issued regardless of the state of
RX_FLOW_EN.

Generation of a proper Ethernet frame is done by applying the destination ad-
dress (i.e., DA = 01-80-C2-00-00-01), a source address (i.e., SA=
00-00—00-00-00-00), and a type field (i.e., Pause Opcode = 8808). Ap-
pended to this stream is the counter value loaded into the Flow Control Count
Register, and padded to 60 bytes with Pad = 00(h). A correct CRC is then add-
ed to make the frame a total of 64 bytes.

A form of half-duplex flow control can be done by setting the back pressure bit
of the mode register. This forces a JAM condition on TXD.

Ethernet Interface Module (EIM) 12-19

ENET Functional Description

12.3.9 Addressing Modes

This section is relevant to receive operations only. ENET provides four types
of addressing to be used as criteria for accepting an incoming receive packet.
The first 6 bytes of a new packet after the preamble and start of frame delimiter
are defined as destination address. The type of comparison done on the DA
depends on the address mode selected with the Address Mode Enable regis-
ter. Multiple address modes can be enabled at atime. Of course, Promiscuous
with anything else is redundant. If all address modes are disabled, the ENET
flushes all received packets.

[Physical Addressing: The 48-bit DA is compared with the contents of the
Destination Physical Address match register. If the two values compare,
the packet is accepted and written to the receive descriptor buffer. Physi-
cal addressing is also called unicast addressing.

(1 Logical Addressing: The 48-bit DA is sent through the MAC CRC circuit
and the high-order 6 bits are used to select one of the 64 bits in the logical
address filter. If the selected bitis setto 1, the packet is accepted and writ-
ten to the receive descriptor buffer. However, this hardware approach is
not a perfect filter. It filters out most, but not all, unwanted addresses, so
it is up to the software to do the final checking. Logical addressing is also
called multicast addressing. It is a subset of broadcast addressing. A dia-
gram of logical address filter implementation is shown below.

Figure 12-7. Logical Address Filter Implementation

31 26 0
—>—| ‘ Final CRC
CRC
48 0
| Destination address |—>—
4
63 0 Match,
| Logical address reg. I > MUX » packet
accepted

[0 Broadcast Addressing: The 48-bit DA address is checked for all ones.
This is the indication of a broadcast address. If all ones, the packet is ac-
cepted and written to the receive descriptor buffer.

(1 Promiscuous: The 48-bit DA address does not need to be compared. All
addresses are accepted. This mode is also called snoop mode.

12-20

ENET Functional Description

12.3.10 ENET Interrupts

Three interrupt request pins are provided on the ENET module. TX_IRQ and
RX_IRQ may be masked on a descriptor-by-descriptor basis using the INTRE
bit of Descriptor Word O.

O TX_IRQ: Transmit Interrupt is simply a descriptor completion interrupt. It
is meant to help the ARM processor gauge the rate that packets are being
processed rather than report any type of status. The interrupt is enabled
by INTRE of descriptor word 0, and if enabled, goes active after ENET sets
the ownership bit of the packet back to ARM.

1 RX_IRQ: Receive Interrupt behaves the same as TX_IRQ except that it
is used for receive operations.

1 SYS_ERR_IRQ: Occurs when a memory access times out or a packet is
missed because the next receive or transmit descriptor is in use. This in-
terrupt also occurs if a descriptor error is detected such as an invalid first-
in-frame bit setting. There is no capability to mask this interrupt within the
ENET module.

For use of these interrupts lines in EIM, please refer to the related chapter.

12.3.11 Configuration

Following reset and before any frame can be transmitted or received, the
ENET module needs to be configured. Mode registers can be programmed to
specify operating modes such as Mll width, duplex, random collision backoff
seeds, and several others. All registers are readable and writable to allow the
processor to check current configuration status and to set/reset individual bits.
The Mode register must be used to define duplex, MIl width, and bit rate if the
default reset values are not the desired configuration. Configuration registers
for changing the random back off seed value, VLAN-tagged frame compare
value, and flow control pause count must be programmed if the features are
to be used.

TX and RX operations will be disabled upon reset. No receiving occurs while
the Enable bit in the MODE configuration register is set to zero. Also, the DMA
controller does not load the transmit buffer with data to transmit until descriptor
ring polling configuration register is enabled with a non-zero value or the trans-
mit descriptor buffer ready command is issued by the ARM host.

Ethernet Interface Module (EIM) 12-21

EIM Descriptors Structure

12.4 EIM Descriptors Structure

Data transfer between the ENET and Host is controlled by two very specific
data structures in a shared memory (accessible by both parts) called Descrip-
tor Rings (DRs). The DR data structures provide flexible packet management
allowing variable memory buffer sizes and locations. The DR also provides a
means to synchronize shared ownership of data buffers in memory between
DMA and host.

Each ring consists of a variable number of descriptors which can be chained
to handle long packets in multiple data buffer areas. The location of the des-
criptors rings in memory is programmable using ENET configuration registers.
One descriptor ring is for transmit operations and the other is for receive opera-
tions. The bit format of the RX and TX descriptors are very similar. The formats
of each are described in more details below. The DMA controller operates on
each descriptor ring in strict sequential fashion. If the controller wants to pro-
cess a descriptor entry to transmit a packet, it checks the ownership bit. If the
host owns the entry, the controller periodically polls the entry waiting for owner-
ship to be passed to the ENET module. If ownership is not passed before the
buffer empties, an underflow occurs. Likewise, for receive operations, the con-
troller will poll and wait for the next descriptor entry to become available. If own-
ership is not asserted before the buffer fills, an overflow occurs. The user may
set the poll time by loading the 16-bit poll interval register, which decrements
once per clock.

The DMA controller does not check for any limit on the chaining length.

12.4.1 TX Descriptor Ring

Each descriptor has four 16-bit words. Depending on the Host system, they
can be accessed as two 32-bit words.

Table 12—-2. TX Descriptor Word #0

Bit Name Host R/W Function
15 OWN R/W Ownership bit
0 = ENET, 1 = HOST
After initialization, descriptor has to be owned by ENET.
14 WRAP w Descriptor chain wrap
0 = go to the next sequential descriptor entry
1 = go to first descriptor as defined in configuration register
13 FIF w First-In-Frame:

When set to 1 indicates that this descriptor contains the first bytes
of a new frame

12-22

EIM Descriptors Structure

Table 12-2. TX Descriptor Word #0 (Continued)

Bit

Name

Host R/W Function

12

11-8

LIF

RETRY

INTRE

STATUS

w Last-In-Frame:
When set to 1 indicates that this descriptor contains the last bytes
of a new frame

R Retry Count status:
0 = initial values
1-15 = valid values

W Interrupt enable:
1 =Generate an TX_IRQ interrupt after BYTES of data have been
transmitted (TX) or end of a packet is received.
0 = disable interrupt
Should always set to 1.

R Frame status

: Exceed Retry Error
: Heartbeat (SQE)

: Late Collision Error

: Collision

: CRC Error

: Underrun Error

: Loss of Carrier Error

OFRL,NWMAOIAO

Word0 contains status and control bits. The DMA controller reads DWO when
its poll counter expires or the TX descriptor buffer ready command is given.

After reading DWO, the DMA controller checks bit 15 (OWN) to determine if the
host has relinquished ownership of the 4-word descriptor and data buffer
space. The OWN bitis used as a simple semaphore between the host and the
DMA controller that defines ownership of the descriptor. Only the owner of a
descriptor can write to the descriptor words. A buffer memory overflow (or un-
derflow) condition can occur if the ownership bit is still set to HOST when the
buffer memory fills up (empties).

The next bit (WRAP) controls descriptor chaining and wrapping (ring).

Following WRAP are two bits for marking the start (First-In-Frame: FIF) and
end of frames (Last-In-Frame: LIF). If the FIF bit is set, the data buffer pointed
to by DW2 and DW3 contains the start of a new packet. If the LIF bitis set, then
the data buffer pointed to by DW2 and DW3 contains the last bytes of the pack-
et. If multiple descriptors are chained together to build a single packet, then
it is possible that only one or neither of FIF/LIF bits are set. The last control bit
DWOis bit 7, INTRE. It commands the DMA controller whether or not to gener-
ate a transmit interrupt after the controller has finished processing the descrip-
tor. The interrupt bit allows interrupts to be generated on descriptor basis.

Ethernet Interface Module (EIM) 12-23

EIM Descriptors Structure

The remaining 11 bits of DWO are status bits. Whenever the DMA controller
finishes processing the descriptor, it writes to the status bits. One field unique
to TX operations is the retry count status field in word 0. This field is used to
indicate how many collisions occurred while attempting to transmit the packet.
The controller writes a value to the RETRY field representing the retry initiali-
zation value plus the number of collisions that occurred (the retry initialization
count value can be set with the backoff seed mode register).

Table 12-3. TX Descriptor Word #1

Bit Name Host R/'W Function
15 — — reserved
14 PAD_CRC w Enable padding for frames < 64 bytes and regenerate CRC. For

frames > 64 bytes enable generation of CRC for inclusion in trans-
mitted frame. Valid only if FIF = 1.

1 = pad/CRC

0 = no pad/CRC

13-11 — — reserved

10-0 BYTES w Descriptor byte count.
Includes DA, SA, data length, and CRC fields.

TX DW1 contains an 11-bit byte-count field and two control bits.

BYTES s an 11-bit field for descriptor data-byte count (1536 max). If a descrip-
tor entry happens to be the start of a new frame (FIF = 1), the byte count value
must be less than 1519 bytes to be a valid Ethernet frame. However, extended
frames are supported up to 1536 bytes. The TX byte count in Descriptor
Word 1 must be a multiple of 8 bytes unless LIF field of DWO is set to 1. This
restriction is due to the 8-byte granularity of the buffer Memory FIFO. If the des-
criptor has both FIF and LIF bits set, then the byte count represents the number
of bytes in the packet (not including CRC if PAD_CRC is set).

The two control bits in DW1 are for loopback test control and for short frame
padding and CRC generation. See Section 12.3.5.2, Data Transmission, on
page 12-14 for further details regarding pad/crc insertion. PAD_CRC is valid
only if the FIF bit is also set.

Table 12-4. TX Descriptor Word #2

Bit Name Host R/'W Function

15-0 MS_ADDR W Most significant 16 bits of 32-bit data packet address

12-24

EIM Descriptors Structure

Table 12-5. TX Descriptor Word #3

Bit Name

Host R/W Function

15-0 LS_ADDR

W Least significant 16 bits of 32-bit data packet address

DMA Reads

Reporting Errors

Re-Transmission

Words 2 and 3 contain a 32-bit address that points to where the packet data
is located. Only the host can write to words 2 and 3.

The buffer memory is capable of storing up to four independent packets (if they
are each less than 65 bytes). To reduce risks of underruns and to achieve the
minimum IPG between packets while transmitting, the DMA controller reads
a minimum of two blocks of 64 bytes before starting to transmit. Moreover, it
starts to read the following descriptors before closing the current one, if it has
the LIF bit set.

For long transmits consisting of more than one descriptor packet, ENET
passes ownership of each descriptor back to the host after it has finished trans-
ferring BYTES of data from system memory to the buffer memory. Note that
the descriptor is passed back to the host even before the data is transmitted
by the MAC. ENET writes whatever status it has at the time it closes each inter-
mediate descriptor.

Final status is set in the descriptor that has the LIF bit set. This behavior is the
same even if a transmit error occurs.

It is possible for the DMA controller to find itself in a situation where it closes
one intermediate descriptor and finds that the host still owns the next. If the
host does not relinquish ownership of the next descriptor before the MAC emp-
ties the data in buffer memory, the MAC signals an underflow error. This under-
flow error will be reported with a system error interrupt. However, other errors,
such as late collisions, cannot be reported until after the host relinquishes own-
ership of the next descriptor.

If an error other than a normal collision occurs while transmitting a packet with
multiple descriptors, the ENET ceases transmission and closes out all subse-
quent descriptors for the packet until it finds the descriptor with LIF set. When
LIF is detected, ENET closes this descriptor and writes the appropriate error
status.

The ENET does not attempt a re-transmission of the packet unless the error
was a normal collision, even if the packet was contained in a single descriptor.

Ethernet Interface Module (EIM) 12-25

EIM Descriptors Structure

If multiple attempts are required to transmit a packet consisting of multiple des-
criptor entries, only the descriptors not yet closed and the descriptor with the
LIF bit set will have the valid retry count status reported.

When the DMA controller finishes processing a descriptor entry that had the
wrap bit set, the controller returns to the first descriptor entry by reloading the
descriptor base address from the configuration registers. Only the host can
change the value of the wrap bit.

12.4.2 RX Descriptor Ring

The main difference between the TX and RX descriptors is found in the RX
descriptor status field. The other difference is in the usage of the LIF, FIF, and
loopback bits. For RX operations, the ENET writes to these bits to frame sta-
tus; whereas for TX operations, ENET reads these bits and takes action on
them.

Table 12-6. RX Descriptor Word #0

Bit Name Host R/W Function

15 OWN R/W Ownership bit
0 = ENET, 1 = HOST (ESM)
After initialization, descriptor has to be owned by ENET.

14 WRAP W Descriptor chain wrap
0 = go to the next sequential descriptor entry
1 = go to first descriptor as defined in configuration register

13 FIF R First-In-Frame:
When setto 1 indicates that this descriptor contains the first bytes of a new frame
12 LIF R Last-In-Frame:
When setto 1 indicates that this descriptor contains the last bytes of a new frame
11-8 — — reserved
7 INTRE W Interrupt enable:

1=Generate an RX_IRQ interrupt after BYTES of data have been received (RX)
or end of a packet is received.

0 = disable interrupt

Should always set to 1.

6-0 STATUS R Frame status

: Miss

: VLAN

: Long Frame Error

: Short Frame Error

: CRC Error

: Overrun Error

: Non Octet Alignment Error

ORFRNWDMOUO

12-26

EIM Descriptors Structure

Table 12—7. RX Descriptor Word #1

Bit Name Host R/W Function
15-11 — — reserved
10-0 BYTES R/W Descriptor buffer size set by the host to indicate the size of the data

buffer. When ENET finishes receiving a packet or fills the buffer,
it will overwrite this field with the actual received byte count. Value
set by the host must be a multiple of 64 bytes.

Table 12-8. RX Descriptor Word #2

Bit

Name

Host R/'W Function

150

MS_ADDR

w Most significant 16 bits of 32-bit data packet address

Table 12-9. RX Descriptor Word #3

Bit

Name

Host R/W Function

15-0

LS_ADDR

W Least significant 16 bits of 32-bit data packet address

The buffer memory block signals the DMA controller when it has at least one
64-byte block of data or an end of packet condition occurs. The flag field in the
buffer memory contains Start-Of-Frame (SOF) and End-Of-Frame (EOF) and
byte count information. The DMA controller uses the flag field status to set the
FIF, LIF and BYTE fields of receive descriptor words 0 and 1.

The RX DMA makes memory access requests to look for an open descriptor
only after it has data that needs to be stored to memory. If the DMA controller
reads a descriptor and finds that it does not own it, the controller repeats the
memory access every other clock until the host sets the ownership back to
DMA or an overrun error occurs.

Ethernet Interface Module (EIM) 12-27

EIM Descriptors Structure

Reject Short Frame Error

12-28

Normally, a valid RX packet will always be at least 64 bytes long. The MAC
block automatically flushes any packet shorter than 64 bytes. However, ENET
has a mechanism for recording the occurrence of short frame errors using the
Reject Short Frame Error (RJCT_SFE) bit in MODE register. The controller
then reports the error status if the RICT_SFE of the ENET mode register is
off(0). The DMA controller opens the next descriptor, writes the appropriate
status, and then closes the descriptor, setting the ownership bit back to the
host. When set to zero, every RX error occurring within the first 64 bytes will
be reported by opening an RX descriptor, writing status, and then closing it.
So normal collisions (which look like runts or short frames to the MAC) can
cause consumption of the RX descriptors, even for packets with a non-match-
ing destination address.

See section 12.3.5.1, Data Reception, on page|12-9 for details on the defini-
tion of the receive status bits.

For long receives consisting of more than one descriptor packet, ENET closes
each descriptor when it finishes writing BYTES of data to system memory. The
DMA controller passes descriptor ownership back to the host as it closes each
descriptor. If the controller finds that the next descriptor is owned by the host,
it continues to read RX DWO from memory until it finds that the host has relin-
quished ownership of the descriptor or until a receive error occurs such as
overflow. The DMA controller writes whatever RX status it has at the time a
descriptor is closed.

The DMA controller can generate an interrupt when it closes each descriptor,
depending on the INTRE bit.

EIM Peripheral Register Tables

12.5 EIM Peripheral Register Tables
The EIM peripheral registers are divided into Ethernet state machine (ESM)
peripheral registers and ENET peripheral registers.
ESM Peripheral Registers
Base Address (hex): FFFF:0000
Register width: 32 bits

All registers are big-endian aligned. Unmapped bits are always read as zero.
Access to unmapped registers leads to an undefined result.

Table 12-10. ESM Peripheral Registers

Register Description Aagrseests
EIM_CTRL ESM Control Register 00h
EIM_STATUS ESM Status Register 04h
EIM_CPUTXBA CPU TX Descriptors Base Address Register 08h
EIM_CPURXBA CPU RX Descriptors Base Address Register 0Ch
EIM_BUFSIZE Packet Buffer Size Register 10h
EIM_FILTER CPU Filtering Control Register 14h
EIM_CPUDA 1 CPU Destination Address Register, High Word 18h
EIM_CPUDA 0 CPU Destination Address Register, Low Word 1Ch
EIM_MFV_1 Multicast Filter Valid Register, High Word 20h
EIM_MFV_0 Multicast Filter Valid Register, Low Word 24h
EIM_MFM_1 Multicast Filter Mask Register, High Word 28h
EIM_MFM_O Multicast Filter Mask Register, Low Word 2Ch
EIM_RXTH RX Threshold Register 30h
EIM_RX_CPU_RDY CPU RX Ready Register 34h
EIM_INT_EN ESM Interrupt Enable Register 38h
Reserved — 3Ch
EIM_ENETO_TX DESC ENETO TX Queue Current Pointer Register 40h

Ethernet Interface Module (EIM) 12-29

EIM Peripheral Register Tables

Table 12-10. ESM Peripheral Registers (Continued)

Register Description A(ggrs:sts
EIM_ENETO_RX_DESC ENETO RX Queue Current Pointer Register 44h
Reserved 48h
Reserved 4Ch
EIM_CPU_TX DESC CPU TX Queue Current Pointer Register 50h
EIM_CPU_RX_DESC CPU RX Queue Current Pointer Register 54h

ENET Peripheral Registers
Base Address (hex): FFFF:0000
Register width: 32 bits

All registers are big-endian aligned. This means that all accesses are per-
formed on all register bits. Therefore, ARM software can perform 8-/16-/32-bit
reads; it can also perform 8-/16-bit writes on an 8-/16-bit register, but an
8-/16-bit write to a 32-bit register will result in an unexpected write on bits 16
to 31.

12-30

EIM Peripheral Register Tables

Table 12-11. ENETO Registers

Register Description Aodf(;?:;s
EIM_MODE_EO Mode Register 100h
EIM_NEW_RBOF_EO Backoff Seed Register 104h
EIM_RBOF_CNT_EO Backoff Count Register 108h
EIM_FLW_CNT_EO TX Flow Pause Count Register 10Ch
EIM_FLW_CNTRL_EO Flow Control Register 110h
EIM_VTYPE_EO VTYPE Tag Register 114h
EIM_SE_SR_EO System Error Interrupt Status Register 118h
EIM_TX BUF_RDY_EO Transmit Descriptor Buffer Ready Register 11Ch
EIM_TDBA_EO Transmit Descriptor Base Address Register 120h
EIM_RDBA_EO Receive Descriptor Base Address Register 124h
EIM_PAR1_EO Destination Physical Address Match Register, High Word 128h
EIM_PARO_EO Destination Physical Address Match Register, Low Word 12Ch
EIM_LAR1 EO Logical Address Hash Filter Register, High Word 130h
EIM_LARO_EO Logical Address Hash Filter Register, Low Word 134h
EIM_ADR_MODE_EO Address Mode Enable Register 138h
EIM_DRP_EO Descriptor Ring Poll Interval Count Register 13Ch

Ethernet Interface Module (EIM)

12-31

ESM Peripheral Registers

12.6 ESM Peripheral Registers

12.6.1 EIM ESM Control Register
Base Address (hex): FFFF:0000
Register width: 32 bits
When set, ESMEN will reset the ESM and all of the ESM registers.

When a queue is not enabled, it cannot be accessed by the ESM, and there-
fore, its size is null and its space can be used for other purposes.

Normal behavior is to transfer packets received on the CPU port to the ENETO
port.

Figure 12-8. EIM ESM Control Register (EIM_CTRL)
Address (hex): Base = 0xFFFF:0000, Offset = 0x0000

31-16 15 14-9 8
Reserved | ESMEN Reserved CPU_ENETO_EN
RW-0 RW-0
7 6 5 4 3-2 1 0
Reserved | ENETO_FLWCNTEN | ENETO_RXEN | ENETO_TXEN Reserved CPU_RXEN CPU_TXEN
RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-16 Reserved.

Bit 15 ESMEN. Ethernet State Machine Enable.

0 Disable
1 Enable
Bits 14-9 Reserved.

Bit 8 CPU_ENETO_EN. When set, this bit enables routing of packets re-
ceived on CPU port to ENETO.

0 Disable
1 Enable—must be set if ESMEN = 1

Bit 7 Reserved.

12-32

ESM Peripheral Registers

Bit 6 ENETO_FLWCNTEN. When set, enables flow control threshold trig-
ger on ENETO RX queue

Bit 5 ENETO_RXEN. When set, enables processing of ENETO RX queue

Bit 4 ENETO_TXEN. When set, enables processing of ENETO TX queue

Bits 3-2 Reserved.

Bit 1 CPU_RXEN. When set, enables processing of CPU RX queue

Bit 0 CPU_TXEN. When set, enables processing of CPU TX queue

12.6.2 EIM ESM Status Register

ESM status is set independent of the related interrupt enable bit. Status bits
are read-and-clear registers: bits are automatically cleared when the CPU per-
forms aread, thus avoiding a manual clear with the risk of status loss. Writing
to Status bits has no effect.

Figure 12—-9. EIM ESM Status Register (EIM_STATUS)
Address (hex): Base = OxFFFF:0000, Offset = 0x0004

31-16
Reserved
15-10 9 8
Reserved CPU_TX_LIF | CPU_RX_LIF
RC-0 RC-0
7 6 5-3 2 1 0
CPU_TX CPU_RX Reserved ENETO_ERR ENETO_TX ENETO_RX
RC-0 RC-0 RC-0 RC-0 RC-0
Note: R =Read access; C = cleared on a read; value following dash (=) = value after reset
Bits 31-10 Reserved.
Bit 9 CPU_TX_LIF. Set after the last descriptor of a packet has been filled
in the CPU TX queue
Bit 8 CPU_RX_LIF. Set after the last descriptor of a packet has been pro-

cessed (and given back to the host) in the CPU RX queue

Ethernet Interface Module (EIM) 12-33

ESM Peripheral Registers

Bit 7 CPU_TX. Set after a descriptor has been filled in the CPU TX queue
Bit 6 CPU_RX. Set after a descriptor has been filled in the CPU RX queue
Bits 5-3 Reserved.

Bit 2 ENETO_ERR. Set after an ENETO ERR interrupt has been triggered
Bit 1 ENETO_TX. Set after an ENETO TX interrupt has been triggered
Bit 0 ENETO_RX. Set after an ENETO RX interrupt has been triggered

12.6.3 EIM CPU TX Descriptors Base Address Register

Figure 12-10. EIM CPU TX Descriptors Base Address Register (EIM_CPUTXBA)

Address (hex): Base = OxFFFF:0000, Offset = 0x0008

31-16
Reserved
15-3 2-0
TXCPU_BA Reserved
RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-3 TXCPU_BA. LSW offset address of first descriptor of CPU TX ring.
Lower 16 bits of the 32-bit address range, with bits 2—0 fixed at zero.

Bits 2-0 Reserved (always read as zeros)

12-34

ESM Peripheral Registers

12.6.4 EIM CPU RX Descriptors Base Address Register

Figure 12-11. EIM CPU RX Descriptors Base Address Register (EIM_CPURXBA)

Address (hex): Base = OxFFFF:0000, Offset = 0x000C

31-16
Reserved
15-3 2-0
RXCPU_BA Reserved
RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-3 RXCPU_BA. LSW offset address of first descriptor of CPU RX ring.
Lower 16 bits of the 32-bit address range, with bits 2—-0 fixed at zero.

Bits 2-0 Reserved (always read as zeros)

Ethernet Interface Module (EIM) 12-35

ESM Peripheral Registers

12.6.5 EIM Packet Buffer Size Register

Buffer size has to be set with a multiple of 4 and a minimum of 64 (and < 1536).
Buffer size is directly expressed in bytes when accessing BUFSIZE (10 — 0).

Figure 12-12. EIM Packet Buffer Size Register (EIM_BUFSIZE)
Address (hex): Base = OxFFFF:0000, Offset = 0x0010

31-11

Reserved

10-2 1-0

BUFSIZE Reserved

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-11 Reserved.
Bits 10-2 BUFSIZE. Size of packet buffers

Bits 1-0 Reserved (always read as zeros)

12-36

12.6.6 EIM CPU Filtering Control Register

Figure 12-13. EIM CPU Filtering Control Register (EIM_FILTER)

ESM Peripheral Registers

Address (hex): Base = OxFFFF:0000, Offset = 0x0014

31-8
Reserved
7-5 4 3 2 1 0
Reserved MCLAEN LOGICALEN MULTICASTEN BROADCASTEN DAEN
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Reserved.

MCLAEN. When set, enables matching on Logical Address and Multi-
cast filtering. LOGICALEN and MULTICASTEN must be cleared
when MCLAEN is set.

LOGICALEN. When set, enables use of the Logical Filtering mecha-
nism of the ENET

MULTICASTEN. When set, enables the Multicast Filter matching

BROADCASTEN. When set, enables Broadcast matching

DAEN. When set, enables CPU Destination Address matching

Ethernet Interface Module (EIM)

12-37

ESM Peripheral Registers

12.6.7 EIM CPU Destination Address Register, High Word

Figure 12-14. EIM CPU Destination Address Register, High Word (EIM_CPUDA_1)
Address (hex): Base = OxFFFF:0000, Offset = 0x0018

31-16

Reserved

15-0

DAR_1

RW-0

Note: R = Read access; W = Write access; value following dash () = value after reset

Bits 31-16 Reserved. Always returns “0”".

Bits 15-0 DAR_1. CPU Destination Address 1, LSW. Combined with
EIM_CPUDA_0 to produce a 48-bit-wide value capable of address
matching MAC address “01:02" hex.

12.6.8 EIM CPU Destination Address Register, Low Word

Figure 12-15. EIM CPU Destination Address Register, Low Word (EIM_CPUDA_0)
Address (hex): Base = OxFFFF:0000, Offset = 0x001C

31-16

DAR_0 MSW

RW-0

15-0

DAR_O LSW

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 DAR_0 MSW. CPU Destination Address 0, MSW. Combined with
EIM_CPUDA _1 to produce a 48-bit-wide value capable of address
matching MAC address “03:04” hex.

12-38

ESM Peripheral Registers

Bits 15-0 DAR_0O LSW. CPU Destination Address 0, LSW. Combined with
EIM_CPUDA_1 to produce a 48-bit-wide value capable of address
matching MAC address “05:06” hex.

12.6.9 EIM Multicast Filter Valid Register, High Word

Figure 12-16. EIM Multicast Filter Valid Register, High Word (EIM_MFV_1)

Address (hex): Base = 0xFFFF:0000, Offset = 0x0020

31-16

Reserved

15-0

MFV_1

RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-16 Reserved.

Bits 15-0 MFV_1. Bit field used to indicate bits that have to match in Multicast
Filter Mask Register, bits 47 to 32 (EIM_MFM1)

12.6.10 EIM Multicast Filter Valid Register, Low Word

Figure 12-17. EIM Multicast Filter Valid Register, Low Word (EIM_MFV_0)

Address (hex): Base = OxFFFF:0000, Offset = 0x0024

31-0

MFV_0

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-0 MFV_0. Bit field used to indicate bits that have to match in Multicast
Filter Mask Register, bits 31 to 0 (EIM_MFMO)

Ethernet Interface Module (EIM) 12-39

ESM Peripheral Registers

12.6.11 EIM Multicast Filter Mask Register, High Word

Figure 12-18. EIM Multicast Filter Mask Register, High Word (EIM_MFM_1)

Address (hex): Base = OxFFFF:0000, Offset = 0x0028

31-16

Reserved

15-0

MFM_1

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-0 MFM_1. Address mask corresponding to multicast packets, bits 47
to 32.

12.6.12 EIM Multicast Filter Mask Register, Low Word

Figure 12-19. EIM Multicast Filter Mask Register, Low Word (EIM_MFM_0)

Address (hex): Base = OxFFFF:0000, Offset = 0x002C

31-0

MFM_0

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-0 MFM_0. Address mask corresponding to multicast packets, bits 31
to 0.

12-40

ESM Peripheral Registers

12.6.13 EIM RX Threshold Register

Figure 12-20. EIM RX Threshold Register (EIM_RXTH)

Address (hex): Base = OxFFFF:0000, Offset = 0x0030

31-8

Reserved

7-0

RXTH

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-8 Reserved.

Bits 7-0 RXTH. Number of pending RX descriptors to reach in an ENET ring to
trigger the TX flow control frame on this ENET.

12.6.14 EIM CPU RX Ready Register

Figure 12-21. EIM RX CPU Ready Register (EIM_RX_CPU_RDY)

Address (hex): Base = OxFFFF:0000, Offset = 0x0034

31-8
Reserved
7-1 0
Reserved CPURX_RDY
W-0
Note: W = Write access; value following dash (=) = value after reset
Bits 31-1 Reserved.
Bit 0 CPURX_RDY. A 1 has to be written to this bit to indicate to the ESM

module that a descriptor is ready to be switched in the CPU RX queue.

Ethernet Interface Module (EIM) 12-41

ESM Peripheral Registers

12.6.15 EIM ESM Interrupt Enable Register

Figure 12—-22. EIM ESM Interrupt Enable Register (EIM_INT_EN)

Address (hex): Base = OxFFFF:0000, Offset = 0x0038

31-10
Reserved
9 8 7 6 5
CPU_TX_LIF CPU_RX_LIF CPU_TX CPU_RX Reserved
RW-0 RW-0 RW-0 RW-0
4 3 2 1 0
Reserved Reserved ENETO_ERR ENETO_TX ENETO_RX
RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash () = value after reset

Bits 31-10

Bit 9

Bit 8

Bit 7

Bit 6

Bits 5-3

Bit 2

12-42

Reserved.
CPU_TX_LIF

0 CPU TX LIF interrupt disabled
1 CPU TX LIF interrupt enabled
CPU_RX_LIF.

0 CPU RX LIF interrupt disabled

1 CPU RX LIF interrupt enabled
CPU_TX.

0 CPU TX interrupt disabled
1 CPU TX interrupt enabled
CPU_RX.

0 CPU RX interrupt disabled
1 CPU RX interrupt enabled
Reserved.

ENETO_ERR.

0 ENETO ERR interrupt disabled
1 ENETO ERR interrupt enabled

ESM Peripheral Registers

Bit 1 ENETO_TX.

0 ENETO TX interrupt disabled
1 ENETO TX interrupt enabled

Bit 0 ENETO_RX.
0 ENETO RX interrupt disabled
1 ENETO RX interrupt enabled
12.6.16 EIM ENETO TX Queue Current Pointer Register

The Packet Memory, where the descriptors reside, is byte-addressable. Each
descriptor has 8 bytes of information. Therefore, the pointer must increment
at 8-byte intervals, leaving the three least significant bits of the pointer to be
Zero.

Figure 12-23. EIM ENETO TX Queue Current Pointer Register (EIM_ENETO_TX_DESC)

Address (hex): Base = OxFFFF:0000, Offset = 0x0040

31-16

Reserved

15-3 2-0

ENETO_TX_PTR Reserved

R-U

Note: R =Read access; value following dash (-) = value after reset; U = undefined

Bits 31-16 Reserved.

Bits 15-3 ENETO_TX_PTR. Pointer to next free descriptor in ENETO TX queue.
LSW of full 32-bit address range, with bits 2—-0 fixed at zero.

Bits 2-0 Reserved (always read as zeros)

Ethernet Interface Module (EIM) 12-43

ESM Peripheral Registers

12.6.17 EIM ENETO RX Queue Current Pointer Register

Figure 12-24. EIM ENETO RX Queue Current Pointer Register (EIM_ENETO_RX_ DESC)

Address (hex): Base = 0xFFFF:0000, Offset = 0x0044

31-16

Reserved

15-3 2.0

ENETO_RX_PTR Reserved

R-U

Note: R =Read access; value following dash (-) = value after reset; U = undefined

Bits 31-16 Reserved.

Bits 15-3 ENETO_RX_PTR. Pointerto nextfree descriptorin ENETO RX queue.
LSW of full 32-bit address range, with bits 2—0 fixed at zero.

Bits 2-0 Reserved (always read as zeros)

12.6.18 EIM CPU TX Queue Current Pointer Register

Figure 12-25. EIM CPU TX Queue Current Pointer Register (EIM_CPU_TX_DESC)
Address (hex): Base = OxFFFF:0000, Offset = 0x0050

31-16

Reserved

15-3 2-0

CPU_TX_PTR Reserved

R-U

Note: R = Read access; value following dash (-) = value after reset; U = undefined

12-44

ESM Peripheral Registers

Bits 31-16 Reserved.

Bits 15-3 CPU_TX_PTR. Pointerto next free descriptor in CPU TX queue. LSW
of full 32-bit address range, with bits 2—0 fixed at zero.

Bits 2-0 Reserved (always read as zeros)

12.6.19 EIM CPU RX Queue Current Pointer Register

Figure 12-26. EIM CPU RX Queue Current Pointer Register (EIM_CPU_RX_DESC)

Address (hex): Base = OxFFFF:0000, Offset = 0x0054

31-16

Reserved

15-3 2-0

CPU_RX_PTR Reserved

R-U

Note: R = Read access; value following dash () = value after reset; U = undefined

Bits 31-16 Reserved.

Bits 15-3 CPU_RX_PTR. Pointer to next free descriptor in CPU RX queue.
LSW of full 32-bit address range, with bits 2—-0 fixed at zero.

Bits 2-0 Reserved (always read as zeros)

Ethernet Interface Module (EIM) 12-45

ENETO Registers

12.7 ENETO Registers

12.7.1 EIM ENETO Mode Register
Base address (hex): FFFF:0000
Register width: 32 bits

Figure 12-27. EIM ENETO Mode Register (EIM_MODE_EO)
Address (hex): Base = OxFFFF:0000, Offset = 0x0100

31-16 15 14-8
Reserved FIFO_EN Reserved
RW-0
7 6 5 4 3 2 1 0

RJICT_SFE DPNET MWIDTH WRAP FDWRAP DUPLEX Reserved ENABLE

RW-0 RW-0 RW-1 RW-0 RW-0 RW-0 RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset
Bits 31-16 Reserved.

Bit 15 FIFO_EN. Enables CPU access to ENET FIFO.
0 FIFO access disabled (normal mode)
1 FIFO access enabled (debug mode)
Bits 14-8 Reserved.
Bit 7 RJCT_SFE. Reject short frame errors during receive. When set, short

frame errors are ignored.

0 Report SFE
1 Reject SFE

Bit 6 DPNET. Demand priority network rather than CSMA/CD.
0 Normal operation
1 Demand priority
Bit 5 MWIDTH. Selects the width of the MII port. In serial mode, data is re-

ceived on RXDO and transmitted on TXDO.

0 Serial mode
1 Nibble mode

12-46

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

ENETO Registers

WRAP. Internal MAC loopback. When set, the MAC will loop trans-
mitted data back to received data at furthest point possible while still in
MAC module.

0 Normal operation
1 WRAP

FDWRAP. Full-duplex wrap. When asserted and in wrap mode, this
register stops packet reception from network.

0 Normal operation
1 Full-duplex wrap mode
DUPLEX.

0 Half-duplex
1 Full-duplex

Reserved.

ENABLE. Port Enable. When disabled, MAC attempts to finish active
frames. This is a MAC enable only. It does not directly affect DMA.

0 Port disable
1 Port enable

Ethernet Interface Module (EIM) 12-47

ENETO Registers

12.7

Figu

.2 EIM ENETO Backoff Seed Register

The backoff count is a random number computed using the TCLK and host
clock relationship. As soon as these clocks are active, the backoff value is con-
tinually being updated even before there is a collision. The HALT_RBO bit can
be used to halt the random backoff action before a collision. This is simulation
debug aid.

The 4-bit RTRY field can be used to reduce the number of retries before a
packet is discarded. The MAC will allow 15 retry attempts before the packet
is discarded.

This register is only valid in half-duplex mode as defined by EIM_MODE_EO
(FFFF:0100) DUPLEX (bit 2).

re 12-28. EIM ENETO Backoff Seed Register (EIM_NEW_RBOF _EO0)

Address (hex): Base = OxFFFF:0000, Offset = 0x0104

Note:

12-48

31-15
Reserved
14 13-10
HALT_RBO RTRY
R/W-0 R/W-0
9-0
NEW_RBOF
RW-0

R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-15 Reserved.
Bit 14 HALT_RBO. Halt random backoff

Bits 13-10 RTRY. Preset backoff and retry counter, where 0x0 represents a maxi-
mum value and OxF represents a minimum value.

Bits 9-0 NEW_RBOF. Load new random backoff seed

ENETO Registers

12.7.3 EIM ENETO Backoff Count Register

This register is used to read the eight least significant bits of the 10-bit collision
backoff counter. During reset, the RBOF_CNT register is loaded with arandom
value.

The backoff count will decrement once for every 128 TCLKs (512 bit times
when in nibble mode).

This register is only valid in half-duplex mode as defined by EIM_MODE_EOQO
(FFFF:0100) DUPLEX (hit 2).

Figure 12-29. EIM ENETO Backoff Count Register (EIM_RBOF_CNT_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x0108

31-8

Reserved

7-0

RBOF_CNT

R-0

Note: R = Read access; value following dash (=) = value after reset

Bits 31-8 Reserved.

Bits 7-0 RBOF_CNT. Current random backoff count

Ethernet Interface Module (EIM) 12-49

ENETO Registers

12.7.4 EIM ENETO TX Flow Pause Count Register

Loading this register with any value will automatically cause the MAC to trans-
mit a flow control frame with the FLW_CNT value placed in the type/length
field. The Count value represents the number of slot times where one slot is
64 bytes.

The flow control frame will not be sent if both RX_FLW_EN and BACK_PSR
(see below) are set to zero.

Figure 12-30. EIM ENETO TX Flow Pause Count Register (EIM_FLW_CNT_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x010C

31-16

Reserved

15-0

FLW_CNT

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-0 FLW_CNT. Flow Control Pause Count: Pause count to be transmitted
as a flow control frame

12-50

ENETO Registers

12.7.5 EIM ENETO Flow Control Register

RX_FLW_EN is for full-duplex operation while BACK_PSR can be used as a
form of flow control for half-duplex operation.

Figure 12-31. EIM ENETO Flow Control Register (EIM_FLW_CNTRL_EO)
Address (hex): Base = OxFFFF:0000, Offset = 0x0110

31-8
Reserved
7-2 1 0
Reserved BACK_PSR | RX_FLW_EN
RwW-0 RW-0
Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-2 Reserved.
Bit1 BACK_PSR. Enable Back Pressure — force collisions
Bit 0 RX_FLW_EN. Enable Pause based flow control for received frames

0 Disabled

1 Enabled

Ethernet Interface Module (EIM) 12-51

ENETO Registers

12.7.6 EIM ENETO VTYPE Tag Register

This register is used for setting the compare value for the Virtual LAN (VLAN)
tag field in the received data. The VLAN tag field is the first 16 bits in the data
field of the received data. No filtering is performed on frames based on VLAN
comparison; only status is reported in RX descriptor.

Figure 12-32. EIM ENETO VTYPE Tag Register (EIM_VTYPE_EDO)
Address (hex): Base = 0xFFFF:0000, Offset = 0x0114

31-16

Reserved

15-0

VTYPE

RW—OXFFFF

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-0 VTYPE. VLAN tagged frame compare value.

12-52

ENETO Registers

12.7.7 EIM ENETO System Error Interrupt Status Register

Setting any bit to 1 will activate the SYS_ERR_IRQ signal of ENET module.
Note that this is not sufficient to generate an interrupt to the CPU. The actual
interruptis generated by the EIM ESM module if validated (see EIM ESM Inter-
rupt Enable Register).

Figure 12-33. EIM ENETO System Error Interrupt Status Register (EIM_SE_SR_EQ)

Address (hex): Base = OxFFFF:0000, Offset = 0x0118

31-8
Reserved
7-5 4 3 2 1 0
Reserved TX_FE RX_BCE FIFE OFLW UFLW
RW-0 RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-5 Reserved.

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

TX_FE. TX Only.

1 TX byte count or PAD_ CRC improperly set
RX_BCE. RX Only

1 RX byte count error.
This bit is set if new RX descriptor entry has byte count
field set to less than 8 bytes.

FIFE. TX Only.

1 First-in-frame error
OFLW. RX Only.

1 Buffer memory overflow
UFLW. TX Only.
1 Buffer memory underflow

Ethernet Interface Module (EIM) 12-53

ENETO Registers

12.7.8 EIM ENETO Transmit Descriptor Buffer Ready Register

There is no physical peripheral register associated with the Transmit Descrip-
tor Buffer Ready Register. When a write occurs, it prompts the DMA controller

to start processing the next transmit descriptor entry independent of the poll
counter value.

This is a write-only register, where any value written into this register will
prompt the DMA controller.

Figure 12-34. EIM ENETO Transmit Descriptor Buffer Ready Register
(EIM_TX_BUF_RDY_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x011C

310

Reserved

w

Bits 31-0 Reserved.

12.7.9 EIM ENETO Transmit Descriptor Base Address Register

Figure 12-35. EIM ENETO Transmit Descriptor Base Address Register
(EIM_TDBA_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x0120

31-0

TDBA

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-0 TDBA. Transmit Descriptor Base Address. This register is written by
the ARM host and is not changed by the ENET.

12-54

ENETO Registers

12.7.10 EIM ENETO Receive Descriptor Base Address Register

Figure 12-36. EIM ENETO Receive Descriptor Base Address Register (EIM_RDBA _EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x0124

31-0

RDBA

RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-0 RDBA. Receive Descriptor Base Address. This register is written by
the ARM host and is not changed by the ENET.

12.7.11 EIM ENETO Destination Physical Address Match Register, High Word

Figure 12-37. EIM ENETO Destination Physical Address Match Register, High Word
(EIM_PAR1_EO0)

Address (hex): Base = OxFFFF:0000, Offset = 0x0128

31-16

Reserved

15-0

PAR_1

RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset
Bits 31-16 Reserved. Always returns “0”".
Bits 15-0 PAR_1. ENETO Destination Address Match 1, LSW. Combined with

EIM_PARO_EO to produce a 48-bit-wide value capable of address
matching MAC address “06:05” hex.

Ethernet Interface Module (EIM) 12-55

ENETO Registers

12.7.12 EIM ENETO Destination Physical Address Match Register, Low Word

Figure 12-38. EIM ENETO Destination Physical Address Match Register, Low Word
(EIM_PARO_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x012C

31-16

PAR_0 MSW

RW-0

15-0

PAR_0 LSW

RW-0

Note: R = Read access; W = Write access; value following dash () = value after reset

Bits 31-16 PAR_0MSW. ENETO Destination Address Match 0, MSW. Combined
with EIM_PAR21_EO to produce a 48-bit-wide value capable of ad-
dress matching MAC address “04:03” hex.

Bits 15-0 PAR_0LSW. ENETO Destination Address Match 1, LSW. Combined
with EIM_PAR1_EO to produce a 48-bit-wide value capable of ad-
dress matching MAC address “02:01” hex.

12.7.13 EIM ENETO Logical Address Hash Filter Register, High Word

Figure 12-39. EIM ENETO Logical Address Hash Filter Register, High Word
(EIM_LAR1_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x0130

31-0

LAR_1

RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-0 LAR_1. Logical Hash Filter Address Register bits 63:32. These bits
are checked based on a 6-bit CRC compressed Destination Address.
If set, packet is accepted.

12-56

ENETO Registers

12.7.14 EIM ENETO Logical Address Hash Filter Register, Low Word

Figure 12-40. EIM ENETO Logical Address Hash Filter Register, Low Word
(EIM_LARO_EO)

Address (hex): Base = OxFFFF:0000, Offset = 0x0134

31-0

LAR_O

RW-0

Note: R = Read access; W = Write access; value following dash (-) = value after reset

Bits 31-0 LAR_O. Logical Hash Filter Address Register bits 31:0. These bits are
checked based on a 6-bit CRC compressed Destination Address. If
set, packet is accepted.

12.7.15 EIM ENETO Address Mode Enable Register

The type of comparison done on the Destination Address depends on the ad-
dress mode selected. Multiple address modes can be enabled at a time. Of
course, enabling Snoop Address mode with anything else is redundant. If all
address modes are disabled, the ENET flushes all received packets.

Figure 12-41. EIM ENETO Address Mode Enable Register (EIM_ADR_MODE_EDO)

Address (hex): Base = OxFFFF:0000, Offset = 0x0138

31-8
Reserved
7-4 3 2 1 0
Reserved ESAC EBAC ELAC EPAC
RW-0 RW-0 RW-0 RW-0

Note: R =Read access; W = Write access; value following dash (=) = value after reset

Bits 31-4 Reserved.
Bit 3 ESAC. Enables Snoop Address Compare (Promiscuous) when set.
Bit 2 EBAC. Enables Broadcast Address Compare when set.

Ethernet Interface Module (EIM) 12-57

ENETO Registers

Bit 1 ELAC. Enables Logical Address Compare when set.

Bit 0 EPAC. Enables Physical Address Compare when set.

12.7.16 EIM ENETO Descriptor Ring Poll Interval Count Register

Figure 12-42. EIM ENETO Descriptor Ring Poll Interval Count Register (EIM_DRP_EOQ)
Address (hex): Base = OxFFFF:0000, Offset = 0x013C

31-16

Reserved

15-0

DRPC

RW-0

Note: R = Read access; W = Write access; value following dash (=) = value after reset

Bits 31-16 Reserved.

Bits 15-0 DRPC. Descriptor Ring Poll Interval Count. Value used to load a
counter that is decremented once per ENET clock. When a terminal
countis reached, the DMA controller polls the current descriptor entry
to check the ownership bit. Polling is disabled when count is initialized

to zero.

12-58

EIM Packet RAM Structure

12.8 EIM Packet RAM Structure

12.8.1 Logical Organization

The Packets Memory provides up to four queues for packet storing: 1 queue
for received packets and 1 queue for transmit packets of each port (CPU and
ENETO). Each queue element consists of a packet (or a part of a packet) plus
some status and control flags.

A queueisaring of entries called descriptors. Each descriptor contains a point-
er to an allocated buffer containing a data packet.

When a packet has to be transferred between two queues, only the descriptors
(pointing to the packet) are copied; i.e., the data packet is passed by reference.

Each descriptor has to be linked to a packet buffer. To keep track of free buff-
ers, a Free Buffer Entry is added after each packet buffer. This allows a buffer
to be referenced by two descriptors of two different queues.

From the ESM point of view, the CPU is seen as a port like ENETO. Therefore,
the following conventions are defined:

[A packetsenttothe ARM is considered as a transmitted packet and goes
to the CPU TX queue

(1 A packet sent from the ARM is considered as a received packet and goes
to the CPU RX queue

[Apacketsenttothe ENETO portis considered as a transmitted packet and
goes to the ENETO TX queue.

[Apacketsentfromthe ENETO portis considered as areceived packet and
goes to the ENETO RX queue.

Ethernet Interface Module (EIM) 12-59

EIM Packet RAM Structure

12.8.2 Packets Memory Physical Organization

It is the responsibility of the ARM software to initialize the Packets Memory
structure and to insure coherence with the configuration values programmed
in the ESM and ENET registers.

Figure 12-43 describes a possible structure of the Packets Memory.

In this example, the ENETO RX queue has been set to a length of more than
two Ethernet maximum frame lengths. All other queues are set to a length cor-
responding to a maximum size Ethernet packet.

Other queuing strategies may be implemented. The only constraints are that
descriptors have to be aligned on an 8-byte boundary, that buffer length has
to be a multiple of 4 with a minimum of 64 bytes, and that the total number of
descriptors of each ring has to be less than 255.

Figure 12-43. Packets Memory Physical Organization

12-60

3FFFFh
7

4

L

y.
2738h

132 buffers + usage entries =

(64 + 4) * 132 = 8976 bytes

0428h

0420h

RX CPU (24 descriptors)

TX CPU (24 descriptors)))]
132 descriptors in 4 rings = 1056 bytes

RX ENETO (60 descriptors)

TX ENETO (24 descriptors)

0000h

EIM Packet RAM Structure

12.8.3 Descriptor Words

A Descriptor is an 8-byte-wide structure containing packet status and pointer
to data. Descriptor word structure is based on ENET software configuration,
with some restriction in the flags usage. The descriptor word structure is
mapped as in Figure 12-44.

Figure 12—44. Descriptor Word Structure

31 16 15 0

Desc. address + 02h Word 2 Word 3

Desc. address + 00h Word 0 Word 1

Inside a queue, each descriptor is managed sequentially. The end of a queue
is signaled by a descriptor flag (WRAP).

In the EIM Module, interrupts must be validated (INTRE=1 for each descrip-
tor). For normal operation, you do not have to manipulate the descriptor rings.
This is done in HW (Ethernet State Machine). Only the initialization is the re-
sponsibility of the software.

Figure 12-45. Buffer Usage Word Structure

31 16 15-0

Buffer usage word Use Free buff address

12.8.4 CPU TX Descriptor

Table 12-12. CPU TX Descriptor Words #0 and 1
Bit Name Host R/W Function

31 OWN R/W Ownership bit.
0=CPU, 1 =HOST

30 WRAP W Descriptor chain wrap
0 = go to the next sequential descriptor entry
1 = go to first descriptor as defined in configuration register.

29 FIF R First-In-Frame:
When set to 1, indicates that this descriptor contains the first byte
of a new frame.

Ethernet Interface Module (EIM) 12-61

EIM Packet RAM Structure

Table 12-12. CPU TX Descriptor Words #0 and 1 (Continued)

Bit Name Host R/'W Function

28 LIF R Last-In-Frame:
When setto 1, indicates that this descriptor contains the last bytes
of a new frame.

27-24 — — Reserved.
Always set to 0.
23 INTRE R Reserved.
Always set to 1.
22-11 — — Reserved
10-0 BYTES — Descriptor byte count

Table 12-13. CPU TX Descriptor Words #2 and 3

Bit Name Host R/W Function

31-0 ADDR R/W Packet Buffer Pointer Address. Only bits 15-2 will be evaluated
and modified by ESM.
Bits 31-16 won't be touched at all.
Bits 1-0 are not evaluated and are always set to zero when written
by ESM.

12.8.5 CPU RX Descriptor

Table 12-14. CPU RX Descriptor Words #0 and 1

Bit Name Host R/W Function

31 OWN R/W Ownership bit
0=CPU, 1 =HOST

30 WRAP w Descriptor chain wrap
0 = go to the next sequential descriptor entry
1 = go to first descriptor as defined in configuration register

29 FIF w First-In-Frame:
When setto 1, indicates that this descriptor contains the first bytes
of a new frame

28 LIF w Last-In-Frame:
When setto 1, indicates that this descriptor contains the last bytes
of a new frame

27-24 — — reserved

12-62

EIM Packet RAM Structure

Table 12-14. CPU RX Descriptor Words #0 and 1 (Continued)

Bit Name Host R/W Function
23 — — reserved
22-16 STATUS — Must be written with zeros.

Coming from CPU, Status don’t have sense. Anyway if any of bit
20-16 is set to one, the packet will be considered in error and so
will be discarded.

15 — — Reserved

14 PAD_CRC W Enable padding for frames < 64 bytes and regenerate CRC. For
frames > 64 bytes, enable generation of CRC for inclusion in trans-
mitted frame.

1 =pad/CRC
0 = no pad/CRC
This bit should be set only with FIF bit.

13-11 — — Reserved

10-0 BYTES W Descriptor byte count. Includes DA, SA, data length, and CRC (if
present) fields.

Table 12-15. CPU RX Descriptor Words #2 and 3

Bit Name Host R/W Function

31-0 ADDR w Data Packet Buffer Address.
Only bits 15-3 are evaluated by EIM, thought it's easier for appli-
cative software to deal with all 32 bits of pointer.

12.8.6 ENETO RX Descriptors

Table 12-16. ENETO RX Descriptor Word # 1
Bit Name Host R/W Function

31 OWN R/W Ownership bit
0 = ENET, 1 = HOST (ESM)
After initialization, descriptor has to be owned by ENET

30 WRAP W Descriptor chain wrap.
0 = Go to the next sequential descriptor entry
1 = Go to first descriptor as defined in configuration register

29 FIF R First In Frame.
When set to 1, indicates that this descriptor contains the first bytes
of a new frame

Ethernet Interface Module (EIM) 12-63

EIM Packet RAM Structure

Table 12-16. ENETO RX Descriptor Word # 1 (Continued)

Bit Name Host R/W

Function

28 LIF R

27-24 — —

23 INTRE W

22-16 STATUS R

15-11 - -
10-0 BYTES R/W

Last in Frame.
When set to 1, indicates that this descriptor contains the last bytes
of a new frame

Reserved

Interrupt Enable

1 = Generate an RX_IRQ interrupt after BYTES of data have been
received (RX) or end of a packet is received.

0 = disable interrupt

Should always set to 1

Frame Status

. Miss

: VLAN

: Long Frame error

: Short Frame error

: CRC error

: Overrun error

: Non-Octet Alignment error

ORFrRLNWbMOIO

Reserved

Descriptor buffer size set by the host to indicate the size of the data
buffer. When ENET finishes receiving a packet or fills the buffer, it
will overwrite this field with the actual received byte count.

Value set by the host must be a multiple of 64 bytes.

Table 12-17. ENETO RX Descriptor Word #2

Bit Name Host R/IW

Function

31-0 ADDR R/W

Data Packet Buffer Address
Only bits 15-3 are evaluated by EIM, although itis easier for appli-
cable software to deal with all 32 bits all pointer

12-64

12.8.7 ENETO TX Descriptors

EIM Packet RAM Structure

Table 12-18. ENETO TX Descriptor Word #1

Bit

Name

Host R/'W Function

31

30

29

28

27-24

23

22-16

15

14

OWN

WRAP

FIF

LIF

RETRY

INTRE

STATUS

PAD_CRC

R/W

Ownership bit
0 = ENET, 1 = HOST (ESM)
After initialization, descriptor has to be owned by ENET

Descriptor Chain Wrap
0 = Go to the next sequential descriptor entry
1 = Go to first descriptor as defined in configuration register

First In Frame.
When set to 1, indicates that this descriptor contains the first bytes
of a new frame

Last in Frame
When set to 1, indicates that this descriptor contains the last bytes
of a new frame

Retry Count Status
0 = Initial values
1-15 = Valid values

Interrupt Enable

1 = Generate an TX_IRQ interrupt after BYTES of data have been
transmitted (TX) or end of a packet is received.

0 = disable interrupt.

Should always set to 1

Frame Status

: Exceed Retry error
: Heartbeat (SQE)

: Late collision error

: Collision

: CRC error

: Underrun error

: Loss of carrier error

OFRLNWKOO O

Reserved

Enable padding for frames < 64 bytes and regenerate CRC.

For frames > 64 bytes, enable generation of CRC for inclusion in
transmitted frame

1 = pad/CRC

0 = no pad/CRC

Ethernet Interface Module (EIM) 12-65

EIM Packet RAM Structure

Table 12-18. ENETO TX Descriptor Word #1 (Continued)

Bit Name Host R/'W Function
13-11 — — Reserved
10-0 BYTES W Descriptor Byte Count

Includes DA, SA, data length, and CRC fields

Table 12-19. ENETO TX Descriptor Word #2

Bit Name Host R/W Function

31-0 ADDR R/W Data Packet Buffer Address
Only bits 15-3 are evaluated by EIM, althoughiitis easier for appli-
cable software to deal with all 32 bits all pointer

12.8.8 Buffer Usage Word

This word has to be present right after each Packet Buffer (at address Buff Ad-
dress + BUFSIZE). It is a 32-bit word with the following function:

Figure 12-46. Buffer Usage Table Structure

31 16 15-0

Buffer usage word Use Free buff address

Table 12—-20. Buffer Word

Bit Name Function

16 USE 0: buffer is referenced by 1 descriptor
1: buffer is referenced by 2 descriptors

15-0 FREEBUF Pointer to a free buffer if USE=1

12-66

EIM ESM Functional Description

12.9 EIM ESM Functional Description

12.9.1 Main State Machine Description

The Ethernet state machine (ESM) module is responsible for packet routing.
Its main task is to wait for an Ethernet packet available in an RX queue, look
atits Destination Address, and passitto a TX queue corresponding to the Des-
tination Address value.

The main loop of the ESM acts under control of interrupt lines of the ENET and
CPU modules signaling events in RX queues. Requests are served according
to a priority mechanism: CPU operations have priority over ENET requests.

A request is valid when all packets are in the buffer. When a request cannot
be served immediately (a destination queue is full), the ESM will pass to the
following request.

Once processing of a request has started (i.e., transfer has started), it cannot
be aborted and other requests are delayed. If an error has been flagged on a
packet, it will not be transferred; instead, it is discarded from the RX queue.

No sanity check is performed by the ESM module. If the packets and descrip-
tors structure are corrupted (no wrap bit, doubled FIF, LIF without FIF, bad
pointers, bad Buffer Usage content, etc.), unexpected behavior may occur. It
is always possible to reset the EIM to restart with clean conditions.

Ethernet Interface Module (EIM) 12-67

EIM ESM Functional Description

Figure 12-47. ESM Flow Diagram

12-68

Reset
Select_
RX_Queue
RX available
No LIF
Test_ Pending
RX_Queue RX
available
LIF
Evaluate_Dest
Not
ready Check_First_Desc_
TX_Queue
TX queues ready
Last
done
Transfer_Desc
Done T
queue
Check_ ready
TX_Queue
ot ready
Wait_
TX_Event
TX event

EIM ESM Functional Description

12.9.2 Reset State

The state machine enters this state when the EIM is reset or when the ESMEN
bit of the EIM_CTRL register is cleared. When leaving this state, all state ma-
chine internal registers (queues pointers, status, etc.) are cleared.

12.9.3 Select_ RX_Queue State

All RX events (new descriptors available) are monitored if enabled by the cor-
responding bit in ESM control register.

Events are registered if they can be processed immediately.

Once an event has been selected, the state machine goes into
Test_ RX_Queue state. If the packet cannot be routed in following states, (TX
queue not ready), the state machine goes back to the Select RX_Queue and
marks the queue as “waiting”.

When several events are available at the same time, the following arbitration
scheme is applied:

(1 CPU event has the highest priority if queue is not marked as waiting

(1 CPU waiting event has the highest priority one time over two and the low-
est in the other case

Once an RX queue has been selected, the state machine goes into

Test RX_Queue state or in Evaluate Dest state, if the queue is a waiting one.
12.9.4 Test RX_Queue State

The current descriptor of the current RX queue is read.

If any error status is set (bits 16 —20 of DWO01), an error flag is set for the current
queue (for future use).

If the FIF bit is set, the descriptor address is stored as the Start address of the
packet.

If the LIF bit is set, a full packet is available in the RX queue and the state ma-
chine goes into Evaluate _Dest state.

Inthe other case, the state machine goes back to the Select RX_Queue state.

Ethernet Interface Module (EIM) 12-69

EIM ESM Functional Description

12.9.5 Evaluate Dest State

The first descriptor of the packet is read and stored in an internal register.

Six first-bytes of the packet buffer (packet Destination Address) are read and
matched with CPU rules when coming from RX-ENETO queue:

[CPU Destination: Destination Address is matched against the value of
DA_CPU register.

[J Broadcast: Destination Address is matched against the value
FF:FF:FF:FF:FF:FF.

[Logical Address: Destination Address matching is done by ENET module.
Result is stored in MISS bit of RX descriptor.

[Multicast Address: Destination Address is matched against the Multicast
Filter Mask Register. The Destination Address must verify DA and
MVF = MFM.

[Multicastand Logical: This rule is true when Logical Address and Multicast
Address rules are both true.

Destination queues are evaluated:

[Packetis sentto TX-CPU if any of the previous rules are activated and if
this rule is enabled in the CPU Filtering Control Register.

[Packetis sentto TX-ENETO if coming from RX-CPU queue.

If these operations have already been performed on the current packet, the
machine goes directly in Check_First Desc_TX_ Queue state.

If any descriptor has been flagged in error, this state is skipped and the ma-
chine goes directly in Check_First_Desc_TX_Queue state.

12.9.6 Check_First_Desc_TX_ Queue State

12-70

Current RX queue will be routed to 1, 2, or 0 (Packet is in error) TX queues.
Current descriptor of selected TX queues are read to check ownership.

If ESM has ownership of current descriptor over all involved TX queues (or if
there is no TX queue), the machine goes to Transfer_Desc state.

Inthe other case, RX queue is flagged as “waiting” and the machine goes back
to Select_RX_Queue state.

EIM ESM Functional Description

12.9.7 Transfer_Desc State

This state is the core of the ESM operation. Its responsibility is to transfer the
RX descriptor pointer to TX descriptors and manage the free buffer entries.

The state manages only one descriptor. The loop over all packet descriptors
is done through the Check TX Queue state (see Section 12.9.8 on
page

When entering this state, TX queues are known to be owned by the ESM mod-
ule.

ESM packet routing is performed in the following three steps:

Step 1: Retrieval of Free Buffer in Destination Descriptors
This operation is done on each concerned destination descriptor (0, 1, or 2).

The destination register buffer address is read and its corresponding Buffer
Usage Table entry is read. The following conditions apply, depending on the
USE value:

(1 When USE = 0, this buffer is only referenced once.

(1 When USE = 1, this buffer is referenced in another descriptor. FREEBUF
is used as a free buffer and USE is cleared.

(1 When completed, one free buffer per destination is available.

Ethernet Interface Module (EIM) 12-71

EIM ESM Functional Description

Figure 12-48. Free Buffer Retrieval

B Unused buffer l’O XXX B Unused buffer 0 | XXX 0 | XXX
D Unused buffer 0 | XXX D Unused buffer 0 | XXX 0 | XXX
A Packet data 0 | XXX A Packet data 0 | XXX 0 | XXX
C Packet data 1| D C Packet data 1| D 0| D
1
Packet buffers Buffer usage Packet buffers Buffer usage Buffer usage
entries entries entries
L L Before After
Destination queue: Destination queue:
free descriptor free descriptor
XXXX B XXXX C Free buffer = D
Free buffer =B
Casel Case 2

12-72

EIM ESM Functional Description

Step 2: Copy of Source Descriptor

The source descriptor is read.

The destination descriptor is built as follows:

I Ny 1y N R B

U

OWN bit is set to O (owner is ENET)
WRAP bit is not modified

FIF and LIF are copied from RX descriptor
RETRY is set to 0000

INTRE is setto 1

STATUS is set to 0000000

PAD_CRC is copied from RX descriptor if RX queue is RX-CPU, and set
to zero in other cases

BYTES is copies from RX descriptor

If two destinations are selected, the USE flag is set and the Free buffer entry
is set to the value of the second stored free buffer retrieved during the previous
step.

Ethernet Interface Module (EIM) 12-73

EIM ESM Functional Description

Figure 12-49. Copy of Source Descriptor to Two Destinations

0 | XXX Temporary free buffer list
(2 entries)
B C

0 [XXX

T

B Unused buffer 0 | XXX
D Unused buffer 0 | XXX
Packet data 0 | XXX
Packet data 0 | XXX

Packet buffers

Buffer usage

v
A
[o9)

0 | XXX

Buffer usage

entries entries
Before After
Source descriptor Destination descriptor 1 Destination descriptor 2
(if needed)
STATUS A XXXXXX B XXXXXX C
Before
STATUS A 000000 A 000000 A
After

12-74

EIM ESM Functional Description

Figure 12-50. Copy of Source Descriptor to a Single Destination

B Unused buffer 0| XXX
D Unused buffer 0] XXX
A Packet data 0] XXX
C Packet data 0| D
Packet buffers Buffer usage
entries
Source descriptor Destination descriptor
STATUS A XXXXXX B
\Before
STATUS A 000000 A

After
Step 3: Free Buffer Allocation to Source Descriptor

The first retrieved free buffer pointer is stored in the source descriptor. Owner-
ship of the source descriptor is given back to the ENET/CPU.

Ethernet Interface Module (EIM) 12-75

EIM ESM Functional Description

Figure 12-51. Free Buffer Allocation to Source Descriptor

B Unused buffer 0 | XXX
D Unused buffer 0 | XXX
Temporary free buffer list
A Packet data 1| B (2 entries)
C Packet data 0| D XXX D
Packet buffers Buffer usage
entries

Source descriptor

STATUS A

Before

STATUS D

After

12.9.8 Check TX Queue State
Current descriptor of selected TX queues are read to check ownership.

If the ESM has ownership of current descriptor over all involved TX queues (or
if there is no TX queue), the machine goes to Transfer_Desc state.

In the other case, the machine goes to the Wait_TX_ Event state.

12.9.9 Wait_TX Event State

This state generates only a transient before looping back in Transfer_Desc
state.

12-76

EIM Operation

12.10 EIM Operation

12.10.1 Setting Up

EIM initialization by the CPU must be done in the following three steps:

Step 1. Packet Buffer Memory Initialization
The packet buffer memory initialization is as follows:

[Software has to initialize the descriptor ring structures according to the
proposed organization described in Section 12.8.2, Packets Memory
Physical Organization, or customize it (with more or less buffers on some
gueues, with a different packet size, etc.).

[Descriptor flags have to be initialized according to values described in
Section 12.4.1, TX Descriptor Ring, on page 12-22 and in Section 12.4.2,
RX Descriptor Ring, on page 12-26.

(1 Buffer Usage Entries have to be initialized to zero.

Step 2: ESM Initialization
The ESM initialization is as follows:

(1 PacketMemory Registers have to be initialized according to the configura-
tion performed above.

[All used ports have to be enabled in the ESM control register.
(1 ESM itself has to be enabled, if needed.

(1 Routing rules for CPU ports have to be initialized.

Step 3: ENETO Initialization
The ENETO initialization is as follows:

(1 The Mode/Backoff, Seed/Backoff, Count/TX, Flow Go/Flow, and Control/
VTYPE/RIing Poll Interval registers have to be set according to the
operating configuration. IEEE802-3, Auto-negotiation, is beyond the
scope of this document and has to be managed by another software layer,
talking directly to the MII.

(] Base Addressregisters have to be setaccording to Packet RAM mapping.

Ethernet Interface Module (EIM) 12-77

EIM Operation

EIM Start-Up

[The Logical Address Hash Filter register has to be initialized according to
applicable needs.

[0 The ENET has to be set in Promiscuous and Logical Addressing modes
in the Address Mode Enable Register.

The EIM start-up is as follows:

(1 ESM hasto be enabled by setting both the ESMEN and CPU_ENETO_EN
bits, if needed.

(1 The ENET has to be started by setting the ENABLE bit in its MODE regis-
ter.

12.10.2 Packets Operation

Software has to maintain two pointers to the current RX-CPU and TX-CPU
descriptors. At initialization time, they have to be set to the first descriptors of
each queue, and they have to be incremented each time a descriptor owner-
ship is given to the ESM.

Packet Transmission

12-78

The Packet has to be filled into the RX-CPU queue.

The CPU initially must verify that it has ownership of a descriptor. In any case,
a descriptor owned by ESM must be manipulated by software.

FIF, LIF, and CRC_PAD have to be set correctly on each involved descriptor
regarding the current packet.

TXinterrupt can be programmed to be generated after each descriptor release
or only after the release of the last descriptor.

Ownership of descriptors should be setto ESM at once after all packets have
been filled in the queue, or descriptor-by-descriptor. Contrary to ENET behav-
ior, if the software is late in giving the ownership to the ESM, this will not lead
to underruns, since the packet is switched only when it is fully available in RX
queue.

Each time a descriptor is closed, the software has to increment its current TX
descriptor pointer. Moreover, software has to advert it to the ESM by writing
into the EIM CPURX_RDY register.

Packet Reception

Interrupts

EIM Operation

There is no feedback about the success or failure in transmitting the packet
by the ENET. This responsibility is delegated to upper layer software (like
TCP).

Received packets can be held in wait loops under interrupt control or by polling
the ownership bit of the current TX-CPU descriptor.

When a descriptor ownership is given to software, a packet (or a fragment of
a packet) is available for read. All descriptors have to be read sequentially up
to the detection of the LIF bit (with wait loops on each descriptor for ownership).

When data has been read, the descriptor should be given back to the ENET.
This can be done descriptor by descriptor or when all packets have been read;
however, itis better to give ownership back for each descriptor as soon as pos-
sible to avoid wait loops in the ESM, if receiving bursts for CPU.

Multicast subscribing/unsubscribing can be done at any time by computing the
logical address hash filter value and by reprogramming the ENET.

In a standard application, only CPU_Interrupts are useful to process.

ENETO_ERR flags can be monitored to check an eventful problem on Ethernet
ports, but no real action can be decided on.

In the same way, ENETO_RX/TX flags give a heartbeat of Ethernet traffic.

Ethernet Interface Module (EIM) 12-79

ENET Operation

12.11 ENET Operation

12.11.1 Setting Up

ENET DMA operations are limited to the 16 KB Packet RAM. The ENET can-
not see the whole ARM memory space. Bits 31 — 16 of addresses are not sig-
nificant.

ENET interrupts are grouped into one EIM interrupt. Interrupt Status is acces-
sible through the EIM Status register.

ENET initialization by CPU must be done in the following three steps:
1 RXand TX queues initialization

(O Configuration registers initialization

(10 ENET start by setting the enable bit of the Mode register

The actual values to be filled into descriptors and registers is greatly depen-
dent upon the application. See the previous ENET sections for more informa-
tion.

IEEE802-3, Auto Negotiation, which is beyond the scope of this document, has
to be managed by another software layer talking directly to the MiIl.

12.11.2 Packet Operations

CPU software has to maintain two pointers to the current RX and TX descrip-
tor. At initialization time, they have to be set to the first descriptors of each
gueue, and they have to be incremented each time a descriptor ownership is
givento the ENET. Wraps have to be manipulated by software just asitis done
by ENET.

Packet Transmission

12-80

The Packet has to be filled into TX queue.

The CPU initially must verify that it has ownership of a descriptor. In any case,
a descriptor owned by ENET must not be manipulated by software.

FIF, LIF, and CRC_PAD have to be set correctly on each involved descriptor
regarding the current packet.

TXinterrupt can be programmed to be generated after each descriptor release
or only after the release of the last descriptor.

Packet Reception

Ownership of descriptors should be setto ENET at once after all packets have
been filled in the queue, or descriptor-by-descriptor. In the last case, it is the
responsibility of the software to be able to give back ownership in rate with the
descriptor requests made by ENET during transmission.

Failing to insure this point leads to an underrun condition.

Each time a descriptor is closed, the software has to increment its current TX
descriptor pointer.

When a descriptor is given back to software by ENET (this can be detected
with TX interrupts or by polling the ENET Status bits), statistics can be col-
lected by looking at the status bits in the descriptor and at the System error
status flag.

Received packets can be waited under interrupt control if the RX interrupt has
been enabled for each RX descriptor or by polling the ownership bit of the cur-
rent RX descriptor.

When a descriptor ownership is given to software, a packet (or a fragment of
a packet) is available for read. All descriptors have to be read sequentially up
to the detection of the LIF bit (with waiting loops on each descriptor for owner-
ship).

When data has been read, the descriptor should be given back to the ENET.
This can be done descriptor-by-descriptor or when all packets have beenread;
however, it is better to give ownership back to each descriptor as soon as pos-
sible to be used by ENET for further receptions and minimize the risk of over-
runs.

When reading a descriptor, statistics can be collected by looking at the status
bit in the descriptor and at the System error status flag.

Ethernet Interface Module (EIM) 12-81

Chapter 13

Initialization Protocol

This chapter explains hardware logic reset, ARM code downloading, and DSP
Boot mode.

Topic Page

13.1 Initialization Protocol i 13-2

13-1

Initialization Protocol

13.1 Initialization Protocol

13.1.1 Hardware Logic Reset

The chip receives one external reset signal (active low) RESET that initializes
all digital logic modules. The RESET_OUT signal can be used to reset external
peripherals under control of the ARM.

Table 13-1. Reset Management

. ARM
Activated External Reset
Reset Signal ARM Reset LEAD Reset Modules (RESET_OUT)
Reset
RESET Yes Yes Yes Yes
RST_CMD Yes No Yes No
watchdog
GV RS No Yes No No
(lead_reset)
CNTL_RST No No No Yes

(ext_reset)

CNTL_RST is a control register mapped in the MCU memory space.
After an ARM reset, the ARM program counter points to 0000:0000 address.
After a DSP reset, the DSP program counter begins execution from 0xFF80.

Each ARM module implements in its control register a software reset bit that
can be activated by the ARM processor. By default, these bits are set as soon
as the ARM reset is activated.

13.1.2 ARM Code Downloading

In debug mode, when external RAM is used to replace Flash or ROM, the pro-
gram code is downloaded via the JTAG facilities. ROM or EPROM devices
must be programmed before assembly.

13-2

Initialization Protocol

13.1.3 DSP Boot Mode

When the DSP comes out of reset, it begins execution from OxFF80. Before
releasing the DSP from reset, the ARM can program the DSP memory that is
mapped to the OXFF80 location. This is done by setting the DSP_mpnmc and
DSP_apibn bits in the DSP_REG ARM memory-mapped register. Table 13—-2
shows the possible options for the DSP boot memory.

Table 13-2. DSP Boot Memory

DSP_mpnme DSP-REGI9] (DSP_APIBN),

BSCR[4] (ABMDIS)t DSP Boot Memory
0 0 (both) API memory

0 1 (both or any) On-chip RAM

1 0 (both) API memory

1 1 (both or any) External DSP memory

T“Both” implies that DSP_APIBN, as well as ABMDIS, are set to the same value. “Any” implies
that one of the fields, DSP_APIBN or ABMDIS, is set.

Initialization Protocol 13-3

abort sequence, UART IRDA,

address checking, UART IRDA [8-51 |

addressing modes, ENET module

API boot mode,

DSP memory map,

API boot mode DSP subsystem memory map, DSP
accesses when DSP_APIBN = 0 or ABMDIS =0,
table,

architecture, TMS320VC547x,[2-1 |

ARM
accesses through the system (internal) bus,

memory space,

table,[2-23 |

peripheral interrupt mapping
diagram,

peripherals,| 2-35 |
ARM general-purpose 1/0,{2-36 |
GPIO control/status bits,|2-37 |
GPIO_IRQ bit definitions,[2-37 |
clock management (CLKM),[2-41 |
ARM clock,[2-44 |
Audio clock
DSP clock,{2-43
serial port interface (SPI),|2-39
timers (TIMERs),
ARM code downloading,
ARM core, overview,[2-21 |

ARM general-purpose /0 (GPIO),[2-36 |
control/status bits, table,|2-37 |
GPIO_IRQ bit definitions, table,[2-37 |

ARM memory space,|3-23

table,|3-23

ARM memory-mapped registers,|4-7

Index

ARM Port Interface, bus interface,
computing the wait state,lm
example, 16-bit transaction,|3-6
example, 32-bit transaction,|3-7
operating speeds,|3-5 |
ARM port interface (API),
ARM registers,[2-25 |
peripheral memory mapped registers, table,
ARM serial port interface signals, table,
ARM7TDMI, overview,| 2-21 |
ARM7TDMIE,|2-22 |
core overview,| 2-21 |
emulation features,[2-22 |
asynchronous transparency, UART IRDA [8-47 |
autobauding mode, UART modem inteface,

beginning-of-file length register,
(UART_IRDA BLR),[8-38 |
block diagram

EIM (Ethernet interface module),|12-3 |
ENET module,|12-7 |

logical address filter implementation, 12-20
MAC (media access controller), receive block,

SPI (Serial Port Interface),
TMS320VC547x,[2-4 |
UART Modem Interface,[9-32 |

break condition, UART modem inteface,
buffer memory unit, ENET module,
buffer organization, ENET module,
buffer usage table structure, figure,
buffer usage word,

buffer usage word structure, figure,
buffer word, EIM, table,

Index-1

Index

chip selects, sample configurations,|3-22 |
chipset, TMS320VC547x, functional overview,[2-2 |

CLKM (clock manaement),
ARM clock,|2-44 |
Audio clock,|2-44 |
DSP clock,[2-43 |

clock frequencies,[2-43 |
clock management, Master 12C Interface| 11-18
clock management (CLKM),|2-41 |

ARM clock,|2-44 |
Audio clock,|2-44 |
DSP clock,[2-43 |

configuration, ENET module,

control registers interface, ENET module,[12-9 |
CPU RX descriptor,

CPU RX descriptor words 0 and 1,
CPU RX descriptor words 2 and 3,
CPU TX descriptor[12-61 |

CPU TX descriptor words 0 and 1,

CPU TX descriptor words 2 and 3,
CRC generation, UART IRDA,[8-47 |

data reception, MAC (media access controller),

ENET module,|12-9 |

data transmission, MAC (media access controller),
ENET module) 12-14

decoder, UART IRDA,|8-50 |

decoder timing diagram, UART IRDA,[8-50 |

descriptor
copy of source descriptor to a single destination,

figure,
copy of source descriptor to two destinations,
figure,
free buffer allocation to source descriptor, figure,
free buffer retrieval, figure,

descriptor words,12-61
structure, figure,12-61
descriptors | 12-59

Index-2

descriptors structure, EIM (Ethernet interface
module)[12-22]

direct memory access (DMA), controller,

divisor for 115k-baud generation,
(UART_DIV_115K),[9-23 |

divisor for 115K-baud generation register,

(UART_IRDA_DIV_115K),[8-29 |
divisor for 115k-baud generation register,
(UART_IRDA_DIV_llSK),
divisor for baud-rate generation,
(UART_DIV_BIT_RATE),[9-24 |
divisor for baud-rate generation register,
(UART_IRDA_DIV_BIT_RATE),8-29 |
DMA controller, ENET module,
DSP boot memory,
DSP boot mode,
DSP interrupt mapping, table,
DSP memory map, APl boot mode,
DSP memory spac
API boot mode,|2-9 |
API boot mode subsystem memory map, DSP
accesses when DSP_APIBN =0 or

ABMDIS =0, table,
extended program memory, 2-11
extended program memory map, figure,[2-12
normal mode DSP memory map,
on-chip RAM,
relocatable interrupt vector table,[2-12 |

subsystem memory map, DSP accesses when
DSP_APIBN = 1 or ABMDIS = 1, table,[2-8 |

DSP registers,
peripheral memory mapped registers, table,
DSP subsystem
CPU core, associations,|2-6
overview,
peripherals,|2-15 |
ARM port interface (API), i,
direct memory access controller DMAC),
external memory interface, i,
hardware timer, i,
multichannel buffered serial ports (MCBSPs),
software programmable wait-state generator, i,
DSP subsystem features,|2-5

DSP subsystem memory map, DSP accesses when
DSP_APIBN = 1 or ABMDIS = 1, table,[2-8 |

EIM (Ethernet interface module),|12-1
block diagram,|12-3
descriptors structure,
ENET buffer memory unit,|12-7 |

buffer organization, figure,[12-7 |
single-port RAM, figure [12-8 |
ENET functional description,| 12-6 |
addressing modes, 12-20 |
block diagram,|12-7 |
configuration, 12-21
control registers interface,[12-9
DMA controller,[12-8 |
ENET interrupts
flow control
generation of TX flow control command frame,
12-19
loop back,12-18

media access controller,|12-9
data reception,
data transmission|12-14
12-6

overview,
statistics block, 12-18 |
TX pause operation, 12-19 |
ENET operation|12-80 |
packet operations
packet reception, 12-81 |
packet transmission | 12-80
setting up12-80 |
ENET peripheral registers, 12-30
ENETO registers, table,
ENETO registers
EIM ENETO address mode enable register
(EIM_ADR_MODE_E0)[12-57 |
EIM ENETO descriptor ring poll interval count
register (EIM_DRP_EO0)[12-58]
EIM ENETO backoff count register
(EIM_RBOF_CNT_E0)[12-49 |
EIM ENETO backoff seed register
(EIM_NEW_RBOF_E0)[12-48]
EIM ENETO destination physical address
match register, low word (EIM_PARO_EOQ),
EIM ENETO destination physical address
register, high word (EIM_PARl_EO)
EIM ENETO flow control register
(EIM_FLW_CNTRL_E0)[12-51 |

Index

EIM (Ethernet interface module) (Continued)
ENETO registers (Continued)
EIM ENETO logical address hash filter
register, high word (EIM_LAR1_E0)[12-56 |
EIM ENETO logical address hash filter
register, low word (EIM_LARO_EO)
EIM ENETO MODE register
(EIM_MODE_E0)[12-46 |
EIM ENETO receive descriptor base address
register (EIM_RDBA_E0)[12-55 |
EIM ENETO system error interrupt register
(EIM_SE_SR_E0)[12-53 |
EIM ENETO transmit descriptor base address
register (EIM_TDBA_E0)[12-54 |
EIM ENETO transmit descriptor buffer ready
register (EIM_TX_BUF_RDY_E0)[12-54 |
EIM ENETO TX flow pause count register
(EIM_FLW_CNT_E0)[12-50 |
EIM ENETO VTYPE tag register
(EIM_VTYPE_EO0)[12-52 |
ENETO MIl interface signals, table,
ESM functional description

copy of source descriptor to a single

destination

copy of source descriptor to two destinations,
figure

ESM flow diagram

free buffer allocation to source descriptor,

free buffer retrieval, figure,

ESM peripheral registers

EIM CPU destination address register, high
word (EIM_CPUDA_1)[12-38 |

EIM CPU destination address register, low
word (EIM_CPUDA_0)[12-38 |

EIM CPU filtering control register
(EIM_FILTER)[12-37 |

EIM CPU RX queue current pointer register
(EIM_CPU_RX_DESC)[12-45 |

EIM CPU TX queue current pointer register
(EIM_CPU_TX_DESC)[12-44 |

EIM ENETO RX queue current pointer register
(EIM_ENETO_RX_DESC)[12-44 |

EIM ENETO TX queue current pointer register
(EIM_ENETO_TX_DESC)[12-43 |

EIM ESM control register (EIM_CTRL)[12-32 |

EIM ESM status register (EIM_STATUS),

Index-3

Index

EIM (Ethernet interface module) (Continued) EIM (Ethernet interface module) (Continued)
ESM peripheral registers (Continued) operation
EIM multicast filter mask register, high word EIM start-up -
(EIM_MFM_1)[12-40 | ENET operation|12-80
EIi\éiEr:il\L/lilti'\(;l?:sl\t/l filét)er Eazi(; register, low word packet operations [12-80
_ _ -' acket reception) 12-81 |
EIM multicast filter valid register, high word Sacket transpmiss
(EIM_MFV_1)[12-39] setting up[12-80 |
EIM multicast filter valid register, low word interruptgs
(E|M—MFV—O) , packet reception[12-79 |
EIM packet buffer size register packet transmission,
(EIM—BUFSIZE)’ packets operation[12-78 |
EIM RX CPU ready register .
(EIM_RX_CPU_RDY)[12-41 | setting up[12-77 |
EIM RX descriptors base address register overview,[12-2 |
(ElM_CPURXBA), packet RAM StrUCtUre,
EIM RX ESM interrupt enable register buffer usage table structure [12-66 |
(EIM_INT_EN), buffer usage Word,
EIM RX threshold register (EIM_RXTH), buffer usage word structure, figure[12-61 |
buffer word, table[12-66 |
EIM TX descriptors base address register CPU RX descriptor,
(EIM_CPUTXBA)[12-34 | CPU RX descriptor words 0 and 1[12-62
table[12-29 | CPU RX descriptor words 2 and 3[12-63
Ethernet inten_‘ac_e signals, CPU TX descriptor,
general description, CPU TX descriptor words 0 and 1) 12-61

Imtglelzzazon tialyctkt:aet t():u?ftér memory initialization CPU TX descriptor words 2 and 3, 12-62
P P y ’ descriptor word structure, figure[12-61

12-77 .
step 2 — ESM initialization| 12-77 descriptor words{12-61

step 3 — ENETO initialization| 12-77 | ENETO RX descriptor|12-63
interface signals, ENETO MI1,[12-5 | ENETO RX descriptor word 1, 12-63
logical address filter implementation, figure, ENETO RX descriptor word 2|12-64
ENETO TX descriptor, 12-65
MAC receive block, functional diagram|12-10 | ENETO TX descriptor word 1)12-65
MAC transmit block, functional diagram)12-14 ENETO TX descriptor word 2)12-66
main state machine description. logical organization
check_first_desc_TX_queue state)12-70 physical organization,
check_TX_queue state[12-76 table [12-60 |
copy of source descriptor, 12-73 | peripheral register tables[12-29 |
evaluate_dest state _ RX descriptor ring[12-26 |
free buffer allocation to source descriptor, RX descriptor word 0] 12-26
RX descriptor word 1[12-27
reset state[12-69 | P ‘
retrieval of free buffer in destination RX descriptor word 2,12-27
descriptors[12-71 | RX descriptor \rvord 3[12-27
select RX_queue state[12-69 | TX descriptor ring{12-22 |
test_RX_queue state TX descriptor word 0 12-22

transfer_desc state|12-71 TX descriptor word 1/12-24
wait_TX_event state|12-76 TX descriptor word 2 12-24
memory map, 12-59 TX descriptor word 3)12-25

Index-4

EIM ESM functional description, 12-67

copy of source descriptor to a single destination,

figure

copy of source descriptor to two destinations,
figure

ESM flow diagram,

free buffer allocation to source descriptor, figure,

free buffer retrieval, figure,
EIM ESM peripheral registers
EIM internal memory map,
EIM peripheral register tables,
encoder, UART IRDA,[8-49 |
encoder timing diagram, UART IRDA,
ENET initialization by the CPU

packet operations, 12-80
packet reception, 12-81
packet transmission| 12-80

setting up, 12-80
ENET operation 12-80
packet operations, 12-80

packet reception, 12-81
packet transmission| 12-80

setting up, 12-80
ENETO reisters,
tabIe
ENETO RX descriptor[12-63 |
ENETO RX descriptor word 1
ENETO RX descriptor word 2
ENETO TX descriptor word 1,
ENETO TX descriptor word 2,
ENETO TX descriptors,
enhanced feature register
(UART_EFR)[9-19]
(UART_IRDA_EFR),[8-24 |
ESM
functional description,

main state machine description) 12-67
check_first_desc_TX_queue state|12-70

check_TX_queue state[12-76
copy of source descriptor) 12-73
evaluate_dest state,12-70

free buffer allocation to source descriptor,

reset state12-69 |

retrieval of free buffer in destination
descriptors[12-71 |

select RX_queue state,

Index

ESM (Continued)

main state machine description (Continued)
test_RX_queue state| 12-69
transfer_desc state|12-71
wait TX event state12-76

step 1 of three steps to perform
copy of source descriptor,
free buffer allocation to source descriptor,

retrieval of free buffer in destination
descriptors,
ESM peripheral registers,

table
Ethernet interface module (EIM),
Ethernet interface signals,
extended program memory, DSP subsystem,
extended program memory map, DSP subsystem,
figure,
external memory interface,

FIFO control register
(UART_FCR),[9-9
(UART_IRDA_FCR)[8-11 |

flow control, ENET module

functional block diagram
UART IRDA,|8-45 |
UART modem interface,

functional description, UART modem interface,|9-33 |
autobauding mode,[9-36
break condition,[9-34
hardware flow control,|9-35

interrupts,[9-33
table,| 9-34

software flow control,| 9-35
general features,

time out,[9-34 |
trigger levels,|9-33 |

general-purpose 1/O (GPIO),
general-purpose I/O module (GPIO),

control status bits,
functional description,|7-2 |

Index-5

Index

general-purpose I/0O module (GPIO) (Continued)

GPIO registers,|7-5 |
GPIO_CIO,|7-6 |
GPIO_DDIO,|7-9 |
GPIO_EN,
GPIO_I0,|7-5
GPIO_IRQA,|7-7
GPIO_IRQB,|7-8
IRQA/IRQB value interpretations,|7-8

GPIO/KBGPIO registers, list,|7-4 |

GPIO_IRQ bit definitions,|7-3

I/Os, table,[7-19 |

KBGPIO registers, 7-11 |
KBGPIO_CIO,[7-12 |
KBGPIO_DDIO,|7-15 |
KBGPIO_EN,[7-16 |
KBGPIO_IO[7-11 |
KBGPIO_IRQA [7-13 |
KBGPIO_IRQA/IRQB value interpretations,
KBGPIO_IRQB,

keyboard connection,[7-17
figure,[7-18

keyboard scanning sequence,[7-17 |

general-purpose peripherals,[2-42 |

GPIO (general-purpose 1/0 module),

control status bits,

functional description,|7-2 |

GPIO registers,|7-5 |
GPIO_CIO,|7-6 |
GPIO_DDIO,[7-9 |
GPIO_EN,
GPIO_10,[7-5
GPIO_IRQA,|7-7
GPIO_IRQB,|7-8
IRQA/IRQB value interpretations,|7-8

GPIO/KGPIO registers, Ii

GPIO_IRQ bit definitions,|7-3

I/Os, table,

KBGPIO registers, 7-11 |
KBGPIO_CIO,[7-12 |
KBGPIO_DDIO,[7-15 |
KBGPIO_EN,[7-16 |
KBGPIO 10, 7-11 |
KBGPIO_IRQA [7-13 |
KBGPIO_IRQA/IRQB value interpretations,
KBGPIO_IRQB,[7-14 |

Index-6

GPIO (general-purpose 1/0 module) (Continued)
keyboard connection,[7-17

figure,[7-18

keyboard scanning sequence,[7-17 |
GPIO (general-purpose I/O),

hardware flow control, UART modem inteface,[9-35 |

hardware timer,| 2-20 |
/0

ARM general-purpose 1/0,{2-36 |
GPIO control/status bits, table,|2-37 |
GPIO_IRQ bit definitions, table,[2-37 |

I2C Interface

clock management] 11-18

FIFO management| 11-17

FIFO management state, figure| 11-17 |

general description 11-2
main features, 11-2 |
overview,

I/O description,11-8 |

I2C bus protocol terminology, table[11-7

interrupt management] 11-18
register descriptions 11-9
table11-9 |

registers
address register, (ADDRESS_REG)| 11-10
command register, (CMD_REG)| 11-12

configuration clock functional reference

register, (CONF_CLK_REF_REG)[11-14

configuration clock register,
(CONF_CLK_REG)[11-13 |

configuration FIFO register,
(CONF_FIFO_REG)[11-13

data read register, (DATA_READ_REG)| 11-11

data write register, (DATA_WRITE_REG),
11-11
device register, (DEVICE_REG)| 11-10

status activity register,

(STATUS_ACTIVITY_REG)[11-16

status FIFO register, (STATUS_FIFO_REG),

I2C Interface (Continued)

signals, table,11-8

standard 12C bus protocol| 11-5 |
ILR_IRQ_O (interrupt level register O),
initialization protocol,
INT_CTRL_REG (interrupt control register),
interrupt control register (INT_CTRL_REG),

interrupt enable register, (UART_IER),[9-17 |

interrupt enable register — SIR mode,
(UART_IRDA _IER),[8-21 |

interrupt enable register — UART mode,
(UART_IRDA_IER),{8-20 |

Interrupt Handler .
functional description,|4-2
internal registers,|4-5
interrupt sequence,|4-6
MCU interrupts,|[4-3 |

interrupt level register 0 (ILR_IRQ_0),|4-15 |

interrupt level registers,[4-14 |

interrupt management,[2-47 |

interrupt priority level, identical,[4-15 |

interrupt register (IT_REG),

interrupt status register, (UART_ISR),[9-18 |

interrupt status register — SIR mode,
(UART_IRDA_ISR),|8-23 |

interrupt status register — UART mode,
(UART_IRDA _ISR),[8-22 |

interrupts

DSP,[2-47 |
MCU,[2-48 |

UART modem inteface, table,|9-34 |

UART modem interface,[9-33 |
introduction

TMS320VC547x,[1-1 |

TMS320VC547x functional overview,|2-2

TMS320VC547x general description,|1-2
VC547x key features,[1-2

IrDA frame format, UART IRDA,[8-47 |

IrDA SIR mode,|8-3 |
features,|8-4 |

IrDA/SIR background,
IRQ sleep register (IRQ_SLEEP_REG),[4-13 |

Index

IRQ_SLEEP_REG (IRQ sleep register),[4-13 |
IT_REG (interrupt) register,

keyboard

connection,[7-17 |
figure,[7-18 |
scanning sequence,[7-17 |

line control register, (UART_LCR),

line control register — UART mode only,
(UART_IRDA_LCR),[8-14 |

line status register, (UART_LSR),

line status register — SIR mode only,
(UART_IRDA_LSR),[8-16 |

line status register — UART mode only,
(UART_IRDA_LSR),[8-15 |

logical address filter implementation, ENET module,

loop back, ENET module

MAC (media access controller), ENET module,

main state machine description
check_first_desc_TX_queue state,12-70
check_TX_queue state)12-76 |

EIM ESM{12-67
evaluate_dest state,12-70
reset state|12-69

Select_RX_queue state [12-69
test_RX_queue state) 12-69 |
transfer_desc state, 12-71 |
wait_TX_event state
mask interrupt register (MASK_IT_REG),
MASK_IT_REG (mask interrupt register),[4-10 |
Master 12C Interface[11-1
clock management| 11-18
FIFO management) 11-17
FIFO management state, figure| 11-17 |
general description,| 11-2
main features, 11-2 |
overview,
I/O description,[11-8 |
12C bus protocol terminology, table[11-7 |

Index-7

Index

Master 12C Interface (Continued)
interrupt manageme
register descriptions, 11-9 |

table [11-9 |

registers
address register, (ADDRESS_REG)
command register, (DMD_REG)
configuration clock functional reference

register, (CONF_CLK_REF_REG)] 11-14

configuration clock register,

(CONG_CLK_REG)[11-13

configuration FIFO register,

(CONF_FIFO_REG)[11-13

data read register, (DATA_READ_REG)| 11-11

data write register, DATA_WRITE_REG),
device register, (DEVICE_REG)
status activity register,
(STATUS ACTIVITY_REG)[11-16 |
status FIFO register, (STATUS_FIFO_REG),
resets
hardwar
software
signals, table|11-8
standard 12C bus protocol] 11-5

MCU interrupts,

MEMINT (memory interface),
function,
system (internal) bus,
ARM accesses,
terminology,
waveforms,[3-37 |

memory interface (MEMINT),
external memory interface,
Flash (ROM) and SRAM, features,|3-9
ROM (Flash) and SRAM,[3-8]
memory interface signals,
function,
registers
ARM Port Interface wait-state configuration
register, (API_REG),[3-13 |
bank switching configuration register,
(BS_CONFIG)[3-19]
external memory control register for
CS0-CS3, CS4 memory range,

(CS0-4_REG),[3-10 |

Index-8

memory interface (MEMINT) (Continued)
registers (Continued)
SDRAM data bus size control register,
(SDRAM_REG),3-183-29 |
table,

system (internal) bus,
ARM accesses,|3-4
terminology,
waveforms,|3-37 |
memory map, EIM|12-59

memory space, C54x DSP,[2-7 |

API boot mode,

DSP memory map,

API boot mode subsystem memory map, DSP
accesses when DSP_APIBN = 0 or
ABMDIS = 0,{2-10 |

extended program memory, 2-11

extended program memory map, figure,[2-12

normal mode DSP memory map,

on-chip RAM,[2-7]

relocatable interrupt vector table,[2-12 |

subsystem memory map, DSP accesses when
DSP_APIBN = 1 or ABMDIS = 1,[2-8]

microcontroller unit (MCU)
ARM memory-mapped registers, table,
peripheral interrupt mapping
diagram,|4-5 |
table,

mode definition register, (UART_MDR),[9-27 |

mode definition registerl, (UART_IRDA_MDR1),

mode definition register2, (UART_IRDA_MDR?2),

modem control register
(UART_IRDA_MCR),[8-18 |
(UART_MCR),[9-15 |

modem 1/O signals,

modem status register

(UART_IRDA_MSR),[8-19 |
(UART_MSR),|9-16 |

normal mode DSP memory map,

on-chip RAM,[2-7 |

overrun during receive, UART IRDA module,[8-57 |

packet RAM structure, EIM, 12-59

packets memory,
logical organization| 12-59

physical organization{12-60

figure, 12-60
power-down modes,|2-45 |
ARM,[2-46 |
DSP,

reset management, table,[13-2 |
protocol description, serial port interface [10-10 |
protocol waveforms, serial port interface, figure,
pulse shaping, UART IRDA,
pulse shaping at a frequency of 50 MHz, UART
IRDA,[8-49 |

pulse width register,
(UART_IRDA_PULSE_WIDTH),[8-39 |

read pointer of RX FIFO,
(UART_IRDA_RDPTR_URX),[8-41 |

read pointer of status FIFO,
(UART_IRDA_RDPTR_STA),[8-43 |

read pointer of TX FIFO,
(UART_IRDA_RDPTR_UTX),[8-42 |

receive frame length register — LSB,
(UART_IRDA_RXFLL),[8-35 |

receive frame length register — MSB,
(UART_IRDA_RXFLH),[8-35 |

receive holding register, (UART_RHR),[9-6 |

receive holding register — SIR mode,
(UART_IRDA_RHR),[8-10 |

receive holding register — UART mode,
(UART_IRDA_RHR),[8-9 |

receive protocol, serial port interface[10-11 |

register mapping, UART mode, IRDA mode,[8-8 |

Index

registers

ARM Port Interface wait-state configuration
register, (API_REG),[3-13 |

audio rate register (AUDIO_CLK),

bank switching configuration register,
(BS_CONFIG),[3-20 |

beginning-of-file length register,
(UART_IRDA_BLR),[8-38 |

clock configuration register (CLKM_REG)[5-11 |

clock control register (CLKMD), DSPSS,|5-25 |

clock control register (PLL_REG), ARMSS [5-22 |

divisor for 115K-baud generation,
(UART_DIV_115K),[9-23

divisor for baud-rate generation,
(UART_DIV_BIT_RATE),[9-24 |

divisor for baud-rate generation register,
(UART_IRDA_DIV_BIT_RATE),[8-29

DSP phase-locked loop register (DSP_REG),

EIM CPU destination address register, high word
(EIM_CPUDA_1)[12-38 |

EIM CPU destination address register, low word
(EIM_CPUDA_0)[12-38 |

EIM CPU filtering control register (EIM_FILTER),

EIM CPU RX descriptors base address register
(EIM_CPURXBA)[12-35 |

EIM CPU RX queue current pointer register
(EIM_CPU_RX_DESC)[12-45 |

EIM CPU TX descriptors base address register
(EIM_CPUTXBA)[12-34 |

EIM CPU TX queue current pointer register
(EIM_CPU_TX_DESC)[12-44 |

EIM ENETO address mode enable register
(EIM_ADR_MODE_E0)[12-57 |

EIM ENETO backoff count register
(EIM_RBOF_CNT_E0)[12-49 |

EIM ENETO backoff seed register
(EIM_NEW_RBOF_E0)[12-48 |

EIM ENETO descriptor ring poll interval count
register (EIM_DRP_E0)[12-58 |

EIM ENETO destination physical address match
register, high word (EIM_PAR1_E0)[12-55 |

EIM ENETO destination physical address match
register, low word (EIM_PARO_EO0)[12-56 |

EIM ENETO flow control register
(EIM_FLW_CNTRL_E0),12-51 |

EIM ENETO logical address hash filter register,
high word (EIM_LAR1_E0)[12-56 |

EIM ENETO logical address hash filter register,

low word (EIM_LARO_E0)[12-57

Index-9

Index

registers (Continued)

EIM ENETO mode register (EIM_MODE_EOQ),

EIM ENETO receive descriptor base address
register (EIM_RDBA_E0)[12-55 |

EIM ENETO RX queue current pointer register
(EIM_ENETO_RX_DESC)[12-44 |

EIM ENETO system error interrupt status register
(EIM_SE_SR_E0)[12-53 |

EIM ENETO transmit descriptor base address
register (EIM_TDBA_E0)[12-54 |

EIM ENETO transmit descriptor buffer ready
register (EIM_TX_BUF_RDY_EO0)[12-54 |

EIM ENETO TX flow pause count register
(EIM_FLW_CNT_E0)[12-50 |

EIM ENETO TX queue current pointer register
(EIM_ENETO_TX_DESC)[12-43 |

EIM ENETO VTYPE tag register
(EIM_VTYPE_E0)[12-52 |

EIM ESM control register (EIM_CTRL),12-32 |

EIM ESM interrupt enable register
(EIM_INT_EN)[12-42 |

EIM ESM status register (EIM_STATUS)12-33 |

EIM multicast filter mask register, high word
(EIM_MFM_1)12-40 |

EIM multicast filter mask register, low word
(EIM_MFM_0)12-40 |

EIM multicast filter valid register, high word
(EIM_MFV_1)[12-39 |

EIM multicast filter valid register, low word
(EIM_MFV_0)[12-39 |

EIM packet buffer size register (EIM_BUFSIZE),

EIM RX CPU ready register
(EIM_RX_CPU_RDY)[12-41

EIM RX threshold register (EIM_RXTH)[12-41

enhanced feature register
(UART_EFR),[9-19 |
(UART_IRDA_EFR),[8-25 | o

external memory control register for CSO—CS3,
CS4 memory range, (CS0-4_REG)[3-11 |

FIFO control register
(UART_FCR),[9-9]
(UART_IRDA_FCR)[8-11 |

I2C Interface
address register (ADDRESS_R
command register (CMD_REG)
configuration clock functional reference

register (CONF_CLK_REF_REG)[11-14

Index-10

registers (Continued)

I2C Interface (Continued)
configuration clock register
(CONF_CLK_REG)[11-13 |
configuration FIFO register
(CONF_FIFO_REG)[11-13
data read register (DATA_READ_REG)I 11-11
data write register (DATA_WRITE_REG),
device register (DEVICE_REG)[11-10 |
status activity register
(STATUS_ACTIVITY_REG)[11-16 |
status FIFO register (STATUS_FIFO_REG),
interrupt clock wakeup register (WAKEUP_REG),
interrupt control register (INT_CTRL_REG),
interrupt enable register, (UART_IER),[9-17 |
interrupt enable register — SIR mode,
(UART_IRDA_IER),[8-21 |
interrupt enable register — UART mode,
(UART_IRDA_IER),[8-20 |
interrupt level register 0 (ILR_IRQ_0),[4-15 |
interrupt register (IT_REG),
interrupt status register, (UART_ISR),[9-18 |
interrupt status register — SIR mode,
(UART_IRDA_ISR),[8-23 |

interrupt status register — UART mode,
(UART_IRDA_ISR),[8-22 |

IRQ sleep register (IRQ_SLEEP_

line control register, (UART_LCR),9-11 |

line control register — UART mode only,
(UART_IRDA_LCR),[8-14 |

line status register
(UART_IRDA_LSR),[8-15 |
(UART_LSR),[9-13]

line status register — SIR mode,
(UART_IRDA_LSR),[8-16 |

low-power mode register (LOW_POWER_REG),

low-power register value register
(LOW_POWER_REG_VALUE),[5-20

mask interrupt register (MASK_IT_REG),|4-10

memory interface (MEMINT), table,[3-10

mode definition register, (UART_MDR),[9-27 |

mode definiton registerl, (JART_IRDA_MDR1),

mode definiton register2, (UART_IRDA_MDR?2),

registers (Continued)

modem control register
(UART_IRDA_MCR),[8-18 |
(UART_MCR),[9-15 |

modem status register
(UART_IRDA_MSR),[8-19 |
(UART_MSR),[9-16 |

pulse width register,
(UART_IRDA_PULSE_WIDTH),[8-39 |

read pointer of RX FIFO,
(UART_IRDA_RDPTR_URX),[8-41 |

read pointer of status FIFO,
(UART_IRDA_RDPTR_STA),[8-43 |

read pointer of TX FIFO,
(UART_IRDA_RDPTR_UTX),[8-42 |

receive frame length register — LSB,
(UART_IRDA_RXFLL),[8-35 |

receive frame length register — MSB,
(UART_IRDA_RXFLH),[8-35 |

receive holding register, (UART_RHR),[9-7 |

receive holding register (UART_IRDA_RHR),
SIR mode,[8-10 |

receive holding register — SIR mode,
(UART_IRDA_RHR),[8-10 |

receive holding register — UART mode,
(UART_IRDA_RHR),[8-9 |

reset control register (CLKM_CNTL_RESET),

reset register (RESET_REG),[5-15 |

resume register, (UART_IRDA_RESUME),[8-44 |

RX FIFO read pointer register
(UART_RDPTR_URX),[9-29 |

RX FIFO write pointer register,
(UART_WRPTR_URX),[9-30

scratch pad register, (UART_IRDA_SPR),|8-28

scratch-pad register, (UART_SPR),[9-23 |

SDRAM configuration register,
(SDRAM_CONFIG),[3-30 |

SDRAM control register, (SDRAM_CNTL),[3-35 |

SDRAM data bus size control register,
(SDRAM_REG),[3-183-29 |

SDRAM initialization refresh counter register,
(SDRAM_INIT_CONF),[3-36 |

SDRAM refresh counter register,
(SDRAM_REF_COUNT),[3-34 |

source FIQ register (SRC_FIQ_REG),[4-12 |

source IRQ register (SRC_IRQ_REG)/4-11 |

special access,

SPI control register (SPI_CTRL),[10-7 |
SPI receive register (SP1_RX),/10-9 |

Index

registers (Continued)

SPI setup register (SPI_SET),[10-5 |

SPI status register (SPI_STATUS),[10-8 |

SPI transmit register (SP1_TX),[10-9 |

start point for IR transmission register,
(UART_IRDA_START_POINT),[8-40 |

status control register
(UART_IRDA_SCR),[8-12 |
(UART_SCR),[9-10 |

status FIFO line status register,
(UART_IRDA_SFLSR),[8-36 |

status FIFO register, (UART_IRDA_SFREGL),

status FIFO register — MSB,
(UART_IRDA_SFREGH),[8-37 |

supplementary status register,
(UART_IRDA_SSR),[8-18 |

supplementary status register (UART_SSR),
(UART_SSR)[9-14 |

timer1 control register (CNTL_TIMER1),{6-8 |

timer1 current value register (READ_TIM1),{6-9 |

timer2 control register (CNTL_TIMER2),|6-8

timer2 current value register (READ_TIM2),]

transmission control register, (UART_TCR),|

transmission control register — UART mode only,
(UART_IRDA_TCR),[8-30 |

transmit frame length register,
(UART_IRDA_TXFLL),[8-34 |

transmit frame length register — MSB,
(UART_IRDA_TXFLH),[8-34 |

transmit holding register
(UART_IRDA_THR)/[8-11 |
(UART_THR),[9-8]

trigger level register
(UART_IRDA_TLR),[8-31 |
(UART_TLR),[9-26 |

TX FIFO read pointer register,
(UART_RDPTR_UTX),[9-30 |

TX FIFO write pointer register
(UART_WRPTR_UTX),[9-31 |

UART autobauding status register,
(UART_UASR),[9-28

watchdog status register
(WATCHDOG_STATUS),[5-18 |

write pointer of RX FIFO,
(UART_IRDA_WRPTR_URX),[8-41 |

write pointer of status FIFO,
(UART_IRDA_WRPTR_STA),8-43 |

write pointer of TX FIFO,
(UART_IRDA_WRPTR_UTX),[8-42 |

Index-11

Index

registers (Continued)

XOFF1 character register
(UART_IRDA_XOFF1),[8-27 |
(UART_XOFFl),

XOFF2 character register
(UART_IRDA_XOFF2),[8-27 |
(UART_XOFFZ),

XON1 character register
(UART_IRDA_XON1),[8-26 |
(UART_XON1),9-21 |

XON2 character register, (UART_IRDA_XON2),

XONZ2 character register (UART_XONZ),

relocatable interrupt vector table,

resume register, (UART_IRDA_RESUME),[8-44 |

RX descriptor ring, EIM (Ethernet interface module),

12-26

RX descriptor word 0, EIM (Ethernet interface
module)[12-26 |

RX descriptor word 1, EIM (Ethernet interface
module)

RX descriptor word 2, EIM (Ethernet interface
module)

RX descriptor word 3, EIM (Ethernet interface
module)[12-27 |

RX FIFO read pointer register,
(UART_RDPTR_URX),[9-29 |

RX FIFO write pointer register,
(UART_WRPTR_URX),[9-30 |

scratch pad register, (UART_IRDA_SPR),|8-28 |

scratch-pad register, (UART_SPR),

SCT (store and control transmission), UART IRDA
module,

SDRAM (synchronous dynamic random-access

memory),[3-25 |
introduction,| 3-25 |

SDRAM configuration register (SDRAM_CONFIG),
SDRAM control register, (SDRAM_CNTL),[3-35 |
SDRAM IF (SDRAM interface),[3-28 |

dedicated relois%ml for programming,

initialization,| 3-28
initialization steps,|3-28
module,| 3-26 |

Index-12

SDRAM IF (SDRAM interface) (Continued)
overview,
PRECHARGE,[3-27 |
programming
registers,
supported devices,[3-28 |
utilization,[3-27 |

SDRAM IF registers,[3-29 |

SDRAM configuration register
(SDRAM_CONFIG),[3-30 |

SDRAM control register, (SDRAM_CNTL),[3-35 |

SDRAM initialization refresh counter register,
(SDRAM_INIT_CONF),[3-36 |

SDRAM refresh counter register,

(SDRAM_REF_COUNT),[3-34 |

SDRAM initialization refresh counter register,
(SDRAM_INIT_CONF),[3-36 |

SDRAM refresh counter register,
(SDRAM_REF_COUNT),[3-34 |

serial infrared mode and protocol, UART IRDA,[8-46 |
abort sequence,[8-48 |
address checking,|8-51 |
asynchronous transparency,[8-47 |
CRC generation,|8-47 |

decoder,|8-50 |
decoder timing diagram,{8-50 |
encoder,|8-49 |

encoder timing dia
IrDA frame format,
pulse shaping,|8-48
pulse shaping at a frequency of 50 MHz,|8-49 |

serial port interface (SPI),[2-39,[10-1 |
ARM CPU read/write operations,[10-3 |
ARM SPI signals, table,[10-4 |
block diagram[10-2 |
control configuration,|10-3
data/clock communications,| 10-3

I/O description,| 10-4

main features,

receive protocol

registers
table,[10-5 |

SPI control register,|10-7 |

SPI protocol description, 10-10 |

SPI protocol waveforms, figure 10-10 |

SPI receive register (SP1_RX),[10-9 |

SPI setup register (SPI_SET),[10-5 |

SPI status register (SPI_STATUS),|10-8 |
SPI transmit register (SP1_TX),|10-9 |

serial port interface (SPI) (Continued)
transmission mode waveforms[10-12
transmit protocol] 10-11

single-port RAM, ENET module,

SIR/FIR physical layer specifications,|8-2

software flow control, UART modem inteface,|9-35 |
general features,[9-36

RX,9-35

Tx,h
software programmable wait-state generator,[2-19 |
source FIQ register (SRC_FIQ_REG),[4-12 |
source IRQ register (SRC_IRQ_REG)[4-11 |
special access registers, UART modem,
SPI (serial port interface),[10-1 |
SRC_FIQ_REG (source FIQ register),
SRC_IRQ_REG (source IRQ register),

start point for IR transmission register,
(UART_IRDA_START_POINT),8-40 |

statistics block, MAC (media access controller),
12-18

status control register

(UART_IRDA SCR),[8-12 |
(UART_SCR),[9-10 |

status FIFO, UART IRDA module,[8-57 |

status FIFO line status register,
(UART_IRDA_SFLSR),[8-36 |

status FIFO register, (UART_IRDA_SFREGL),[8-37 |

status FIFO register — MSB,
(UART_IRDA_SFREGH),[8-37 |

supplementary status register
(UART_IRDA_SSR),[8-18 |
(UART_SSR),|9-14 |

time out, UART modem inteface,
timer module
introduction,
registers, table,
TIMERO,[6-3 |
TIMERQO registers
Timer0 Control Register (CNTL_TIMERO),[6-5 |
TimerO Current Value Register (READ_TIMO),

TIMER1 and TIMER2,
timer interrupt period,

Index

timer module (Continued)
watchdog function

disabling,
re-enabling,|6-4 |
TIMERO,[6-3
TimerQ Control Register (CNTL_TIMERO),
TimerO Current Value Register (READ_TIMO),
TIMER1 and TIMER2,|6-7 |
timer interrupt period,
timers (TIMERs),
TMS320C54x DSP core
associations,
features,
overview,
TMS320VC547x
architecture,|2-1
block diagram,
DSP subsystem
CPU core associations,|2-6
features,|2-5 |
overview,|2-5
functional overview,|2-2
general description,|1-2
introduction,_ﬁ
key features,|1-2
transmission control register, (UART_TCR),
transmission control register — UART mode only,
(UART_IRDA_TCR),[8-30 |
transmission mode waveforms, serial port interface,
transmit frame length register — LSB,
(UART_IRDA_TXFLL),[8-34 |
transmit frame length register — MSB,
(UART_IRDA_TXFLH),[8-34 |
transmit holding register
(UART_IRDA_THR),[8-10 |
(UART_THR),[9-8]
transmit protocol, serial port interface[10-11 |
trigger level register
(UART_IRDA_TLR),[8-31 |
(UART_TLR),[9-26 |
trigger levels, UART modem inteface,|9-33 |
TX descriptor ring, EIM (Ethernet interface module),
TX descriptor word 0, EIM (Ethernet interface
module),

TX descriptor word 1, EIM (Ethernet interface

module),) 12-24

Index-13

Index

TX descriptor word 2, EIM (Ethernet interface
module)[12-24 |

TX descriptor word 3, EIM (Ethernet interface
module)

TX FIFO read pointer register,
(UART_RDPTR_UTX),[9-30 |

TX FIFO write pointer register,
(UART_WRPTR_UTX),[9-31 |

TX flow control command frame, generation, ENET
module

TX pause operation, ENET module

UART autobauding status register, (UART_UASR),
UART IRDA module,
abort sequence,|8-48 |
address checking,|8-51 |

asynchronous transparency,{8-47 |
CRC generation,|8-47 |

decoder,|8-50 |
decoder timing diagram,[8-50 |
encoder,|8-49 |

encoder timing diagram,[8-50 |
functional block diagram,|8-45 |
functional descriptions,[8-52 |
interrupts,
in SIR mode (table),[8-54 |
in UART mode (table),[8-53 |
SIR mode,|8-54 |
UART mode,|8-53 |
SIR mode
features avail
frame closing,|8-56 |
overrun during receive,|8-57 |
status FIFO,|8-57 |
store and control transmission (SCT),[8-56 |

underrun during transmission,|8-57 |
trigger levels,|8-52 |
UART mode

break condition,|8-54 |
general features,|8-56 |
software flow control,

time out,[8-54 |
general description,[8-2 |
110 description,lﬁ
IrDA frame format,|8-47

IrDA SIR mode features,|8-4
IrDA/SIR background,|8-2

Index-14

UART IRDA module (Continued)
main features,:8-3
pulse shaping,|8-48
pulse shaping at a frequency of 50 MHz,[8-49 |
registers,
beginning-of-file length register,
(UART_IRDA_BLR),[8-38 |
divisor for 115k-baud generation register,
(UART_IRDA_DIV_115k)[8-28 |
divisor for baud-rate generation register,
(UART_IRDA_DIV_BIT_RATE),[8-29
enhanced feature register,
(UART_IRDA_EFR),[8-24 |
FIFO control register, (UART_IRDA_FCR),
interrupt enable register — SIR mode,
(UART_IRDA_IER),[8-21 |
interrupt enable register — UART mode,
(UART_IRDA_IER),[8-20 |
interrupt status register — SIR mode,
(UART_IRDA_ISR),[8-23]
interrupt status register — UART mode,
(UART_IRDA_ISR),[8-22]
line control register — UART mode only,
(UART_IRDA_LCR),[8-14 |
line status register — SIR mode only,
(UART_IRDA_LSR),[8-16 |
line status register — UART mode only,
(UART_IRDA_LSR),[8-15 |
mode definition registerl,
(UART_IRDA_MDR1),[8-32]
mode definition register2,
(UART_IRDA_MDR2),[8-33]
modem control register, (UART_IRDA_MCR),
modem status register, (UART_IRDA_MSR),
pulse width register,
(UART_IRDA_PULSE_WIDTH),[8-39 |
read pointer of RX FIFO,
(UART_IRDA_RDPTR_URX),[8-41 |
read pointer of status FIFO,
(UART_IRDA_RDPTR_STA),[8-43 |
read pointer of TX FIFO,
(UART_IRDA_RDPTR_UTX),[8-42 |
receive frame length register — LSB,
(UART_IRDA_RXFLL),[8-35 |
receive frame length register — MSB,

(UART_IRDA_RXFLH),|8-35 |

Index

UART IRDA module (Continued) UART mode features,|9-3
registers (Continued)

receive holding register, (UART_IRDA_RHR),

register mapping,
resume register, (UART_IRDA_RESUME),
scratch pad register, (UART_IRDA_SPR),

special access registers,|8-8

start point for IR transmission register,
(UART_IRDA_START_POINT),[8-40 |

status control register, (UART_IRDA_SCR),

status FIFO line status register,
(UART_IRDA_SFLSR),[8-36 |

status FIFO register, (UART_IRDA_SFREGL),

status FIFO register — MSB,
(UART_IRDA_SFREGH),[8-37 |

supplementary status register,
(UART_IRDA_SSR),[8-18]

transmission control register — UART mode
only, (UART_IRDA_TCR),[8-30 |

transmit frame length register — LSB,
(UART_IRDA_TXFLL),[8-34 |

transmit frame length register — MSB,
(UART_IRDA_TXFLH),[8-34 |

transmit holding register, (UART_IRDA_THR),

trigger level register, (UART_IRDA_TLR),[8-31 |

write pointer of RX FIFO,
(UART_IRDA_WRPTR_URX),[8-41 |

write pointer of status FIFO,
(UART_IRDA_WRPTR_STA),8-43 |

write pointer of TX FIFO,
(UART_IRDA_WRPTR_UTX),[8-42 |

XOFF1 character register,
(UART_IRDA_XOFF1),[8-27 |

XOFF2 character register,
(UART_IRDA_XOFF2),[8-27 |

XON1 character register,

(UART_IRDA_XON1),(8-26 |

UART modem interface,
functional block diagram,|9-32 |
functional description,|9-33 |

autobauding mode,[9-36
break condition,|9-34
hardware flow control,|9-35
interrupts,| 9-33
table,h
software flow control,|9-35 |
general features,
RX,
TX,
time out,|9-34 |
trigger levels,[9-33
general description,
I/O description,|9-4 |
main features,
modem 1/O signals,
registers
divisor for 115k-baud generation,
(UART_DIV_115K),[9-23 |
divisor for baud-rate generation,
(UART_DIV_BIT_RATE),[9-24 |
enhanced feature register, (UART_EFR),[9-19
FIFO control register, (UART_FCR),[9-9
interrupt enable register, (UART_IER),|9-17
interrupt status register, (UART_ISR),[9-18 |
line control register, (UART_LCR),[9-11 |
line status register, (UART_LSR),[9-13 |
mode definition register, (UART_MDR),[9-27 |
modem control register, (UART_MCR),[9-15 |
modem status register, (UART_MSR),[9-16 |
receive holding register, (UART_RHR),[9-6 |
register mapping/descriptions,|9-5
RX FIFO read pointer register,
(UART_RDPTR_URX),[9-29 |
RX FIFO write pointer register,
(UART_WRPTR_URX),[9-30 |
scratch-pad register, (UART_SPR),
special access registers,
status control register, (UART_SCR),[9-10 |
supplementary status register, (UART_SSR),

XON2 character register,

. .(UART—lRDA—XONZ)’ transmission control register, (UART_TCR),
serial infrared mode and protocol,|8-46 |
SIR/FIR physical layer specifications,|8-2 | .) .
UART mode feat a5 transmit holding register, (UART_THR),|9-8 |
UART TISDeA ca urles,t bl trigger level register, (UART_TLR),[9-26 |

- sighais, table, TX FIFO read pointer register,
UART mode,[8-3] (UART_RDPTR_UTX),[9-30 |

Index-15

Index

UART modem interface (Continued)
registers (Continued)
TX FIFO write pointer register,
(UART_WRPTR_UTX),[9-31 |
UART autobauding status register,
(UART_UASR),[9-28
UART modem module registers,|9-5 |

XOFF1 character register, (UART_XOFF1),

XOFF2 character register, (UART_XOFF2),

XONL1 character register, (UART_XON1),
XONZ2 character register, (UART_XON2),
UART mode features,[9-3]

UART modem module registers, table,

9-21

9-21

underrun during transmission, UART IRDA module,

watchdog function
disabling,
re-enabling,

waveforms
memory interface (MEMINT),|3-37 |

Index-16

waveforms (Continued)
serial port interface
DO on falling edge, DI on rising edge
P=1, L=0{10-13
P=1,L=1{10-13
DO onrising edge, DI on falling edge, P=0,
L=0[10-13 |
transmission mode, serial port interface10-12 |
write pointer of RX FIFO,
(UART_IRDA_WRPTR_URX),[8-41 |
write pointer of status FIFO,
(UART_IRDA_WRPTR_STA),[8-43 |
write pointer of TX FIFO,
(UART_IRDA_WRPTR_UTX),[8-42 |

XOFF1 character register
(UART_IRDA_XOFF1),[8-27 |
(UART_XOFF1),[9-22 |

XOFF2 character register
(UART_IRDA_XOFF2),8-27 |
(UART_XOFF2),[9-22 |

XONL1 character register
(UART_IRDA_XON1),[8-26 |
(UART_XON1),[9-21]

XON2 character register
(UART_IRDA_XONZ2),[8-26 |
(UART_XON2),[9-21 |

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Introduction
	General Description of the VC547x
	Key Features of the VC547x

	Architecture
	Functional Overview of the VC547x
	Functional Block Diagram of the VC547x
	DSP Subsystem Overview (TMS320C54x DSP Core)
	Features
	DSP CPU Core Associations

	DSP Memory Space
	On-Chip RAM
	Normal Mode DSP Memory Map
	API Boot Mode
	API Boot Mode DSP Memory Map
	Extended Program Memory
	Relocatable Interrupt Vector Table

	DSP Registers
	DSP Subsystem Peripherals
	Multichannel Buffered Serial Ports (McBSP0 and McBSP1)
	Capabilities
	External Interface
	Transmitter/Receiver Pins
	Data Movement
	Programmable Functions
	Multiple Channel Selection
	Clock-Stop Mode

	Direct Memory Access Controller (DMAC)
	ARM Port Interface (API)
	Software-Programmable Wait-State Generator
	External Memory Interface
	Hardware Timer

	ARM Core Overview (ARM7TDMIE)
	ARM7TDMI Overview
	ARM7TDMIE
	ARM7TDMIE Emulation Features

	ARM Memory Space
	ARM Registers
	ARM Peripherals
	ARM Memory Interface (MEMINT)
	SDRAM Memory Interface (SDRAMIF)
	Interrupt Handler (INTH)
	ARM General-Purpose I/O (GPIO)
	Timers (TIMERs)
	IRDA Universal Asynchronous Receiver/Transmitter 16C750 (UART-IRDA)
	Universal Asynchronous Receiver/Transmitter 16C750 (UART-Modem)
	Serial Peripheral Interface (SPI)
	Ethernet Interface Module (EIM) (VC5471)
	Master Inter-Integrated Circuit (I2C) Interface
	Clock Management (CLKM)

	General-Purpose Peripherals
	Clock Frequencies
	DSP Clock
	ARM Clock
	Audio Clock

	Power-Down Modes
	DSP Power-Down Modes
	ARM Power-Down Modes

	Interrupt Management
	DSP Interrupts
	MCU Interrupts

	Memory Interface (MEMINT)
	Memory Interface (MEMINT) Function
	System (Internal) Bus
	API Bus Interface
	Operating Speeds
	Computing the Wait State

	External Memory Interface
	ROM (Flash) and SRAM
	Features

	Memory Interface (MEMINT) Registers
	External Memory Control Register for CS0–CS3, CS4 Memory Range
	ARM Port Interface Wait-State Configuration Register
	API Control Register
	DSP and ARM Required Interrupt Methodology

	Bank-Switching Control Register
	DSP and ARM Required Interrupt Methodology

	SDRAM Data Bus Size Control Register
	Bank-Switching Configuration Register
	Chip-Select Sample Configurations

	ARM Memory Space
	SDRAM
	Introduction
	SDRAM IF Overview
	Programming the SDRAM IF
	Utilization of SDRAM
	Precharge
	Initialization

	Supported Devices

	SDRAM Interface
	SDRAM IF Registers
	SDRAM_REG
	SDRAM Configuration Register
	SDRAM Refresh Counter Register
	SDRAM Control Register
	SDRAM Initialization Refresh Counter Register

	Waveforms
	Waveforms of Read/Write Operations With Rows Enabled/Disabled
	Write Waveform With Bank Already Activated
	Read Waveform With Bank Already Activated
	Write Waveform With Bank Not Activated
	Read Waveform With Bank Not Activated

	Waveforms With External Transactions (8-, 16-, and 32-Bit Devices)

	Interrupt Handler
	Functional Description
	Passing Interrupts to the ARM Processor
	Management of FIQ and IRQ Interrupts

	MCU Interrupts
	Internal Registers
	Interrupt Sequence

	ARM Memory-Mapped Registers
	Interrupt Register
	Mask Interrupt Register
	Source IRQ Register
	Source FIQ Register
	Interrupt Control Register
	IRQ Sleep Register
	Interrupt Level Registers (Read/Write)
	Interrupt Level Register 0
	Predefined Order in Case of Identical Priority Level

	Clock Management Module
	Clock Management Module Overview
	Clock Operation Modes
	Features Controlled by the Clock Management Module

	Clock Module Register Tables
	CLKM Module Registers
	PLL_REG Register (ARMSS)
	CLKMD Register (DSPSS)

	DSP Subsystem Control
	DSP Phase-Locked Loop Register
	Reset Control Register

	ARM Subsystem Control
	Clock Configuration Register
	Interrupt Clock Wakeup Register
	Reset Register
	Audio Rate Register
	Watchdog Status Register
	Low-Power Mode Register
	Low-Power Register Value Register

	Phase-Locked Loop (PLL)
	PLL_REG Register (ARMSS)
	CLKMD Clock Control Register (DSPSS)

	Timer Module
	Timer Module Introduction
	TIMER0
	Disabling the Watchdog Function
	Re-Enabling the Watchdog Function
	Timer0 Control Register
	Timer0 Current Value Register

	TIMER1 and TIMER2
	Timer Interrupt Period
	TIMER1 and TIMER2 Control Registers
	TIMER1 and TIMER2 Current Value Registers

	Programming the Timers
	Read Timer Operations

	General-Purpose I/O Module (GPIO)
	Functional Description
	General-Purpose I/O (GPIO)

	GPIO/KBGPIO Registers
	GPIO Registers
	KBGPIO Registers
	GPIO Registers
	GPIO_EN – GPIO Enable

	KBGPIO Registers
	KBGPIO_EN – KBGPIO Enable

	Keyboard Connection

	Input/Outputs of GPIO Module

	UART IRDA Module
	General Description
	IrDA/SIR Background
	SIR/FIR Physical Layer Specifications

	Main Features
	UART Mode Features
	IrDA SIR Mode Features

	I/O Description
	Register Mapping/Descriptions
	UART IRDA Module Registers
	Special Access Registers
	Register Mapping
	Receive Holding Register
	UART Mode
	SIR Mode

	Transmit Holding Register
	FIFO Control Register
	Status Control Register
	Line Control Register (UART Mode Only)
	Line Status Register
	UART Mode
	SIR Mode

	Supplementary Status Register
	Modem Control Register
	Modem Status Register
	Interrupt Enable Register
	UART Mode
	SIR Mode

	Interrupt Status Register
	UART Mode
	SIR Mode

	Enhanced Feature Register
	XON1 Character Register
	XON2 Character Register
	XOFF1 Character Register
	XOFF2 Character Register
	Scratch Pad Register
	Divisor for 115K-Baud Generation Register
	Divisor for Baud-Rate Generation Register
	Transmission Control Register (UART Mode Only)
	Trigger Level Register
	Mode Definition Register 1
	Mode Definition Register 2
	Transmit Frame Length Register (LSB)
	Transmit Frame Length Register (MSB)
	Receive Frame Length Register (LSB)
	Receive Frame Length Register (MSB)
	Status FIFO Line Status Register
	Status FIFO Register
	Beginning-of-File Length Register
	Pulse Width Register
	Auxiliary Control Register
	Start Point for IR Transmission
	Access to Read and Write Pointers
	Resume Register

	UART IRDA Functional Block Diagram
	Serial Infrared Mode and Protocol
	CRC Generation
	Asynchronous Transparency
	Abort Sequence
	Pulse Shaping
	Encoder
	Decoder

	Address Checking

	Functional Descriptions
	Trigger Levels
	Interrupts
	Problem Definition
	Problem Workaround
	UART mode
	SIR mode

	Features Available in UART Mode
	Time-Out and Break Conditions
	Time-Out
	Break Condition

	Software Flow Control
	RX
	TX

	General Features

	Features Available in SIR Mode
	Frame Closing
	Store and Control Transmission (SCT)
	Underrun During Transmission
	Overrun During Receive
	Status FIFO

	UART Modem Interface
	General Description
	Main Features
	UART Mode Features

	I/O Description
	Register Mapping/Descriptions
	UART Modem Module Registers
	Special Access Registers
	Receive Holding Register
	Transmit Holding Register
	FIFO Control Register
	Status Control Register
	Line Control Register
	Line Status Register
	Supplementary Status Register
	Modem Control Register
	Modem Status Register
	Interrupt Enable Register
	Interrupt Status Register
	Enhanced Feature Register
	XON1 Character Register
	XON2 Character Register
	XOFF1 Character Register
	XOFF2 Character Register
	Scratch-Pad Register
	Divisor for 115k-Baud Generation
	Divisor for Baud-Rate Generation
	Transmission Control Register
	Trigger-Level Register
	Mode Definition Register
	UART Autobauding Status Register
	RX FIFO Read Pointer Register
	RX FIFO Write Pointer Register
	TX FIFO Read Pointer Register
	TX FIFO Write Pointer Register

	Functional Block Diagram
	Functional Descriptions
	Trigger Levels
	Interrupts
	Break and Time-Out Conditions
	Time-Out
	Break Condition

	Hardware Flow Control
	Software Flow Control
	RX
	TX
	General Features

	Autobauding Mode

	Serial Port Interface (SPI)
	SPI Main Features
	SPI General Description
	Data/Clock Communications
	ARM CPU Read/Write Operations
	Control Configuration

	SPI I/O Description
	SPI Registers
	SPI Setup Register
	SPI Control Register
	SPI Status Register
	SPI Transmit Register
	SPI Receive Register

	SPI Protocol Description
	Transmit Protocol
	Receive Protocol
	Transmission Mode Waveforms

	Master I2C Interface
	Master I2C Interface Module General Description
	Overview
	Main Features
	Special Considerations
	FIFO Reset
	Not Acknowledge

	Standard I2C Bus Protocol
	I2C Bus
	Bus Lines
	I2C Bus Terminology

	I/O Description
	Register Descriptions
	Device Register
	Address Register
	Data Write Register
	Data Read Register
	Command Register
	Configuration FIFO Register
	Configuration Clock Register
	Configuration Clock Functional Reference Register
	Status FIFO Register
	Status Activity Register

	FIFO Management
	Master I2C Interface Resets
	Hardware Reset
	Software Reset

	Clock Management
	Interrupt Management

	Ethernet Interface Module (EIM)
	EIM Overview
	General Description
	Packet Channels
	Configuring the CPU Port
	Routing Rules for Packets Coming From the ENET
	Routing Rules for Packets Coming From the CPU

	Ethernet Interface Signals
	ENET Functional Description
	ENET Overview
	Buffer Memory Unit (FIFO)
	DMA Controller
	Control Registers Interface
	Media Access Controller (MAC)
	Data Reception
	Preamble and SFD
	CRC Check
	64Byte Frame Requirement
	Nibble Dribble
	DA, SA, and Type Fields
	IFG
	Receive Status Reporting

	Data Transmission
	Transmit Error Handling

	Statistics Block
	Loopback
	Flow Control
	TX Pause Operation
	Generation of TX Flow Control Command Frame

	Addressing Modes
	ENET Interrupts
	Configuration

	EIM Descriptors Structure
	TX Descriptor Ring
	DMA Reads
	Reporting Errors
	Re-Transmission

	RX Descriptor Ring
	Reject Short Frame Error

	EIM Peripheral Register Tables
	ESM Peripheral Registers
	ENET Peripheral Registers

	ESM Peripheral Registers
	EIM ESM Control Register
	EIM ESM Status Register
	EIM CPU TX Descriptors Base Address Register
	EIM CPU RX Descriptors Base Address Register
	EIM Packet Buffer Size Register
	EIM CPU Filtering Control Register
	EIM CPU Destination Address Register, High Word
	EIM CPU Destination Address Register, Low Word
	EIM Multicast Filter Valid Register, High Word
	EIM Multicast Filter Valid Register, Low Word
	EIM Multicast Filter Mask Register, High Word
	EIM Multicast Filter Mask Register, Low Word
	EIM RX Threshold Register
	EIM CPU RX Ready Register
	EIM ESM Interrupt Enable Register
	EIM ENET0 TX Queue Current Pointer Register
	EIM ENET0 RX Queue Current Pointer Register
	EIM CPU TX Queue Current Pointer Register
	EIM CPU RX Queue Current Pointer Register

	ENET0 Registers
	EIM ENET0 Mode Register
	EIM ENET0 Backoff Seed Register
	EIM ENET0 Backoff Count Register
	EIM ENET0 TX Flow Pause Count Register
	EIM ENET0 Flow Control Register
	EIM ENET0 VTYPE Tag Register
	EIM ENET0 System Error Interrupt Status Register
	EIM ENET0 Transmit Descriptor Buffer Ready Register
	EIM ENET0 Transmit Descriptor Base Address Register
	EIM ENET0 Receive Descriptor Base Address Register
	EIM ENET0 Destination Physical Address Match Register, High Word
	EIM ENET0 Destination Physical Address Match Register, Low Word
	EIM ENET0 Logical Address Hash Filter Register, High Word
	EIM ENET0 Logical Address Hash Filter Register, Low Word
	EIM ENET0 Address Mode Enable Register
	EIM ENET0 Descriptor Ring Poll Interval Count Register

	EIM Packet RAM Structure
	Logical Organization
	Packets Memory Physical Organization
	Descriptor Words
	CPU TX Descriptor
	CPU RX Descriptor
	ENET0 RX Descriptors
	ENET0 TX Descriptors
	Buffer Usage Word

	EIM ESM Functional Description
	Main State Machine Description
	Reset State
	Select_RX_Queue State
	Test_RX_Queue State
	Evaluate_Dest State
	Check_First_Desc_TX_Queue State
	Transfer_Desc State
	Step 1: Retrieval of Free Buffer in Destination Descriptors
	Step 2: Copy of Source Descriptor
	Step 3: Free Buffer Allocation to Source Descriptor

	Check_TX_Queue State
	Wait_TX_Event State

	EIM Operation
	Setting Up
	Step 1: Packet Buffer Memory Initialization
	Step 2: ESM Initialization
	Step 3: ENET0 Initialization
	EIM Start-Up

	Packets Operation
	Packet Transmission
	Packet Reception
	Interrupts

	ENET Operation
	Setting Up
	Packet Operations
	Packet Transmission
	Packet Reception

	Initialization Protocol
	Initialization Protocol
	Hardware Logic Reset
	ARM Code Downloading
	DSP Boot Mode

	Index

