
Abstract

A wireless headphone system that is for use with a computer only requires a short transmission distance, as typically the user is within one meter of the computer. This has lead to the idea of an infrared headphone transceiver system, specifically employing IrDA standard transceivers, for a bi-directional audio transmission to and from a computer. 
The aim of this project was to design, produce and test such an infrared system for the use with at the Association of the Blind. The design included identifying suitable technology to meet the requirements and the design of a control algorithm to run on the processors in each system. The production of the prototype system included coding of the control algorithm and interconnection of the major components. Testing included measurements of audio quality and, once the infrared output is finalized, interference levels and signal quality for the infrared transceiver.
It was determined that a sampling rate of 8kHz is suitable for voice audio. This met the met the requirements of the Nyquist Criteria. Further measurements identified the peak input signal amplitude to guarantee no clipping was evident at the output of the system. The effect of manipulating and clearing bits from the packets of audio data was also observed. Audio inputs were taken from telephony equipment, direct audio sources and a microphone while taking these measurements.
The majority of the development was focused on coding the control algorithm for the remote and base units. The control algorithm is in the form of embedded control software in the Digital Signal Processors. This software was written in both ANSI C and Assembly then compiled, assembled and loaded on to the Digital Signal Processor for testing.
Though the infrared transceiver is discussed here, it was not actually implemented, as the serial interface code for use with the DSP development board was not finalized.
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1 Introduction, Aim and Background
1.1 Introduction

Audio plays an integral part in modern entertainment and communication systems. One problem with audio communications occurs when multiple users are in close proximity and can over-hear each other. This problem is particularly noticeable for the members of the Association of the Blind of Western Australia, where typically up to seven PC users are in one room, and are all using audio prompts from the PC. To eliminate this problem, the use of headphones was adopted. 

The use of the headphones though, introduces another problem for the members of the Association for the Blind. This problem is related to the audio cable connected between the headphones and the computer (or any other audio source). This cable often became entangled with the user’s guide dog. The result of this is that the cables often get pulled out of their sockets and are difficult for the visually impaired to refit.

To help eliminate these problems the use of a cordless headphone system was envisioned. In particular an infrared system was to be used. Initially, Ian Dodd developed an analogue system using an AM/FM mixed modulation scheme. This system incorporated two channels of audio transmitted from the base unit to the headphone receiver (or remote) unit. (Dodds I. R, 1996.)
But problems were encountered with this system. These problems included:

· Audio level changes in the AM channel, when the distance from the transmitter was changed,

· High frequency audio interference when placed near a computer monitor,

· Only single directional transmission was available, that is, no microphone was incorporated for user feed back to the PC,

· Inability of power management in the remote unit due to analogue nature of the receiver.
These problems were identified by Iain Murray and forwarded along with the project requirements.
These problems with the initial project suggested the basis for the new project. That is, a digital infrared transceiver unit was to be designed, incorporating two audio channels transmitted from a base unit, (situated at the PC) and one audio channel from the remote unit back to the base. The audio back from the remote unit is from a microphone, while the other two sources are from a tele-scriber and a direct audio input that is used for speech synthesis. The microphone audio is sent to the tele-scriber via an RJ45 (telephone) connector.
1.2 Aim of the Project and Contributions Made

The aim of the project was to design, produce and test a prototype infrared headset to suit the requirements of the Association of the Blind.

Specifically this meant designing a half duplex, digital system that could handle three channels of voice data, transmitted over a restricted distance. To enable this to occur a series of steps were undertaken:

1. Identify suitable components to suit the system requirements.
A real-time digital audio system requires high-throughput of data; this was accomplished using Texas Instruments Digital Signal Processors (DSP) and high speed IrDA compliant Infrared Transceivers.

2. Design a system overview to suit the system and equipment
The requirement of the control algorithm for the DSP was to obtain, identify and re-direct the digital audio, as well as maintain synchronization.
3. Test audio quality with the equipment
In order to guarantee good quality audio at the receiver, a suitable sampling rate and maximum input level were determined.
4. Code the control algorithm
The control algorithm had to be converted to code, compiled, assembled and then loaded onto the DSP. This procedure was undertaken using the development environment specific to the Texas Instruments DSP.
This report will focus specifically on these four elements of the project, as they were undertaken.

To complete the aims of the project, the following steps have still to be finalized and will only be discussed briefly:
1. Connect the major system components
This involves connecting the IR device to the serial bus of the DSP. This was attempted, but not successfully implemented.
2. Field test the system
In order to determine that the infrared headphone system will meet the requirements of the Association of the Blind, a complete system test will be required. This should involve detailed measurements and analysis in a realistic test environment.
3. Refine system

On completion of the field testing any problems with the system will have to be eliminated and then the system must be re-tested. This cycle should continue until the infrared headphone system meets all of the requirements, including audio quality, interference with adjacent users and battery life.

4. Manufacture

Once the prototype has been proven to meet the requirements the development equipment will be converted to a ‘stand-alone’ system, casing and packaging is to be designed and then the product will be produced and implemented.
1.2.1 Development of a New Product.
The idea of an infrared headphone system is not new. Analogue infrared stereo or mono headphones have been commercially available for a fairly long time now. It is important to identify why a new product is required, rather than simply modifying a standard infrared headphone.
There are a few reasons why the current equipment is inadequate for the requirements of the Association of the Blind. Firstly, experimenting both with an ‘Arkon’® (no specified model) brand stereo headphone and an ‘InfraSound’ (model SC1000) stereo headphone showed that they operate over a relatively long distance, typically in a lounge or entertainment room, with a transmission range in excess of five or more meters. 
The use of both systems in a room was impossible as the interference between the two made the audio indistinguishable. This is unsuitable for a room containing multiple users, as they will generate interference for adjacent computer users. Secondly these devices are a transmitter and receiver pair, that is, they only transmit audio from a base unit to the remote user. The requirement for the new system is to incorporate a microphone for data from the remote unit. If an analogue transmitter was added to the remote unit in an attempt to transmit data back to the base, power consumption would be greatly increased, as a continuous carrier would be transmitted.
1.3 Background

1.3.1 A Brief Description of Sampling

Sampling is the process of dividing an analogue signal into pulses of discrete width. In the case of interest each of these pulses is made up of a discrete number of possible levels. Probably the most important factor of sampling for audio is the sampling rate. The sampling rate is the number of samples per second. If the sampling rate is too low, the quality of the audio will be very poor when the samples are used to reconstruct the original signal, as the resolution of the samples is insufficient.
Figure 1 is a depiction of a sinusoidal wave sampled. From the diagram, it can be seen that if the number of samples in one period is too small, the signal will not be correctly reconstructed at the receiver. 
If a signal is band-limited with bandwidth of wmax to avoid the effects of signal aliasing (and consequently give a suitable resolution for reconstructing the signal) a sampling rate at least twice the bandwidth is required (i.e. 2wmax). This is known as Nyquist Criteria for sampling, and the rate 2wmax is known as the Nyquist Rate. (Oppenheim, A, et al 1996).

The bandwidth of audio (specifically speech) is typically taken from around 100Hz to around 3.1 kHz, giving a total bandwidth of approximately 3 kHz. Music can have components down to around 12 Hz and up to well above 5 kHz (often higher than 15 kHz). This implies that for a bandwidth of approximately 3 kHz required for reproduction of speech a sampling rate of at least 6 000 samples per second (i.e. 6kHz Sampling Rate) will be required. This was confirmed. See Section 3.1 Sampling Rate.
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Figure 1: Sampling an Analogue Signal

1.3.2 Audio Quality and People.
Reliable audio communication implies that good quality audio, with a minimum of distortion is required at the receiver. To guarantee a good quality audio signal is delivered to the user the following issues must be addressed:
· Corruption of Digital Signal or Distortion over the Channel

A major concern for all communications systems is corruption of data during transmission. Any data that becomes corrupt or lost during transmission will affect the quality of the audio signal being received by the user. Distortions of the waveform occur as a result of channel characteristics and introduced noise during the transmission.

· Sampling Rate

It is typically understood that a sampling rate of at least 8 kHz will produce acceptable quality for speech. If the sampling rate is not high enough there will be insufficient resolution to recreate a good approximation of the original signal at the receiver as there will be insufficient samples to reliably reconstruct the message signal.
· Breaks in Audio

Another important factor that will affect audio quality is any breaks in the audio stream. It has been suggested that, for speech, occasional audio loss of up to 20mS is not serious enough to be noticeable to the human ear. (Truax 1999). At a sampling rate of 8 kHz 20mS is the equivalent of 160 samples. This implies that if the occasional packet is corrupt or lost during transmission, it is acceptable to simply discard the corrupted packets and continue.
The ability to be able to discard corrupt data means it must first be identified. This is an issue considered in the Error Detection and Correction Discussion Section 2.3.5. If it is possible to have corrupted data outputted to the earphones, the affect on the user’s ears cannot be guaranteed since the integrity of the data is lost. One advantage to the headphone system is that the power output from most earphones is typically not high power enough to do any severe damage to the users’ ears. 

One possible method to guarantee that audio never exceeds a safe, predetermined level is to include a ‘cut-off’ circuit in the output stage. 
· Clipping

Clipping is a phenomenon associated with amplifier stages. If an amplifier stage is driven too hard (given an input voltage level too high) or is incorrectly biased clipping can occur. Clipping is limiting a maxima (or minima) to a voltage less than the expected amplified output would be. This maximum output level (Vmax) is usually a function of the supply voltages to the amplifier stage. The result of clipping is signal distortion, as the original signal cannot be recovered once an analogue waveform has been clipped. (Bogart, T.F. Jr 1997).
1.3.3 Infrared Technology

The Infrared Data Association (IrDA) has specified the protocol necessary for any two devices that conform to the IrDA standard, to detect each other and exchange data. (Millar 1998). “The initial specifications detailed a serial, half-duplex, asynchronous system with transfer rates of 2400bps to 115200bps at a range of up to one meter [and] with a viewing half-angle of between 15 and 30 degrees.” (Millar 1998). This is depicted in Figure 2. 
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Figure 2: Viewing Angle Specified in IrDA Specification 1.0
Millar, et al, (1998) focuses specifically on data communications up to 4Mbps. Since the infrared devices to be used are IrDA standard, it is expected that the transceiver system should work up to the specified range, and within the specified viewing angles.
IrDA data communications operate in half-duplex mode. The reason is quite simple. While transmitting, a device’s receiver is blinded by the light of its own transmitter. Because of this, full duplex communication is not feasible. The two devices that communicate simulate full duplex communication by quickly turning the link around. (Millar, 1998).

Using the IrDA 1.0 standard offers other advantages for the headset application. Computer users are always in close proximity to their monitor, typically less than one meter. Since all IrDA 1.0 compliant transceivers have a usable range up to around one meter and very low signal strength for distances greater than this, it is easily seen that interference from other computer users in close proximity (say 1.5 to 2 meters) should be negligible. Further more the angle of transmission is limited to 30º, implying that the signal transmitted from either the remote or base unit should be directed fairly specifically to only the PC in front of the user. This should also help to reduce the probability of interference from adjacent computers (and IR transceivers).
This can be considered in detail from the following diagrams. Figure 3 depicts two rows of computer users in a room, and defines the user and computers. Each user has a remote headset on their head and a base unit at the center of the computer monitor. Figure 4 shows the ideal transmission system in the same environment. Hence the system performance and interference characteristics will be functions of the distances:
· d1 and d2= Distance from adjacent transmitters,

· d3 = Distance from Base Transceiver to Remote Transceiver for any pair
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Figure 3: Overview of Multiple Computer users
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Figure 4: Top View of the Ideal Transmission Patterns
1.3.4 Assemblers, Compilers and Loaders
Definitions of Assemblers, Compilers and Loaders tend to vary from source to source. This is probably because often the functions performed by these devices is very similar and they are often run in conjunction to parse, link and convert a piece of code. This section aims to give a basic overview of these three devices.

As described by D.W. Barron in his book “Assemblers and Loaders” (3rd Edition 1978), “an assembler is a system that assists the programmer in the preparation of machine-code programs.” Furthermore, Barron describes the functions of an assembler: “the assembler allows the programmer to write symbolic representations of the contents of memory registers, and converts these into binary words (or bytes)” and “keeps track of cross references within the program, and facilitates the combining of subprograms or modules to form larger programs.” 
This is not to be confused with a compiler. A compiler is typically used to process a high level language. Its functions include the identification of syntax errors and error reporting. (Hanly, J.R and Koffman, E.B.) A cross-compiler is a compiler that can be used to translate a high level language to another language (typical an assembly level code).
The definition of a compiler used by Texas Instruments is “a program that converts a C source code into assembly language source statements”. This seems to fit better with the definition of a cross-compiler.
A loader is a program that loads data (typically in binary bytes) to the relevant memory of a device or computer. (D.W. Barron (1997)). Due to the different architecture of computers and processors, it can be seen that a loader program is device specific. Texas Instruments describes a loader as “a device that loads an executable module into TMS320C27x system memory”.
Regardless of the conflict of terms, the use of a compiler, assembler and a loader is required for developing code, converting it to binary data and load it to the ROM of the microprocessor of interest. The programming environment used throughout this project is the code development environment supplied by Texas Instruments for development of software for its C54’ family of Digital Signal Processors, called Code Composer Studio.

Code Composer Studio has the advantage of including a programming environment for both ANSI C and assembly language. The compiler, assembler and loader are transparent in the operation of the programming environment and are accessed via the usual Windows drop-down menu systems.
2 system Design
2.1 System Characteristics

Due to its speed in real-time signal manipulation and control, the ultimate resolution for the system control and signal processing was the use of a Digital Signal Processor (DSP). In particularly the Texas Instruments C54’ and the low power C55’ DSP chips were suggested. The reasons for selecting these devices for the infrared headphone system were:

· High speed and throughput (with clock speeds up to 100MHz) required for real-time sampling, processing and output of three channels of audio,
· Availability of C5402 Digital signal processing Starter Kit (DSK) which provides a complete test and evaluation environment to allow quick connection and testing of the processor,
· Low Power C55’ family uses the same command set as the C54’

· Low power advantages in remote battery operated unit
· Allowing Software to be developed on C54’ DSK and later updated for C55’
The other major component required for the project was the IrDA standard IR transceiver. Initially, due to its availability, the IBM38J-AP9-04 transceiver module was to be used. But this line of product has been discontinued by the manufacturer (IBM Microelectronics Division) and no data sheet was available. Without the specifics on this device it could not be used. For this reason a new IR transceiver was selected. The Agilent HSDL-1100-18 was chosen for the following reasons:
· Data Transmission and Receive rates of up to 4Mbps,
· Small Surface-mount package,
· Competitively priced, and
· Data sheets and component  readily available from Farnel Components
 From research on similar devices available from other manufacturers, including Telefunken, most of these IR transceiver devices have similar characteristics (as they meet the IrDA 1.0 Specification) with the biggest difference being the maximum data rates the device can accommodate and the physical sizes and packaging available. (Vishay Telefunken, 2000).
2.2 System Overview
The project specifications, and the hardware available suggest the system overview depicted in Figure 5. It identifies the three channels and forms the basis for the design of the control algorithm.


[image: image5.png]Base Unit

Source 1| o
(Voice Synth)
R R
Transceiver  Transceiver =
Dsp :F < :: psp =
Sourcez | _, « A id
(Telephony Equip)
Retum
Voice [

Remote Unit

DA
Converter

DA
Converter

AD

P
Converter

Output 1

Output 2

Voice input




Figure 5:  Basic System Overview
The user will have a constant link back to the base unit (and thus back to the PC). This implies that there is a channel available for more than just audio. Take, for example, a visually impaired computer user being read an audio book. In the case that the page is needed to be turned, or the user wishes to pause the playback, or any other possible basic function, they have to reach across and use the keyboard, or use an audible command. The addition of a small hand-held keyboard that connects directly to the headset and transmits data across the IR link could be used for basic functions including Page Down and Pause.
This idea of additional control data not in the form of voice being transmitted back the PC suggested some possible design criteria. The major design criteria to accommodate voice and data transmission include the following:
· Error detection would be required for channels using control data
· Data should only be accepted when the correct remote unit is in range

· Each channel should be able to be identified

· Synchronization would be required

This is the foundation for the design of the control algorithms for the individual units. 
2.3 Control Algorithms
The design criteria are reflected in the control algorithms of both the remote and base units, the control algorithms have been illustrated in the form of flow charts in Appendix A.
2.3.1 Base Unit

The flow charts depict the base and remote units operating independently. While this is true, both units have to depend heavily on responses from its partner to operate as a system. The design is such that the base unit is always in control by providing synchronization and control data. The base unit continually polls the remote unit to see if it is within infrared range by sending either a ‘Ready to Receive?’ packet or a ‘Ready to Transmit?’ packet. For this reason the base unit dictates the synchronization for the system, and continually loops through the three modes:

· Mode 1: Send audio from Source 1 (telephony equipment) across IR link to earphone 1,

· Mode 2: Send audio from Source 2 (direct audio, i.e. synchronized voice) across IR link to earphone 2,

· Mode 3: Receive audio from Source 3 (microphone) across IR link.

For the condition that the remote unit does not respond, the base unit remains in its current mode, until a response is obtained from the remote unit.

2.3.2 Remote Unit

The remote unit is in a constant ‘check and wait’ mode. It checks the incoming data (IR) port for a synchronization packet and if none is present it waits. On reception of a synchronization packet it determines which mode it should be in, depending if a ‘Ready to Receiver?’ or ‘Ready to Transmit?’ synchronization packet is received. The earphone output channel is determined from the Identification (ID) data added to the data packet. ID data is considered in Section 2.3.4 Source ID.
One issue that is not identified on the flow chart is a time-out period. If a synchronization packet is received by the remote unit but no data packet is received within a given delay, the remote unit should go back to waiting for a synchronization packet. Alternatively, the synchronization packets can also include an ID number, using the same format as the packetized data. From the packet ID, the remote unit could then determine if the packet is for synchronization and polling, or if it is actual audio data. This will allow the system to never be caught expecting data when a synchronization packet arrives.
2.3.3 Synchronisation Issues.

Problems of synchronization will occur between the base and remote unit for two major reasons:

· No common clock pulse, and

· Corruption of the transmission channel by dense material or movement.

In an attempt to eliminate this problem, a test signal will be transmitted from the base unit before each data packet to identify which mode the remote unit should be in. The remote unit will receive this signal, send a confirmation and then react accordingly.

As with most digital equipment that employs transmission where a common clock pulse is not available, there is a challenge in determining when one bit ends and another bit begins. This is particularly significant when a packet contains more than one 0 or 1 in a row, as there is no transition between the high and low states to identify a change.
One solution to this problem is for the data that is to be transmitted to be coded. Specifically, coding schemes that require a transition after each bit can be employed for this purpose. These coding schemes offer other advantages, including possible error detection (and correction under a range of conditions) and spectral efficiency. An example of this is Manchester code. In this method a 1 is encoded as a negative pulse followed by a positive pulse and a 0 is encoded as a positive pulse followed by a negative pulse. Pulse widths are half of the symbol width. (Haykin, 1994).
Another possible solution to the ‘bit width’ problem is to use a hand-shaking procedure on initialization of the remote and base units. In this procedure, a number of consecutive 0 and 1 pairs are transmitted so as the time between consecutive bits can be determined. This procedure of handshaking usually occurs in the preamble of a data communication.
The exact transmission operation of the IR transceiver modules has not yet been determined. The transmission technique employed by the IR transceiver may already contain a coding algorithm as the example projects available from the IrDA do not seem to consider this. (Stuart, R 1998; Knudson, C.D. 1999).
For further data on synchronisation and standards refer to the paper “IrMC: Infrared Solutions for Mobile Communications” by Charles D. Knutson (published by the IrDA, 1999).
2.3.4 Source ID

The remote unit is able to differentiate the different sources of data, by the Source ID added to the start of each transmitted packet. This idea is similar to that employed by the TCP/IP protocol, where each packet of data can be identified by its ‘to port’ and ‘from port’ and addresses. 
The last two bits of each data packet were reserved for assigning the source ID (to address) of the data. The source ID assignments can be seen in Table 1.
	Code
	Audio Source

	00
	Left Earphone Data

	01
	Right Earphone Data

	10
	Microphone Data

	11
	Un-assigned or Poll



Table 1: Data Packet ID Assignment
Though the fourth option (11) has not yet been assigned a logical use for this ID would be to employ it to identify control or synchronisation data packets. The implication of this is discussed in the Synchronisation Issues section 2.3.3.
The ability to assign additional data to a packet, such as the source ID, requires either extending the length of the packet or clearing two bits within the packet (whilst still maintaining the data integrity). This was considered and tested in section 3.2 Clipping Level and section 4.3 Effects of Clearing End Two Bits in a Packet.

2.3.5 Error Detection and Correction

As with any digital communications system, detection of erroneous data is of paramount importance to guarantee the integrity of the data. This was considered in the design of the system and provision for error detection is seen in the control algorithm. 

Before an error correction or detection scheme can be adopted, the error rate and types of errors need to be identified. That is, are the errors of a format that is:

· only single bit errors, 

· bursty but confined to a single packet, or

· bursty and spread over multiple packets.

To determine this, the Infrared channel has to be setup and standard test data examined.

Once this has been accomplished an error handling scheme can be derived. A minimum requirement is a parity test, but ideally a Cyclic Redundancy Code (CRC) should be incorporated. Both of these schemes introduce redundancy into the packet for transmission.
3 Experimental Test Procedures & Results

3.1 Sampling Rate

The problem of determining a suitable sampling rate has many issues. These issues include:

· Audio quality for transmitted/received signal,

· Time between samples to handle digital signal operations and transmitter/receiver pre-processing, and

· The capabilities of the transceiver port.

Out of these issues, the most crucial is the audio quality, as a headphone set is useless if the audio quality is too poor for the system to be used. To determine a suitable audio quality for the system, the ‘codec’ example supplied with the Texas Instruments DSK software was used. This example can be found in the c:\…\ti\c5400\dsk\example\codec\ directory of the DSK development software and is also reproduced in Appendix D. This example (as described in the readme.txt file) uses the codec command to access the headphone and microphone jack on the DSK board. In this procedure there is a command to adjust the following input and output parameters:
· Sampling Rate

· Output Gain

· Input Gain

· DAC mode, 16 bit or 15+1 bit.
To measure the effect of different sampling rates, a range of values were compared using two different sources. The first source of audio was speech and the second was CD quality audio. The results were assigned depending on whether the output (reconstructed) audio was clear of audible distortion. The results are summarized in Table 2. 
	Sampling Rates
	Quality of CD Audio
	Quality of Speech Audio

	2kHz
	Very poor almost distorted large amount of noise
	Poor with a large quantity of noise

	4kHz
	Poor with a noticeable amount of noise
	This audio is understandable, but not quite acceptable

	8kHz
	Acceptable music quality
	Good Mic quality

	16kHz
	Good music quality little no noise
	Very good Mic quality.


Table 2: Comparisons of Audio Quality and Sampling Rates

From these results it could be concluded that a sampling rate of at least 8 kHz is required for an acceptable speech quality. This is consistent with the predicted sampling rate required from the Nyquist Criteria, where a sampling rate of at least 6 kHz was predicted.
3.2 Clipping Level
A 1 kHz sinusoidal tone was used at the input jack of the DSK to generate the test signal and, as before, the ‘codec.mak’ example was used. For this experiment a sampling rate of 8 kHz was maintained. A summary of the measured results is tabulated in Table 3.
	Input Level V(p-p) mV
	No. of Masked Bits
	Output Waveform Characteristics 
	Audible Output Distortion

	50
	0
	Undistorted
	Undistorted

	50
	1
	Undistorted
	Undistorted

	50
	2
	Undistorted
	Undistorted

	50
	3
	Undistorted
	Undistorted

	50
	4
	Distorted
	Unrecognizable

	200
	1
	Undistorted
	Undistorted

	200
	2
	Undistorted
	Undistorted

	200
	3
	Undistorted
	Undistorted

	200
	4
	Distorted
	Unrecognizable

	400
	1
	Undistorted
	Undistorted

	400
	2
	Undistorted
	Undistorted

	400
	3
	Undistorted
	Undistorted

	400
	4
	Distorted
	Unrecognizable

	650
	1
	Just Clipped
	Just Audible

	650
	2
	Just Clipped
	Just Audible

	650
	3
	Just Clipped
	Just Audible


Table 3: Affects of Adjusting Test Waveform Amplitude and Masking Data Bits
Note that the second column in the table indicates the number of bits that were masked. This was used to determine the number of bits in the 16 bit data packet that can be masked (nulled) before there is an effect on the audio quality. The implications of this are discussed in detail in the Discussion section.

3.3 Electromagnetic Noise Considerations.
While taking the Clipping Level and Sampling Rate measurements, interference was observed in the audio. The interference was evident as a hiss, buzz or low level hum in the audio. It appeared that the noise was electromagnetic interference originating from the electronic equipment in close proximity, that is the computer and peripheral equipment. The DSK was operated on three different computers during the testing phase, including a Laptop (Mitac, P266 Mhz, Model 5033). The noise was evident to a different degree on all three machines, with the Laptop generating the least. Further more the amount of audible noise was affected by the following factors:

· Hard disk activity on host PC,

· Different images on the monitor,

· Proximity of the DSK to the monitor, and

· Mouse movement.
In an attempt to combat this problem while taking noise critical measurements, the following steps were taken:

· The DSK was operated from the Laptop, 

· The DSK was insulated then placed within a metal box,

· The metal box was well grounded to the DSK board grounds,

· The DSK was grounded to the chassis of the Host PC (Laptop) 

· This was undertaken with the use of jumper leads

· A thicker parallel cable was used to connect the DSK to the Host PC,
· This implies heavier shielding on the cable and thicker conductors

· Thicker, well shielded audio cable was used to connect the microphone and earphone connectors. (Mardiguian, 2001).
The result of undertaking these measures was a very good, noise free test environment. With a sampling rate of 16 kHz there was no distinguishable back ground noise heard through the head phones.
To further eliminate noise in the system, a Finite Impulse Response (FIR) low pass filter could be added to the input and output stages of the DSP. This should suppress any high frequency interference generated by external sources.
3.4 Interconnection to Telephony Equipment

An advantage to using the C5402 DSK was the inclusion of the telephone DAA interface which is provided for connection to a PSTN or line simulator via a standard RJ-11 modular jack.  The DAA circuit is based on the CP Clare CPC5604A optically isolated interface integrated circuit. (TMS320C5402 DSK Help (SPRH075A) 1998-1999). This is an advantage as one of the audio sources at the Association for the Blind is the telephony equipment.
The sampling rate for the DAA audio source was the same as that for the microphone sampling data: 8 kHz. The results for the audio quality for the DAA source were the same as those discussed in Sections 3.1 and 3.2.
One important point to note with the circuit on the DSK is that it does not meet Australian Standards for 1500V line isolation. This problem will need to be resolved before the development of a prototype. (TMS320C5402 DSK Help (SPRH075A) 1998-1999).
The user-assigned Dip Switches were used as on-hook and off-hook control. The Dip switches are monitored by the DSK Status (DSP STAT) register (at I/O Address 0x0001). Bits 5 and 6 of DSP STAT refer to user defined Dip switch 0 and 1 respectively. The test for a change to the register was undertaken in assembly as follows:
_GET_DIP_0:


PORTR 0001,TEMP_1

; Read DSK STATUS Register


LD TEMP_1,A



; Put into accumulator A                       








for manipulation 


and #0000000000100000b, A 
; Mask bits that are of no    







interest (ID USR_SW0)

    
ret






On returning from a loop call (from assembly back to C) the value in accumulator A is treated as the output.
3.4.1 De-bounce

A problem observed with this procedure was de-bounce. De-bounce is a phenomenon associated with high speed logic. When the switch is set or changed, it does not make a perfect connection instantly, instead there exists a transient period over which the two contacts are contacting and breaking at a fast interval. (Mano, Morris, M. 1984). These rapid contacts and breaks can be sensed as a change of state by the logic circuit. This was observed by the DAA circuit attempting to dial when the switch was depressed slowly. (I.e. a set of pulses were sent down the line when the DSP sensed a combinations of on-hook and off-hook pulses). 
This was not considered a problem while testing, but a procedure was considered (but not employed) to attempt to eliminate this problem. A summary of the procedure is seen below:

1. Read the DSK status Register and store the value as temp_1

2. Wait a short period (perhaps use the NOP command)

3. Repeat Steps 1 and 2 twice more and store the register data in temp_2 and temp_3

4. Compare temp_1, temp_2 and temp_3

· If temp_1 = temp_2 = temp_3, then output a high (the switch has most probably settled)

· If any of temp_1, temp_2 or temp_3 are not equal then output a low (the switch is still ‘bouncing’) and wait for the next ‘round’ to recheck the register.

If this procedure still proves to be unreliable, more delay and test pairs can be added. This will increase the probability that the de-bounce period has ended.

An alternatively approach is suggested in M. Morris Mano’s book “Digital Design” which employs an SR flip flop and a normally closed switch. (1984)
4 Discussion

4.1 Programming the C54 DSP
Whilst the control algorithms were critical in making a strong theoretical base for the project, they were not the most time consuming. The majority of the ‘hands-on’ time was spend experimenting with and reading about the C5402 DSK in an attempt to develop the theoretical design into a functional program that could be written to the DSP.
The name of the software development environment supplied by Texas Instruments for compiling of the C54’ code is “Code Composer Studio DSK C5000”. Code Composer Studio has support for C functions (including libraries for specific C54’ DSK functions) and an assembly language command set, all combined with a compiler, assemble and loader as well as advanced features including a C54 register view and debugging tools.
For the ease of programming, the highest level language (ANSI C) available was used wherever possible. The C language support easily facilitated function and sub-routine calls and allowed for loops to be generated quickly. Whilst it is possible for these functions to be implemented directly in assembly language, this is not necessary as it is the job of the compiler to convert the C library functions to assembly language. (The assembly language equivalent code can be viewed in the ‘dis-assembly’ window in Code Composer Studio after the code has been built).
This ability to combine both a high level language and an assembly level language had both advantages and disadvantages. As mentioned above, coding in a high level language is easier to structure than a lower level language. For this reason the main control algorithm was structured in ANSI C. This was helpful as it allowed the main function for the control system to reflect the flow charts directly and it did not become cluttered with extra commands. The sub-routines to perform each of these tasks could then be developed independently and integrated into the system as a functional block. This approach also had the advantages of being easy to identify if a change was required or an error was found in a module (subroutine).
The MAIN() function is shown below:
    while (1)



/* Always repeat */

    { 


    /* Send "Are U Ready To Receive?" Packet and Await Reply */


    Ready2Rec();    


    /* Sample From the First Source */


    SampleScr(SCR1);
    


    /* Add Source1 ID and CRC to start of packet */


    Encode(SCR1);


    /* Transmit to IR Device */


    IRTransmit();    


    /* Send "Are U Ready To Receive?" Packet and Await Reply */


    Ready2Rec(); 


    /* Sample From the Second Source */


    SampleScr(SCR2);


    /* Add Source2 ID and CRC to start of packet */


    Encode(SCR2);


    /* Transmit to IR Device */


    IRTransmit();


    /* Send "Are U Ready To Transmit?" Packet and Await Reply */


    Ready2TX();


    /* Read from the IR Device */


    IRReceive();


    /* Identify and decode the Packet (also Error Test??)*/


    Decode();



/* Output to the desired Device... MIC Receiver */



Outputmic(); 



}
    

}  /* End of MAIN() */
4.2 Combining Assembly Language and C 

When calling assembly language functions from within a C environment there are a range of conditions and rules that are required to maintain system integrity. These rules are described in TI’s Code Composer Studio help files. Firstly there are a set of rules regarding what registers can and cannot be modified from within either environment. A list of these guidelines is included in Appendix B.
Adhering to and identifying all of these issues made writing the assembly language functions fairly complex. Following the example code, also included in Code Composer Studio Help files, proved a more efficient method of producing working code, rather than following all the directives individually. The end result was a set of functions declared as a global variable to allow then to be accessed from with a C environment. (TMS320C54x Code Generation Tools Help, 2000).
An example of this is the ID clearing function declared in assembly language:
.global _DATA_CLEAR_ID

_DATA_CLEAR_ID:


and #1111111111111100b, A
; Clears end two bits of packet        


ret

This was then called in the Encoding and Decoding subroutines from the C environment:
/* Under the Declarations : */

extern s16 DATA_CLEAR_ID();

/* Packet Encoding Subroutine */

void Encode(int SourceID)

{


if(SourceID == 1)



{



data = DATA_CLEAR_ID(data);


    
data = DATA_ID_0(data);


    
}


if(SourceID == 2)



{



data = DATA_CLEAR_ID(data);


   
data = DATA_ID_1(data);



} 


if(SourceID == 3)



{



data = DATA_CLEAR_ID(data);


    
data = DATA_ID_2(data);



}  

    return;

}   /* End of Encode SubRoutine */

4.3 Effect of Clearing End Two Bits in Packet

Before this discussion can proceed a clarification of the description of the positions of bits in the packet is required. Consider the 16 bit packet in Figure 6:
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Figure 6: Description of Bit Order in 16 bit Packet
The bits of interest were bits 1 and 2 and bits 15 and 16. Regardless of the orientation (forward or reverse bit order) of the packet, bit numbers 1 and 2 are always the most significant bits (MSBs) and bits 15 and 16 are always the least significant bits (LSBs). 

In order to maintain the 16 bit packet length, the approach taken to applying ID data to the MSB of a packet was to simply clear and re-write the MSB as an ID number. Since the packet of data has been modified, one must consider the effect. If the MSB contains data from the source, it is possible to corrupt the data packet by simply erasing and over-writing these two bits. 
There was no noticeable effect on the audio signal by simply over-writing the data in bit positions 15 and 16 using an assembly language subroutine. This implied that the sampler did not use this part of the packet when quantizing the data. This seemed unreasonable, because bits 15 and 16 were expected to be the LSB of the packet to comply with the previous examples observed (i.e. it was expected that the packet was in the reverse order, as described in Figure 6, since this was the format for all other assembly language variables). This would imply that no low values were obtained during the quantization procedure.
In an attempt to determine the significance of this, the same procedure was repeated, using bit numbers 1 and 2 in the packet as the packet ID bits (i.e. the two most significant bits). The result was distorted audio output. This phenomenon was perplexing, but again the answer was in the Code Composer Studio Help files (TMS320C54x Code Generation Tools Help (SPRH044A)), where it was explained that C variables are placed on the stack in reverse order. This meant that, unlike an assembly language variable, a global C variable had to be treated as though the bits are in their correct (forward, ANSI C) order when accessing them from assembly language.
Once this issue was identified, it still remained to explain the fact that data bits could be modified (deleted) and not affect the signal. The ability of the data to ignore the two MSBs suggested that these bits were not used when sampling the data. 
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Figure 7: Sampling of Amplitude Limited Signal
Consider the case depicted in Figure 7, where the input signal is limited (in this case clipped to an arbitrary maximum value before being sampled. In this case the maximum value of a sample will never be greater than Vmax. If this value is identified with a level less than the value associated with 214 then the final two bits of the 16 bit packet will always remain unused. The limiting of the quantized data to a reduced number of possible levels is also known as quantization error.
To confirm that this was the case for the DSK, the following procedure was undertaken:

1. The magnitude of the input signal was increased (without truncating the end two bits of the packet) until clipping (presumable from the Op-amp stage of the DSK) was evident. It seems reasonable to assume that this level at which clipping occurs is the maximum input level that will ever be sampled by the A-D converters.

2. With this maximum level determined, it was possible to truncate up to the three most significant bits of the 16 bit data packets before any audile change was evident at the output of the system. (For a summary of these measurements refer to the section 3.2 Clipping Level).
This implies that when the final proto-type is produced, the input to the system should not exceed the maximum clipped value:
Vin_max =< 650mV 

This could be obtained by adding an audio compressor-limiter to the input stage. An audio compressor-limiter is an active filter device that compresses all signals whose amplitudes exceed a threshold value. (Sinclair, I.R 1993).
4.4 Changes to Control Algorithm
The Poll and Acknowledgment procedure is fairly complex. This complexity is not necessarily required for an audio data system, where re-transmission of erred packets is not required. 
Instead of wasting time and transmission bit rate an alternative approach is to adopt an auto-synchronous system. The synchronization of the transmitter and receiver can be implied implicitly from what data is sent. For example if the base unit was to simply transmit both of its packets (earphone 1 and 2 data), the receiver will know to transmit its packet (microphone data) when it has received the end of the second packet from the base unit. With this procedure control complexity is reduced because:

· The Base unit will always transmit when it has data,

· The Remote unit will always transmit data when it has received the Base unit’s packets,
· Acknowledgement and Mode (‘Ready to Receive?’ or ‘Ready to Transmit?’) packets will not have to be identified, and
· Packet ID is not required.

· Unassigned bits in the packet can be assigned for error detection and correction redundancy.

Furthermore, the required transmission bit rate will be reduced to one third of the rate required with the Poll and Acknowledgment procedure, since only the data packet, and not the Poll and Acknowledgement packets are transmitted. For example, consider the case where all packets are 16 bits long and a sampling rate of 8 kHz is used:

Case 1, No Polling or Acknowledgement:

In this case:

No. of Packets per Sample = 1 (Data packet only)

Rate (bps) = (Packet Size) x (No. of Packets per Second) x (No. of Packets 


Transmitted per Sample) x (No. of Channels of Data)


      = 16 x 8000 x 1 x 3



      = 384 000
bps



      = 384kbps

Case 2, Including Polling and Acknowledgement

In this case:

No. of Packets per Sample = 3 (Data, Polling & Acknowledgement) 

Rate (bps) = (Packet Size) x (No. of Packets per Second) x (No. of Packets 


Transmitted per Sample) x (No. of Channels of Data)



      = 16 x 8000 x 3 x 3



      = 1 152 000 bps



      = 1.152 Mbps

The IR HSDL-1100-18 transceiver modules have a maximum data rate of up to 4Mbps (Infrared Transceiver Technical Data. HSDL-1100” Hewlett Packard.), but since little system performance is gained from the large increase in bit rate and complexity, the simpler approach should be adopted. Also, there are lower bit rate transceivers available at a reduced cost, which will help to reduce manufacturing costs of the final product. This approach was suggested by Mr Clive Maynard (August/September 2001).
4.5 The IR Output Port and McBSP
It was initially intended that the interface between the Texas Instruments (TI) DSK board and the Infrared Transceiver was to be through the onboard Serial UART port (RS232 port). The advantages of this included:

· Standard C library functions to control the port,

· Pre-designed Serial Infrared Links,

· Ability to connect directly to a PC to monitor the link,

· Use of HyperTerminal to collect data, then resend - this was useful because only one DSK board was available, so only one of either the base unit or remote unit could be tested at one time,

· ‘Built In’ parity check,

·  A range of baud rates are available from 300bps to 115 200bps.

Since there are three channels of data to be transmitted across the optical link, without any synchronization or acknowledgement data transmitted, the transmission rate as calculated previously will be at least 385kbps.
This exceeds the maximum baud rate of 115kbs (115 200bps), of the RS232 port on the DSK. For this reason the RS232 port could not be used directly, and a direct asynchronous serial input and output from the DSP was required. This of course added complexity to the algorithm for test and evaluation of the system. Since only one DSK evaluation board was available, it was previously envisioned that data could be sent in one direction, through an infrared serial port and stored on a host PC using a Terminal program for serial communications. Then the data could be outputted from the PC and decoded by the same DSK board. This approach will not be possible using a non-standard serial transmission mode.

The serial bus control and setup system in Code Composer Studio has been given the acronym McBSP, which stands for Multichannel Buffer Serial Ports. The McBSP is based on the standard serial port interface found on the TMS320C54x devices.  As described in the TMS320C54x Multichannel Buffered Serial Port Help file (SPRH066). The McBSP provides:
· Full-duplex communication
· Double-buffered transmit and triple-buffered receive data registers, which allow a continuous data stream

· Independent framing and clocking for receive and transmit
· Direct interface to industry-standard codecs, analogue interface chips (AICs), and other serially connected A/D and D/A devices

· External shift clock generation, or an internal, programmable-frequency shift clock

In addition, the McBSP has the following capabilities (TMS320C54x Multichannel Buffered Serial Port Help (SPRH066)):

· Direct interface to:
· T1/E1 framers

· MVIP switching compatible and ST-BUS compliant devices including:

· MVIP framers

· H.100 framers

· SCSA framers

· IOM-2 compliant devices

· AC97 compliant devices 
· IIS compliant devices

· SPI™ devices

· Multichannel transmit and receive up to 128 channels

· A wide selection of data sizes including 8, 12, 16, 20, 24, and 32 bits

· µ-Law and A-Law companding

· 8-bit data transfers with option of LSB or MSB first

· Programmable polarity for both frame synchronization and data clocks

· Highly programmable internal clock and frame generation

As might be expected by an input that accepts such a wide range of data standards, setting up a McBSP serial port involves enabling and disabling a large number of options. These ‘options’ are set by writing to the Multichannel Control Registers (MCRs). There are two sets of serial port systems, namely McBSP1 and McBSP2 respectively each having its own MCR. A summary of these registers has been included in Appendix E. It was this procedure of setting up and enabling the McBSP port that has stopped the IR port from being setup and tested. The McBSP output and input signals are available on the expansion peripheral connector on the C5402 DSK and it was intended to jumper the IR transceiver to the expansion peripheral connector for testing. This was attempted, but no signal was found.
Two basic approaches are available to setup a McBSP port for the C5402 DSK. The first and probably the easiest is to use the mcbsp_init command which is a C command that is used to setup a McBSP port automatically depending on the arguments entered. The arguments are directly associated with the relevant register values to enable the port.

The alternative is to directly assign (in Assembly) the register values required. An example of this approach is given below. The ABU (autobuffering mode) was used:

stm
DMSRC1,DMSA

;set source address to DRR10


stm
DRR1_0,DMSDN



stm
DMDST1,DMSA

;set destination address to 3000 


stm
#3000h,DMSDN


stm
DMCTR1 ,DMSA

;set buffer size to 100h words


stm
#100h ,DMSDN


stm
DMSFC1 ,DMSA



stm
#0001000000000000b ,DMSDN



;0001~~~~~~~~~~~~ (DSYN)

McBSP0 receive 







sync event



;~~~~0~~~~~~~~~~~ (DBLW) 

Single–word 








mode



;~~~~~000~~~~~~~~ 


Reserved



;~~~~~~~~00000000 (Frame Count)
Frame count is not



;




 relevant in ABU mode



stm
DMMCR1 ,DMSA



stm
#0101000001001101b ,DMSDN



;0~~~~~~~~~~~~~~~ (AUTOINIT)  Autoinitialization disabled



;~1~~~~~~~~~~~~~~ (DINM) 
DMA Interrupts enabled



;~~0~~~~~~~~~~~~~ (IMOD) 
Interrupt at full buffer



;~~~1~~~~~~~~~~~~ (CTMOD)
ABU (non–decrement) 






mode



;~~~~0~~~~~~~~~~~ 

Reserved



;~~~~~000~~~~~~~~ (SIND)
No modify on source address 





(DRR10)



;~~~~~~~~01~~~~~~ (DMS)
Source in data space 



;~~~~~~~~~~0~~~~~

Reserved



;~~~~~~~~~~~011~~ (DIND)
Post increment destination 





address



;                           with DMIDX0



;~~~~~~~~~~~~~~01 (DMD)
Destination in data space 



stm
DMIDX0,DMSA


;set element address 







index to +1


stm
#0001h,DMSDN




stm
#0000001000000010b ,DMPREC



;0~~~~~~~~~~~~~~~ (FREE)
 DMA stops on emulation 






stop



;~0~~~~~~~~~~~~~~ Reserved



;~~0~~~~~~~~~~~~~ (DPRC[5]) Channel 5 low  priority



;~~~0~~~~~~~~~~~~ (DPRC[4]) Channel 4 low  priority



;~~~~0~~~~~~~~~~~ (DPRC[3]) Channel 3 low  priority



;~~~~~0~~~~~~~~~~ (DPRC[2]) Channel 2 low  priority



;~~~~~~1~~~~~~~~~ (DPRC[1]) Channel 1 high priority



;~~~~~~~0~~~~~~~~ (DPRC[0]) Channel 0 low  priority



;~~~~~~~~00~~~~~~ (INTOSEL) N/A



;~~~~~~~~~~0~~~~~ (DE[5])
 Channel 5 disabled



;~~~~~~~~~~~0~~~~ (DE[4])
 Channel 4 disabled



;~~~~~~~~~~~~0~~~ (DE[3])
 Channel 3 disabled



;~~~~~~~~~~~~~0~~ (DE[2])
 Channel 2 disabled



;~~~~~~~~~~~~~~1~ (DE[1])
 Channel 1 enabled



;~~~~~~~~~~~~~~~0 (DE[0])
 Channel 0 disabled

This should set up a McBSP 0 channel and the data written to this channel should be available on the X_DX1 pin (pin 36) of the expansion peripheral connector. But no signal could be detected.

This implied that either:

· The serial (McBSP) was incorrectly setup; causes include:
·  A register setting was overlooked,

· An incorrect register setting was entered

· Another output option to enable McBSP0 was not set, or


· The wrong data pin was monitored.

4.6 Further Issues in Code Composer Studio

When operating Code Composer Studio under Windows 98 (SE) a few bugs were observed. Initially some of these bugs were interpreted as code errors and consequently time was spent testing and trying to de-bug the test code. The following outlines of a few these technical difficulties and the basic procedure used to overcome them:

4.6.1 Reset Button

When the reset button is depressed on the DSK the Code Composer Studio becomes unresponsive (crashes). There is General Extension Language (GEL) function in Code Composer Studio drop down menus to reset both the C5402 Processor and the DSK board. This function should be used rather than the hardware button.

4.6.2 Expanded Memory

The first tests of the DSK were using the example code included in the Code Composer Studio directory. When loading the Hello.mak project (or any other project) to the DSK, the error “Unable to Write to Memory Address ####” was observed. The reason, it was discovered, behind this is that the loader was attempting to write to the expanded eeprom on the DSK rather than directly to the DSP internal eeprom. To overcome this problem the DSK was set to external eeprom. This was achieved from the DSK 5402 initialization GEL functions just before loading the compiled and built code.
4.6.3 Lock-up During DSK Write.
On occasion when uploading the output file to the DSK, the computer (any of the three the DSK was used on) would ‘Lock-up’. After a re-boot the project file (.mak file) would always be corrupt. The remedy was to open the individual source files and re-link them as a new project and finally rebuild the output files and upload to the DSK.
4.6.4 Failure to Store Path Variables.
The path of the header (.h files) used in the project are supposed to be entered and stored under Project/Options/Paths. These values were never maintained and consequently the required header files where not found when the code was compiled. To overcome this problem, all the required header files were moved to the directory containing the project (.mak file).

5 future work
5.1 The IR I/O Port

Before any further system testing and development can be achieved, the McBSP serial port must be correctly setup and the IR device connected. This means finalising the setup of the McBSP control registers and connecting the IR transceiver. The recommended interface circuit (“Infrared Transceiver Technical Data. HSDL-1100”) which was to be implemented is depicted in Figure 7.
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Figure 8: Recommended HSDL-1100-18 Application Circuit
This circuit has been constructed on varo-board ready for connection to the McBSP output and input ports via the expansion peripheral connector.
5.2 Spectrum and Interference Testing
5.2.1 Infrared Interference Measurements
Before the final product can be implemented, a measure of the interference pattern generated by the IR transceiver (especially when there are multiple transceivers in close proximity) should be undertaken. This will identify whether the infrared transceiver system will be suitable for installation at the Association for the Blind.

Specific parameters of interest are the infrared light intensities at distances d​1, d2 and d3 as indicated in Figure 3. If the signal level at distances d1 and d2 are too high the interference will be noticed by the adjacent users. If the signal level at d3​ is too low then the user will be unable to send or receive data reliably to and from the remote (headset) unit. The angle of the transmit cone and orientation of the transceivers also have to be considered. (See Section 1.3.3 Infrared Technology for specifics on the IrDA 1.0 standard).
5.2.2 Audio Spectrum Analysis

The output spectrum should be analysed to determine exactly what signal is being amplified by the output stage. It is possible that unwanted very high and very low spectral components could be introduced into the system, either by interference or non-linearities in the system. The amplifier stage should be able to suppress these unwanted spectral components to guarantee that the amplifier is not wasting precious battery power amplifying unwanted signals. 
Even if no unwanted spectral components are evident during the spectrum analysis, a passive (RLC) band pass filter should be placed at the input to the amplifier stage to guarantee that under all possible conditions the amplifier will only be amplifying signals in the audible range.
5.3 Power Conservation for the Remote Unit
An important aspect to consider when designing the Remote Unit is power consumption requirements. The unit will have to be battery powered for cordless remote operation. This means that the device will need to be as power efficient as possible to obtain the maximum amount of operation time from a limited power source.
The C55’ family of Texas Instruments Digital Signal Processors is designed with the idea of power conservation and management in mind. Since they use the same instruction set as the C54’ DSPs, converting the embedded control software designed using the C5402 DSK to the C55’ should not be a problem. 

The IR transceiver module, being the output stage, will also be an element that is capable of consuming a large amount of power. The basic current requirements for the HSDL-1100-18 can be seen in Table 5 (“Infrared Transceiver Technical Data. HSDL-1100”).
	Mode of Operation
	Consumption

	
	Typical
	Maximum

	Idle
	3mA
	5.1mA

	Active Receive
	4mA
	18mA

	LED TX current (Logic High)
	400mA
	660mA


Table 4: Power Consumption Characteristics of the HSDL-1100-18
The majority of the time, the transceiver will be idle. For this reason the power consumption associated with the IR device is fairly small.
The headphones will also require an analogue amplifier stage to drive them and the microphone will require an amplifier stage to amplify the incoming signal to a reasonable level before sampling. Specifically these amplifiers will be in the form of op-amps. These op-amps will need to be devices with low power consumption parameters as they will be operating constantly.

5.3.1 Worst-Case Power Consumption

Consider a 6 volt power supply employing four, 1.5 volt Nexcell high performance AA, NiMH batteries with a rating of 1600 mAH. To determine an approximate operation time for the remote unit, consider a worst case, where all devices a drawing the maximum power for as long as possible. (“Nexcell 1600maH Cells.” 2001).
	Device
	Max. Time Operating
	Max. Supply Current
	Worst Case Power Consumption

	‘C55 DSP
	100%
	110mA
	110mA

	IR TX
	3%
	660mA
	19.8mA

	IR RX
	97%
	18mA
	17.5mA

	Op-amp 
	100%
	100mA
	100mA

	
	Total Consumption
	247.3mA



Table 5: Approximate Worst Case Power Consumption for Remote Unit
With a total current drain of 247.3mA at the supply, this corresponds to approximately 6.5 hour of operation.

The values in the table are worst case possibilities, calculated from approximations. The following points should also be considered:

· The op-amp measurement is for all other circuitry power and cannot be confirmed until final circuit design is specified.
· The C55’ DSP is assuming full clock rate and maximum processing at all times and does not use any of the power saving features of this device. These features will significantly reduce power when activated. (Bradley. 1993).

· The IR transceiver power is based on two 16 bit packets with a sampling rate of 8000 kHz and receiving constantly. In reality there will be a large idle time.

5.4 Converting the DSK Circuit

After the control algorithm coding is finalized and tested over an IrDA standard link, the next step in the evolution of the project would be to simplify the DSK hardware to a suitable circuit that can be shrunken onto standalone boards and then placed in a suitable set of packaging (i.e. a standalone base unit and a remote headset) ready for implementation.
· These proto-types should mirror actual production design to facilitate the expected IR interference and the effects of electromagnetic noise on the system. The effect of electromagnetic interference is of importance as the devices will be operating close to a lot of electronic equipment, including a PC and monitor. This point was highlighted during the audio quality tests, when there was audible noise generated by all of the three PCs the DSK was connected to. This was discussed in section 3.3 Electromagnetic Noise Considerations.
6 Conclusions
6.1 General Comments about the Engineering Project

The Communications Over an IrDA Link project allowed a hands-on approach to be taken in the project lifecycle. From project requirements, specifications were derived, from the specifications a basic design overview was considered and from this overview a total specific design was developed.
The project highlighted some of the tradeoffs that must be undertaken when developing a product. These tradeoffs include system robustness versus system complexity, specifically for the control algorithm. It was observed, that to allow the system to be later expanded to handle more data channels, the control algorithm became unnecessarily complex for the required task, which is the transmission of digital audio. 
Based on the specified requirements, a structured, logical approach was taken to all of the design aspects of the infrared headset system and attempts were made to make the system as robust as possible and allow for future improvements. The measurements undertaken on the digital audio should ensure reliable operation under the conditions described in the measurement procedures.
The major elements of the project that were a successfully tested and setup include:

· Compare and contrast of two control algorithms,

· Audio sampling, and noise measurements and quality analysis,

· Data was sampled from the microphone input,

· Data was sampled from the telephony input,

· Data packets were encoded with ID bits

· Data packets were decoded and directed to the desired output, including,

· Earphone jack,

· Telephone line.

Whilst this does not finalize the Infrared Communications Headset system it does cover a large portion of the data selection and manipulation.

6.2 Final Comments
Having come to the completion of the time frame available to this project, the major aspect of the project that has not been successfully implemented is the IR I/O port. It was not unexpected that the implementation of the system would involve unforseen complexity, but this was not an area where it was expected.

In hindsight, the time spent carefully planning a control algorithm that would allow the system to be adapted to other devices could have been better spend coding the McBSP control algorithm. 
From the experimental procedures undertaken it can be concluded that the final Digital Infrared Transceiver system will need to incorporate the following:
· A sampling rate of at least 8000 samples per second to guarantee good reproduction of speech,

· The microphone input level should not exceed 650mV at the input op-amp stage, to guarantee that no clipping occurs, and

· The system should incorporate a good RF shield to prevent electromagnetic interference problems in the field.

7 AppendiCES
7.1 Appendix A: System Overview Flow Charts

The following pages contain the flow diagrams for the design of the control algorithms for both the remote and base transceiver units.

7.2  Appendix B: Guidelines for Interface C and Assembly Language

Follow these guidelines to interface assembly language and C as described in TMS320C54x Code Generation Tools Help (SPRH044A):

· You must preserve any dedicated registers modified by a function. Dedicated registers include:

· AR1, AR6, AR7

· Stack pointer (SP)

· If the SP is used normally, it does not need to be explicitly preserved. In other words, the assembly function is free to use the stack as long as anything that is pushed onto the stack is popped back off before the function returns (thus preserving SP). 

· Any register that is not dedicated can be used freely without first being saved.

· Interrupt routines must save all the registers they use (see Interrupt Handling).

· When calling a C function from assembly language, the first (leftmost) argument must be placed in accumulator A. The remaining arguments should be placed on the stack in reverse order. That is, the rightmost argument at the highest (deeper in the stack) address. You can do this by either directly moving the arguments to an argument block on the stack like the compiler does, or you can push them.

· When accessing arguments passed in from a C function, these same conventions apply.

· If the function you are calling accepts one defined argument and an undefined number of additional arguments, all the arguments must go on the stack. The first one does not go in accumulator A.

· When calling C functions, remember that only the dedicated registers are preserved. C functions can change the contents of any other register. 

· Longs and floats are stored in memory with the most significant word at the lower address.

· Functions must return values in accumulator A. 

· No assembly language module should use the .cinit section for any purpose other than auto initialization of global variables. The C startup routine in boot.asm assumes that the .cinit section consists entirely of initialization tables. Disrupting the tables by putting other information in .cinit will cause unpredictable results.

· The compiler adds an underscore (_) to the beginning of all identifiers. This name space is reserved by the compiler. Prefix the names of variables and functions that are accessible from C with _. For example, a C variable called x is called _x in assembly language.

· For identifiers to be used only in an assembly language module or modules, any name that does not begin with an underscore may be used safely without conflicting with a C identifier. 

· Any object or function declared in assembly language that is accessed or called from C must be declared with the .global directive in the assembler. This defines the symbol as external and allows the linker to resolve references to it. 

· Likewise, to access a C function or object from assembly language, declare the C object with .global. This creates an undeclared external reference that the linker resolves.

· Because compiled code runs with the CPL (compiler mode) bit set to 1, the only way to access directly addressed objects is with indirect absolute mode. For example:

· LD  *(global_var), A  ; works with CPL == 1

· LD  global_var, A     ; doesn't work with CPL == 1

· If you set the CPL bit to 0 in your assembly language function, you must set it back to 1 before returning to compiled code.

7.3 Appendix C: Controller Code

7.3.1 C Control Algorithm for Testing of Base Unit

/*****************************************************************************/

/*                                                                    

 */

/*  
Control Program for DeskTop Unit
                                 */

/*                                                                           */

/*                                                                           */

/*****************************************************************************/

#include <type.h>

#include <board.h>

#include <codec.h>

#include <mcbsp54.h>

#include <stdio.h>

/*nclude <uart.h>*/

/* Just the basic Sub-routines */

void delay(s16 period);

void LEDblink(int cnt);

void Ready2Rec();

void SampleScr(s16 SourceID);

void Encode(s16 SourceID);

void IRTransmit();

void Ready2TX();

void IRReceive();

void Decode();

void Outputmic();

extern int ABUMCBSPINIT();

extern s16 DATA_CLEAR_ID();

extern s16 DATA_ID_0();

extern s16 DATA_ID_1();

extern s16 DATA_ID_2();

extern s16 GET_DIP_0(); 

extern s16 GET_DIP_1();

extern int var;

/*****************************************************************************/

/* Global Variables                                                          */

/*****************************************************************************/

HANDLE hHandset; 

HANDLE hDevice;

s16 data;

s16 tempdata; 

int SCR1 = 1;

int SCR2 = 2;

int SCR3 = 3;

int BrdLight = 0;

int IR_Out_Port = 2;

long int Temp_count;

int Dip_ind;

/*****************************************************************************/

/* MAIN                                                                      */

/*****************************************************************************/

void main()

{

   var = 0;


/*--------------------------------------------- */    

    /* Initialisation and basic Testing Procedures  */

    /*--------------------------------------------- */

    if (brd_init(100))
/* Initialise DSk with 100MHz Clock */

        return; 

     LEDblink(4);

/*Just Blink the LEDs a Couple of times */

    /* Set-up DAA codec */

    hDevice = codec_open(DAA_CODEC);


/* Handle for DAA codec */

    codec_sample_rate(hDevice,SR_8000);


/*8kHz Sample rate */

/*  codec_ain_gain(hDevice, CODEC_AIN_6dB);*/     /* 6dB gain on analog input to ADC */

/*  codec_dac_mode(hDevice, CODEC_DAC_15BIT);*/    /* DAC in 15-bit mode */

/*   codec_adc_mode(hDevice, CODEC_ADC_15BIT);*/   /* ADC in 15-bit mode */

   
daa_init();   







/* intializize DAA to default setting (off-hook, no caller ID) */

    daa_onhook(); 







/* Then Hang-up till needed */

    /* Set-up HANDSET codec */

    hDevice = codec_open(HANDSET_CODEC);
/* Handle for Mic/Phones codec */

    codec_sample_rate(hDevice,SR_8000); 
/*8kHz Sample rate */

/* Set codec parameters */

/*   codec_dac_mode(hDevice, CODEC_DAC_15BIT); */      /* DAC in 15-bit mode */

/*  codec_adc_mode(hDevice, CODEC_ADC_15BIT); */     /* ADC in 15-bit mode */

/*    codec_ain_gain(hDevice, CODEC_AIN_6dB);*/           /* 6dB gain on analog input to ADC */

/*   codec_aout_gain(hDevice, CODEC_AOUT_MINUS_6dB);*/   /* -6dB gain on analog output from DAC */

   /* Setup Port for output using McBSP */

   /*  mcbsp_init(IR_Out_Port,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1);*/

    /*--------------------------------------------- */    

 
/* 

Program Functionality goes Here         */

    /*--------------------------------------------- */    

  Temp_count = 0;

  Dip_ind = 0;

    while (1)



/* Always repeat */

    { 

    
Temp_count = Temp_count + 1;  

    
Dip_ind = GET_DIP_0();


    /* Send "Are U Ready To Receive?" Packet and Await Reply */


    Ready2Rec();

/*
    if(Temp_count <= 100000)*/



if(Dip_ind == 0)



{



brd_led_disable(BRD_LED2);



daa_onhook();      


    /* Sample From the First Source */


    SampleScr(SCR1);
    


    /* Add Source1 ID and CRC to start of packet */


    Encode(SCR1);


    }


    /* Transmit to IR Device */


    IRTransmit();    


    /* Send "Are U Ready To Receive?" Packet and Await Reply */


    Ready2Rec(); 

/*

if(Temp_count > 100000 && Temp_count < 200000) */



if(Dip_ind !=0)



{



brd_led_enable(BRD_LED2);



daa_offhook();      


    /* Sample From the Second Source */


    SampleScr(SCR2);


    /* Add Source2 ID and CRC to start of packet */


    Encode(SCR2);


    }


    if (Temp_count >= 200000)


    {


    Temp_count = 0;


    }


    /* Transmit to IR Device */


    IRTransmit();


    /* Send "Are U Ready To Transmit?" Packet and Await Reply */


    Ready2TX();


    /* Read from the IR Device */


    IRReceive();


    /* Identify and decode the Packet (also Error Test??)*/


    Decode();



/* Output to the desired Device... MIC Receiver */



Outputmic(); 



}
    

}  /* End of MAIN() */

/*****************************************************************************/

/* SUBROUTINES                                                               */

/*****************************************************************************/

void LEDblink(int cnt)

{

 
/* blink the leds a 'cnt' times */


while ( cnt-- )


{



brd_led_toggle(BRD_LED0);



delay(500);



brd_led_toggle(BRD_LED1);



delay(500);



brd_led_toggle(BRD_LED2);



delay(500);


}

}
/*End of LEDblink SubRoutine */

void delay(s16 period)



/* Delay Routine */

{

    int i, j;

    for(i=0; i<period; i++)         /* Just repeat till the period is up */

    {

        for(j=0; j<period>>1; j++);

    }

}
/* End of delay SubRoutine */

void Ready2Rec()

{

return;

}
/* End of Ready2Rec SubRoutine */

void SampleScr(int SourceID)

{


if(SourceID == 1)



{



data = *(volatile u16*)DRR1_ADDR(HANDSET_CODEC);



}


if(SourceID == 2)



{



data = *(volatile u16*)DRR1_ADDR(DAA_CODEC);



} 


if(SourceID == 3)



{



}


return;

}
/* End of SampleScr SubRoutine */

void Encode(int SourceID)

{


if(SourceID == 1)



{



data = DATA_CLEAR_ID(data);


    data = DATA_ID_0(data);


    }


if(SourceID == 2)



{



data = DATA_CLEAR_ID(data);


    data = DATA_ID_1(data);



} 


if(SourceID == 3)



{



data = DATA_CLEAR_ID(data);


    data = DATA_ID_2(data);



}  

    return;

}   /* End of Encode SubRoutine */

void IRTransmit()

{


BrdLight = 0;


/*Transmit_ASM_funct(); */


if (BrdLight != 0)



{


 
brd_led_toggle(BRD_LED0);



}


/**(volatile u16*)DXR1_ADDR(IR_Out_Port) = data;*/


/**(volatile u16*)DXR1_ADDR(DAA_CODEC) = data;*/


/*MCBSP_DXR12_WRITE(0, data);*/


return;

}
/*End of IRTransmit SubRoutine */

void Ready2TX()

{


return;

}
/* End of Ready2TX SubRoutine */

void IRReceive()

{

    return;

}
/* End of IRReceive SubRoutine */

void Decode(int SourceID)

{


if(SourceID == 1)



{



data = DATA_CLEAR_ID(data);



}


if(SourceID == 2)



{



data = DATA_CLEAR_ID(data);



}


if(SourceID == 3)



{



}


return;

}
/* End of Decode SubRoutine */

void Outputmic()

{


*(volatile u16*)DXR1_ADDR(HANDSET_CODEC) = data;


return;

}
/* End of Outputmic SubRoutine */

7.3.2 Assembly Code Support Functions

  .global _ABUMCBSPINIT 

  .global _DATA_CLEAR_ID

  .global _DATA_ID_0

  .global _DATA_ID_1

  .global _DATA_ID_2

  .global _GET_DIP_0

  .global _GET_DIP_1

  .bss _var,1

  .global _var

DMPREC .set 0054h
;Channel Priority and Enable Control Register

DMSA   .set 0055h
;Sub–bank Address Register

DMSDI  .set 0056h
;Sub–bank Data Register with autoincrement

DMSDN  .set 0057h
;Sub–bank Data Register without modification

DMSRC0 .set 00h
;Channel 0 Source Address Register

DMDST0 .set 01h
;Channel 0 Destination Address Register

DMCTR0 .set 02h
;Channel 0 Element Count Register

DMSFC0 .set 03h
;Channel 0 Sync Select and Frame Count Register

DMMCR0 .set 04h
;Channel 0 Transfer Mode Control Register

DMSRC1 .set 05h
;Channel 1 Source Address Register

DMDST1 .set 06h
;Channel 1 Destination Address Register

DMCTR1 .set 07h
;Channel 1 Element Count Register

DMSFC1 .set 08h
;Channel 1 Sync Select and Frame Count Register

DMMCR1 .set 09h
;Channel 1 Transfer Mode Control Register

DMSRC2 .set 0Ah
;Channel 2 Source Address Register

DMDST2 .set 0Bh
;Channel 2 Destination Address Register

DMCTR2 .set 0Ch
;Channel 2 Element Count Register

DMSFC2 .set 0Dh
;Channel 2 Sync Select and Frame Count Register

DMMCR2 .set 0Eh
;Channel 2 Transfer Mode Control Register

DMSRC3 .set 0Fh
;Channel 3 Source Address Register

DMDST3 .set 10h
;Channel 3 Destination Address Register

DMCTR3 .set 11h
;Channel 3 Element Count Register

DMSFC3 .set 12h
;Channel 3 Sync Select and Frame Count Register

DMMCR3 .set 13h
;Channel 3 Transfer Mode Control Register

DMSRC4 .set 14h
;Channel 4 Source Address Register

DMDST4 .set 15h
;Channel 4 Destination Address Register

DMCTR4 .set 16h
;Channel 4 Element Count Register

DMSFC4 .set 17h
;Channel 4 Sync Select and Frame Count Register

DMMCR4 .set 18h
;Channel 4 Transfer Mode Control Register

DMSRC5 .set 19h
;Channel 5 Source Address Register

DMDST5 .set 1Ah
;Channel 5 Destination Address Register

DMCTR5 .set 1Bh
;Channel 5 Element Count Register

DMSFC5 .set 1Ch
;Channel 5 Sync Select and Frame Count Register

DMMCR5 .set 1Dh
;Channel 5 Transfer Mode Control Register

DMSRCP .set 1Eh
;Source Program Page Address

DMDSTP .set 1Fh
;Destination Program Page Address

DMIDX0 .set 20h
;Element Address Index Register 0

DMIDX1 .set 21h
;Element Address Index Register 1

DMFRI0 .set 22h
;Frame Address Index Register 0

DMFRI1 .set 23h
;Frame Address Index Register 1

DMGSA  .set 24h
;Global Source Address Reload Register

DMGDA  .set 25h
;Global Destination Address Reload Register

DMGCR  .set 26h
;Global Element Count Reload Register

DMGFR  .set 27h
;Global Frame Count Reload Register

DRR1_0 .set 20h ; DRR10 register

MASK_1 .set 3010h; set possition for memory masking

TEMP_1
.set 60h; Temporary Memory Swap Loacation

_ABUMCBSPINIT:


stm
DMSRC1,DMSA

;set source address to DRR10


stm
DRR1_0,DMSDN



stm
DMDST1,DMSA

;set destination address to 3000 


stm
#3000h,DMSDN


stm
DMCTR1 ,DMSA

;set buffer size to 100h words


stm
#100h ,DMSDN


stm
DMSFC1 ,DMSA



stm
#0001000000000000b ,DMSDN



;0001~~~~~~~~~~~~ (DSYN)

McBSP0 receive sync event



;~~~~0~~~~~~~~~~~ (DBLW) 

Single–word mode



;~~~~~000~~~~~~~~ 


Reserved



;~~~~~~~~00000000 (Frame Count)
Frame count is not



;




 relevant in ABU mode



stm
DMMCR1 ,DMSA



stm
#0101000001001101b ,DMSDN



;0~~~~~~~~~~~~~~~ (AUTOINIT)  Autoinitialization disabled



;~1~~~~~~~~~~~~~~ (DINM) 
DMA Interrupts enabled



;~~0~~~~~~~~~~~~~ (IMOD) 
Interrupt at full buffer



;~~~1~~~~~~~~~~~~ (CTMOD)
ABU (non–decrement) mode



;~~~~0~~~~~~~~~~~ 

Reserved



;~~~~~000~~~~~~~~ (SIND)
No modify on source address (DRR10)



;~~~~~~~~01~~~~~~ (DMS)
Source in data space 



;~~~~~~~~~~0~~~~~

Reserved



;~~~~~~~~~~~011~~ (DIND)
Post increment destination address



;                           with DMIDX0



;~~~~~~~~~~~~~~01 (DMD)
Destination in data space 



stm
DMIDX0,DMSA


;set element address index to +1


stm
#0001h,DMSDN




stm
#0000001000000010b ,DMPREC



;0~~~~~~~~~~~~~~~ (FREE)
 DMA stops on emulation stop



;~0~~~~~~~~~~~~~~ Reserved



;~~0~~~~~~~~~~~~~ (DPRC[5]) Channel 5 low  priority



;~~~0~~~~~~~~~~~~ (DPRC[4]) Channel 4 low  priority



;~~~~0~~~~~~~~~~~ (DPRC[3]) Channel 3 low  priority



;~~~~~0~~~~~~~~~~ (DPRC[2]) Channel 2 low  priority



;~~~~~~1~~~~~~~~~ (DPRC[1]) Channel 1 high priority



;~~~~~~~0~~~~~~~~ (DPRC[0]) Channel 0 low  priority



;~~~~~~~~00~~~~~~ (INTOSEL) N/A



;~~~~~~~~~~0~~~~~ (DE[5])
 Channel 5 disabled



;~~~~~~~~~~~0~~~~ (DE[4])
 Channel 4 disabled



;~~~~~~~~~~~~0~~~ (DE[3])
 Channel 3 disabled



;~~~~~~~~~~~~~0~~ (DE[2])
 Channel 2 disabled



;~~~~~~~~~~~~~~1~ (DE[1])
 Channel 1 enabled



;~~~~~~~~~~~~~~~0 (DE[0])
 Channel 0 disabled

_DATA_CLEAR_ID:


and #1111111111111100b, A
; Clears end two bits of packet        


ret

_DATA_ID_0:


add #0000000000000000b, A 
; ID number is on end of packet: 00b = 0


ret

_DATA_ID_1:


add #0000000000000001b, A 
; ID number is on end of packet: 01b = 1


ret        

_DATA_ID_2:


add #0000000000000010b, A
; ID number is on end of packet: 10b = 2


ret

_GET_DIP_0:


PORTR 0001,TEMP_1


; Read DSK STATUS Register


LD TEMP_1,A




; Put into accumulator A for manipulation 


and #0000000000100000b, A 
; Mask bits that are of no interest (ID USR_SW0)

    ret

_GET_DIP_1:


PORTR 0001,TEMP_1


; Read DSK STATUS Register


LD TEMP_1,A




; Put into accumulator A for manipulation 


and #0000000000010000b, A 
; Mask bits that are of no interest (ID USR_SW1)

    ret

.end

7.4 Appendix D: Codec.c Test file

The following example code was included with the Code Composer Studio software and was used to test different audio parameters for the system.

Note: for all the test the following parameters were maintained:

· Codec DAC mode: 15-bit mode

· Codec ADC mode: 15-bit mode

· Analogue input gain to ADC: 6dB

· Analogue output gain to DAC: -6dB

/*****************************************************************************/

/* Codec.c                                                                   */

/* Developed by Texas Instruments and Packaged                */
/*  with CCS 




*/

/* Modified by Chris DallaVolta

*/

/* Digital Loopback example                                                  */

/*                                                                           */

/*****************************************************************************/

#include <type.h>

#include <board.h>

#include <codec.h>

#include <mcbsp54.h>

/*****************************************************************************/

/* Function Prototypes                                                       */

/*****************************************************************************/

/* This delay routine does not conflict with DSP/BIOS.  It is used in this  */

/* example rather than brd_delay_msec which causes DSP/BIOS conflicts just  */

/* because of this.  If you are not using DSP/BIOS, you can change the code */

/* to use brd_delay_msec.                                                   */

void delay(s16 period);

/*****************************************************************************/

/* Global Variables                                                          */

/*****************************************************************************/

HANDLE hHandset;

s16 data;

/*****************************************************************************/

/* MAIN                                                                      */

/*****************************************************************************/

void main()

{

    s16 cnt=2;

    if (brd_init(100))   

        return;


/* blink the leds a couple times */


while ( cnt-- )


{



brd_led_toggle(BRD_LED0);



/* brd_delay_msec(1000); */



delay(1000);



brd_led_toggle(BRD_LED1);



/* brd_delay_msec(1000); */



delay(1000);



brd_led_toggle(BRD_LED2);



/* brd_delay_msec(1000); */



delay(1000);


}

    /* Open Handset Codec */

    hHandset = codec_open(HANDSET_CODEC);               /* Acquire handle to codec */

    /* Set codec parameters */

    codec_dac_mode(hHandset, CODEC_DAC_15BIT);          /* DAC in 15-bit mode */

    codec_adc_mode(hHandset, CODEC_ADC_15BIT);          /* ADC in 15-bit mode */

    codec_ain_gain(hHandset, CODEC_AIN_6dB);            /* 6dB gain on analog input to ADC */

    codec_aout_gain(hHandset, CODEC_AOUT_MINUS_6dB);    /* -6dB gain on analog output from DAC */

    codec_sample_rate(hHandset,SR_16000);               /* 16KHz sampling rate */

    /* Polling and digital loopback */

    while (1)

    {

       /* Wait for sample from handset */

       while (!MCBSP_RRDY(HANDSET_CODEC)) {};

       /* Read sample from and write back to handset codec */

       data = *(volatile u16*)DRR1_ADDR(HANDSET_CODEC);

       *(volatile u16*)DXR1_ADDR(HANDSET_CODEC) = data;

    }

}

void delay(s16 period)

{

    int i, j;

    for(i=0; i<period; i++)

    {

        for(j=0; j<period>>1; j++);

    }

}                                                                              
7.5 Appendix E Multichannel Control Registers.
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Figure 9: Multichannel Control Register 1
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Figure 10: Multichannel Control Register 2

7.6 Appendix F Recommend Component Values

The component values for the HSDL-1100-18 recommended in “Infrared Transceiver Technical Data. HSDL-1100” are seen below:
	Part no.
	Value and Tolerance

	R1
	 560 W, 5%, 0.125 Watt

	R2
	 4.7 W, 5%, 0.5 Watt

	R3 
	10 W, 5%, 0.125 Watt 1

	CX1
	 0.47 mF, 10%, X7R Ceramic 2

	CX2
	 220 pF, 10%, X7R Ceramic

	CX3
	 4700 pF, 10%, X7R Ceramic

	CX4 
	0.010 mF, 10%, X7R Ceramic

	CX5 
	0.47 mF, 20%, X7R Ceramic 5 mm lead length 2

	CX6 
	6.8 mF Tantalum. Larger value recommended for noisy supplies or environments

	CX7
	0.47 mF, 20%, X7R Ceramic


It should be noted that capacitors CX1 and CX5 have special considerations for optimum noise immunity, that is they must be placed within 0.7 cm of the HSDL-1100-18. (“Infrared Transceiver Technical Data. HSDL-1100”).
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