TMS320C55x DSP Library Programmer's Reference

SPRU422C

October 2001

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of that third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Preface

Read This First

About This Manual

The Texas Instruments TMS320C55xTM DSPLIB is an optimized DSP Function Library for C programmers on TMS320C55x devices. It includes over 50 C-callable assembly-optimized general-purpose signal processing routines. These routines are typically used in computationally intensive real-time applications where optimal execution speed is critical. By using these routines you can achieve execution speeds considerable faster than equivalent code written in standard ANSI C language. In addition, by providing ready-to-use DSP functions, TI DSPLIB can shorten significantly your DSP application development time.

Related Documentation

- The MathWorks, Inc. Matlab Signal Processing Toolbox User's Guide. Natick, MA: The MathWorks, Inc., 1996. .
\square Lehmer, D.H. "Mathematical Methods in large-scale computing units." Proc. 2nd Sympos. on Large-Scale Digital Calculating Machinery, Cambridge, MA, 1949. Cambridge, MA: Harvard University Press, 1951.
\square Oppenheim, Alan V. and Ronald W Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.
\square Digital Signal Processing with the TMS320 Family (SPR012)
- TMS320C55x DSP CPU Reference Guide (SPRU371)
\square TMS320C55x Optimizing C Compiler User's Guide (SPRU281)

Trademarks

TMS320, TMS320C55x, and C55x are trademarks of Texas Instruments.
Matlab is a trademark of Mathworks, Inc.

Contents

1 Introduction 1-1Introduction to the TMS320C55x DSP Library.
1.1 DSP Routines 1-2
1.2 Features and Benefits 1-2
1.3 DSPLIB: Quality Freeware That You Can Build On and Contribute To 1-2
2 Installing DSPLIB 2-1
Describes how to install the DSPLIB.
2.1 DSPLIB Content 2-2
2.2 How to Install DSPLIB 2-2
2.2.1 Read README.1ST File for Specific Details of Release 2-2
2.3 How to Rebuild DSPLIB 2-3
2.3.1 For Full Rebuild of 55xdsp.lib 2-3
2.3.2 For Partial Rebuild of 55xdsp.lib (modification of a specific DSPLIB function, for example fir.asm) 2-3
3 Using DSPLIB 3-1Describes how to use the DSPLIB.
3.1 DSPLIB Arguments and Data Types 3-2
3.1.1 DSPLIB Arguments 3-2
3.1.2 DSPLIB Data Types 3-2
3.2 Calling a DSPLIB Function from C 3-3
3.3 Calling a DSPLIB Function from Assembly Language Source Code 3-5
3.4 Where to Find Sample Code 3-5
3.5 How DSPLIB is Tested - Allowable Error 3-6
3.6 How DSPLIB Deals with Overflow and Scaling Issues 3-6
3.7 Where DSPLIB Goes from Here 3-8
4 Function Descriptions 4-1
Provides descriptions for the TMS320C55x DSPLIB Functions.
4.1 Arguments and Conventions Used 4-2
4.2 DSPLIB Functions 4-3
acorr 4-7
add 4-9
atan2_16 4-10
atan16 4-11
bexp 4-13
cbrev 4-14
cfft 4-15
cfir 4-17
cifft 4-21
convol 4-23
convol1 4-25
convol2 4-27
corr 4-30
dlms 4-31
expn 4-33
fir 4-34
fir2 4-37
firdec 4-40
firinterp 4-42
firlat 4-44
firs 4-46
fltoq15 4-49
hilb16 4-50
iir32 4-53
iircas4 4-56
iircas5 4-58
iircas51 4-59
iirlat 4-61
Idiv16 4-63
log_10 4-64
log_2 4-66
logn 4-67
maxidx 4-69
maxidx34 4-70
maxval 4-70
maxvec 4-71
minidx 4-72
minval 4-73
minvec 4-73
mmul 4-74
mtrans 4-76
mul32 4-76
neg 4-77
neg32 4-78
power 4-79
q15tofl 4-80
rand16 4-81
rfft 4-67
rifft 4-70
sine 4-72
sqrt_16 4-73
sub 4-74
5 DSPLIB Benchmarks and Performance Issues 5-1
Describes benchmarks and performance issues for the DSPLIB functions.
5.1 What DSPLIB Benchmarks are Provided 5-2
5.2 Performance Considerations 5-2
6 Software Updates and Customer Support 6-1
Details the software updates and customer support issues for the TMS320C55x DSPLIB.
6.1 DSPLIB Software Updates 6-2
6.3 DSPLIB Customer Support 6-2
A Overview of Fractional Q Formats A-1
A. 1 Q3.12 Format A-2
A. 2 Q. 15 Format A-2
A. 3 Q. 31 Format A-2
B Calculating the Reciprocal of a Q15 Number B-1

Figures

4-1 dbuffer Array in Memory at Time j 4-19
4-2 \quad x Array in Memory 4-20
4-3 r Array in Memory 4-20
4-4 x Array in Memory 4-24
4-5 r Array in Memory 4-24
4-6 h Array in Memory 4-25
4-7 x Array in Memory 4-26
4-8 r Array in Memory 4-27
4-9 h Array in Memory 4-27
4-10 x Array in Memory 4-29
4-11 r Array in Memory 4-29
4-12 h Array in Memory 4-29
4-13 dbuffer Array in Memory at Time j 4-36
4-14 x Array in Memory 4-37
4-15 r Array in Memory 4-37
4-16 dbuffer Array in Memory at Time j 4-39
4-17 x Array in Memory 4-40
4-18 r Array in Memory 4-40
4-19 dbuffer Array in Memory at Time j 4-48
4-20 x Array in Memory 4-48
4-21 r Array in Memory 4-49
4-22 dbuffer Array in Memory at Time j 4-52
4-23 x Array in Memory 4-53
4-24 r Array in Memory 4-53

Tables

4-1 Function Descriptions 4-2
4-2 Summary Table 4-3
A-1 Q3.12 Bit Fields A-2
A-2 Q. 15 Bit Fields A-2
A-3 Q. 31 Low Memory Location Bit Fields A-2
A-4 Q. 31 High Memory Location Bit Fields A-2

Chapter 1

Introduction

The Texas Instruments TMS320C55x DSP Library (DSPLIB) is an optimized DSP Function Library for C programmers on TMS320C55x devices. It includes over 50 C-callable assembly-optimized general-purpose signal processing routines. These routines are typically used in computationally intensive realtime applications where optimal execution speed is critical. By using these routines you can achieve execution speeds considerable faster than equivalent code written in standard ANSI C language. In addition, by providing ready-touse DSP functions, TI DSPLIB can shorten significantly your DSP application development time.
Topic Page
1.1 DSP Routines 1-2
1.2 Features and Benefits 1-2
1.3 DSPLIB: Quality Freeware That You Can Build On and Contribute To 1-2

1.1 DSP Routines

The TI DSPLIB includes commonly used DSP routines. Source code is provided to allow you to modify the functions to match your specific needs.

The routines included within the library are organized into eight different functional categories:
\square Fast-Fourier Transforms (FFT)
\square Filtering and convolution
\square Adaptive filtering
\square Correlation

- Math
\square Trigonometric
\square Miscellaneous
\square Matrix

1.2 Features and Benefits

\square Hand-coded assembly optimized routines
\square C-callable routines fully compatible with the TI C55x compiler
\square Fractional Q15-format operand supported
\square Complete set of examples on usage provided
\square Benchmarks (time and code) provided
\square Tested against Matlab™ scripts

1.3 DSPLIB: Quality Freeware That You Can Build On and Contribute To

DSPLIB is a free-of-charge product. You can use, modify, and distribute TI C55x DSPLIB for usage on TI C55x DSPs with no royalty payments. See Licensing and Warranty, section 6.1, and Where DSPLIB Goes from Here, section 3.7, for details.

Installing DSPLIB

This chapter describes how to install the DSPLIB.
Topic Page
2.1 DSPLIB Contents 2-2
2.2 How to Install DSPLIB 2-2
2.3 How to Rebuild DSPLIB 2-3

2.1 DSPLIB Content

The TI DSPLIB software consists of 4 parts:

1) a header file for C programmers:
dsplib.h
2) One object library:

55xdsp.lib
3) One source library to allow function customization by the end user 55xdsp.src
4) Example programs and linker command files used under the " $55 x$ _test" sub-directory.

2.2 How to Install DSPLIB

2.2.1 Read README.1ST File for Specific Details of Release

Step 1: De-archive DSPLIB
DSPLIB is distributed in the form of an executable self-extracting ZIP file (55xdsplib.exe). The zip file automatically restores the DSPLIB individual components in the same directory you execute the self extracting file. Following is an example on how to install DSPLIB, just type:

55xdsplib.exe-d
The DSPLIB directory structure and content you will find is:
55xdsplib (dir)
55xdsp.lib : use for standards short-call mode
blt55x.bat : re-generate 55xdsp.lib based on 55xdsp.src
examples(dir) : contains one subdirectory for each routine included in the library where you can find complete test cases
include(dir)
dsplib.h : include file with data types and function prototypes
tms320.h : include file with type definitions to increase TMS320 portability
misc.h : include file with useful miscellaneous definitions
doc(dir)
55x_src (dir) : contains assembly source files for functions

Step 2: Relocate library file
Copy the C55x DSPLIB object library file, 55xdsp.lib, to your C5500 runtime support library folder.

For example, if your TI C5500 tools are located in c:Itilc5500lcgtoolslbin and c runtime support libraries (rts55.lib etc.) in c:ltilc5500lcgtoolslib, copy $55 x d s p l i b . l i b$ to this folder. This allows the C55x compiler/linker to find 55xdsp.lib.

2.3 How to Rebuild DSPLIB

2.3.1 For Full Rebuild of $55 x d s p . l i b$

To rebuild $55 x d s p$.lib, execute the blt55x.bat. This will overwrite any existing 55xdsp.lib.

2.3.2 For Partial Rebuild of $55 x d s p$.lib (modification of a specific DSPLIB function, for example fir.asm)

1) Extract the source for the selected function from the source archive: ar55 x 55xdsp.src fir.asm
2) Re-assemble your new fir.asm assembly source file:
asm55 -g fir.asm
3) Replace the object, fir.obj, in the dsplib.lib object library with the newly formed object:
ar55 r 55xdsp.lib fir.obj

Using DSPLIB

This chapter describes how to use the DSPLIB.
Topic Page
3.1 DSP Arguments and Data Types 3-2
3.2 Calling a DSPLIB Function from C 3-3
3.3 Calling a DSPLIB Function from Assembly Language Source Code 3-5
3.4 Where to Find Sample Code 3-5
3.5 How DSPLIB is Tested - Allowable Error 3-6
3.6 How DSPLIB Deals with Overflow and Scaling Issues 3-6
3.7 Where DSPLIB Goes from Here 3-8

3.1 DSPLIB Arguments and Data Types

3.1.1 DSPLIB Arguments

DSPLIB functions typically operate over vector operands for greater efficiency. Though these routines can be used to process short arrays or scalars (unless a minimum size requirement is noted), the execution times will be longer in those cases.
\square Vector stride is always equal 1: vector operands are composed of vector elements held in consecutive memory locations (vector stride equal to 1).
\square Complex elements are assumed to be stored in a Re-Im format.
\square In-place computation is allowed (unless specifically noted): Source operand can be equal to destination operand to conserve memory.

3.1.2 DSPLIB Data Types

DSPLIB handles the following fractional data types:
\square Q. 15 (DATA) : A Q. 15 operand is represented by a short data type (16 bit) that is predefined as DATA, in the dsplib. h header file.
\square Q. 31 (LDATA) : A Q. 31 operand is represented by a long data type (32 bit) that is predefined as LDATA, in the dsplib. h header file.
\square Q.3.12 : Contains 3 integer bits and 12 fractional bits.
Unless specifically noted, DSPLIB operates on Q15-fractional data type elements. Appendix A presents an overview of Fractional Q formats

3.2 Calling a DSPLIB Function from C

In addition to installing the DSPLIB software, to include a DSPLIB function in your code you have to:
\square Include the dsplib. h include file
\square Link your code with the DSPLIB object code library, 55xdsp.lib.
\square Use a correct linker command file describing the memory configuration available in your C55x board.

For example, the following code contains a call to the recip16 and q15tofl routines in DSPLIB:

```
#include "dsplib.h"
DATA x[3] = { 12398, 23167, 564};
DATA r[NX];
DATA rexp[NX];
float rf1[NX];
float rf2[NX];
```

void main()
\{
short i;
for (i=0;i<NX;i++)
\{
r[i] $=0$;
rexp[i] $=0$;
\}
recip16(x, r, rexp, NX);
q15tofl(r, rf1, NX);
for (i=0; i<NX; i++)
\{
rf2[i] = (float)rexp[i] * rf1[i];
\}
return;
\}

In this example, the q15tofI DSPLIB function is used to convert Q15 fractional values to floating point fractional values. However, in many applications, your data is always maintained in Q15 format so that the conversion between float and Q15 is not required.

The above code, ug. c, is available to you in the /doc/code subdirectory. To compile and link this code with $55 x d s p . l i b$, issue the following command:
cl55 -pk -g -o3 -i. ug.c -z -v0 Id3.cmd 55xdsp.lib -m ug.map -oug.out
The examples presented in this document have been tested using the Texas Instruments C55x Simulator. Customization may be required to use it with a different simulator or development board.

Refer to the TMS320C55x Optimizing C Compiler User's Guide (SPRU281).

3.3 Calling a DSPLIB Function from Assembly Language Source Code

The TMS320C55x DSPLIB functions were written to be used from C. Calling the functions from assembly language source code is possible as long as the calling-function conforms with the Texas Instruments C55x C compiler calling conventions. Refer to the TMS320C55x Optimizing C Compiler User's Guide, if a more in-depth explanation is required.

Realize that the TI DSPLIB is not an optimal solution for assembly-only programmers. Even though DSPLIB functions can be invoked from an assembly program, the result may not be optimal due to unnecessary C-calling overhead.

3.4 Where to Find Sample Code

You can find examples on how to use every single function in DSPLIB, in the examples subdirectory. This subdirectory contains one subdirectory for each function. For example, the examples/araw subdirectory contains the following files:

- araw_t.c: main driver for testing the DSPLIB acorr (raw) function.
- test.h: contains input data(a) and expected output data(yraw) for the acorr (raw) function as. This test.h file is generated by using Matlab scripts.
- test.c: contains function used to compare the output of araw function with the expected output data.
- ftest.c: contains function used to compare two arrays of float data types.

I Itest.c: contains function used to compare two arrays of long data types.

- Id3.cmd: an example of a linker command you can use for this function.

3.5 How DSPLIB is Tested - Allowable Error

Abstract

Version 1.0 of DSPLIB is tested against Matlab scripts. Expected data output has been generated from Matlab that uses double-precision (64-bit) floatingpoint operations (default precision in Matlab). Test utilities have been added to our test main drivers to automate this checking process. Note that a maximum absolute error value (MAXERROR) is passed to the test function, to set the trigger point to flag a functional error.

We consider this testing methodology a good first pass approximation. Further characterization of the quantization error ranges for each function (under random input) as well as testing against a set of fixed-point C models is planned for future releases. We welcome any suggestions you may have on this respect.

3.6 How DSPLIB Deals with Overflow and Scaling Issues

One of the inherent difficulties of programming for fixed-point processors is determining how to deal with overflow issues. Overflow occurs as a result of addition and subtraction operations when the dynamic range of the resulting data is larger than what the intermediate and final data types can contain.

The methodology used to deal with overflow should depend on the specifics of your signal, the type of operation in your functions, and the DSP architecture used. In general, overflow handling methodologies can be classified in five categories: saturation, input scaling, fixed scaling, dynamic scaling, and system design considerations.

It's important to note that a TMS320C55x architectural feature that makes overflow easier to deal with is the presence of guard bits in all four accumulators. The 40-bit accumulators provide eight guard bits that allow up to 256 consecutive multiply-and-accumulate (MAC) operations before an accumulator overrun - a very useful feature when implementing, for example, FIR filters.

There are 4 specific ways DSPLIB deals with overflow, as reflected in each function description:
\square Scaling implemented for overflow prevention: In this type of function, DSPLIB scales the intermediate results to prevent overflow. Overflow should not occur as a result. Precision is affected but not significantly. This is the case of the FFT functions, in which scaling is used after each FFT stage.
\square No scaling implemented for overflow prevention: In this type of function, DSPLIB does not scale to prevent overflow due to the potentially strong effect in data output precision or in the number of cycles required. This is the case, for example, of the MAC-based operations like filtering, correlation, or convolutions. The best solution on those cases is to design your system, for example your filter coefficients with a gain less than 1 to prevent overflow. In this case, overflow could happen unless you input scale or you design for no overflow.
\square Saturation implemented for overflow handling: In this type of function, DSPLIB has enabled the TMS320C55x 32-bit saturation mode (SATD bit $=1$). This is the case of certain basic math functions that require the saturation mode to be enabled.
\square Not applicable: In this type of function, due to the nature of the function operations, there is no overflow.
\square DSPLIB reporting of overflow conditions (overflow flag): Due to the sometimes unpredictible overflow risk, most DSPLIB functions have been written to return an overflow flag (oflag) as an indication of a potentially dangerous 32-bit overflow. However, because of the guard-bits, the C55x is capable of handling intermediate 32-bit overflows and still produce the correct final result. Therefore, the oflag parameter should be taken in the context of a warning but not a definitive error.

As a final note, DSPLIB is provided also in source format to allow customization of DSPLIB functions to your specific system needs.

3.7 Where DSPLIB Goes from Here

We anticipate DSPLIB to improve in future releases in the following areas:
\square Increased number of functions: We anticipate the number of functions in DSPLIB will increase. We welcome user-contributed code. If during the process of developing your application you develop a DSP routine that seems like a good fit to DSPLIB, let us know. We will review and test your routine and possibly include it in the next DSPLIB software release. Your contribution will be acknowledged and recognized by TI in the Acknowledgments section. Use this opportunity to make your name known by your DSP industry peers. Simply email your contribution To Whom It May Concern: dsph@ti.com and we will contact you.
\square Increased Code portability: DSPLIB looks to enhance code portability across different TMS320-based platforms. It is our goal to provide similar DSP libraries for other TMS320™ devices, working in conjunction with C55x compiler intrinsics to make C-developing easier for fixed-point devices. However, it's anticipated that a 100\% portable library across TMS320 devices may not be possible due to normal device architectural differences. TI will continue monitoring DSP industry standardization activities in terms of DSP function libraries.

Chapter 4

Function Descriptions

This chapter provides descriptions for the TMS330C55x DSPLIB functions.
Topic Page
4.1 Arguments and Conventions Used 4-2
4.2 DSPLIB Functions 4-3

4.1 Arguments and Conventions Used

The following convention has been followed when describing the arguments for each individual function:

Table 4-1. Function Descriptions

Argument	Description
x, y	argument reflecting input data vector $r$$\quad$argument reflecting output data vector arguments reflecting the size of vectors x, y, , and r respectively. In functions where $n x=n r=n r$, only $n x$ has been used.
h	Argument reflecting filter coefficient vector (filter routines only)
$n h$	Argument reflecting the size of vector h
DATA	data type definition equating a short, a 16-bit value representing a Q15 number. Usage of DATA instead of short is recommended to
LDATA	data type definition equating a long, a 32-bit value representing a Q31 number. Usage of LDATA instead of long is recommended to increase future portability across devices.
ushort	Unsigned short (16 bit). You can use this data type directly, because it has been defined in dsplib.h

4.2 DSPLIB Functions

The routines included within the library are organized into 8 different functional categories:
\square FFT

- Filtering and convolution
- Adaptive filtering
- Correlation
- Math
\square Trigonometric
- Miscellaneous
\square Matrix
Table 4-2 lists the functions by these 8 functional catagories.
Table 4-2. Summary Table
(a) FFT

Functions	Description
void cfft (DATA *x, ushort nx, type)	Radix-2 complex forward FFT - MACRO
void cifft (DATA *x, ushort nx, type)	Radix-2 complex inverse FFT - MACRO
void cbrev (DATA *x, DATA *r, ushort n)	Complex bit-reverse function
void rfft (DATA *x, ushort nx, type)	Radix-2 real forward FFT - MACRO
void rift (DATA *x, ushort nx, type)	Radix-2 real inverse FFT - MACRO
(b) Filtering and Convolution	Description
Functions	FIR direct form
ushort fir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)	FIR direct form (Optimized to use DUAL-MAC)
ushort fir2 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)	Symmetric FIR direct form (generic routine)
ushort firs (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh2)	Complex FIR direct form
ushort cfir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)	Convolution
ushort convol (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh) ushort convol1 (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)	Convolution (Optimized to use DUAL-MAC)

Table 4-2. Summary Table (Continued)

(b) Filtering and Convolution (Continued)

Functions	Description
ushort convol2 (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)	Convolution (Optimized to use DUAL-MAC)
ushort iircas4 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq, ushort nx)	IIR cascade direct form II. 4 coefficients per biquad.
ushort iircas5 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq, ushort nx)	IIR cascade direct form II. 5 coefficients per biquad
ushort iircas51 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq, ushort nx)	IIR cascade direct form I. 5 coefficients per biquad
ushort iirlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer, int nx, int nh)	Lattice inverse IIR filter
ushort firlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer, int nx, int nh)	Lattice forward FIR filter
ushort firdec (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nh, ushort nx, ushort D)	Decimating FIR filter
ushort firinterp (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nh, ushort nx, ushort I)	Interpolating FIR filter
ushort hilb16 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)	FIR Hilbert Transformer
ushort iir32 (DATA *x, LDATA *h, DATA *r, LDATA *dbuffer, ushort nbiq, ushort nr)	Double-precision IIR filter
(c) Adaptive filtering	
Functions	Description
ushort dlms (DATA *x, DATA *h, DATA *r, DATA *des, DATA *dbuffer, DATA step, ushort nh, ushort nx)	LMS FIR (delayed version)
(d) Correlation	Description
Functions	Correlation (full-length)
ushort acorr (DATA *x, DATA *r, ushort nx, ushort nr, type)	Autocorrelation (positive side only) - MACRO
ny, type)	DATA *x, DATA *y, DATA *r, ushort nx, ushort

Table 4-2. Summary Table (Continued)

(e) Trigonometric

Functions	Description
ushort sine (DATA *x, DATA *r, ushort nx) ushort atan2_16 (DATA *i, DATA *q, DATA *r, ushort nx) ushort atan16 (DATA *x, DATA *r, ushort nx)	sine of a vector Four quadrant inverse tangent of a vector Arctan of a vector
(f) Math	
Functions	Description
ushort add (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale)	Optimized vector addition
ushort expn (DATA *x, DATA *r, ushort nx)	Exponent of a vector
short bexp (DATA *x, ushort nx)	Exponent of all values in a vector
ushort logn (DATA *x, LDATA *r, ushort nx)	Natural log of a vector
ushort $\log _{-} 2($ DATA *x, LDATA *r, ushort $n x$)	Log base 2 of a vector
ushort log_10 (DATA *x, LDATA *r, ushort nx)	Log base 10 of a vector
short maxidx (DATA *x, ushort ng, ushort ng_size)	Index for maximum magnitude in a vector
short maxidx34 (DATA *x, ushort nx)	Index of the maximum element of a vector ≤ 34
short maxval (DATA *x, ushort nx)	Maximum magnitude in a vector
void maxvec (DATA *x, ushort nx, DATA *r_val, DATA *r_idx)	Index and value of the maximum element of a vector
short minidx (DATA *x, ushort nx)	Index for minimum magnitude in a vector
short minval (DATA *x, ushort nx)	Minimum element in a vector
void minvec (DATA *x, ushort nx, DATA *r_val, DATA *r_idx)	Index and value of the minimum element of a vector
ushort mul32 (LDATA *x, LDATA *y, LDATA *r, ushort nx)	32-bit vector multiply
short neg (DATA *x, DATA *r, ushort nx)	16-bit vector negate
short neg32 (LDATA *x, LDATA *r, ushort nx)	32-bit vector negate
short power (DATA *x, LDATA *r, ushort nx)	sum of squares of a vector (power)
void recip16 (DATA *x, DATA *r, DATA *rexp, ushort nx)	Vector reciprocal
void Idiv16 (LDATA *x, DATA *y, DATA *r, DATA *rexp, ushort $n x$)	32 -bit by 16 -bit long division

Table 4-2. Summary Table (Continued)	
(f) Math (Continued)	
Functions	Description
ushort sqrt_16 (DATA *x, DATA *r, short nx)	Square root of a vector
short sub (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale)	Vector subtraction
(g) Matrix	
Functions	Description
ushort mmul (DATA *x1, short row1, short col1, DATA *x2, short row2, short col2, DATA *r)	matrix multiply
ushort mtrans (DATA *x, short row, short col, DATA *r)	matrix transponse
(h) Miscellaneous	
Functions	Description
ushort fltoq15 (float *x, DATA *r, ushort nx)	Floating-point to Q15 conversion
ushort q15tofl (DATA *x, float *r, ushort nx)	Q15 to floating-point conversion
ushort rand16 (DATA *r, ushort nr)	Random number generation
void rand16init(void)	Random number generation initialization

acorr

Autocorrelation

Function

Arguments

x [nx]	Pointer to real input vector of $n x$ real elements. $n x \geq n r$
r [nr]	Pointer to real output vector containing the first nr elements of the positive side of the autocorrelation function of vector a. r must be different than a (in-place computation is not allowed).
$n \mathrm{n}$	Number of real elements in vector x
$n \mathrm{r}$	Number of real elements in vector r
type	Autocorrelation type selector. Types supported:
	- If type = raw, r contains the raw autocorrelation of x
	- If type = bias, r contains the biased autocorrelation of x
	- If type = unbias, r contains the unbiased autocorrelation of x
oflag	Overflow flag.
	- If oflag = 1, a 32-bit overflow has occurred
	- If oflag $=0$, a 32-bit overflow has not occurred

Computes the first nr points of the positive side of the autocorrelation of the real vector x and stores the results in real output vector r. The full-length autocorrelation of vector x will have $2^{*} n x-1$ points with even symmetry around the lag 0 point $(\mathrm{r}[0])$. This routine provides only the positive half of this for memory and computational savings.

Algorithm
Raw Autocorrelation
$r[j]=\sum_{k=0}^{n x-j-1} x[j+k] x[k] \quad 0 \leq j \leq n r$
Biased Autocorrelation
$r[j]=\frac{1}{n x} \sum_{k=0}^{n x-j-1} x[j+k] x[k] \quad 0 \leq j \leq n r$
Unbiased Autocorrelation
$r[j]=\frac{1}{(n x-a b s(j))} \sum_{k=0}^{n x-j-1} x[j+k] x[k] \quad 0 \leq j \leq n r$

Overflow Handling Methodology No scaling implemented for overflow prevention

Special Requirements none

Implementation Notes

\square Special debugging consideration: This function is implemented as a macro that invokes different autocorrelation routines according to the type selected. As a consequence the acorr symbol is not defined. Instead the acorr_raw, acorr_bias, acorr_unbias symbols are defined.
\square Autocorrelation is implemented using time-domain techniques

Example

 See examples/abias, examples/aubias, examples/araw subdirectories
Benchmarks

 (preliminary)Cycles \dagger Abias:
Core:
nr even: [(4 * nx $\left.\left.-n r^{*}(n r+2)+20\right) / 8\right]$ * $n r$
nr odd: $\quad\left[\left(4^{*} n x-(n r-1)^{*}(n r+1)+20\right) / 8\right] *(n r-1)+10$
$n r=1: \quad(n x+2)$
Overhead:
nr even: 90
nr odd: 83
$n \mathrm{n}=1: \quad 59$
Araw:
Core:
nr even: [(4 * nx -nr * $(n r+2)+28) / 8]$ * $n r$
nr odd: $\left[\left(4^{*} n x-(n r-1)^{*}(n r+1)+28\right) / 8\right]^{*}(n r-1)+13$
$n r=1: \quad(n x+1)$
Overhead:
nr even: 34
nr odd: 35
$n r=1: \quad 30$
\dagger Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

Cycles ${ }^{\dagger}$	Aubias:
	Core: nreven: [(8 * nx - $3^{*} \mathrm{nr}$ * $\left.\left.(\mathrm{nr}+2)+68\right) / 8\right]^{*} \mathrm{nr}$ nr odd: [$\left[8\right.$ * $\left.\left.n x-3^{*}(n r-1)^{*}(n r+1)+68\right) / 8\right]$ * $(n r-1)+33$ $n \mathrm{n}=1: \quad \mathrm{nx}+26$
	Overhead:
	nr even: 64
	nr odd: 55
	$n \mathrm{n}=1 \mathrm{l}$: 47
Code size (in bytes)	Abias: 226
	Araw: 178
	Aubias: 308

add

Vector Add

Function

ushort oflag = add (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale) (defined in add.asm)

Arguments

x[nx]	Pointer to input data vector 1 of size nx. In-place processing allowed (r can be $=\mathrm{x}=\mathrm{y}$)
$y[n x]$	Pointer to input data vector 2 of size nx
$\mathrm{r}[\mathrm{nx}]$	Pointer to output data vector of size $n x$ containing - $(x+y)$ if scale $=0$ - $(x+y) / 2$ if scale $=1$
$n \mathrm{n}$	Number of elements of input and output vectors. $n x \geq 4$
scale	Scale selection - If scale $=1$, divide the result by 2 to prevent overflow - If scale $=0$, do not divide by 2
oflag	Overflow flag. - If oflag $=1$, a 32 -bit overflow has occurred - If oflag $=0$, a 32-bit overflow has not occurred

```
Algorithm
for \((i=0 ; i<n x ; i++) \quad z(i)=x(i)+y(i)\)
```

Overflow Handling Methodology Scaling implemented for overflow prevention (User selectable)
Special Requirements none
Implementation Notes none
Example See examples/add subdirectory

Benchmarks (preliminary)

Cycles ${ }^{\dagger}$ Core: 3 * nx
Overhead: 23
Code size 60 (in bytes)
\dagger Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

atan2_16

Arctangent 2 Implementation

Function

ushort oflag $=$ atan2_16 (DATA *i, DATA *q, DATA *r, ushort nx) (defined in arct2.asm)

Arguments

Description	This function calculates the arctangent of the ratio q / I, where $-1<=$ atan2_16(Q/I) <= 1 representing an actual range of -PI < atan2_16(Q/I) < PI. The result is placed in the resultant vector r. Output scale factor correction $=$ PI. For example, if: $y=[0 \times 1999,0 \times 1999,0 \times 0,0 \times e 667,0 \times 1999] \text { (equivalent to }[0.2,0.2,0,-0.2$ $0.2] \text { float) }$ $x=[0 \times 1999,0 \times 3 \mathrm{dcc}, 0 \times 7 \mathrm{ffff}, 0 \times 3 \mathrm{dcc} \mathrm{c} 234]$ (equivalent to $[0.2,0.4828,1$, $0.4828,-0.4828]$ float) atan2_16(y, x, r,4) should give: $\begin{aligned} & r=[0 \times 2000,0 \times 1000,0 \times 0,0 \times f 000,0 \times 7000] \text { equivalent to }[0.25,0.125,0, \\ & -0.125,0.875]^{*} \mathrm{pi} \end{aligned}$
Algorithm	for $(j=0 ; j<n x ; j++) \quad r(j)=\operatorname{atan2}(q[j], \pi])$
Overflow Handling Met	thodology Not applicable
Special Requirements	Linker command file: you must allocate .data section (for polynomial coefficients)
Implementation Notes	none
Example	See examples/arct2 subdirectory
Benchmarks	(preliminary)
	Cyclest ${ }^{\dagger} \quad 18+62$ * nx
	Code size 170 program; 10 data; 4 stack (in bytes)
	\dagger Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

atan16

Arctangent Implementation

Function ushort oflag = atan16 (DATA *x, DATA *r, ushort nx)
(defined in atant.asm)

Arguments

$x[n x]$	Pointer to input data vector of size $n x . x$ contains the tangent of r, where $\|x\|<1$.
$r[n x]$	Pointer to output data vector of size $n x$ containing the arctangent of x in the range $[-\mathrm{pi} / 4, \mathrm{pi} / 4]$ radians. In-place processing allowed (r can be equal to x$)$ atan $(1.0)=0.7854$ or 6478 h

$n x \quad$ Number of elements of input and output vectors.
oflag Overflow flag.
\square If oflag =1, a 32-bit overflow has occurred
\square If oflag $=0$, a 32-bit overflow has not occurred

Description

Algorithm

This function calculates the arc tangent of each of the elements of vector x. The result is placed in the resultant vector r and is in the range $[-\mathrm{pi} / 2$ to $\mathrm{pi} / 2]$ radians. For example, if $x=[0 x 7 \mathrm{fff}, 0 \times 3505,0 x 1976,0 x 0]$ (equivalent to $\tan (\mathrm{Pl} / 4), \tan (\mathrm{Pl} / 8)$, $\tan (\mathrm{PI} / 16), 0$ in float):
atan16(x,r,4) should give $r=[0 x 6478,0 \times 3243,0 x 1921,0 x 0]$ equivalent to $[\mathrm{PI} / 4, \mathrm{PI} / 8, \mathrm{Pl} / 16,0]$ for $(i=0 ; i<n x ; i++) \quad r(i)=\operatorname{atan}(x(i))$

Overflow Handling Methodology Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial coefficients)

Implementation Notes

$\square \operatorname{atan}(\mathrm{x})$, with $0<=\mathrm{x}<=1$, output scaling factor $=\mathrm{PI}$.
\square Uses a polynomial to compute the $\arctan (x)$ for $|x|<1$. For $|x|>1$, you can express the number x as a ratio of 2 fractional numbers and use the atan2_16 function.

Example

See examples/atant subdirectory
Benchmarks
(preliminary)
Cyclest $\quad 14+8$ * $n x$
Code size 43 program; 6 data (in bytes)
\dagger Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

bexp

Block Exponent Implementation

Function	short $r=\operatorname{bexp}(D A T A * x$, ushort $n x)$ (defined in bexp.asm)	
Arguments		
	$x[n x]$	Pointer to input vecto
	r	Return value. Maxim scaling.
	$n \mathrm{n}$	Length of input data
Description	Computes the exponents (number vector and returns the minimum ex the maximum shift value that may	
Algorithm	Not applicable	
Overflow Handling Met	thodology	Not applicable
Special Requirements none		
Implementation Notes none		
Example	See examples/bexp subdirectory	
Benchmarks	(preliminary)	
	Cycles	Core: 3 * $n x$ Overhead: 4
	Code size (in bytes)	19

cbrev

 Complex Bit Reverse```
Function void cbrev (DATA *a, DATA *r, ushort n)
(defined in cbrev.asm)
```


## Arguments

| $x\left[2^{*} n x\right]$ | Pointer to complex input vector $x$ |
| :--- | :--- |
| $r\left[2^{*} n x\right]$ | Pointer to complex output vector $r$. |
| $n x$ | Number of complex elements of vectors $x$ and $r$. |
|  | $\square$ |
|  | To bit-reverse the input of a complex FFT, $n x$ should be the <br> complex FFT size. |
|  | To bit-reverse the input of a real FFT, $n x$ should be half the <br> real FFT size. |

Description This function bit-reverses the position of elements in complex vector $x$ into output vector r. In-place bit-reversing is allowed. Use this function in conjunction with FFT routines to provide the correct format for the FFT input or output data. If you bit-reverse a linear-order array, you obtain a bit-reversed order array. If you bit-reverse a bit-reversed order array, you obtain a linear-order array.

## Algorithm Not applicable

## Overflow Handling Methodology Not applicable

## Special Requirements

$\square$ Alignment of input database address: $(n+1)$ LSBs must be zeros, where $\mathrm{n}=\log _{2}(\mathrm{nx})$.
$\square$ Ensure that the entire array fits within a 64 K boundary (the largest possible array addressable by the 16 -bit auxiliary register).

## Implementation Notes

$\square \mathrm{x}$ is read with bit-reversed addressing and r is written in normal linear addressing.
$\square$ Off-place bit-reversing $(x=r)$ requires half as many cycles as in-place bitreversing ( $x$ <> r). However, this is at the expense of doubling the data memory requirements.

Example See examples/cfft and examples/rfft subdirectories
(preliminary)
Cycles $\dagger$ Core:

$$
2 \text { * nx (off-place) }
$$

$$
4^{*} n x+6 \quad \text { (in-place) }
$$

$$
\text { Overhead: } 17
$$

Code size 81 (includes support for both in-place and off-place (in bytes) bit-reverse)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## cft

Forward Complex FFT

## Function

void cfft (DATA *x, ushort nx, type);
(defined in cfft.asm)

## Arguments

Description Computes a complex nx-point FFT on vector $x$, which is in bit-reversed order. The original content of vector x is destroyed in the process. The nx complex elements of the result are stored in vector x in normal-order.

## Algorithm

(DFT)
$y[k]=\frac{1}{(\text { scale factor })} * \sum_{i=0}^{n x-1} x[i] *\left(\cos \left(\frac{2^{*} \pi^{*} i^{*} k}{n X}\right)+j \sin \left(\frac{2^{*} \pi^{*} i^{*} k}{n X}\right)\right)$
Overflow Handling Methodology If scale==1, scaling before each stage is implemented for overflow prevention

## Special Requirements

$\square$ This function requires the inclusion of file "twiddle.inc" which contains the twiddle table (automatically included).
$\square$ Data memory alignment (reference cfft.cmd in examples/cfft directory):

- Alignment of input database address: $(\mathrm{n}+1)$ LSBs must be zeros, where $\mathrm{n}=\log _{2}(\mathrm{nx})$.
- Ensure that the entire array fits within a 64 K boundary (the largest possible array addressable by the 16-bit auxiliary register).
- For best performance the data buffer has to be in a DARAM block.
- If the twiddle table and the data buffer are in the same block then the radix- 2 kernal is 7 cycles and the radix- 4 kernel is not affected.


## Implementation Notes

$\square$ Radix-2 DIF version of the FFT algorithm is implemented. The implementation is optimized for MIPS, not for code size. The first stage is unrolled and the last two stages are implemented in radix-4, for MIPS optimization.
$\square$ This routine prevents overflow by scaling by 2 before each FFT stage, assuming that the parameter scale is set to 1 .

## Example

See examples/cfft subdirectory

## Benchmarks

(preliminary)

- 5 cycles (radix-2 butterfly - used in both scaled and non-scaled versions)
$\square 10$ cycles (radix-4 butterfly - used in non-scaled version)
CFFT - SCALE

| FFT Size | Cycles $\boldsymbol{t}$ | Code Size (in bytes) |
| :---: | :---: | :---: |
| 8 | 149 | 109 |
| 16 | 325 | 462 |
| 32 | 591 | 462 |
| 64 | 1177 | 462 |
| 128 | 2483 | 462 |
| 512 | 5389 | 462 |
| 1024 | 11815 | 462 |

[^0]CFFT - NOSCALE

| FFT Size | Cycles $\boldsymbol{t}$ | Code Size (in bytes) |
| :---: | :---: | :---: |
| 8 | 139 | 325 |
| 16 | 246 | 325 |
| 32 | 477 | 325 |
| 64 | 996 | 325 |
| 128 | 2171 | 325 |
| 256 | 4818 | 325 |
| 512 | 10729 | 325 |

$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## cfir

## Complex FIR Filter

## Function

ushort oflag $=$ cfir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)

## Arguments

| $x\left[2^{*} n x\right]$ | Pointer to input vector of $n x$ complex elements. |
| :---: | :---: |
| $\mathrm{h}\left[2^{*} \mathrm{nh}\right]$ | - Pointer to complex coefficient vector of size nh in normal order. For example, if $\mathrm{nh}=6$, then $\mathrm{h}[\mathrm{nh}]=$ \{h0r, h0i, h1r, h1i h2r, h2i, h3r, h3i, h4r, h4i, h5r, h5i\} where h0 resides at the lowest memory address in the array. |
|  | - This array must be located in internal memory since it is accessed by the C55x coefficient bus. |
| $\mathrm{r}\left[2^{*} \mathrm{nx}\right]$ | Pointer to output vector of $n x$ complex elements. In-place computation $(r=x)$ is allowed. |

$$
\begin{aligned}
& \text { dbuffer[2*nh + 2] Pointer to delay buffer of length nh =2 * nh + } 2 \\
& \square \text { In the case of multiple-buffering schemes, this } \\
& \text { array should be initialized to } 0 \text { for the first filter block } \\
& \text { only. Between consecutive blocks, the delay buffer } \\
& \text { preserves the previous r output elements needed. } \\
& \text { - The first element in this array is present for align- } \\
& \text { ment purposes, the second element is special in } \\
& \text { that it contains the array index-1 of the oldest input } \\
& \text { entry in the delay buffer. This is needed for multiple- } \\
& \text { buffering schemes, and should be initialized to } 0 \\
& \text { (like all the other array entries) for the first block } \\
& \text { only. } \\
& \text { Number of complex input samples } \\
& \text { nh The number of complex coefficients of the filter. For } \\
& \text { example, if the filter coefficients are \{h0, h1, h2, h3, } \\
& \text { h4, h5\}, then } \mathrm{nh}=6 \text {. Must be a minimum value of } 3 \text {. } \\
& \text { For smaller filters, zero pad the coefficients to meet } \\
& \text { the minimum value. } \\
& \text { oflag } \\
& \text { Overflow error flag (returned value) } \\
& \text { - If oflag = 1, a 32-bit data overflow has occurred in } \\
& \text { an intermediate or final result. } \\
& \text { - If oflag }=0 \text {, a 32-bit overflow has not occurred. }
\end{aligned}
$$

## Description

Computes a complex FIR filter (direct-form) using the coefficients stored in vector $h$. The complex input data is stored in vector $x$. The filter output result is stored in vector $r$. This function maintains the array dbuffer containing the previous delayed input values to allow consecutive processing of input data blocks. This function can be used for both block-by-block ( $n x \geq 2$ ) and sample-by-sample filtering $(n x=1)$. In-place computation $(r=x)$ is allowed.

Algorithm

$$
r[j]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n x
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

Implementation Notes The first element in the dbuffer array is present only for alignment purposes. The second element in this array (index $=0$ ) is the entry index for the input history. It is treated as an unsigned 16 -bit value by the function even though it has been declared as signed in C. The value of the entry index is equal to the index -1 of the oldest input entry in the array. The remaining elements make up the input history. Figure 4-1 shows the array in memory with an entry index of 2 . The newest entry in the dbuffer is denoted by $x(j-0)$, which in this case would occupy index $=3$ in the array. The next newest entry is $x(j-1)$, and so on. It is assumed that all $x()$ entries were placed into the array by the previous invocation of the function in a multiple-buffering scheme.

Figure 4-1, Figure 4-2, and Figure 4-3 show the dbuffer, $x$, and $r$ arrays as they appear in memory.

Figure 4-1. dbuffer Array in Memory at Time j

$\bullet$

| $x r(j-n h-3)$ |
| :---: |
| $x i(j-n h-3)$ |
| $x r(j-n h-4)$ |
| $x i(j-n h-4)$ |
| $x r(j-n h-3)$ |
| $x i(j-n h-3)$ |

xi(j-nh-3)
lowest memory address
highest memory address

Figure 4-2. x Array in Memory

highest memory address

Figure 4-3. r Array in Memory

lowest memory address
highest memory address

## Example

See examples/cfir subdirectory

## Benchmarks (preliminary)

Cycles $\dagger \quad$ Core: $\quad n x *[8+2(n h-2)]$
Overhead: 51
Code size 136 (in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## cifft

## Inverse Complex FFT

## Function void cifft (DATA *x, ushort nx, type);

(defined in cifft.asm)

## Arguments

| x [2*nx] | Pointer to input vector containing $n x$ complex elements ( $2^{*} n x$ real elements) in bit-reversed order. On output, vector a contains the $n x$ complex elements of the IFFT(x). Complex numbers are stored in interleaved Re-Im format. |
| :---: | :---: |
| $n \mathrm{n}$ | Number of complex elements in vector $x$. Must be between 8 and 1024. |
| type | FFT type selector. Types supported: |
|  | - If type = SCALE, scaled version selected |
|  | $\square$ If type = NOSCALE, non-scaled version selected |

Description Computes a complex nx-point IFFT on vector $x$, which is in bit-reversed order. The original content of vector x is destroyed in the process. The nx complex elements of the result are stored in vector x in normal-order.

## Algorithm

(IDFT)
$y[k]=\frac{1}{\text { (scale factor) }} * \sum_{i=0}^{n x-1} x[w] *\left(\cos \left(\frac{2^{*} \pi^{*} i^{*} k}{n x}\right)+j \sin \left(\frac{2^{*} \pi^{*} i^{*} k}{n x}\right)\right)$
Overflow Handling Methodology If scale==1, scaling before each stage is implemented for overflow prevention

## Special Requirements

$\square$ This function requires the inclusion of file "twiddle.inc" which contains the twiddle table (automatically included).

D Data memory alignment (reference cfft.cmd in examples/cifft directory):

- Alignment of input database address: $(\mathrm{n}+1)$ LSBs must be zeros, where $\mathrm{n}=\log _{2}(\mathrm{nx})$.
- Ensure that the entire array fits within a 64 K boundary (the largest possible array addressable by the 16-bit auxiliary register).
- For best performance the data buffer has to be in a DARAM block.
- If the twiddle table and the data buffer are in the same block then the radix-2 kernal is 7 cycles and the radix- 4 kernel is not affected.


## Implementation Notes

$\square$ Radix-2 DIF version of the IFFT algorithm is implemented. The implementation is optimized for MIPS, not for code size. The first stage is unrolled and the last two stages are implemented in radix-4, for MIPS optimization.
$\square$ This routine prevents overflow by scaling by 2 before each IFFT stage, assuming that the parameter scale is set to 1 .
$\square$ IFFT implementation is directly derived from FFT implementation by changing signs (or replacing adds with subtracts or vice versa) where appropriate.

## Example <br> See examples/cifft subdirectory

## Benchmarks

(preliminary)

- 5 cycles (radix-2 butterfly - used in both scaled and non-scaled versions)
$\square 10$ cycles (radix-4 butterfly - used in non-scaled version)


## CIFFT - SCALE

| FFT Size | Cycles $\boldsymbol{t}$ | Code Size (in bytes) |
| :---: | :---: | :---: |
| 8 | 149 | 462 |
| 16 | 325 | 462 |
| 32 | 591 | 462 |
| 64 | 1177 | 462 |
| 128 | 2483 | 462 |
| 256 | 5389 | 462 |
| 512 | 11815 | 462 |
| 1024 | 25921 | 462 |

$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

CIFFT - NOSCALE

| FFT Size | Cycles $\boldsymbol{t}$ | Code Size (in bytes) |
| :---: | :---: | :---: |
| 8 | 139 | 325 |
| 16 | 246 | 325 |
| 32 | 477 | 325 |
| 64 | 996 | 325 |
| 128 | 2171 | 325 |
| 256 | 4818 | 325 |
| 512 | 10729 | 325 |
| 1024 | 23808 | 325 |

$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## convol

## Convolution

## Function

ushort oflag = convol (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)

## Arguments

| $\mathrm{x}[\mathrm{nr}+\mathrm{nh}-1]$ | Pointer to input vector of $\mathrm{nr}+\mathrm{nh}-1$ real elements. |
| :--- | :--- |
| $\mathrm{h}[\mathrm{nh}]$ | Pointer to input vector of nh real elements. |
| $\mathrm{r}[\mathrm{nr}]$ | Pointer to output vector of nr real elements. |
| nr | Number of elements in vector r . In-place computation <br> $(\mathrm{r}=\mathrm{x})$ is allowed (see Description section for comment). |
| nh | Number of elements in vector h. |
| oflag | Overflow error flag (returned value) |
|  | $\square \quad$ If oflag = 1, a 32-bit data overflow occurred in an inter- |
|  | mediate or final result. |
|  | $\square \quad$ If oflag $=0$, a 32-bit overflow has not occurred. |

Description Computes the real convolution of two real vectors x and h , and places the results in vector $r$. Typically used for block FIR filter computation when there is no need to retain an input delay buffer. This function can also be used to implement single-sample FIR filters $(\mathrm{nr}=1)$ provided the input delay history for the filter is maintained external to this function. In-place computation ( $r=x$ ) is allowed, but be aware that the r output vector is shorter in length than the $x$ input vector; therefore, $r$ will only overwrite the first $n r$ elements of the $x$.

Algorithm

$$
r[j]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n r
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes Figure 4-4, Figure 4-5, and Figure 4-6 show the $x$, $r$, and $h$ arrays as they appear in memory.

Figure 4-4. x Array in Memory

lowest memory address
highest memory address

Figure 4-5. r Array in Memory

lowest memory address
highest memory address

Figure 4-6. h Array in Memory

lowest memory address
highest memory address

## Example <br> Benchmarks <br> (preliminary) <br> Cyclest Core: $\quad n r^{*}(1+n h)$ <br> Overhead: 44 <br> Code size 88 (in bytes) <br> $\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## convol1 <br> Convolution (fast)

## Function <br> ushort oflag = convol1 (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)

## Arguments

$x[n r+n h-1] \quad$ Pointer to input vector of $n r+n h-1$ real elements.
$\mathrm{h}[\mathrm{nh}] \quad$ Pointer to input vector of nh real elements.
$r[n r] \quad$ Pointer to output vector of nr real elements. In-place computation ( $r=x$ ) is allowed (see Description section for comment).
$n r \quad$ Number of elements in vector $r$. Must be an even number.
nh $\quad$ Number of elements in vector $h$.
oflag Overflow error flag (returned value)

- If oflag = 1, a 32-bit data overflow occurred in an intermediate or final result.
$\square$ If oflag $=0$, a 32-bit overflow has not occurred.

Description Computes the real convolution of two real vectors x and h , and places the results in vector $r$. This function utilizes the dual-MAC capability of the C55x to process in parallel two output samples for each iteration of the inner function loop. It is, therefore, roughly twice as fast as CONVOL, which implements only a single-MAC approach. However, the number of output samples (nr) must be even. Typically used for block FIR filter computation when there is no need to retain an input delay buffer. This function can also be used to implement singlesample FIR filters $(n r=1)$ provided the input delay history for the filter is maintained external to this function. In-place computation $(r=x)$ is allowed, but be aware that the r output vector is shorter in length than the $x$ input vector; therefore, $r$ will only overwrite the first $n r$ elements of the $x$.

Algorithm
$r[j]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n r$
Overflow Handling Methodology No scaling implemented for overflow prevention.

## Special Requirements

$\square$ nr must be an even value.
$\square$ The vector h[nh] must be located in internal memory since it is accessed using the C55x coefficient bus, and that bus does not have access to external memory.

Implementation Notes Figure 4-7, Figure 4-8, and Figure $4-9$ show the $x, r$, and $h$ arrays as they appear in memory.

Figure 4-7. x Array in Memory

| $x(0)$ <br> $x(1)$ <br> $\vdots$ <br> $x(n r+n h-2)$ <br> $x(n r+n h-1)$ |
| :---: |
| highest memory address |

Figure 4-8. r Array in Memory

lowest memory address
highest memory address

Figure 4-9. h Array in Memory


| Example |  |
| :--- | :--- |
| Benchmarks | See examples/convol1 subdirectory <br> (preliminary) |
| Cycles $\dagger \quad$Core: $\quad \mathrm{nr} / 2 *[3+(\mathrm{nh}-2)]$ <br> Overhead: 58 |  |
| Code size $\quad 101$ <br> (in bytes) |  |
| t Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle <br> table reads and instruction fetches (provided linker command file reflects those conditions). |  |

## convol2

Convolution (fastest)
Function
ushort oflag = convol2 (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)
Arguments
$x[n r+n h-1] \quad$ Pointer to input vector of $n r+n h-1$ real elements.
$\mathrm{h}[\mathrm{nh}] \quad$ Pointer to input vector of nh real elements.
$r[n r] \quad$ Pointer to output vector of $n r$ real elements. In-place computation ( $r=x$ ) is allowed (see Description section for comment). This array must be aligned on a 32-bit boundary in memory.
$n r \quad$ Number of elements in vector r. Must be an even number.
nh Number of elements in vector h.
oflag Overflow error flag (returned value)

- If oflag = 1, a 32-bit data overflow has occurred in an intermediate or final result.
- If oflag $=0$, a 32-bit overflow has not occurred.


## Description

Algorithm
Computes the real convolution of two real vectors $x$ and $h$, and places the results in vector $r$. This function utilizes the dual-MAC capability of the C55x to process in parallel two output samples for each iteration of the inner function loop. It is, therefore, roughly twice as fast as CONVOL, which implements only a single-MAC approach. However, the number of output samples (nr) must be even. In addition, this function offers a small performance improvement over CONVOL1 at the expense of requiring the r array to be 32-bit aligned in memory. Typically used for block FIR filter computation when there is no need to retain an input delay buffer. This function can also be used to implement singlesample FIR filters ( $\mathrm{nr}=1$ ) provided the input delay history for the filter is maintained external to this function. In-place computation $(r=x)$ is allowed, but be aware that the r output vector is shorter in length than the $x$ input vector; therefore, $r$ will only overwrite the first $n r$ elements of the $x$.

$$
r[j]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n r
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.

## Special Requirements

$\square \quad \mathrm{nr}$ must be an even value.
$\square$ The vector h[nh] must be located in internal memory since it is accessed using the C55x coefficient bus, and that bus does not have access to external memory.
$\square$ The vector $\mathrm{r}[\mathrm{nr}]$ must be 32-bit aligned in memory.
Implementation Notes Figure 4-10, Figure 4-11, and Figure $4-12$ show the $\times, r$, and $h$ arrays as they appear in memory.

Figure 4-10. x Array in Memory

| $x(0)$ | lowest memory address |
| :---: | :---: |
| $x(1)$ |  |
|  |  |
| $x(n r+n h-2)$ |  |
| $x(n r+n h-1)$ | highest memory address |

Figure 4-11.r Array in Memory


Figure 4-12. h Array in Memory

| $h(0)$ |
| :---: |
| $h(1)$ |

lowest memory address

Example
See examples/convol2 subdirectory
Benchmarks
(preliminary)
Cycles ${ }^{\dagger} \quad$ Core: $\quad \mathrm{nr} / 2^{*}(1+\mathrm{nh})$
Overhead: 24
Code size 100
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

Function

## Arguments

| $x$ [ nx ] | Pointer to real input vector of $n \times$ real elements. |
| :---: | :---: |
| $x$ [ny] | Pointer to real input vector of ny real elements. |
| $r[n x+n y-1]$ | Pointer to real output vector containing the full-length correlation ( $n x+n y-1$ elements) of vector $x$ with $y . r$ must be different than both $x$ and $y$ (in-place computation is not allowed). |
| $n \mathrm{x}$ | Number of real elements in vector $x$ |
| ny | Number of real elements in vector y |
| type | Correlation type selector. Types supported: |
|  | If type $=$ raw, $r$ contains the raw correlation If type $=$ bias, $r$ contains the biased-correlation If type $=$ unbias, $r$ contains the unbiased-correlation |
| oflag | Overflow flag |
|  | - If oflag = 1, a 32-bit overflow has occurred <br> $\square$ If oflag $=0$, a 32-bit overflow has not occurred |

## Description

Computes the full-length correlation of vectors x and y and stores the result in vector r. using time-domain techniques.

Algorithm
Raw correlation
$r]]=\sum_{k=0}^{n r-j-1} x[j+k]^{*} y[k] \quad 0 \leq j \leq n r=n x+n y-1$
Biased correlation
$r[]=1 / n r \sum_{k=0}^{n r-j-1} x[j+k]^{*} y[k] \quad 0 \leq j \leq n r=n x+n y-1$
Unbiased correlation
$\left.r j]=1 /(n x-\operatorname{abs}(j)) \sum_{k=0}^{n r-j-1} x[j+k]\right]^{*} y[k] \quad 0 \leq j \leq n r=n x+n y-1$
Overflow Handling Methodology No scaling implemented for overflow prevention
Special Requirements none

## Implementation Notes

$\square$ Special debugging consideration: This function is implemented as a macro that invokes different correlation routines according to the type selected. As a consequence the corr symbol is not defined. Instead the corr_raw, corr_bias, corr_unbias symbols are defined.
$\square$ Correlation is implemented using time-domain techniques

## Benchmarks

(preliminary)

| Cycles | Raw: | 2 times faster than C54x |
| :--- | :--- | :--- |
|  | Unbias: | 2.14 times faster than C54x |
|  | Bias: | 2.1 times faster than C54x |
| Code size | Raw: | 318 |
| (in bytes) | Unbias: | 417 |
|  | Bias: | 356 |

## dlms

## Adaptive Delayed LMS Filter

## Function

ushort oflag $=$ dlms (DATA *x, DATA *h, DATA *r, DATA *des, DATA *dbuffer, DATA step, ushort nh, ushort nx)
(defined in dlms.asm)

## Arguments

| $x[n x]$ | Pointer to input vector of size $n \mathrm{x}$ |
| :---: | :---: |
| $\mathrm{h}[\mathrm{nh}]$ | Pointer to filter coefficient vector of size nh. $h$ is stored in reversed order : $\mathrm{h}(\mathrm{n}-1), \ldots \mathrm{h}(0)$ where $\mathrm{h}[\mathrm{n}]$ is at the lowest memory address. |
|  | - Memory alignment: $h$ is a circular buffer and must start in a k-bit boundary(that is, the k LSBs of the starting address must be zeros) where $\mathrm{k}=\log 2(\mathrm{nh})$ |
| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output data vector of size $n x$. $r$ can be equal to $x$. |
| des[ $n \mathrm{x}$ ] | Pointer to expected output array |
| dbuffer[nh+2] | Pointer to the delay buffer structure. |
|  | The delay buffer is a structure comprised of an index register and a circular buffer of length $n h+1$. The index register is the index into the circular buffer of the oldest data sample. |


| nh | Number of filter coefficients. Filter order $=\mathrm{nh}-1$. |
| :--- | :--- |
| $\mathrm{nh} \geq 3$ |  |,$\quad$ Length of input and output data vectors.

- If oflag = 1, a 32-bit overflow has occurred
- If oflag $=0$, a 32-bit overflow has not occurred


## Description

Algorithm
Adaptive delayed least-mean-square (LMS) FIR filter using coefficients stored in vector h. Coefficients are updated after each sample based on the LMS algorithm and using a constant step $=2^{*} m u$. The real data input is stored in vector dbuffer. The filter output result is stored in vector $r$.

LMS algorithm uses the previous error and the previous sample (delayed) to take advantage of the C55x LMS instruction.

The delay buffer used is the same delay buffer used for other functions in the C55x DSP Library. There is one more data location in the circular delay buffer than there are coefficients. Other C55x DSP Library functions use this delay buffer to accommodate use of the dual-MAC architecture. In the DLMS function, we make use of the additional delay slot to allow coefficient updating as well as FIR calculation without a need to update the circular buffer in the interim operations.

The FIR output calculation is based on $x(i)$ through $x(i-n h+1)$. The coefficient update for a delayed LMS is based on $x(i-1)$ through $x(i-n h)$. Therefore, by having a delay buffer of $\mathrm{nh}+1$, we can perform all calculations with the given delay buffer containing delay values of $x(i)$ through $x(i-n h)$. If the delay buffer was of length $n h$, the oldest data sample, $x(i-n h)$, would need to be updated with the newest data sample, $x(i)$, sometime after the calculation of the first coefficient update term, but before the calculation of the last FIR term.

FIR portion

$$
r[j]=\sum_{k=0}^{n h-1} h[k]^{*} x[i-k] \quad 0 \leq i \leq n x-1
$$

Adaptation using the previous error and the previous sample:

$$
\begin{aligned}
& e(i)=\operatorname{des}(i-1)-r(i-1) \\
& h_{k}(i+1)=h_{k}(i)+2^{*} m u^{*} e(i-1)^{*} x(i-k-1)
\end{aligned}
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements Minimum of 2 input and desired data samples. Minimum of 2 coefficients

## Implementation Notes

- Delayed version implemented to take advantage of the C55x LMS instruction.
$\square$ Effect of using delayed error signal on convergence minimum:
For reference, following is the algorithm for the regular LMS (nondelayed):

FIR portion

$$
r[j]=\sum_{k=0}^{n h-1} h[k]^{*} x[i-k] \quad 0 \leq i \leq n x-1
$$

Adaptation using the current error and the current sample:

$$
\begin{aligned}
& e(i)=\operatorname{des}(i)-r(i) \\
& h_{k}(i+1)=h_{k}(i)+2^{*} m u^{*} e(i) * x(i-k)
\end{aligned}
$$

## Example

## See examples/dlms subdirectory

## Benchmarks <br> (preliminary)

Cycles $\dagger \quad$ Core: $n x *\left(7+2^{*}(n h-1)\right)=n x *(5+2$ * $n h)$
Overhead: 26
Code size 122
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## expn

Exponential Base e

## Function

ushort oflag = expn (DATA *x, DATA *r, ushort nx)
(defined in expn.asm)
Arguments

| $x[n x]$ | Pointer to input vector of size nx . x contains the numbers normalized between $(-1,1)$ in q15 format |
| :---: | :---: |
| r[nx] | Pointer to output data vector (Q3.12 format) of size $n x$. $r$ can be equal to $x$. |
| nx | Length of input and output data vectors |
| oflag | Overflow flag. |
|  | - If oflag = 1, a 32-bit overflow has occurred |
|  | - If oflag $=0$, a 32-bit overflow has not occurred |

## Description Computes the exponent of elements of vector $x$ using Taylor series.

## Algorithm

for $(i=0 ; i<n x ; i++) \quad y(i)=e^{x(i)}$ where $-1<x(i)<1$

## Overflow Handling Methodology Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial coefficients)

Implementation Notes Computes the exponent of elements of vector x. It uses the following Taylor series:
$\exp (x)=c 0+\left(c 1^{*} x\right)+\left(c 2^{*} x^{2}\right)+\left(c 3^{*} x^{3}\right)+\left(c 4^{*} x^{4}\right)+\left(c 5^{*} x^{5}\right)$
where
$c 0=1.0000$
c1 $=1.0001$
c2 $=0.4990$
c3 $=0.1705$
$c 4=0.0348$
c5 $=0.0139$

## Example

Benchmarks
See examples/expn subdirectory
(preliminary)

$$
\text { Cyclest Core: } 11 \text { * } \mathrm{nx}
$$

Overhead: 18
Code size 57
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).
fir

## FIR Filter

ushort oflag = fir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)

## Arguments

| x[nx] | Pointer to input vector of $n x$ real elements. |
| :---: | :---: |
| $\mathrm{h}[\mathrm{nh}]$ | - Pointer to coefficient vector of size nh in normal order. For example, if $\mathrm{nh}=6$, then $\mathrm{h}[\mathrm{nh}]=\{\mathrm{h} 0, \mathrm{~h} 1, \mathrm{~h} 2, \mathrm{~h} 3, \mathrm{~h} 4$, h5\} where h0 resides at the lowest memory address in the array. |
|  | - This array must be located in internal memory since it is accessed by the C55x coefficient bus. |


| r[nx] | Pointer to output vector of nx real elements. In-place computation $(r=x)$ is allowed. |
| :---: | :---: |
| dbuffer[nh+2] | Pointer to delay buffer of length $\mathrm{nh}=\mathrm{nh}+2$ |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first filter block only. Between consecutive blocks, the delay buffer preserves the previous $r$ output elements needed. |
|  | - The first element in this array is special in that it contains the array index-1 of the oldest input entry in the delay buffer. This is needed for multiple-buffering schemes, and should be initialized to 0 (like all the other array entries) for the first block only. |
| nx | Number of input samples |
| nh | The number of coefficients of the filter. For example, if the filter coefficients are $\{\mathrm{h} 0, \mathrm{~h} 1, \mathrm{~h} 2, \mathrm{~h} 3, \mathrm{~h} 4, \mathrm{~h} 5\}$, then nh $=6$. Must be a minimum value of 3 . For smaller filters, zero pad the coefficients to meet the minimum value. |
| oflag | Overflow error flag (returned value) |
|  | - If oflag $=1$, a 32 -bit data overflow occurred in an intermediate or final result. |
|  | - If oflag $=0$, a 32 -bit overflow has not occurred. |
| Computes a real FIR filter (direct-form) using the coefficients stored in vector $h$. The real input data is stored in vector $x$. The filter output result is stored in vector $r$. This function maintains the array dbuffer containing the previous delayed input values to allow consecutive processing of input data blocks. This function can be used for both block-by-block ( $n x \geq 2$ ) and sample-by-sample filtering ( $n x=1$ ). In place computation $(r=x)$ is allowed. |  |

Algorithm

$$
r[J]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n x
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

Implementation Notes The first element in the dbuffer array (index $=0$ ) is the entry index for the input history. It is treated as an unsigned 16-bit value by the function even though it has been declared as signed in $C$. The value of the entry index is equal to the index -1 of the oldest input entry in the array. The remaining elements make up the input history. Figure $4-13$ shows the array in memory with an entry index of 2 . The newest entry in the dbuffer is denoted by $x(j-0)$, which in this case would occupy index $=3$ in the array. The next newest entry is $x(j-1)$, and so on. It is assumed that all $x()$ entries were placed into the array by the previous invocation of the function in a multiple-buffering scheme.

The dbuffer array actually contains one more history value than is needed to implement this filter. The value $\times(\mathrm{j}-\mathrm{nh})$ does not enter into the calculations for for the output $r(j)$. However, this value is required in other DSPLIB filter functions that utilize the dual-MAC units on the C55x, such as FIR2. Including this extra location ensures compatibility across all filter functions in the C55x DSPLIB.

Figure 4-13, Figure 4-14, and Figure 4-15 show the dbuffer, x, and $r$ arrays as they appear in memory.

Figure 4-13. dbuffer Array in Memory at Time j

lowest memory address
highest memory address

Figure 4-14. x Array in Memory


Figure 4-15. r Array in Memory


| Example | See examples/fir subdirectory |
| :--- | :--- |
| Benchmarks | (preliminary) |

Cycles $\dagger \quad$ Core: $\quad n x *(2+n h)$
Overhead: 25
Code size 107
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## fir2

## Block FIR Filter (fast)

Function
ushort oflag $=$ fir2 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)

## Arguments

| $x[n x]$ | Pointer to input vector of $n x$ real elements. |
| :--- | :--- |
| $r[n x]$ | Pointer to output vector of $n x$ real elements. In-place <br> computation $(r=x)$ is allowed. |


| $\mathrm{h}[\mathrm{nh}]$ | - Pointer to coefficient vector of size nh in normal order. For example, if $\mathrm{nh}=6$, then $\mathrm{h}[\mathrm{nh}]=\{\mathrm{h} 0, \mathrm{~h} 1, \mathrm{~h} 2, \mathrm{~h} 3, \mathrm{~h} 4$, h5\} where h0 resides at the lowest memory address in the array. |
| :---: | :---: |
|  | - This array must be located in internal memory since it is accessed by the C55x coefficient bus. |
| dbuffer[nh + 2] | Pointer to delay buffer of length $\mathrm{nh}=\mathrm{nh}+2$ |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first filter block only. Between consecutive blocks, the delay buffer preserves the previous r output elements needed. |
|  | - The first element in this array is special in that it contains the array index-1 of the oldest input entry in the delay buffer. This is needed for multiple-buffering schemes, and should be initialized to 0 (like all the other array entries) for the first block only. |
| nx | Number of input samples. Must be an even number. |
| nh | The number of coefficients of the filter. For example, if the filter coefficients are $\{\mathrm{h} 0, \mathrm{~h} 1, \mathrm{~h} 2, \mathrm{~h} 3, \mathrm{~h} 4, \mathrm{~h} 5\}$, then nh $=6$. Must be a minimum value of 3 . For smaller filters, zero pad the coefficients to meet the minimum value. |
| oflag | Overflow error flag (returned value) |
|  | - If oflag = 1, a 32-bit data overflow occurred in an intermediate or final result. |
|  | - If oflag $=0$, a 32-bit overflow has not occurred. |
| Computes a real block FIR filter (direct-form) using the coefficients stored in vector $h$. This function utilizes the dual-MAC capability of the C 55 x to process in parallel two output samples for each iteration of the inner function loop. It is, therefore, roughly twice as fast as FIR, which implements only a singleMAC approach. However, the number of input samples ( $n x$ ) must be even The real input data is stored in vector $x$. The filter output result is stored in vector $r$. This function maintains the array dbuffer containing the previous delayed input values to allow consecutive processing of input data blocks. This function can be used for block-by-block filtering only ( $n x \geq 2$ ). It cannot be used for sam-ple-by-sample filtering ( $n x=1$ ). In-place computation $(r=x)$ is allowed. |  |
|  |  |

## Algorithm

$$
r[j]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n x
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.

## Special Requirements

nh must be a minimum value of 3 . For smaller filters, zero pad the h[] array.
$\square \mathrm{nx}$ must be an even value.
$\square$ Coefficient array $\mathrm{h}[\mathrm{nh}]$ must be located in internal memory since it is accessed using the C55x coefficient bus, and that bus does not have access to external memory.

Implementation Notes The first element in the dbuffer array (index $=0$ ) is the entry index for the input history. It is treated as an unsigned 16 -bit value by the function even though it has been declared as signed in C . The value of the entry index is equal to the index -1 of the oldest input entry in the array. The remaining elements make up the input history. Figure $4-16$ shows the array in memory with an entry index of 2 . The newest entry in the dbuffer is denoted by $x(j-0)$, which in this case would occupy index $=3$ in the array. The next newest entry is $x(j-1)$, and so on. It is assumed that all $x()$ entries were placed into the array by the previous invocation of the function in a multiple-buffering scheme.

Figure 4-16, Figure 4-17, and Figure 4-18 show the dbuffer, x, and r arrays as they appear in memory.

Figure 4-16. dbuffer Array in Memory at Time j

lowest memory address
highest memory address

Figure 4-17. x Array in Memory


Figure 4-18. r Array in Memory


## Example

## See examples/fir2 subdirectory

## Benchmarks

> (preliminary)

$$
\text { Cycles } \dagger \quad \text { Core: } \quad(n x / 2)^{*}[5+(n h-3)]
$$

Overhead: 32
Code size 134
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## firdec

## Decimating FIR Filter

## Function

ushort oflag = firdec (DATA *x, DATA *h, DATA *r, DATA *dbuffer , ushort nh, ushort nx, ushort D)
(defined in decimate.asm)

## Arguments

$$
\begin{array}{ll}
x[n x] & \text { Pointer to real input vector of } n x \text { real elements. } \\
h[n h] & \text { Pointer to coefficient vector of size nh in normal order: } \\
& H=b 0 \text { b1 b2 b3 } \ldots
\end{array}
$$

| $r[n \times / D]$ | Pointer to real input vector of $n x / D$ real elements. In-place computation $(r=x)$ is allowed |
| :---: | :---: |
| dbuffer[nh+1] | Delay buffer |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves previous delayed input samples. It also preserves a ptr to the next new entry into the dbuffer. This ptr is preserved across function calls in dbuffer[0]. |
|  | - Memory alignment: this is a circular buffer and must start in a k -bit boundary(that is, the k LSBs of the starting address must be zeros) where $\mathrm{k}=\log 2$ (nh). |
| nx | Number of real elements in vector x |
| nh | Number of coefficients |
| D | Decimation factor. For example a $\mathrm{D}=2$ means you drop every other sample. Ideally, $n \times$ should be a multiple of <br> D. If not, the trailing samples will be lost in the process. |
| oflag | Overflow error flag |
|  | - If oflag $=1$, a 32 -bit data overflow occurred in an intermediate or final result. |
|  | - If oflag $=0, \mathrm{a} 32$-bit overflow has not occurred. |

Description Computes a decimating real FIR filter (direct-form) using coefficient stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector $r$. This function retains the address of the delay filter memory d containing the previous delayed values to allow consecutive processing of blocks. This function can be used for both block-by-block and sample-bysample filtering ( $\mathrm{nx}=1$ ).

Algorithm

$$
r]]=\sum_{k=0}^{n h} h[k] x\left[j^{*} D-k\right] \quad 0 \leq j \leq n x
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes none
Example See examples/decim subdirectory

## Benchmarks <br> (preliminary)

| Cycles | Core: <br> Overhead | $(n x / D)^{*}(10+n h+(D-1))$ |
| :--- | :--- | :--- |
|  | 144 |  |
| Code size <br> (in bytes) |  |  |

## firinterp

Interpolating FIR Filter

Function ushort oflag = firinterp (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nh, ushort nx, ushort I)
(defined in interp.asm)

## Arguments

| x [nx] | Pointer to real input vector of $n x$ real elements. |
| :---: | :---: |
| $\mathrm{h}[\mathrm{nh}]$ | Pointer to coefficient vector of size nh in normal order: |
|  | $\mathrm{H}=\mathrm{b} 0 \mathrm{~b} 1 \mathrm{~b} 2 \mathrm{~b} 3$ |
| r[n**I] | Pointer to real output vector of nx real elements. In-place computation $(r=x)$ is allowed |
| dbuffer[(nh/I)+1] | Delay buffer of (nh/l)+1 elements |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves delayed input samples in dbuffer[1...(nh/l)+1]. It also preserves a ptr to the next new entry into the dbuffer. This ptr is preserved across function calls in dbuffer[0]. |
|  | $\square$ The delay buffer is only $\mathrm{nh} / \mathrm{l}$ elements and holds only delayed $x$ inputs. No zero-samples are inserted into dbuffer (since only non-zero products contribute to the filter output) |
| $n \mathrm{n}$ | Number of real elements in vector $x$ and $r$ |
| nh | Number of coefficients, with (nh/l) $\geq 3$ |


| I | Interpolation factor. I is effectively the number of <br> output samples for every input sample. This routine <br> can be used with $\mathrm{I}=1$. |
| :--- | :--- |
| Overflow error flag |  |


| Description | Computes an interpolating real FIR filter (direct-form) using coefficient stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector $r$. This function retains the address of the delay filter memory d containing the previous delayed values to allow consecutive processing of blocks. This function can be used for both block-by-block and sample-bysample filtering ( $\mathrm{nx}=1$ ). |
| :---: | :---: |

Algorithm

$$
r[t]=\sum_{k=0}^{n h} h[k] x[t / I-k] \quad 0 \leq j \leq n r
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none

Implementation Notes none
Example See examples/decimate subdirectory
Benchmarks (preliminary)
Cycles Core:
If I > 1
$n x^{*}\left(2+I^{*}(1+(n h / I))\right)$

If $\mathrm{I}=1$ :
$n x^{*}(2+n h)$

Overhead 72

Code size 164
(in bytes)

## firlat

## Lattice Forward (FIR) Filter

Function
Arguments

| pbuffer [nh] | Delay buffer |
| :---: | :---: |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves the previous r output elements needed. |
|  | $\begin{aligned} & \text { pbuffer: procession buffer of nh length in order: } \\ & e^{\prime} 0[\mathrm{n}-1] \\ & \mathrm{e}^{\prime} 1[\mathrm{n}-1] \end{aligned}$ |
|  | . |
|  | e'nh-2[n-1] |
|  | $e^{\prime} n h-1[n-1]$ |
| $n \mathrm{n}$ | Number of real elements in vector x (input samples) |
| nh | Number of coefficients |
| oflag | Overflow error flag |
|  | - If oflag $=1$, a 32 -bit data overflow has occurred in an intermediate or final result |
|  | - If oflag $=0$, a 32-bit overflow has not occurred. |

## Description

Computes a real lattice FIR filter implementation using coefficient stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector $r$. This function retains the address of the delay filter memory d containing the previous delayed values to allow consecutive processing of blocks. This function can be used for both block-by-block and sample-bysample filtering ( $\mathrm{nx}=1$ )

$$
\begin{array}{ll}
\text { Algorithm } & e_{0}[n]=e^{\prime}[n]=x[n], \\
& e^{\prime}[n]=e_{i-1}[n]-h i e^{i_{i-1}}[n-1], \quad i=1,2, \ldots, N \\
& e^{\prime}[n]=h_{i} e_{i-1}[n]+e^{\prime}{ }_{i-1}[n-1], \quad i=1,2, \ldots, N \\
& y[n]=e_{N}[n]
\end{array}
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes none
Example See examples/firlat subdirectory

## Benchmarks (preliminary)

$$
\begin{array}{ll}
\text { Cycles } \dagger & \begin{array}{l}
\text { Core: } \\
\text { Overhead: } 23
\end{array} \\
\text { Code size } 53 \\
\text { (in bytes) }
\end{array}
$$

## firs

## Symmetric FIR Filter

Function

## Arguments

| nh2 | Half the number of coefficients of the filter (due to symmetry there is no need to provide the other half). For example, if the filter coefficients are \{h0, h1, h2, h2, h1, h0\}, then nh2 = 3. Must be a minimum value of 3 . For smaller filters, zero pad the coefficients to meet the minimum value. |
| :---: | :---: |
| oflag | Overflow error flag (returned value) |
|  | $\square$ If oflag = 1, a 32-bit data overflow occurred in an intermediate or final result. |
|  | $\square$ If oflag $=0$, a 32-bit overflow has not occurred. |

## Description

Algorithm
Computes a real FIR filter (direct-form) with nh2 symmetric coefficients using the FIRS instruction approach. The filter is assumed to have a symmetric impulse response, with the first half of the filter coefficients stored in the array h . The real input data is stored in vector $x$. The filter output result is stored in vector $r$. This function maintains the array dbuffer containing the previous delayed input values to allow consecutive processing of input data blocks. This function can be used for both block-by-block ( $n x \geq 2$ ) and sample-by-sample filtering ( $n x=1$ ). In-place computation $(r=x)$ is allowed.

$$
r[j]=\sum_{k=0}^{n h 2-1} h, \ldots,[k]^{*}\left(x[j-k]+x\left[j+k-2^{*} n h 2+1\right]\right) \quad 0 \leq j \leq n x
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.

## Special Requirements

$\square$ nh must be a minimum value of 3 . For smaller filters, zero pad the h[] array.
$\square$ Coefficient array h[nh2] must be located in internal memory since it is accessed using the C55x coefficient bus, and that bus does not have access to external memory.

Implementation Notes The first element in the dbuffer array (index $=0$ ) is the entry index for the input history. It is treated as an unsigned 16 -bit value by the function even though it has been declared as signed in C. The value of the entry index is equal to the index -1 of the oldest input entry in the array. The remaining elements make up the input history. Figure $4-19$ shows the array in memory with an entry index of 2 . The newest entry in the dbuffer is denoted by $x(j-0)$, which in this case would occupy index $=3$ in the array. The next newest entry is $x(j-1)$, and so on. It is assumed that all $x()$ entries were placed into the array by the previous invocation of the function in a multiple-buffering scheme.

The dbuffer array actually contains one more history value than is needed to implement this filter. The value $\times\left(\mathrm{j}-2^{*} \mathrm{nh} 2\right.$ ) does not enter into the calculations
for for the output $\mathrm{r}(\mathrm{j})$. However, this value is required in other DSPLIB filter functions that utilize the dual-MAC units on the C55x, such as FIR2. Including this extra location ensures compatibility across all filter functions in the C55x DSPLIB.

Figure 4-19, Figure 4-20, and Figure 4-21 show the dbuffer, $x$, and $r$ arrays as they appear in memory.

Figure 4-19. dbuffer Array in Memory at Time j


Figure 4-20. x Array in Memory

lowest memory address

highest memory address

Figure 4-21. r Array in Memory


| Example | See examples/firs subdirectory <br> Benchmarks <br> (preliminary) |
| :--- | :--- |
| Cycles $\dagger \quad$Core: $\quad \mathrm{nx}[5+(\mathrm{nh}-2)]$ <br> Overhead: 72 |  |
|  | Code size $\quad 133$ <br> (in bytes) |
| † Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle <br> table reads and instruction fetches (provided linker command file reflects those conditions). |  |

## filtoq15

## Floating-point to Q15 Conversion

Function ushort errorcode = fltoq15 (float *x, DATA *r, ushort nx) (defined in fltoq15.asm)

## Arguments



All values that exceed the size limit will be saturated to a Q15 1 or -1 depending on sign ( $0 \times 7 \mathrm{fff}$ if value is positive, $0 \times 8000$ if value is negative). All values too small to be correctly represented will be truncated to 0 .

## Algorithm <br> Not applicable

Overflow Handling Methodology Saturation implemented for overflow handling
Special Requirements none
Implementation Notes none
Example See examples/expn subdirectory
Benchmarks (preliminary)

| Cyclest $\quad$ Core: $\quad 17^{*} \mathrm{nx}($ if $\mathrm{x}[\mathrm{n}]==0)$ |  |
| :--- | :--- |
|  | $23^{*} \mathrm{nx}($ if $\mathrm{f}[\mathrm{n}]$ is too small for Q15 |
|  | representation) |
|  | $32^{*} \mathrm{nx}$ (if $\mathrm{x}[\mathrm{n}]$ is too large for Q15 |
|  | representation) |
|  | $38^{*} \mathrm{nx}$ (otherwise) |

Code size 157 (in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## hilb16

FIR Hilbert Transformer

Function
ushort oflag = hilb16 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx, ushort nh)

## Arguments

| $x[n x]$ | Pointer to input vector of nx real elements. |
| :---: | :---: |
| $\mathrm{h}[\mathrm{nh}]$ | - Pointer to coefficient vector of size nh in normal order. $\mathrm{H}=\{\mathrm{h} 0, \mathrm{~h} 1, \mathrm{~h} 2, \mathrm{~h} 3, \mathrm{~h} 4, \ldots\}$ Every odd valued filter coefficient has to 0 , i.e. $\mathrm{h} 1=\mathrm{h} 3=\ldots=0$. And $\mathrm{H}=\{\mathrm{h} 0,0, \mathrm{~h} 2,0, \mathrm{~h} 4,0, \ldots\}$ where h0 resides at the lowest memory address in the array. |
|  | $\square$ This array must be located in internal memory since it is accessed by the C55x coefficient bus. |
| r[nx] | Pointer to output vector of $n x$ real elements. In-place computation $(r=x)$ is allowed. |


| dbuffer[nh + 2] | Pointer to delay buffer of length $\mathrm{nh}=\mathrm{nh}+2$ |
| :---: | :---: |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first filter block only. Between consecutive blocks, the delay buffer preserves the previous $r$ output elements needed. |
|  | - The first element in this array is special in that it contains the array index-1 of the oldest input entry in the delay buffer. This is needed for multiplebuffering schemes, and should be initialized to zero (like all the other array entries) for the first block only. |
| nx | Number of real elements in vector x (input samples) |
| nh | The number of coefficients of the filter. For example if the filter coefficients are $\{\mathrm{h} 0, \mathrm{~h} 1, \mathrm{~h} 2, \mathrm{~h} 3, \mathrm{~h} 4, \mathrm{~h} 5\}$, then $\mathrm{nh}=6$. Must be a minimum value of 6 . For smaller filters, zero pad the coefficients to meet the minimum value. |
| oflag | Overflow error flag (returned value) |
|  | - If oflag $=1$, a 32 -bit data overflow occurred in an intermediate or final result. |
|  | - If oflag = 0, a 32-bit overflow has not occurred |

## Description <br> Computes a real FIR filter (direct-form) using the coefficients stored in vector

Algorithm $h$. The real input data is stored in vector x . The filter output result is stored in vector $r$. This function maintains the array dbuffer containing the previous delayed input values to allow consecutive processing of input data blocks. This function can be used for both block-by-block ( $n x>=2$ ) and sample-by-sample filtering ( $n x=1$ ). In place computation $(r=x)$ is allowed.

$$
r]=\sum_{k=0}^{n h-1} h[k] x[j-k] \quad 0 \leq j \leq n x
$$

Overflow Handling Methodology No scaling implemented for overflow prevention.

## Special Requirements

$\square$ Every odd valued filter coefficient has to be 0 . This is a requirement for the Hilbert transformer. For example, a 6 tap filter may look like this: $\mathrm{H}=[0.867$ $0-0.3240-0.0020$ ]
$\square$ Always pad 0 to make nh as a even number. For example, a 5 tap filter with a zero pad may look like this: $\mathrm{H}=[0.8670-0.3240-0.0020]$

- nh must be a minimum value of 6 . For smaller filters, zero pad the H[] array.

Implementation Notes The first element in the dbuffer array (index $=0$ ) is the entry index for the input history. It is treated as an unsigned 16-bit value by the function even though it has been declared as signed in C. The value of the entry index is equal to the index -1 of the oldest input entry in the array. The remaining elements make up the input history. Figure $4-22$ shows the array in memory with an entry index of 2 . The newest entry in the dbuffer is denoted by $x(j-0)$, which in this case would occupy index $=3$ in the array. The next newest entry is $x(j-1)$, and so on. It is assumed that all $x()$ entries were placed into the array by the previous invocation of the function in a multiple-buffering scheme.

The dbuffer array actually contains one more history value than is needed to implement this filter. The value $x(j-n h)$ does not enter into the calculations for for the output $r(j)$. However, this value is required in other DSPLIB filter functions that utilize the dual-MAC units on the C55x, such as FIR2. Including this extra location ensures compatibility across all filter functions in the C55x DSPLIB.

Figure 4-22, Figure 4-23, and Figure 4-24 show the dbuffer, x, and r arrays as they appear in memory.

Figure 4-22. dbuffer Array in Memory at Time j


Figure 4-23. x Array in Memory


Figure 4-24. r Array in Memory


## Example

Benchmarks

> See examples/hilb16 subdirectory
(preliminary)
Cycles Core: nx* $2+n h / 2)$
Overhead: 28
Code size 108 (in bytes)

## ifr32

Double-precision IIR Filter

## Function

ushort oflag $=$ iir32 (DATA *x, LDATA *h, DATA *r, LDATA *dbuffer, ushort nbiq, ushort nr)
(defined in iir32.asm)

## Arguments

$$
\begin{array}{ll}
\mathrm{x}[\mathrm{nr}] & \text { Pointer to input data vector of size } \mathrm{nr} \\
\mathrm{~h}\left[5^{*} \mathrm{nbiq}\right] & \begin{array}{l}
\text { Pointer to the } 32 \text {-bit filter coefficient vector with the } \\
\text { following format. For example for } \mathrm{nbiq}=2, \mathrm{~h} \text { is equal } \\
\text { to: }
\end{array}
\end{array}
$$

|  | b21-high | beginning of biquad 1 |
| :---: | :---: | :---: |
|  | b21-low |  |
|  | b11-high |  |
|  | b11- low |  |
|  | b01-high |  |
|  | b01-low |  |
|  | a21-high |  |
|  | a21- low |  |
|  | a11-high |  |
|  | a11- low |  |
|  | b22-high | beginning of biquad 2 coefs |
|  | b22-low |  |
|  | b12-high |  |
|  | b12-low |  |
|  | b02 - high |  |
|  | b02-low |  |
|  | a22-high |  |
|  | a22-low |  |
|  | a12-high |  |
|  | a12-low |  |
| $\mathrm{r}[\mathrm{nr}]$ | Pointer to outpu equal or less tha | data vector of size nr. $r$ can be x. |
| dbuffer[2*nbiq+2] | Pointer to addre biquad has 3 co example for nbiq | of 32-bit delay line dbuffer. Each ecutive delay line elements. For 2 : |
|  | d1(n-2) - low | beginning of biquad 1 |
|  | d1(n-2) - high |  |
|  | d1(n-1) - low |  |
|  | d1(n-1) - high |  |
|  | d2( $\mathrm{n}-2$ ) - low | beginning of biquad 2 |
|  | d2( $\mathrm{n}-2$ ) - high |  |
|  | d2( $\mathrm{n}-1$ ) - low |  |
|  | $\mathrm{d} 2(\mathrm{n}-1)$ - high |  |

$\square$ In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves the previous r output elements needed.
$\square$ Memory alignment: none required for C5510. This is a group of circular buffers. Each biquad's delay buffer is treated separately. The Buffer Start Address (BSAxx) updated to a new location for each biquad.
nbiq
nr
oflag

Number of biquads
Number of elements of input and output vectors
Overflow flag.
$\square$ If oflag = 1, a 32-bit overflow has occurred
$\square$ If oflag $=0$, a 32-bit overflow has not occurred

Computes a cascaded IIR filter of nbiquad biquad sections using 32-bit coefficients and 32 -bit delay buffers. The input data is assumed to be single-precision (16 bits).

Each biquad section is implemented using Direct-form II. All biquad coefficients ( 5 per biquad) are stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector $r$.

This function retains the address of the delay filter memory d containing the previous delayed values to allow consecutive processing of blocks. This function is more efficient for block-by-block filter implementation due to the C-calling overhead. However, it can be used for sample-by-sample filtering ( $n x=1$ ).

Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes See program iircas32.asm

Example See examples/iir32 subdirectory

## Benchmarks (preliminary)

| Cycles | Core: |
| :--- | :--- |
|  | Overhead: 77 |

Code size 203
(in bytes)

## fircas4

Cascaded IIR Direct Form II Using 4 Coefficients per Biquad
Function
ushort oflag = iircas4 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq, ushort nx)
(defined in iir4cas4.asm)

## Arguments

| $x$ [ nx ] | Pointer to input data vector of size nx |
| :---: | :---: |
| $\mathrm{h}[4 *$ nbiq] | Pointer to filter coefficient vector with the following format: h = a11 a21 b21 b11 ....a1i a2i b2i b1i <br> where i is the biquad index ( a 21 is the a2 coefficient of biquad 1). Pole (recursive) coefficients = a. Zero (non-recursive) coefficients $=\mathrm{b}$ |
| $r[n x]$ | Pointer to output data vector of size $n x$. $r$ can be equal than $x$. |
| dbuffer[2*nbiq] | Pointer to address of delay line d. <br> Each biquad has 2 delay line elements separated by nbiq locations in the following format: <br> d1(n-1), d2(n-1),..di(n-1) d1(n-2), d2(n-2)...di(n-2) where i is the biquad index $(\mathrm{d} 2(\mathrm{n}-1)$ is the $(\mathrm{n}-1)$ th delay element for biquad 2). |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves the previous r output elements needed. <br> $\square$ Memory alignment: this is a circular buffer and must start in a k-bit boundary(that is, the $k$ LSBs of the starting address must be zeros) where $\mathrm{k}=\log 2$ (2*nbiq). |
| nbiq | Number of biquads |

$n x \quad$ Number of elements of input and output vectors
oflag Overflow flag.

- If oflag =1, a 32-bit overflow has occurred
- If oflag $=0$, a 32-bit overflow has not occurred


Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes none
Example See examples/iircas4 subdirectory
Benchmarks (preliminary)
Cyclest Core: $n x$ * $(2+3$ * nbiq $)$
Overhead: 44
Code size 122
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## iircas5

 Cascaded IIR Direct Form II (5 Coefficients per Biquad)
## Function

 ushort oflag = iircas5 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq, ushort nx)(defined in iircas5.asm)

## Arguments

| $x[n x]$ | Pointer to input data vector of size nx |
| :---: | :---: |
| $\mathrm{h}\left[5{ }^{*}\right.$ nbiq] | Pointer to filter coefficient vector with the following format: h = a11 a21 b21 b01 b11 ... a1i a2i b2i b0i b1i <br> where $i$ is the biquad index a21 is the a2 coefficient of biquad 1). Pole (recursive) coefficients = a. Zero (non-recursive) coefficients $=\mathrm{b}$ |
| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output data vector of size $n x$. $r$ can be equal than x . |
| dbuffer[2*nbiq] | Pointer to address of delay line d. Each biquad has 2 delay line elements separated by nbiq locations in the following format: <br> d1( $n-1$ ), d2(n-1),..di(n-1) d1(n-2), d2(n-2)...di(n-2) where $i$ is the biquad index $(\mathrm{d} 2(\mathrm{n}-1)$ is the $(\mathrm{n}-1)$ th delay element for biquad 2). |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves the previous r output elements needed. |
|  | Memory alignment: this is a circular buffer and must start in a k-bit boundary(that is, the k LSBs of the starting address must be zeros) where $\mathrm{k}=\log 2$ (2*nbiq). |
| nbiq | Number of biquads |
| nx | Number of elements of input and output vectors |
| oflag | Overflow flag. |
|  | $\square$ If oflag = 1, a 32-bit overflow has occurred |
|  | $\square$ If oflag $=0$, a 32-bit overflow has not occurred |

## Description

Computes a cascade IIR filter of nbiq biquad sections. Each biquad section is implemented using Direct-form II. All biquad coefficients ( 5 per biquad) are stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector $r$.

This function retains the address of the delay filter memory d containing the previous delayed values to allow consecutive processing of blocks. This function is more efficient for block-by-block filter implementation due to the C-calling overhead. However, it can be used for sample-by-sample filtering ( $n x=1$ ).

The usage of 5 coefficients instead of 4 facilitates the design of filters with a unit gain of less than 1 (for overflow avoidance), typically achieved by filter coefficient scaling.
Algorithm
(for biquad)
$d(n)=x(n)-a 1^{*} d(n-1)-a 2^{*} d(n-2)$
$y(n)=b 0$ * $d(n)+b 1^{*} d(n-1)+b 2 * d(n-2)$
Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes none
Example See examples/iircas5 subdirectory
Benchmarks (preliminary)
Cycles $\dagger \quad$ Core: $\quad n x *(5+5$ * nbiq $)$
Overhead: 60
Code size 126
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## ifrcas51

Cascaded IIR Direct Form I (5 Coefficients per Biquad)
Function
ushort oflag = iircas51 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq, ushort nx)
(defined in iircas51.asm)

## Arguments

$$
\begin{array}{ll}
\mathrm{x}[\mathrm{nx}] & \text { Pointer to input data vector of size } \mathrm{nx} \\
\mathrm{~h}\left[5^{*} \mathrm{nbiq}\right] & \text { Pointer to filter coefficient vector with the following } \\
\text { format: } \\
& \mathrm{h}=\mathrm{b} 01 \text { b11 b21 a11 a21 ....b0i b1i b2i a1i a21 } \\
& \text { where i is the biquad index (a21 is the a2 coefficient of } \\
& \begin{array}{l}
\text { biquad 1). Pole (recursive) coefficients }=\text { a. Zero } \\
\text { (non-recursive) coefficients }=\mathrm{b}
\end{array}
\end{array}
$$

| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output data vector of size nx . r can be equal than x . |
| :---: | :---: |
| dbuffer[4*nbiq] | Pointer to address of delay line dbuffer. Each biquad has 4 delay line elements stored consecutively in memory in the following format: |
|  | $\begin{aligned} & x 1(n-1), x 1(n-2), y 1(n-1), y 1(n-2) \ldots x i(n-2), x i(n-2), \\ & y i(n-1), y i(n-2) \end{aligned}$ |
|  | where i is the biquad index $(\mathrm{x} 1(\mathrm{n}-1)$ is the $(\mathrm{n}-1)$ th delay element for biquad 1). |
|  | - In the case of multiple-buffering schemes, this array should be initialized to 0 for the first block only. Between consecutive blocks, the delay buffer preserves the previous r output elements needed. |
|  | - Memory alignment: No need for memory alignment. |
| nbiq | Number of biquads |
| nx | Number of elements of input and output vectors |
| oflag | Overflow flag. |
|  | - If oflag = 1, a 32-bit overflow has occurred. |
|  | $\square$ If oflag $=0$, a 32-bit overflow has not occurred. |

## Description

Computes a cascade IIR filter of nbiq biquad sections. Each biquad section is implemented using Direct-form I. All biquad coefficients ( 5 per biquad) are stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector r .

This function retains the address of the delay filter memory d containing the previous delayed values to allow consecutive processing of blocks. This function is more efficient for block-by-block filter implementation due to the C-calling overhead. However, it can be used for sample-by-sample filtering ( $n x=1$ ).

The usage of 5 coefficients instead of 4 facilitates the design of filters with a unit gain of less than 1 (for overflow avoidance), typically achieved by filter coefficient scaling.

Algorithm (for biquad)
$y(n)=b 0{ }^{*} x(n)+b 1{ }^{*} x(n-1)+b 2{ }^{*} x(n-2)-a 1^{*} y(n-1)-a 2 * y(n-2)$
Overflow Handling Methodology No scaling implemented for overflow prevention.
Special Requirements none
Implementation Notes none
Example
See examples/iircas51 subdirectory
Benchmarks (preliminary)
Cycles $\dagger \quad$ Core: $n x *(5+8$ * nbiq $)$
Overhead: ..... 68
Code size ..... 154
(in bytes)
† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## irlat Lattice Inverse (IIR) Filter

## Function

ushort oflag $=$ iirlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer, int nx, int nh)

## Arguments

$x[n x] \quad$ Pointer to real input vector of $n x$ real elements in normal order:
x[0]
x[1]
.
$x[n x-2]$
$x[n x-1]$
$\mathrm{h}[\mathrm{nh}] \quad$ Pointer to lattice coefficient vector of size nh in normal order with the first element zero-padded:
0
h[0]
h[1]
.
h[nh-2]
h[nh-1]
$r[n x] \quad$ Pointer to output vector of $n x$ real elements. In-place computation $(r=x)$ is allowed.
r[0]
r[1]
.
$r[n x-2]$
$r[n x-1]$

| pbuffer[nh] | Delay buffer <br> In the case of multiple-buffering schemes, this array should <br> be initialized to 0 for the first block only. Between <br> consecutive blocks, the delay buffer preserves the <br> previous r output elements needed. |
| :--- | :--- |
| nx | Number of real elements in vector $x$ (input samples) |
| nh | Number of coefficients |
| oflag | Overflow error flag |
|  | $\quad$If oflag = 1, a 32-bit data overflow has occurred in an <br> intermediate or final result. |
|  | $\square \quad$ If oflag = 0, a 32-bit overflow has not occurred. |

## Description

Computes a real lattice IIR filter implementation using coefficient stored in vector $h$. The real data input is stored in vector $x$. The filter output result is stored in vector $r$. This function retains the address of the delay filter memory $d$ containing the previous delayed values to allow consecutive processing of blocks. This function can be used for both block-by-block and sample-by-sample filtering ( $n x=1$ )

| Algorithm | $\begin{aligned} & e_{N}[n]=x[n] \\ & e_{i-1}[n]=e_{i}[ \\ & e^{\prime}[n]=-k_{i} \in \\ & y[n]=e_{0}[n] \end{aligned}$ | $\begin{aligned} & 7]-h i e^{\prime}{ }_{i-1}[n-1], \\ & -1+e^{\prime}{ }_{i-1}[n-1], \\ & =e^{\prime}{ }_{0}[n] \end{aligned}$ | $\begin{gathered} i=N \\ i=N, \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Overflow Han | thodology | No scaling implem | nted for o |
| Special Requi | none |  |  |
| Implementatio | none |  |  |
| Example | See exampl | /iirlat subdirectory |  |
| Benchmarks | (preliminary) |  |  |
|  | Cycles ${ }^{\dagger}$ | Core: $\quad 4^{*}$ (nh <br> Overhead: 24 | $-1)^{*} n x$ |
|  | Code size (in bytes) | 54 |  |
|  | $\dagger$ Assumes all table reads a | ta is in on-chip dual-acce instruction fetches (pro | ss RAM and ided linker c |

## Idiv16

 32-bit by 16-bit Long Division FunctionFunction
void Idiv16 (LDATA *x, DATA *y, DATA *r, DATA *rexp, ushort nx)

## Arguments

| $x$ [nx] | Pointer to input data vector 1 of size $n x$ x[0] <br> x[1] |
| :---: | :---: |
|  |  |
|  |  |
|  | $x[n x-2]$ |
|  | x[nx-1] |
| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output data buffer |
|  | r [0] |
|  | r [1] |
|  | . |
|  |  |
|  | $r[n x-2]$ |
|  | r[nx-1] |
| rexp[ $n \times]$ | Pointer to exponent buffer for output values. These |
|  | exponent values are in integer format. |
|  | rexp[0] |
|  | $\mathrm{rexp}[1]$ |
|  | . |
|  |  |
|  | $\operatorname{rexp}[n x-2]$ |
|  | $\mathrm{rexp}[\mathrm{nx-1]}$ |
| nx | Number of elements of input and output vectors |

## Description

This routine implements a long division function of a Q31 value divided by a Q15 value. The reciprocal of the Q15 value, $y$, is calculated then multiplied by the Q31 value, $x$. The result is returned as an exponent such that:
$r[i]$ * rexp[i] = true reciprocal in floating-point
Algorithm The reciprocal of the Q15 number is calculated using the following equation:

$$
Y m=2^{*} Y m-Y m^{2}{ }^{*} \text { Xnorm }
$$

If we start with an initial estimate of Ym , the equation converges to a solution very rapidly (typically 3 iterations for 16-bit resolution).

The initial estimate can be obtained from a look-up table, from choosing a midpoint, or simply from linear interpolation. The method chosen for this problem is linear interpolation and is accomplished by taking the complement of the least significant bits of the Xnorm value.

The reciprocal is multiplied by the Q31 number to generate the output.

## Overflow Handling Methodology none

Special Requirements none
Implementation Notes none

## Example

Benchmarks
(preliminary)

$$
\text { Cycles } \dagger \quad \text { Core: } \quad 4^{*} n x
$$

Overhead: 14
Code size 91
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## log 10

Base 10 Logarithm
Function

## Arguments

| $x[n x]$ | Pointer to input vector of size $n x$. |
| :--- | :--- |
| $r[n x]$ | Pointer to output data vector (Q31 format) of size $n x$. |
| $n x$ | Length of input and output data vectors |
| oflag | Overflow flag. |
|  | $\square \quad$ If oflag = 1, a 32-bit overflow has occurred. |
|  | $\square \quad$ If oflag $=0$, a 32-bit overflow has not occurred. |

Description
Computes the log base 10 of elements of vector x using Taylor series.
Algorithm
for $(i=0 ; i<n x ; i++) \quad y(i)=\log 10 x(i)$ where $-1<x(i)<1$
Overflow Handling Methodology No scaling implemented for overflow prevention

Special Requirements none

```
Implementation Notes \(y=0.4343^{*} \ln (x)\) with \(x=M(x)^{*} 2^{\wedge} P(x)=M^{*} 2^{\wedge} P\)
 \(y=0.43433^{*}\left(\ln (M)+\ln (2)^{*} P\right)\)
 \(y=0.4343^{*}\left(\ln \left(2^{*} \mathrm{M}\right)+(\mathrm{P}-1)^{*} \ln (2)\right)\)
 \(y=0.4343\) * \((\ln ((2 * M-1)+1)+(P-1) * \ln (2))\)
 \(y=0.4343\) * (f(2*M-1) + (P-1)* \(\ln (2))\)
 with \(f(u)=\ln (1+u)\).
```

    We use a polynomial approximation for \(f(u)\) :
    \(\left.f(u)=\left(\left(\left(\left(C 6^{*} u+C 5\right)^{*} u+C 4\right)^{*} u+C 3\right)^{*} u+C 2\right)^{*} u+C 1\right)^{*} u+C 0\)
    for \(0<=u<=1\).
    The polynomial coefficients Ci are as follows :
    C0 \(=0.000001472\)
    C1 \(=0.999847766\)
    \(\mathrm{C} 2=-0.497373368\)
    \(\mathrm{C} 3=0.315747760\)
    \(\mathrm{C} 4=-0.190354944\)
    C5 \(=0.082691584\)
    C6 = -0.017 414144
    The coefficients Bi used in the calculation are derived from the Ci as follows:

| B0 | Q30 | 1581d | 0062Dh |
| :--- | :--- | :--- | :--- |
| B1 | Q14 | 16381d | 03FFDh |
| B2 | Q15 | -16298d | 0C056h |
| B3 | Q16 | 20693d | 050D5h |
| B4 | Q17 | -24950d | 09E8Ah |
| B5 | Q18 | 21677d | 054ADh |
| B6 | Q19 | -9130d | 0DC56h |

Example See examples/log_10 subdirectory

## Benchmarks (preliminary)

Cycles ${ }^{\dagger} \quad$ Core: $\quad 35$ * $n x$

Overhead: 36
Code size 162
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## $\log _{2} 2$

 Base 2 Logarithm
## Function <br> ushort oflag $=\log 2($ DATA *x, LDATA *r, ushort nx) (defined in log_2.asm)

## Arguments

| $x[n x]$ | Pointer to input vector of size nx. |
| :--- | :--- |
| $r[n x]$ | Pointer to output data vector (Q31 format) of size nx. |
| $n x$ | Length of input and output data vectors |
| oflag | Overflow flag. |
|  | $\square \quad$ If oflag = 1, a 32-bit overflow has occurred. |
|  | $\square \quad$ If oflag $=0$, a 32-bit overflow has not occurred. |

## Description

## Algorithm

Computes the log base 2 of elements of vector x using Taylor series.

Overflow Handling Methodology No scaling implemented for overflow prevention
Special Requirements none
Implementation Notes $y=1.4427^{*} \ln (x)$ with $x=M(x)^{*} 2^{\wedge} P(x)=M^{*} 2^{\wedge} P$
$y=1.4427^{*}\left(\ln (M)+\ln (2)^{*} P\right)$
$y=1.4427^{*}\left(\ln \left(2^{*} \mathrm{M}\right)+(\mathrm{P}-1)^{*} \ln (2)\right)$
$y=1.4427^{*}\left(\ln \left(\left(2^{*} \mathrm{M}-1\right)+1\right)+(P-1)^{*} \ln (2)\right)$
$y=1.4427^{*}\left(f\left(2^{*} M-1\right)+(P-1)^{*} \ln (2)\right)$
with $f(u)=\ln (1+u)$.
We use a polynomial approximation for $f(u)$ :
$\left.f(u)=\left(\left(\left(\left(C 6^{*} u+C 5\right)^{*} u+C 4\right)^{*} u+C 3\right)^{*} u+C 2\right)^{*} u+C 1\right)^{*} u+C 0$
for $0<=u<=1$.
The polynomial coefficients Ci are as follows:
C0 $=0.000001472$
C1 $=0.999847766$
$\mathrm{C} 2=-0.497373368$
$\mathrm{C} 3=0.315747760$
C4 $=-0.190354944$
C5 $=0.082691584$
$C 6=-0.017414144$

The coefficients Bi used in the calculation are derived from the Ci as follows:

| B0 | Q30 | 1581d | 0062Dh |
| :--- | :--- | :--- | :--- |
| B1 | Q14 | 16381d | 03FFDh |
| B2 | Q15 | -16298d | 0C056h |
| B3 | Q16 | 20693d | 050D5h |
| B4 | Q17 | -24950d | 09E8Ah |
| B5 | Q18 | 21677d | 054ADh |
| B6 | Q19 | $-9130 d$ | 0DC56h |

Example
Benchmarks
See examples/log_2 subdirectory
(preliminary)
Cyclest Core: $\quad 36$ * nx
Overhead: 37
Code size 166
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## logn

Function

## Arguments

| $x[n x]$ | Pointer to input vector of size $n x$. |
| :--- | :--- |
| $r[n x]$ | Pointer to output data vector (Q31 format) of size nx. |
| $n x$ | Length of input and output data vectors |
| oflag | Overflow flag. |
|  | $\square \quad$ If oflag = 1, a 32-bit overflow has occurred. |
|  | $\square \quad$ If oflag $=0$, a 32-bit overflow has not occurred. |

Description
Computes the log base e of elements of vector x using Taylor series.
Algorithm
for $(i=0 ; i<n x ; i++) \quad y(i)=\log n x(i)$ where $-1<x(i)<1$
Overflow Handling Methodology No scaling implemented for overflow prevention
Special Requirements Special Requirements none

```
Implementation Notes \(y=0.4343^{*} \ln (x)\) with \(x=M(x)^{*} 2^{\wedge} P(x)=M^{*} 2^{\wedge} P\)
 \(y=0.4343\) * \(\left(\ln (M)+\ln (2)^{*} P\right)\)
 \(\mathrm{y}=0.4343^{*}\left(\ln \left(2^{*} \mathrm{M}\right)+(\mathrm{P}-1)^{*} \ln (2)\right)\)
 \(y=0.4343^{*}\left(\ln \left(\left(2^{*} M-1\right)+1\right)+(P-1)^{*} \ln (2)\right)\)
 \(y=0.4343^{*}\left(f\left(2^{*} M-1\right)+(P-1)^{*} \ln (2)\right)\)
 with \(f(u)=\ln (1+u)\).
```

We use a polynomial approximation for $f(u)$ :
$\left.f(u)=\left(\left(\left(\left(C 6^{*} u+C 5\right)^{*} u+C 4\right)^{*} u+C 3\right)^{*} u+C 2\right)^{*} u+C 1\right)^{*} u+C 0$
for $0<=u<=1$.

The polynomial coefficients Ci are as follows:
C0 = 0.000001472
C1 $=0.999847766$
C2 $=-0.497373368$
$\mathrm{C} 3=0.315747760$
C4 = -0.190 354944
C5 = 0.082691584
$C 6=-0.017414144$

The coefficients Bi used in the calculation are derived from the Ci as follows:

| B0 | Q30 | 1581d | 0062Dh |
| :--- | :--- | :--- | :--- |
| B1 | Q14 | 16381d | 03FFDh |
| B2 | Q15 | -16298d | 0C056h |
| B3 | Q16 | 20693d | 050D5h |
| B4 | Q17 | -24950d | 09E8Ah |
| B5 | Q18 | 21677d | 054ADh |
| B6 | Q19 | $-9130 d$ | 0DC56h |

## Example See examples/logn subdirectory

Benchmarks (preliminary)

Cyclest Core: 26 *nx
Overhead: 36
Code size 132
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).
maxidx Index of the Maximum Element of a Vector
Function short $r$ = maxidx (DATA *x, ushort ng, ushort ng_size);(defined in maxidx.asm)
Arguments
Description

The vector x is divided in ng groups of size ng _size.

Size of $\mathrm{x}=\mathrm{ng} \mathrm{x}$ ng_size. ng_size must be an even number between 2 and 34 .
The larger ng_size, the better the performance. Returns the index of the maxi
mum element of a vector $x$. In case of multiple maximum elements, $r$ contains
the index of the first maximum element found.

| $\mathrm{x}[\mathrm{nx}]$ | Pointer to input vector of size nx. |
| :--- | :--- |
| $r$ | Index for vector element with maximum value. |
| ng | Number of groups. |
| ng _size | Size of group. |

Example 1: size of $x$ is 64 .

$$
\text { Choose ng_size }=32, \text { ng = } 2
$$

Example 2: size of $x$ is 100 .
Choose ng_size $=20, \mathrm{ng}=5$
Example 3: size of $x$ is 90.
Choose ng_size $=30, \mathrm{ng}=3$

## Algorithm Not applicable

## Overflow Handling Methodology Not applicable

Special Requirements ng_size is an even number between 2 and 34
Implementation Notes none
Example See examples/maxidx subdirectory
Benchmarks (preliminary)
Cycles ${ }^{\dagger} \quad$ Core: $\quad n x / 2+n g 16$
Overhead: 40
Code size 143
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
maxidx34 Index of the Maximum Element of a Vector $\leq 34$
Function short $r=$ maxidx34 (DATA *x, ushort nx) (defined in maxidx34.asm)
Arguments

| $x[n x]$ | Pointer to input vector of size $n x$. |
| :--- | :--- |
| $r$ | Index for vector element with maximum value. |
| $n x$ | Lenght of input data vector $(n x \leq 34)$. |

DescriptionReturns the index of the maximum element of a vector $x$. In case of multiplemaximum elements, $r$ contains the index of the first maximum element found.
Algorithm Not applicable
Overflow Handling Methodology Not applicable
Special Requirements Size of the vector, $\mathrm{nx} \leq 34$
Implementation Notes ..... none
Example See examples/maxidx34 subdirectory
Benchmarks (preliminary)
Cycles $\dagger$ Core: nx/2
Overhead: ..... 42
Code size ..... 26
(in bytes)$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddletable reads and instruction fetches (provided linker command file reflects those conditions).

## maxval

## Maximum Value of a Vector

Function short $r=$ maxval (DATA *x, ushort $n x$ )(defined in maxval.asm)

## Arguments

| $x[n x]$ | Pointer to input vector of size $n x$. |
| :--- | :--- |
| $r$ | Maximum value of a vector |
| $n x$ | Length of input data vector |

Description Returns the maximum element of a vector x .
Algorithm Not applicable
Overflow Handling Methodology Not applicable
Special Requirements none
Implementation Notes none
Example See examples/maxval subdirectory
Benchmarks ..... (preliminary)
Cycles ${ }^{\dagger}$ Core: nx
Overhead: 3
Code size ..... 20
(in bytes)$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddletable reads and instruction fetches (provided linker command file reflects those conditions).
maxvec
Index and Value of the Maximum Element of a Vector
Function void maxvec (DATA *x, ushort nx, DATA *r_val, DATA *r_idx) (defined in maxvec.asm)
Arguments
$x[n x] \quad$ Pointer to input vector of size $n x$.
r_val maximum value
$r \_i d x \quad$ Index for vector element with maximum value
$n x \quad$ Lenght of input data vector $(n x \geq 6)$
Description This function finds the index for vector element with maximum value. In case of multiple maximum elements, r_idx contains the index of the first maximum element found. r_val contains the maximum value.
Algorithm Not applicable
Overflow Handling Methodology Not applicable
Special Requirements none
Implementation Notes none
Example See examples/maxvec subdirectory
Benchmarks ..... (preliminary)
Cycles Core: nx*3
Overhead: 8
Code size ..... 26
(in bytes)
minidx
Index of the Minimum Element of a Vector
Function short $r=$ minidx (DATA *x, ushort $n x$ )(defined in minidx.asm)
Arguments
$x[n x] \quad$ Pointer to input vector of size $n x$.
$r \quad$ Index for vector element with minimum value
$n x \quad$ Length of input data vector
Description Returns the index of the minimum element of a vector $x$. In case of multiple minimum elements, $r$ contains the index of the first minimum element found.
Algorithm Not applicable
Overflow Handling Methodology Not applicable
Special Requirements none
Implementation Notes none
Example See examples/minidx subdirectory
Benchmarks (preliminary)
Cycles ${ }^{\dagger}$ Core: $n x$ *3Overhead: 7
Code size ..... 26
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).
minval Minimum Value of a Vector
Function short $r=$ minval (DATA *x, ushort $n x$ ) (defined in minval.asm)

## Arguments

$x[n x] \quad$ Pointer to input vector of size nx.
$r$ Minimum value of a vector
$\mathrm{nx} \quad$ Length of input data vector
Description Returns the minimum element of a vector x .
Algorithm Not applicable
Overflow Handling Methodology Not applicable
Special Requirements none
Implementation Notes none
Example See examples/minval subdirectory
Benchmarks (preliminary)
Cyclest Core: nx/2
Overhead: ..... 7
Code size ..... 20
(in bytes)$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddletable reads and instruction fetches (provided linker command file reflects those conditions).
minvec Index and Value of the Minimum Element of a Vector
Function void minvec (DATA *x, ushort nx, DATA *r_val, DATA *r_idx)(defined in minvec.asm)
Arguments
$x[n x] \quad$ Pointer to input vector of size $n x$.
r_val Minimum value
r_idx Index for vector element with minimum value
$n x \quad$ Length of input data vector $(n x \geq 6)$

Description
Algorithm Not applicable
Overflow Handling Methodology Not applicable
Special Requirements none
Implementation Notes none
Example See examples/minvec subdirectory
Benchmarks ..... (preliminary)
Cycles Core: nx*3
Overhead: 8
Code size ..... 26
(bytes)
mmul
Matrix Multiplication
Functionushort oflag $=$ mmul (DATA *x1,short row1,short col1,DATA *x2,shortrow2,short col2,DATA *r)(defined in mmul.asm)
Arguments
x1[row1*col1]: Pointer to input vector of size nx Pointer to input matrix of size row $1^{*}$ col1 $\begin{array}{ll}\text {; row1 } \\ ; & \text { : } \\ ; & \text { : }\end{array}$ ; r[row1*col2] : Pointer to output data vector of size row1*col2
row1 number of rows in matrix 1
col1 number of columns in matrix 1
x2[row2*col2]: Pointer to input matrix of size row2*col2
row2 number of rows in matrix 2
col2 number of columns in matrix 2
r[row1*col2] Pointer to output matrix of size row1*col2


## mtrans

## Matrix Transpose

## Function

## Arguments

Description This function transposes matrix x
Algorithm

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to } \mathrm{M} \\
& \text { for } \mathrm{j}=1 \text { to } \mathrm{N} \\
& \mathrm{C}(\mathrm{j}, \mathrm{i})=\mathrm{A}(\mathrm{i}, \mathrm{j})
\end{aligned}
$$

Overflow Handling Methodology Not applicable
Special Requirements none
Implementation Notes none
Example See examples/mtrans subdirectory
Benchmarks (preliminary)
Cycles $\dagger$ Core: $(1+\text { col })^{*}$ row
Overhead: 23
Code size 65
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## mul32

## 32-bit Vector Multiplication

Function
ushort oflag = mul32 (LDATA *x, LDATA *y, LDATA *r, ushort nx) (defined in mul32.asm)

## Arguments

| $x[n x]$ | Pointer to input data vector 1 of size $n x$. In-place processing <br> allowed $(r$ can be $=x=y)$ |
| :--- | :--- |
| $y[n x]$ | Pointer to input data vector 2 of size $n x$ |


| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output data vector of size nx containing |
| :--- | :--- |
| nx | Number of elements of input and output vectors. $\mathrm{Nx} \geq 4$ |
| oflag | Overflow flag |
|  | $\square$ If oflag $=1$, a 32-bit overflow has occurred |
|  | $\square$ If oflag $=0$, a 32-bit overflow has not occurred |

## Description

This function multiplies two 32-bit Q31 vectors, element by element, and produces a 32-bit Q31 vector.

| Algorithm | for $(i=0 ; i<n x ; i++)$ |
| :--- | :--- |
| $z(i)=x(i)^{*} y(i)$ |  |

Overflow Handling Methodology Scaling implemented for overflow prevention (user selectable)
Special Requirements none
Implementation Notes none

## Example See examples/add subdirectory

## Benchmarks

Cycles Core: $\quad 4^{*} n x+4$

Overhead 21
Code size 73
(in bytes)
neg Vector Negate
Function ushort oflag = neg (DATA *x, DATA *r, ushort nx)
(defined in neg.asm)
Arguments
$x[n x] \quad$ Pointer to input data vector 1 of size nx. In-place processing allowed ( $r$ can be $=x=y$ )
$r[n x] \quad$ Pointer to output data vector of size $n x$. In-place processing allowed
Special cases:
$\square$ if $x[I]=-1=32768$, then $r=1=321767$ with oflag $=1$
$\square$ if $x=1=32767$, then $r=-1=321768$ with oflag $=1$

|  | $n \mathrm{n}$ | Number of elements of input and output vectors. $n x \geq 4$ |
| :---: | :---: | :---: |
|  | oflag | Overflow flag. |
|  |  | $\square$ If oflag = 1, a 32-bit overflow has occurred. |
|  |  | $\square$ If oflag $=0$, a 32-bit overflow has not occurred. |
|  |  | Caution: overflow in negation of a Q15 number can happen naturally when negating $(-1)$. |
| Description | This function | negates each of the elements of a vector (fractional values). |
| Algorithm | for ( $i=0$; | <nx; $i++) \quad x(i)=-x(i)$ |
| Overflow Han | thodology | Saturation implemented for overflow handling |
| Special Requi | none |  |
| Implementati | none |  |
| Example | See examp | s/neg subdirectory |
| Benchmarks | (prelimina |  |
|  | Cyclest ${ }^{\dagger}$ | Core: $\quad 4$ * $n x$ |
|  |  | Overhead: 13 |
|  | Code size (in bytes) | $61$ |
|  | $\dagger$ Assumes all table reads | ata is in on-chip dual-access RAM and that there is no bus conflict due to twiddle dinstruction fetches (provided linker command file reflects those conditions). |
| neg32 | Vector Neg | ate (double precision) |
| Function | ushort oflag (defined in | $\begin{aligned} & =\text { neg32 (LDATA *x, LDATA *r, ushort nx) } \\ & \text { eg.asm) } \end{aligned}$ |
| Arguments |  |  |
|  | x[nx] | Pointer to input data vector 1 of size $n x$. In-place processing allowed ( $r$ can be $=x=y$ ) |
|  | r[nx] | Pointer to output data vector of size $n x$. In-place processing allowed |
|  |  | Special cases: |
|  |  | - if $x=-1=32768 * 2^{16}$, then $r=1=321767^{*} 2^{16}$ with oflag $=1$ |
|  |  | - if $x=1=32767 * 2^{16}$, then $r=-1=321768 * 2^{16}$ with oflag $=1$ |

$\mathrm{nx} \quad$ Number of elements of input and output vectors.
$n x \geq 4$
oflag Overflow flag.

- If oflag $=1$, a 32 -bit overflow has occurred.
$\square$ If oflag = 0, a 32-bit overflow has not occurred.
Caution: overflow in negation of a Q31 number can happen
naturally when negating $(-1)$.
Description This function negates each of the elements of a vector (fractional values).
Algorithm for $(i=0 ; i<n x ; i++) \quad x(i)=-x(i)$
Overflow Handling Methodology Saturation implemented for overflow handling
Special Requirements none
Implementation Notes none
Example See examples/neg32 subdirectory
Benchmarks (preliminary)
Cycles ${ }^{\dagger}$ Core: $4^{*} \mathrm{nx}$
Overhead: 13
Code size 61
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).


## power

## Vector Power

## Function

ushort oflag = power (DATA *x, LDATA *r, ushort nx)
(defined in power.asm)

## Arguments

$x[n x] \quad$ Pointer to input data vector 1 of size nx. In-place processing allowed ( $r$ can be $=x=y$ )
$r[1] \quad$ Pointer to output data vector element in Q31 format Special cases:
$\square$ if $x=-1=32768^{*} 2^{16}$, then $r=1=321767^{*} 2^{16}$ with oflag $=1$
$\square$ if $x=1=32767^{*} 2^{16}$, then $r=-1=321768^{*} 2^{16}$ with oflag $=1$
$\mathrm{nx} \quad$ Number of elements of input vectors.

$$
n x \geq 4
$$

oflag Overflow flag.

- If oflag $=1$, a 32-bit overflow has occurred.
$\square$ If oflag $=0$, a 32-bit overflow has not occurred.


## Description

This function calculates the power (sum of products) of a vector.
Algorithm $\quad$ Power $=0 \quad$ for $(i=0 ; i<n x ; i++) \quad$ power $+=x(i){ }^{*} x(1)$
Overflow Handling Methodology No scaling implemented for overflow handling
Special Requirements none
Implementation Notes none
Example See examples/power subdirectory
Benchmarks (preliminary)
Cycles $\dagger$ Core: $n x-1$
Overhead: 12
Code size 54 (in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## q15tofl

Q15 to Floating-point Conversion
Function
ushort q15tofl (DATA *x, float *r, ushort nx)
(defined in q152fl.asm)

## Arguments

| $x[n x]$ | Pointer to Q15 input vector of size $n x$. |
| :--- | :--- |
| $r[n x]$ | Pointer to floating-point output data vector of size $n x$ <br> containing the floating-point equivalent of vector $x$. |
| $n x$ | Length of input and output data vectors |

Description Converts the Q15 stored in vector $x$ to IEEE floating-point numbers stored in vector r .
Algorithm Not applicable
Overflow Handling Methodology Saturation implemented for overflow handlingSpecial Requirements none
Implementation Notes none
Example See examples/ug subdirectory
Benchmarks (preliminary)
Cycles ${ }^{\dagger} \quad$ Core: $\quad 7$ * $n x$ (if $\left.x[n]==0\right)$32 * nx
Overhead: 18
Code size ..... 124
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddletable reads and instruction fetches (provided linker command file reflects those conditions).

## rand16

## Random Number Generation Algorithm

## Function

ushort oflag= rand16 (DATA *r, ushort nr)

## Arguments

| ${ }^{*} r$ | Pointer to the array where the 16-bit random numbers are <br> stored |
| :--- | :--- |
| nr | Number of random numbers that are generated |
| oflag | Overflow error flag (returned value) |
|  | If oflag $=1$, a 32-bit data overflow occurred in an <br> intermediate or final result. |
|  | If oflag $=0$, a 32-bit overflow has not occurred. |

## Description

Algorithm $\quad r[n]=\left[\left(r[n-1]^{*} R N D M U L T\right)+R N D I N C\right] \% M$
This algorithm computes an array of random numbers based on the linear congruential method introduced by D. Lehmer in 1951. This is one of the fastest and simplest techniques of generating random numbers. The code shown here generates 16-bit integers, however, if a 32-bit value is desired the code can be modified to perform 32-bit multiplies using the defined constants RNDMULT and RNDINC. The disadvantage of this technique is that it is very sensitive to the choice of RANDMULT and RNDINC. where $0 \leq \mathrm{n} \leq \mathrm{nr}$ and $0 \leq \mathrm{M} \leq 65536$

Overflow Handling Methodology No scaling implemented for overflow prevention.

Special Requirements No special requirements.

Implementation Notes Rand16() is written so that it can be called from a C program. Prior to calling rand16(), rand16i() can be called to initialize the random number generator seed value. The C routine passes two parameters to rand16(): A pointer to the random number array *r and the count of random numbers ( $n r$ ) desired. The random numbers are declared as short or 16 bit values. Two constants RNDMULT and RNDINC are defined in the function. The algorithm is sensitive to the choice of RNDMULT and RNDINC so exercise caution when changing these.

M This value is based on the system that the routine runs. This routine returns a random number from 0 to 65536 (64K) and is NOT internally bounded. If you need a min/max limit, this must be coded externally to this routine.

RNDSEED An arbitrary constant that can be any value between 0 and 64 K . If 0 (zero) is chosen, then RNDINC should be some value greater than 1. Otherwise, the first two values will be 0 and 1. To change the set of random numbers generated by this routine, change the RNDSEED value. In this routine, RNDSEED is initialized to 21845, which is 65536/3.

RNDMULT Should be chosen such that the last three digits fall in the pattern even_digit-2-1 such as xx821, xx421 etc. RNDMULT $=31821$ is used in this routine.

RNDINC In general, this constant can be any prime number related to M. Research shows that RNDINC (the increment value) should be chosen by the following formula:
RNDINC $=((1 / 2-(1 / 6$ * SQRT(3))) * M). Using M=65536, RNDINC was picked as 13849.

The random seed initialized in rand16i() is used to generate the first random number. Each random number generated is used to generate the next number in the series. The random number is generated in the accumulator ( 32 bits) by using the multiply-accumulate (MAC) unit to do the computation. In the course of the algorithm if there is intermediate overflow, the overflow flag bit in status register is set. At the end of the algorithm, the overflow flag is tested for any intermediate overflow conditions.

## Benchmarks

$$
\left.\begin{array}{lll}
\text { Cycles } & \begin{array}{l}
\text { Core: } \\
\text { Overhead: }
\end{array} & 13+\mathrm{nr}^{\star 2}
\end{array}\right] \begin{array}{ll}
\text { Code size } & 49 \\
\text { (in bytes) } &
\end{array}
$$

## C54x Benchmark for Comparison

| Cycles | Core: | $10+n r^{*} 4$ |
| :--- | :--- | :--- |
|  | Overhead: | 16 |

Code size 56 (in bytes)
rand16init Random Number Generation Initialization

| Function | void rand16init(void) |
| :--- | :--- |
| Arguments | none |
| Description | Initializes seed for 16-bit random number generator. |

Algorithm Not applicable
Overflow Handling Methodology No scaling implemented for overflow prevention.Special Requirements Allocation of .bss section is required in linker command file.
Implementation Notes This function initializes a global variable rndseed in global memory to be used for the 16 bit random number generation routine (rand16)
Example See examples/rand16i subdirectory
Benchmarks
Cycles ..... 6
Code size ..... 9
(in bytes)
C54x Benchmark for Comparison
Cycles ..... 7
Code size ..... 10
(in bytes)

## recip16

 16-bit Reciprocal FunctionFunction
void recip16 (DATA *x, DATA *r, DATA *rexp, ushort nx)

## Arguments

| x[nx] | Pointer to input data vector 1 of size nx. $x[0]$ $x[1]$ |
| :---: | :---: |
|  | . |
|  | $x[n x-2]$ |
|  | $x[n x-1]$ |
| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output data buffer r[0] |
|  | r[1] |
|  | - |
|  |  |
|  | ${ }_{r}[n x-2]$ |
|  | $\mathrm{r}[\mathrm{nx}-1]$ |
| rexp[nx] | Pointer to exponent buffer for output values. These exponent values are in integer format. |
|  | rexp[0] |
|  | rexp[1] |
|  | . |
|  | - |
|  | $\operatorname{rexp}[n x-2]$ |
|  | $\mathrm{rexp}[\mathrm{nx-1]}$ |
| nx | Number of elements of input and output vectors |

## Description

Algorithm

This routine returns the fractional and exponential portion of the reciprocal of a Q15 number. Since the reciprocal is always greater than 1, it returns an exponent such that:
$r[i]$ * rexp[i] = true reciprocal in floating-point
$Y m=2 * Y m-Y m^{2} *$ Xnorm
If we start with an initial estimate of Ym , the equation converges to a solution very rapidly (typically 3 iterations for 16 -bit resolution).

The initial estimate can be obtained from a look-up table, from choosing a midpoint, or simply from linear interpolation. The method chosen for this problem is linear interpolation and is accomplished by taking the complement of the least significant bits of the Xnorm value.

Overflow Handling Methodology none
Special Requirements none
Implementation Notes none
Example See examples/recip16 subdirectory
Benchmarks (preliminary)
Cyclest Core: $33^{*} n x$
Overhead: 12
Code size 69
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## rft

Forward Real FFT (in-place)
Function
void rfft (DATA *x, ushort nx, type);
(reference cfft.asm and unpack.asm)

## Arguments

$x[n x] \quad$ Pointer to input vector containing $n x$ real elements. On output, vector $x$ contains the first half ( $n x / 2$ complex elements) of the FFT output in the following order. Real FFT is a symmetric function around the Nyquist point, and for this reason only half of the $\mathrm{FFT}(\mathrm{x})$ elements are required.
On output $x$ will contain the $\operatorname{FFT}(x)=y$ in the following format:

$$
\begin{aligned}
& y(0) R e y(n x / 2) \mathrm{im} \rightarrow \mathrm{DC} \text { and Nyquist } \\
& y(1) \operatorname{Re} y(1) \mathrm{Im} \\
& y(2) \operatorname{Re} y(2) \mathrm{Im} \\
& \ldots . \\
& y(n x / 2) \operatorname{Re} y(n x / 2) \operatorname{Im}
\end{aligned}
$$

Complex numbers are stored in Re-Im format
$\mathrm{nx} \quad$ Number of real elements in vector x . can take the following values.

$$
n x=16,32,64,128,256,512,1024
$$

type RFFT type selector. Types supported:

- If type = SCALE, scaled version selected
$\square$ If type = NOSCALE, non-scaled version selected


## Description

Algorithm

Special Requirements
$\square$ This function should work with unpack.asm and/or rfft.asm for proper result. See example in examples/rifft directory.
$\square$ Memory alignment: input data (x) must be aligned at even word boundary.
$\square$ Data memory alignment (referenced rfft.cmd in examples/rfft directory):

- Alignment of input database address: $(\mathrm{n}+1)$ LSBs must be zeros, where $\mathrm{n}=\log _{2}(\mathrm{nx})$.
- Ensure that the entire array fits within a 64 K boundary (the largest possible array addressable by the 16-bit auxiliary register).
- For best performance, the data buffer has to be in a DARAM block.
- If the twiddle table and the data buffer are in the same block, then the radix- 2 kernel is 7 cycles and the radix- 4 kernel is not affected.
- The twiddle table should be aligned to the nx word boundary; i.e., the lowest $\log _{2}(n x)$ least significant bits of the twiddle table starting address should be zero.

Implementation Notes Implemented as a complex FFT of size $\mathrm{nx} / 2$ followed by an unpack stage to unpack the real FFT results. Therefore, Implementation Notes for the cfft function apply to this case.

Notice that normally an FFT of a real sequence of size N, produces a complex sequence of size N (or 2*N real numbers) that will not fit in the input sequence. To accommodate all the results without requiring extra memory locations, the output reflects only half of the spectrum (complex output). This still provides the full information because an FFT of a real sequence has even symmetry around the center or nyquist point(N/2).

When scale $=1$, this routine prevents overflow by scaling by 2 at each FFT intermediate stages and at the unpacking stage.

## Example

## rifft

 Inverse Real FFT (in-place)Function
void rifft (DATA *x, ushort nx, type);
(reference cifft.asm)

## Arguments

## Description

Algorithm
(IDFT)
See CIFFT

## Special Requirements

$\square$ This function should work with unpacki.asm and/or cbrev.asm for proper result. See example in examples/rifft directory.
$\square$ Memory alignment: input data (x) must be aligned at even word boundary.
$\square$ Data memory alignment (referenced rfft.cmd in examples/rfft directory):

- Alignment of input database address: $(\mathrm{n}+1)$ LSBs must be zeros, where $\mathrm{n}=\log _{2}(\mathrm{nx})$.
- Ensure that the entire array fits within a 64 K boundary (the largest possible array addressable by the 16-bit auxiliary register).
- For best performance, the data buffer has to be in a DARAM block.
- If the twiddle table and the data buffer are in the same block, then the radix-2 kernel is 7 cycles and the radix- 4 kernel is not affected.
- The twiddle table should be aligned to the nx word boundary; i.e., the lowest $\log _{2}(n x)$ least significant bits of the twiddle table starting address should be zero.

Implementation Notes Implemented as a complex IFFT of size $\mathrm{nx} / 2$ followed by an unpack stage to unpack the real IFFT results. Therefore, Implementation Notes for the cfft function apply to this case.

Notice that normally an IFFT of a real sequence of size N, produces a complex sequence of size N (or 2*N real numbers) that will not fit in the input sequence. To accommodate all the results without requiring extra memory locations, the output reflects only half of the spectrum (complex output). This still provides the full information because an IFFT of a real sequence has even symmetry around the center or nyquist point(N/2).

When scale $=1$, this routine prevents overflow by scaling by 2 at each IFFT intermediate stages and at the unpacking stage.

Example See examples/rifft subdirectory

## sine

## Sine

Function
ushort oflag = sine (DATA *x, DATA *r, ushort nx)
(defined in sine.asm)

## Arguments

| x[nx] | Pointer to input vector of size $n x . x$ contains the angle in radians between [-pi, pi] normalized between ( $-1,1$ ) in q15 format |
| :---: | :---: |
|  | $\mathrm{x}=\mathrm{xrad} / \mathrm{pi}$ |
|  | For example: |
|  | $45^{\circ}=\mathrm{pi} / 4$ is equivalent to $x=1 / 4=0.25=0 \times 200$ in q15 format. |
| $\mathrm{r}[\mathrm{nx}]$ | Pointer to output vector containing the sine of vector x in q15 format |
| $n \mathrm{x}$ | Number of elements of input and output vectors. $n x \geq 4$ |
| oflag | Overflow flag. |
|  | $\square$ If oflag = 1, a 32-bit overflow has occurred. |
|  | $\square$ If oflag $=0$, a 32-bit overflow has not occurred. |

## Description

Computes the sine of elements of vector x . It uses Taylor series to compute the sine of angle $x$.

Algorithm for $(i=0 ; i<n x ; i++) \quad y(i)=\sin (x(i))$ where $x(i)-\frac{x r a d}{p i}$

## Overflow Handling Methodology Not applicable

Special Requirements none
Implementation Notes Computes the sine of elements of vector $x$. It uses the following Taylor series to compute the angle x in quadrant 1 ( $0-\mathrm{pi} / 2$ ).
$\sin (x)=c 1^{*} x+c 2^{*} x^{\wedge} 2+c 3^{*} x^{\wedge} 3+c 4^{*} x^{\wedge} 4+c 5^{*} x^{\wedge} 5$
c1 $=3.140625 x$
c2 $=0.02026367$
c3 $=-5.3251$
c4 $=0.5446778$
c5 $=1.800293$
The angle $x$ in other quadrant is calculated by using symmetries that map the angle $x$ into quadrant 1 .

Example See examples/sine subdirectory
Benchmarks (preliminary)
Cyclest Core: 19*nx
Overhead: 17
Code size 93 program; 3 data
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## sqrt_16

Square Root of a 16-bit Number

Function
ushort oflag = sqrt_16 (DATA *x, DATA *r, short nx)
(defined in sqrtv.asm)
Arguments

| $x[n x]$ | Pointer to input vector of size $n x$. |
| :--- | :--- |
| $r[n x]$ | Pointer to output vector of size $n x$ containing the sqrt(x). |

$n x \quad$ Number of elements of input and output vectors.
oflag Overflow flag.
$\square$ If oflag $=1$, a 32-bit overflow has occurred.
$\square$ If oflag $=0$, a 32-bit overflow has not occurred.

## Description

Algorithm $\quad$ for $(i=0 ; i<n x ; i++) \quad r[i]=\sqrt{(x(i)} \quad 0 \leq i \leq n x$

## Overflow Handling Methodology Not applicable

Special Requirements none
Implementation Notes The square root of a number(x) can be calculated using Newton's method. An initial approximation is guessed and then the approximation gets recomputed using the formula,
new approximation $=$ old approximation $-\frac{\left(\text { old approximation }{ }^{2}-x\right)}{2}$.
The new approximation then becomes the old approximation and the process is repeated until the desired accuracy is reached.

## Example

Benchmarks

## See examples/sqrtv subdirectory

(preliminary)

$$
\text { Cycles } \dagger \quad \text { Core: } \quad 35 \text { * } \mathrm{nx}
$$

Overhead: 14
Code size 84 program; 5 data (in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## sub

## Vector Subtract

## Function

short oflag $=$ sub (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale) (defined in sub.asm)

## Arguments

| $x[n x]$ | Pointer to input data vector 1 of size $n x$. In-place processing <br> allowed $(r$ can be $=x=y)$ |
| :--- | :--- |
| $y[n x]$ | Pointer to input data vector 2 of size $n x$ |


| $r[n x]$ | Pointer to output data vector of size $n x$ containing |
| :--- | :--- |
| $\square$ | $(x-y)$ if scale $=0$ |
| $\square$ | $(x-y) / 2$ if scale $=1$ |

$n x \quad$ Number of elements of input and output vectors. $n x \geq 4$
scale Scale selection
$\square$ If scale $=1$, divide the result by 2 to prevent overflow.

- If scale $=0$, do not divide by 2 .
oflag Overflow flag.
- If oflag $=1$, a 32-bit overflow has occurred.
$\square$ If oflag $=0$, a 32-bit overflow has not occurred.

Description This function subtracts two vectors, element by element.
Algorithm $\quad$ for $(i=0 ; i<n x ; i++) \quad z(i)=x(i)-y(i)$
Overflow Handling Methodology Scaling implemented for overflow prevention (User selectable)
Special Requirements none
Implementation Notes none
Example See examples/sub subdirectory
Benchmarks (preliminary)
Cycles $\dagger \quad$ Core: 3 * $n x$
Overhead: 23
Code size 60
(in bytes)
$\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

## DSPLIB Benchmarks and Performance Issues

All functions in the DSPLIB are provided with execution time and code size benchmarks. While developing the included functions, we tried to compromise between speed, code size, and ease of use. However, with few exceptions, the highest priority was given to optimize for speed and ease of use, and last for code size.

Even though DSPLIB can be used as a first estimation of processor performance for a specific function, you should know that the generic nature of DSPLIB may add extra cycles not required for customer specific usage.
Topic Page
5.1 What DSPLIB Benchmarks are Provided ..... 5-2
5.2 Performance Considerations ..... 5-2

### 5.1 What DSPLIB Benchmarks are Provided

DSPLIB documentation includes benchmarks for instruction cycles and memory consumption. The following benchmarks are typically included:
$\square$ Calling and register initialization overhead
$\square$ Number of cycles in the kernel code: Typically provided in the form of an equation that is a function of the data size parameters. We consider the kernel (or core) code, the instructions contained between the _start and _end labels that you can see in each of the functions.
$\square$ Memory consumption: Typically program size in bytes is reported. For functions requiring significant internal data allocation, data memory consumption is also provided. When stack usage for local variables is minimum, that data consumption is not reported.

For functions in which it is difficult to determine the number of cycles in the kernel code as a function of the data size parameters, we have included direct cycle count for specific data sizes.

### 5.2 Performance Considerations

Benchmark cycles presented assume best case conditions, typically assuming:
$\square 0$ wait-state memory external memory for program and data
$\square$ data allocation to on-chip DARAM
$\square$ no pipeline hits
A linker command file showing the memory allocation used during testing and benchmarking in the Code Composer C55x Simulator is included under the example subdirectory.

Remember, execution speed in a system is dependent on where the different sections of program and data are located in memory. Be sure to account for such differences, when trying to explain why a routine is taking more time that the reported DSPLIB benchmarks.

## Chapter 6

## Software Updates and Customer Support

This chapter details the software updates and customer support issues for the TMS320C55x DSPLIB.
Topic Page
6.1 DSPLIB Software Updates ..... 6-2
6.2 DSPLIB Customer Support ..... 6-2

### 6.1 DSPLIB Software Updates

C54x DSPLIB software updates will be periodically released, incorporating product enhancement and fixes.

DSPLIB software updates will be posted as they become available in the same location you download this information. Source code for previous releases will be kept public to prevent any customer problem in case we decide to discontinue or change the functionality of one of the DSPLIB functions. Make sure to read the readme. $1^{\text {st }}$ file available in the root directory of every release.

### 6.2 DSPLIB Customer Support

If you have question or want to report problems or suggestions regarding the C54x DSPLIB, contact Texas Instruments at dsph@ti.com. We encourage the use of the software report form (report.txt) contained in the DSPLIB doc directory to report any problem associated with the C54xDSPLIB.

## Overview of Fractional Q Formats

Unless specifically noted, DSPLIB functions use Q15 format or to be more exact Q0.15. In a Qm.nformat, there are $m$ bits used to represent the two's complement integer portion of the number, and $n$ bits used to represent the two's complement fractional portion. $m+n+1$ bits are needed to store a general Qm.n number. The extra bit is needed to store the sign of the number in the most-significant bit position. The representable integer range is specified by $\left(-2^{m}, 2^{m}\right)$ and the finest fractional resolution is $2^{-n}$.

For example, the most commonly used format is Q.15. Q. 15 means that a 16 -bit word is used to express a signed number between positive and negative 1. The most-significant binary digit is interpreted as the sign bit in any $Q$ format number. Thus in Q. 15 format, the decimal point is placed immediately to the right of the sign bit. The fractional portion to the right of the sign bit is stored in regular two's complement format.
Topic Page
A. 1 Q3.12 Format ..... A-2
A. 2 Q. 15 Format ..... A-2
A. 3 Q. 31 Format ..... A-2

## A. 1 Q3.12 Format

Q.3.12 format places the sign bit after the fourth binary digit from the right, and the next 12 bits contain the two's complement fractional component. The approximate allowable range of numbers in Q.3.12 representation is $(-8,8)$ and the finest fractional resolution is $2^{-12}=2.441 \times 10^{-4}$.

## Table A-1. Q3.12 Bit Fields

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | $\cdots$ | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value | S | I 3 | 12 | I 1 | Q 11 | Q 10 | Q 9 | $\ldots$ | Q 0 |

## A. 2 Q. 15 Format

Q. 15 format places the sign bit at the leftmost binary digit, and the next 15 leftmost bits contain the two's complement fractional component. The approximate allowable range of numbers in Q .15 representation is $(-1,1)$ and the finest fractional resolution is $2^{-15}=3.05 \times 10^{-5}$.

## Table A-2. Q. 15 Bit Fields

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | $\cdots$ | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value | S | Q14 | Q13 | Q12 | Q11 | Q10 | Q9 | $\cdots$ | Q0 |

## A. 3 Q. 31 Format

Q. 31 format spans two 16 -bit memory words. The 16 -bit word stored in the lower memory location contains the 16 least-significant bits, and the higher memory location contains the most-significant 15 bits and the sign bit. The approximate allowable range of numbers in Q. 31 representation is $(-1,1)$ and the finest fractional resolution is $2^{-31}=4.66 \times 10^{-10}$.

## Table A-3. Q. 31 Low Memory Location Bit Fields

| Bit | 15 | 14 | 13 | 12 | $\ldots$ | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value | Q15 | Q14 | Q13 | Q12 | $\ldots$ | Q3 | Q2 | Q1 | Q0 |

Table A-4. Q. 31 High Memory Location Bit Fields

| Bit | 15 | 14 | 13 | 12 | $\ldots$ | 3 | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value | S | Q30 | Q29 | Q28 | $\ldots$ | Q19 | Q18 | Q17 | Q16 |

## Appendix B

## Calculating the Reciprocal of a Q15 Number

The most optimal method for calculating the inverse of a fractional number $(\mathrm{Y}=1 / \mathrm{X})$ is to normalize the number first. This limits the range of the number as follows:

$$
\begin{align*}
& 0.5 \leq \text { Xnorm }<1 \\
& -1 \leq \text { Xnorm } \leq-0.5 \tag{1}
\end{align*}
$$

The resulting equation becomes

$$
Y=\frac{1}{\left(\text { Xnorm }^{*} 2^{-n}\right)}
$$

or

$$
\begin{equation*}
Y=\frac{2^{n}}{X n o r m} \tag{2}
\end{equation*}
$$

where $\mathrm{n}=1,2,3, \ldots, 14,15$
Letting $Y e=2^{n}$ :

$$
\begin{equation*}
Y e=2^{n} \tag{3}
\end{equation*}
$$

Substituting (3) into equation (2):

$$
\begin{equation*}
Y=Y e^{*} \frac{1}{X n o r m} \tag{4}
\end{equation*}
$$

Letting $Y m=\frac{1}{X n o r m}$ :

$$
\begin{equation*}
Y m=\frac{1}{X n o r m} \tag{5}
\end{equation*}
$$

Substituting (5) into equation (4):

$$
\begin{equation*}
Y=Y e^{*} Y m \tag{6}
\end{equation*}
$$

For the given range of Xnorm, the range of Ym is:

$$
\begin{align*}
& 1 \leq Y m<2 \\
& -2 \leq Y m \leq-1 \tag{7}
\end{align*}
$$

To calculate the value of Ym , various options are possible:
a) Taylor Series Expansion
b) 2nd,3rd,4th,.. Order Polynomial (Line Of Best Fit)
c) Successive Approximation

The method chosen in this example is (c). Successive approximation yields the most optimum code versus speed versus accuracy option. The method outlined below yields an accuracy of 15 bits.

Assume $Y m($ new $)=$ exact value of $\frac{1}{\text { Xnorm }}$ :

$$
\begin{equation*}
Y m(n e w)=\frac{1}{X n o r m} \tag{c1}
\end{equation*}
$$

or

$$
\begin{equation*}
Y m(n e w)^{*} X=1 \tag{c2}
\end{equation*}
$$

Assume $Y m(o l d)=$ estimate of value $\frac{1}{X}$.

$$
\text { Ym(old) * Xnorm }=1+\text { Dyx }
$$

or

$$
\begin{equation*}
D x y=Y m(\text { old }) * \text { Xnorm }-1 \tag{c3}
\end{equation*}
$$

where Dyx = error in calculation
Assume that $\mathrm{Ym}($ new $)$ and Ym (old) are related as follows:

$$
\begin{equation*}
Y m(\text { new })=Y m(o l d)-D y \tag{c4}
\end{equation*}
$$

where $D y=$ difference in values
Substituting (c2) and (c4) into (c3):

$$
\begin{align*}
& Y m(o l d)^{*} \text { Xnorm }=Y m(\text { new })^{*} \text { Xnorm }+ \text { Dxy } \\
& (Y m(\text { new })+D y)^{*} \text { Xnorm }=Y m(\text { new })^{*} \text { Xnorm }+ \text { Dxy } \\
& Y m(\text { new })^{*} \text { Xnorm }+D y^{*} \text { Xnorm }=Y m(\text { new })^{*} \text { Xnorm }+D x y \\
& D y^{*} \text { Xnorm }=D x y \\
& D y=D x y^{*} \frac{1}{X n o r m} \tag{c5}
\end{align*}
$$

Assume that $1 / X$ norm is approximately equal to Ym (old):

$$
\begin{equation*}
D y=D x y^{*} Y m(o l d) \text { (approx) } \tag{c6}
\end{equation*}
$$

Substituting (c6) into (c4):

$$
\begin{equation*}
Y m(\text { new })=Y m(\text { old })-D x y^{*} Y m(\text { old }) \tag{c7}
\end{equation*}
$$

Substituting for Dxy from (c3) into (c7):

$$
\begin{align*}
& Y m(\text { new })=Y m(\text { old })-\left(Y m(\text { old }){ }^{*} \text { Xnorm }-1\right)^{*} Y m(\text { old }) \\
& Y m(\text { new })=Y m(\text { old })-Y m(\text { old })^{2} X n o r m+Y m(\text { old }) \\
& Y m(\text { new })=2^{*} Y m(\text { old })-Y m(\text { old })^{*} \text { Xnorm } \tag{c8}
\end{align*}
$$

If after each calculation we equate Ym (old) to $\mathrm{Ym}($ new $)$ :

$$
Y m(o l d)=Y m(\text { new })=Y m
$$

Then equation (c8) evaluates to:

$$
\begin{equation*}
Y m=2 * Y m-Y m^{2 *} \text { Xnorm } \tag{c9}
\end{equation*}
$$

If we start with an initial estimate of Ym , then equation (c9) converges to a solution very rapidly (typically 3 iterations for 16-bit resolution).

The initial estimate can be obtained from a look-up table, from choosing a midpoint, or simply from linear interpolation. The method chosen for this problem is linear interpolation and accomplished by taking the complement of the least significant bits of the Xnorm value.

## Index

16-bit reciprocal function 4-84
32 -bit by 16 -bit long division function 4-63
32-bit vector multiplication 4-76

## A

acorr 4-7
adaptive delayed LMS filter 4-31
add 4-9
arctangent 2 implementation 4-10
arctangent implementation 4-11
atan16 4-11
atan2_16 4-10
autocorrelation 4-7

## B

base 10 logarithm 4-64
base 2 logarithm 4-66
base e logarithm 4-67
bexp 4-13
block exponent implementation 4-13
block FIR filter (fast) 4-37

cascaded IIR direct form I 4-59
cascaded IIR direct form II 4-56, |4-58
cbrev 4-14
cfft 4-15
cfir 4-17
cifft 4-21
complex bit reverse 4-14
complex FIR filter 4-17

```
conversion
 floating-point to Q15 (fltoq15) 4-49
 Q15 to floating-point (q15tofl) 4-80
convol 4-23
convol1 4-25
convol2 4-27
convolution 4-23
convolution (fast) 4-25
convolution (fastest) 4-27
corr 4-30
correlation
 auto (acorr) 4-7
 full-length (corr) 4-30
correlation (full-length) 4-30
D
decimating FIR filter 4-40
dlms 4-31
double-precision IIR filter 4-53
DSPLIB
 arguments 3-2
 calling a function from assembly language source
 code 3-5
 calling a function from C 3-3
 content 2-2
 data types \(3-2\)
 dealing with overflow and scaling issues 3-6
 how to install 2-2
 how to rebuild 2-3
 E
expn 4-33
exponential base e 4-33
```

    F
    FFT
forward complex (cfft) 4-15
forward real, in-place (rfft) 4-85
inverse complex (cifft) 4-21
inverse real, in-place (rifft) 4 4-87
fir 4-34
FIR filter 4-34
block filter, fast (fir2) 4-37
complex (cfir) 4-17
decimating (firdec) 4-40
direct form (fir) 4-34
Hilbert Transformer 4-50
interpolating (firinterp)
lattice forward (firlat) 4-44
symmetric (firs) 4-46
FIR Hilbert Transformer 4-50
fir2 4-37
firdec 4-40
firinterp 4-42
firlat $4-44$
firs 4-46
floating-point to Q15 conversion 4-49
fltoq15 4-49
forward complex FFT 4-15
forward real FFT (in-place) 4-85

## H

hilb16 4-50
IIR filter
cascaded, direct form I (iircas51) 4-59
cascaded, direct form II (iircas4) 4-56
cascaded, direct form II (iircas5) 4-58
double-precision (iir32) 4-53
lattice inverse (iirlat) 4-61
iir32 4-53
iircas4 4-56
iircas5 4-58
iircas51 4-59
irlat 4-61
index and value of maximum element of a vector 4-71
index and value of minimum element of a vector 4-73
index of maximum element of a vector 4-69
index of maximum element of a vector less than or equal to $344-70$
index of minimum element of a vector 4-72
interpolating FIR filter 4-42
inverse complex FFT 4-21
inverse real FFT (in-place) 4-87
L
lattice forward (FIR) filter 4-44
lattice inverse (IIR) filter 4-61
Idiv16 4-63
log_10 4-64
log_2 4-66
logarithm
base 10 (log_10) 4-64
base 2 (log_2) 4-66
base e (logn) 4-67
$\log n 4-67$

## m

matrix multiplication 4-74
matrix transpose 4-76
maxidx 4-69
maxidx34 4-70
maximum element of a vector
index (maxidx) 4-69
index and value (maxvec) 4-71
maximum element of a vector less than or equal to
34, index (maxidx34) 4-70
maximum value of a vector 4-70
maxval 4-70
maxvec 4-71
minidx 4-72
minimum element of a vector
index (minidx) 4-72
index and value (minvec) 4-73
minimum value of a vector 4-73
minval $4-73$
minvec 4-73
mmul 4-74
mtrans 4-76
mul32 4-76
N
natural logarithm (logn) 4-67
neg 4-77
neg32 4-78
P
power 4-79
a
Q15 to floating-point conversion 4-80 q15tofl 4-80

R
rand16 4-81
rand16init 4-83
random number generation
algorithm 4-81
initialization $4-83$
recip16 $4-84$
rfft $4-85$
rifft $4-87$
sine 4-88
sqrt_16 4-89
square root of a 16 -bit number $4-89$
sub 4-90
symmetric FIR filter 4-46
V
vector add 4-9
vector negate 4-77
vector negate, double-precision 4-78
vector power 4-79
vector subtract 4-90


[^0]:    $\dagger$ Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle table reads and instruction fetches (provided linker command file reflects those conditions).

