PAGE

SYNOPSIS

There are, in Western Australia alone, an estimated 22,500 vision impaired persons (Australian Bureau of Statistics, 1993) who cannot read standard print, many of whom rely on embossed Braille for their written communications. Applications for this device include education, where vision impaired students are in mainstream schools and teachers have little or no Braille literacy, and in open employment situations.

A prototype of a portable device for optically scanning embossed Braille and conversion of the scanned text to binary Braille representation has been developed in conjunction with the Association for the Blind (WA). An application to convert the literary Braille code to expanded text has also been implemented. This allows interfacing to Braille or LCD displays and capture for printing or re-embossing.

The system developed utilises a hand held scanner that captures the embossed Braille image, in real time, via a linear 128-pixel CCD array. Recognition processing is performed by a Texas Instruments digital signal processor.

ACKNOWLEDGEMENTS

I would like to thank Paul Blenkhorn of the University of Manchester for his aid and use of his algorithm for converting Braille into print. Thanks to Bill Nichols, my academic supervisor, for his help and support. Thanks also to Tarique Hasnie of Robotron Pty Ltd for the Selfoc lens array and codewheel assembly supplied gratis. Additionally I would like to thank Sue Murray for her proof reading and layout help.

Nomenclature

Binary Braille Code
A representation of the Braille cell. Marks each set dot with flags.

Cell
A combination of six Braille dots that form a Braille character.

Cell Map
Ideal Braille cell images used in the correlation of the captured image.

Codewheel
A slotted disk used to obtain linear rate of movement.

Interpoint
Braille that is printed on both sides of the paper. See also recto and verso.

Literary Braille
A contracted form of Braille. Also known as Grade two Braille.

Readslice
The method used in this project to obtain a vertical image slice.

Recto
Braille cells embossed on the obverse side of the paper.

Refreshable Braille display
An electronic device that displays Braille cells by moving pins to form the six or eight dots.

Scanword
One vertical image sample.

SELFOC
Trade name of a gradient refraction lens.

Single Unified

Braille Code
S.U.B.C. A proposed standard for Braille that incorporates several existing Braille codes.

Thermoform
A type of mass produced Braille, formed on plastic sheets of a beige colour.

U.S.S.B.C.
United States Standard Braille Code. A standard method of electronically storing Braille cells as ASCII characters.

Verso
Braille cells embossed on the side of the paper being currently read.

V.I.P.
Vision Impaired Person.

INDEX

11.0
INTRODUCTION

2.0
BACKGROUND
5
2.1
Past Research
5
2.2
Methodologies Considered
7
2.3
Historical Development of the Braille System
9
2.4
The Braille System
11
3.0
HARDWARE DESIGN AND IMPLEMENTATION
17
3.1
System Block Diagram
17
3.2
Image Capture System
19
3.2.1
Illumination
19
3.2.2
The Lens System
20
3.2.3
The Linear CCD Array
22
3.2.4
Codewheel Construction
26
3.3
Timing and Interface Circuit
28
3.3.1
Generation of the Start Integration Pulse
29
3.3.2
CCD Clock Generation
29
3.3.3
Codewheel Signal Conditioning
31
3.4
DSP Platform
32
3.5
PCB Layout and Design
36
4.0
SOFTWARE DESIGN AND IMPLEMENTATION
37
4.1
Host Computer Interface
37
4.1.1
Host and DSK Interface Routines
38
4.1.2
Grade 2 Decompression
43
4.2
DSP Algorithms
45
4.2.1
Real Time Schedule
46
4.2.2
Initialisation Routines
48
4.2.3
Serial Port Initialisation
49
4.2.4
AIC Initialisation
50
4.2.5
Image Slice Capture
52
4.2.6
Recognition
55
4.2.7
Transmission
56
5.0
DEVICE TESTING
57
5.1
Image Capture and Scanner Testing
57
5.2
Recognition Algorithm Testing
58
5.3
Braille Decode Software Testing
58
6.0
CONCLUSION
59
6.1
Project Achievements
59
6.2
Significant Aspects of the Project
60
6.3
Difficulties Encountered
61
6.4
Recommendations for Future Development
62
6.4.1
Storage of Cell Maps
63
6.4.2
Linear Motion Detection
64
6.4.3
Recognition of Dot Position
65
6.4.4
The Illumination System
66
6.4.5
Ergonomics and Alignment Method
67
7.0
Bibliography
68
Appendix I: Braille Table
72
Appendix II: Schematic Diagrams and PCB Layout
75
Appendix III: Mechanical Drawings
79
Appendix IV: DSP Source Code
80
Appendix V: Host Source Code
87
Appendix VI: CCD Signals
117
Appendix VII: Miscellaneous Calculations
122
Appendix VIII: Major Parts List
124
Appendix IX: Braille Test Page and Cell Maps
126
Appendix X: The Prototype System
132

Table of Figures

11Figure 1: The Braille cell.

Figure 2: Overall system layout.
17
Figure 3: LED array circuit.
20
Figure 4: Gradient index lens properties.
21
Figure 5: Focal distance for 0.29 pitch lens.
21
Figure 6: Selfoc lens and linear array arrangement.
22
Figure 7: CCD linear array block diagram.
23
Figure 8: Connection of the TSL215 CCD in serial mode.
24
Figure 9: Timing requirements for the linear array.
25
Figure 10: Codewheel mechanical assembly.
27
Figure 11: Codewheel gears and under side view of scanner assembly.
27
Figure 12: Output from codewheel assembly.
28
Figure 13: SI pulse generation circuit
29
Figure 14: CCD clock derivation circuit.
30
Figure 15: Interrupt 3 generation from codewheel input.
31
Figure 16: Continuous INT3 or codewheel interrupts.
32
Figure 17: The DSK platform.
33
Figure 18: Memory map of the TMS320C50.
35
Figure 19: DSP algorithm flowchart.
47
Figure 20: Connection of the AIC to DSP.
50
Figure 21: Image slice signals.
54
Figure 22: HP's HEDS-9100.
65
Figure 23: Improved illumination circuit.
66
Figure 24: Improving alignment.
67
Figure 25: PCB overlay.
77
Figure 26: PCB bottom layer
77
Figure 27: PCB top layer
78
Figure 28: CCD and lens housing.(side view)
79
Figure 29: CCD and lens housing.(front view)
79
Figure 30: Three bright regions.
117
Figure 31: CCD reference level on white paper.
117
Figure 32: Three "bright" dots, including section break.
118
Figure 33: CCD image capture of three shadows.
118
Figure 34: Single INT3 pulse.
119
Figure 35: Multiple INT3 Pulses illustrating maximum scan rate.
119
Figure 36: Timing of SI pulse and CCD analog output.
120
Figure 37: CCD capture of two dots (1 and 3).
120
Figure 38: 555 timer output and SI pulse.
121
Figure 39: The prototype system.
132

Tables

37Table 1: Significant host routines.

Table 2: Control Words
39
Table 3: Communications baudrates.
41
Table 4: COMM_LIB routines.
43
Table 5: Significant DSP routines.
46
Table 6: Real time schedule
46
Table 7: Dot position within the scanword
53
Table 8: Scanword storage
55
Table 9: Improved cell map.
63
Table 10: Cell map dots 1,2,3,4,5,6 set.
129
Table 11: Cell map dot 1,4,5,6 set.
130

Table of Equations

122Equation 1: SFC frequency.

Equation 2: Sample rate.
122
Equation 3: Shift clock frequency.
122
Equation 4 : 555 Timer calculations.
122
Equation 5 : Monostable Calculation (SI).
123

1.0 INTRODUCTION

The Braille system is the preferred medium for written communication by persons with total blindness or very low vision. (Spragg J,1984). The device described in this document is not intended solely for use by the vision impaired but more by non Braille users in education and mainstream workplaces.

Students with severe vision impairment are now taught in mainstream schools. The method of note taking, assignment, homework presentation and general recording of verbal instruction is achieved on a manual Braille typewriter. However most teachers of these students are not Braille literate. Work completed by the student, in Braille, must therefore be translated by a third party into a format that may be read by the instructor. This situation may be extended to those in the workplace who wish to use Braille notes in their employment and would wish non Braille users to access said written information. When a fellow employee wishes to check this correspondence, they must either ask the Braille user what is written or the vision impaired person (VIP) must translate their work for use by others. This problem reduces to the fact that VIPs are comfortable with Braille but the sighted are not. Therefore, a communications barrier exists between the sighted community and Braille users.

In some cases a person will lose sensitivity in the finger tips leading to an inability to continue reading Braille. Diabetes is believed to be the largest cause of blindness in Australia (Constable 1996). A symptom of diabetes is Diabetic Peripheral Polyneuropathy, a condition that leads to nervous dysfunction in the extremities. In many cases of head injury and in geriatrics, similar symptoms exist. This may cause a great deal of trauma, as the person will no longer be capable of written communication, if they are primarily a Braille user. A device such as that described herein would allow persons in such a situation to continue to read their preferred method of written communication.

Other applications of an optical recognition system for Braille include the conversion of old printed Braille to text for output to a Braille embosser (an embosser is a Braille printer) or speech synthesiser. The Braille dots tend to become flattened when frequently read or incorrectly stored. Therefore, a method of scanning old Braille texts would allow them to be stored electronically, constituting a major storage saving, particularly for Braille libraries. Additionally there is a requirement in the teaching of Braille to blind students for the instructor to control the reading speed. (ie. the rate the fingers are moved over the Braille text) At present the instructor grasps the students’ hand and guides it over the text. This may lead to the fingers moving off the line of text. The system envisaged would allow the instructor to scan the Braille at the desired rate and display the text on a commercially available re-freshable Braille display.

The Association for the Blind (WA) both teach and distribute Braille through their Technology and Training and Braille library departments respectively. As such, the specifications and end user requirements were obtained from these sources.

This report firstly describes recent research in the area of Braille recognition and translation followed by a brief discussion on the development and implementation of standard English Braille code. A description of the hardware development of the scanner assembly and associated circuits follows in the third chapter. The software design and implementation is covered in two sub sections of the fourth chapter, separated into applications for the host computer and those for the DSP platform. Described in the penultimate chapter is device testing and the procedures used to develop this system. Finally the conclusion covers possible improvements to the prototype and a summary of project achievements.

BACKGROUND

1.1 Past Research

Although a great deal of research has been done and many commercial products are available for text recognition commonly known as Optical Character Recognition (OCR), little has been done successfully to produce a Braille version of OCR. There is at present no available system for converting embossed Braille into either an electronic, printed or speech output format. Past research in this area was considered and facets of work found are detailed below.

1. In the “Spermalie Institute” in Bruges, Belgium, a simple scanning device was made using a plotter. The pen was replaced with four light sensitive elements. This method could not be used with “Interpoint Braille”. An average fault of 2% was claimed.

2. At the Technical University of Delft, the Netherlands produced a Braille reading tablet. This device used a ruler with a reading head that contained three light sensitive cells. The head needs to be moved along the lines of Braille, using the ruler. This system was very prone to positional errors.

3. In Le Centre Marie Morel, Paris, France, A standard scanner was used to digitise the Braille pages. The sensitivity of the scanner was reduced to a very low value, so that the Braille dots would appear as dark spots in the resulting image. The results appeared promising but according to Mennens, 1996 no further research was undertaken.

4. At the University of Sciences and Technology in Lille, France, a CCD camera with 512x512 pixel resolution was used to digitise the image. Due to the low resolution, the original is digitised in two steps. The system had an average error of 2% and an average conversion time of 7 seconds per line. The system was never used outside the laboratory (Mennens,1996).

5. At the University of Agriculture and Technology in Tokyo, Japan, research was done on recognition of both opaque and transparent Braille. A CCD camera was used for the detection of bright regions caused by LED illumination. The articles describe the recognition probability of the different set ups. No indications were given on practical use.

6. At the University of Sherbroke in Quebec, Canada, an optical probe was developed to read and spell Braille. The reading speed was five characters per second and the recognition rate appeared high. This device could read both single sided and interpoint Braille. It appears, however to be extremely difficult to position correctly.

7. At the University of Manchester, England, a system utilising illumination from two different angles and digitised with a CCD area array was reported. Both images are subtracted from each other. The result is an image that is insensitive to stains or stripes on the papers surface. This system has an average conversion error rate of 8%. This work was a masters thesis and no further research has been attempted.

8. At Katholiek Universiteit Leuven, Belguim, a method of scanning interpoint Braille on standard flat bed scanners was undertaken. This appeared to have good results in both accuracy and conversion speed (60-80 seconds per page).

Whilst the above are of great interest with respect to this project, the approach and technology used in these projects differs substantially from that proposed here.

1.2 Methodologies Considered

Two possible methodologies were considered for gaining the image for processing. They being, tactile films and optical image processing. Tactile films such as piezo electric polyvinyledine flouride films were discounted due to the fact that pressure exerted on the embossed Braille will eventually degrade the copy and the large variance in dot height as Braille wears may be difficult to allow for.

Optically scanning the Braille appeared the best solution. Area Charge Coupled Devices (CCDs) would involve very large amounts of data processing to extract the image and this would have made real time processing difficult. The most promising method of image capture was the linear CCD arrays, in particular the Texas Instruments TSL215 128 pixel array. This unit will scan over the text in a vertical manner and have the image clocked out to the image processing board. The linear array may be clocked at up to 500kHz with the output in a serial form. This may be achieved as a single 128 bit stream or two parallel 64 bit streams. Position of the cell within the window will not be of a major concern as the algorithm proposed will examine changes within defined areas of the captured slice.

The methods utilised may be separated into three distinct sub-systems.

1. The method of image capture.

2. Processing platform and real time recognition.

3. Method of output or user interface.

The last point will not be considered as the user interface was not defined allowing connection to various output display devices.

The specification requires capture and translation of literary, or grade two Braille, in real time, in a portable device. This stipulation excludes methods that include flat bed scanners, as the use of a such a standard devices requires the full page image to be stored prior to recognition and therefore may not be considered as providing the decoded text as the recognition process executes.

1.3 Historical Development of the Braille System

Louis Braille was born in the French town of Coupvray, near Paris in 1809. At the age of three, while playing in his father's shop, Louis injured his eye on a sharp tool. Despite the best care available at the time, infection set in and soon spread to the other eye, leaving him completely blind.

At the age of ten, Braille was sent on scholarship to the Royal Institution for Blind Youth in Paris where most instruction was oral, although there were some books in a raised-print system developed by the school's founder, Valentin Haüy.

It was a French army captain, Charles Barbier de la Serre, who invented the basic technique of using raised dots for tactile writing and reading. His original objective was to allow soldiers to compose and read messages at night without illumination. Barbier later adapted the system and presented it to the Institution for Blind Youth, hoping that it would be officially adopted there. He called the system Sonography, because it represented words according to sound rather than spelling. While the Institution accepted Sonography only tentatively, Braille set about using and studying it. Soon he had discovered both the potential of the basic idea and the shortcomings in some of Barbier's specific provisions, such as a clumsy 12-dot cell and the phonetic basis. Within three years, Braille had developed the system that is known today, employing a 6-dot cell and based upon normal spelling.

1.4 The Braille System

Braille is a system of embossed (raised) signs, which are formed by six dots arranged and numbered as in Figure 1. Eight dot Braille is in limited use in the computer application area and is used in the display of text attributes. As such eight dot Braille will not be further considered. Each dot can be set or cleared giving 2 6 (64) possible characters in the code. As can be seen from this available number of combinations, not all characters may be represented directly by this system. (ie. 26 upper case letters +26 lower case letter +10 numerals + punctuation marks greatly exceeds 64) Therefore, a system of contractions and abbreviations for words and letter combinations exists. This is commonly termed grade 2 or literary Braille. Each of these cells (Braille characters) is context sensitive, depending on absence/existence of previous, following and symbol characters in the string being read.

[image: image1.png]Recto dot
Verso dot

o)

6 dot

8 dot | Braille
Braille

o 06 O
O O O
® 06 o
O O O

Figure 1: The Braille cell.

All dots on a Braille page should fall on an orthogonal grid. When texts are printed double sided (Interpoint), the grid of the interpoint text is shifted so that the dots fall in between the primary side dots. For reference purposes, a particular combination may be described by naming the positions where dots are raised, the positions being universally numbered 1 through 3 from top to bottom on the left, and 4 through 6 from top to bottom on the right. For example, dots 1-3-4 would describe a cell with three dots raised, at the top and bottom in the left column and on top of the right column. In the original French, also in English and all other languages written in the Roman alphabet, that pattern would most often be used for the letter "m”. It can also have other meanings depending on language, Braille code and context.

The basis of the various Braille codes for the world's natural languages is a straight forward assignment of most of the dot patterns to letters of the alphabet, punctuation marks and other symbols. This is done with a certain consistency, quite often with reference to Louis Braille's original assignments, to the extent possible given the great variety of alphabets, accent marks, vocalisation marks, etc that are in use. For example, the "m" mentioned above would be used for mu in Greek, and mim in Arabic, both of which have an "m" sound. It is worth noting that it is not considered important for a Braille character to resemble the corresponding print symbol in "shape" and so few of them do.

Dot height, cell size and cell spacing are always uniform, and so many significant characteristics of the text, such as italics used for emphasis, must be handled by such indicators in Braille. An exception is that formatting, such as the centring of main headings, is commonly used in Braille in much the same way and for most of the same purposes, as in print.

Separate Braille codes may be used for notation systems other than natural languages, such as music, mathematics and computer programming, and even for highly specialised pursuits such as chess. The basis of such codes remains an association between the 64 possible Braille characters, or distinct sequences of such characters, and the symbols and other notational elements of interest. There is current research, under the auspices of the International Council on English Braille (ICEB), as to whether some of these separate codes, notably for mathematics and the sciences, should be combined along with the literary code into a single Unified Braille Code (UBC) for English.

As earlier stated the 64 distinct characters are insufficient to cover all possible print signs and their variants, it is necessary to use multi-character sequences for some purposes. Often this is accomplished by using certain characters as "prefixes" or "indicators" that affect the meaning of subsequent cells. For example, in English a dot 6 before a letter indicates that the letter is a capital, whereas otherwise it is understood to be lower case. For another example, dots 3-4-5-6, called the "numeric indicator", causes certain following letters (a through j) to be interpreted as digits.

The size of the Braille cell is such that only 25 lines of 40 cells each, that is 1000 characters, can fit on a page of the usual size, which is normally 11 inches wide by 11 to 12 inches deep. This contrasts with the 3500 characters that will fit on a standard, smaller, typed page. Moreover, Braille paper must be much heavier to hold the dot formation and the dots themselves considerably increase the effective thickness of a page. The result is that embossed Braille is very bulky. To mitigate this problem somewhat, most larger Braille books are published in "interpoint", that is with the embossing done on both sides of each sheet, with a slight diagonal offset to prevent the dots on the two sides from interfering with each other.(see Figure 1)

Partly because of the bulk problem, and partly to improve the speed of writing and reading, the literary Braille codes for English and many other languages, employ contractions that substitute shorter sequences for the full spelling of commonly-occurring letter groups. For example, THE is usually just one character in English Braille, not only in the definite article but also in words such as THis. However, that contraction may not be used in shorTHand, because of the way those words are constructed or pronounced. In other words, phonetics play a role in modern Braille but not so as to compromise an accurate representation of spelling or break syllable boundaries. Wherever the Braille character for THE appears, the reader can be sure that it stands for exactly those three letters and not some other sequence that may sound the same. This creates major problems in computer decomposition of grade two Braille with respect to syllable boundaries.

When contractions are used, the Braille is usually called grade two in contrast to grade 1 transcriptions where all words are spelled out letter-for-letter. In English, which has 189 contractions, almost all Braille is grade two.

HARDWARE DESIGN AND IMPLEMENTATION

1.5 System Block Diagram

To enable the scanning of Braille material a scanner or camera assembly was designed and constructed. The device is a hand held unit that is scanned over the Braille line by line and the results are converted to text in real time, so as scan continues, text is displayed, allowing the user to look at beginning of sentence and see if it is the section they wish to decipher, as would be the case with a sighted reader of standard text.

[image: image2.wmf]Braille Code

Timing Board

CCD Array

Housing

Codewheel

Assembly

Interupt

Control Bus

TMS320C50

DSK

Clock

CCD Data

Braille Decode

Figure 2: Overall system layout.

Braille has unique problems to overcome when optical character recognition is attempted. The first point of consideration is the illumination of tactile mediums. Braille dots are raised approximately 0.5mm from the paper surface with the additional property of interpoint Braille being depressions in the surface of approximately 0.4mm (allowing for paper thickness). To correctly illuminate the cells, an “ideal” cell was created and ray-tracing methods applied. From this data it was determined that verso cells may be differentiated from recto cells as long as illumination was oblique. Further, diffusion of reflected light could be corrected by the use of a lens system to focus the image. The image may then be captured by the linear CCD array.

In order to allow correct image capture, it is necessary to have known the linear rate of movement of the scanner with respect to the Braille cells. A code wheel arrangement was constructed to provide an interrupt at set intervals of distance. This code wheel arrangement triggers a “slice” capture at a rate of 200 slices per inch. These slices are then processed by the DSP to give the equivalent binary Braille code.

The hand held scanner unit consists of a CCD and lens housing, as depicted in
Figure 2
. The CCD is controlled by the timing board and transmits the vertical image slices, as an analog waveform, to the digital signal processor. The codewheel assembly triggers an image slice capture on the DSP at 200 slices per inch. The host computer serves to convert the recognised image to expanded text.

1.6 Image Capture System

The image of the Braille cell is captured via a gradient refraction index lens and linear CCD array. Illumination is provided by a light bar consisting of four HE red LEDs encapsulated in a diffused medium to provide a even level of illumination over the cell area.

1.6.1 Illumination

Illumination is supplied by an array of 4 red LEDs. The schematic diagram for this sub-system is illustrated in Figure 3 below. The package supplies 45mcd luminance intensity at 635nM wavelength. This corresponds to the peak sensitivity of the linear array CCD of 600 to 950nm. Additionally, it was found that discolouration of the Braille paper is less noticeable under this particular wavelength of illumination when compared to the yellow, green and white illuminations also tested.

[image: image3.emf]

R1

100

+12

R2

500

R1

100

+12

R2

500

Figure 3: LED array circuit.

Physical placement of the LED array was determined by trial and error. An angle of incidence of approximately 20 degrees with respect to paper surface and a driving current of 40mA rendered highly discernible results.

1.6.2 The Lens System

Gradient index micro lenses have a radial varying index of refraction that causes an optical ray to follow a sinusoidal propagation path through the lens (Newport,1997). They combine refraction at the end surfaces along with continuous refraction within the lens. Such lenses are said to have a pitch of 1.0 when its length is such that a ray completes one sinusoidal period in travelling through the lens. Information contained in Newport, 1997 stated that for a working distance (Braille to lens) of 1mm and a focal length to CCD of 3mm, that a pitch of 0.29 was most suitable under red visible light.

[image: image4.png]

[image: image5.png]P >k

.29 Pitch Plano - Plano

[image: image6.png]T optical axis *

Figure 4: Gradient index lens properties.

The lens system used contains a 2 by 12 array of such elements mounted in the camera housing as detailed in Appendix III: Mechanical Drawings.

[image: image7.png]Image Distance d, (mm)

Object and Image Distance for

o

-

©

0.29 Pitch Lenses

(]

T 30
_ 1300 0m
1560 nm |25
) I
0 ::1\ 20
830 nm
L1 15
5 10

Object Distance d, (mm)

Approximate Magnification

Figure 5: Focal distance for 0.29 pitch lens.

[image: image8.jpg]Linear Sensor Array

Oblique lllumination

SelFoc™ Lens Array

Direction ofScan\ \ =

t/ﬂy 0 TSL215 Linear CCD Array
g

Figure 6: Selfoc lens and linear array arrangement.

1.6.3 The Linear CCD Array

The image sensor is comprised of two sections of 64 charge mode pixels arranged in a 128x1 linear array with each pixel having dimensions of 120(m by 70(m with a 125(m center to center spacing.

[image: image9.png]Differential
Amplifier

Dark Pixel
Reference
Generator

Figure 7: CCD linear array block diagram.

Light energy striking a pixel generates electron-hole pairs in the region under the pixel. The field generated by the bias on the pixel causes the electrons to collect in the element while the holes are swept into the substrate. The amount of charge accumulated in each element is directly proportional to the amount of incident light and the integration time. The integration period is defined by the interval between the externally supplied (SI) pulses and includes the output period.

When connected in serial mode, as the 64th pixel is clocked out the SI pulse is shifted out on the SO1 output. The SO1 pulse is then fed to the SI2 input. The 65th clock cycle terminates the output of the last pixel from the first section and clears the shift register of that section in preparation for the next SI pulse to that section. The rising edge of the 65th cycle also puts AO1 into the high-impedance state. The appearance of the SI2 signal and the 65th clock cycle initiates the output cycle of the second section. The second section of 64 pixels appears at AO2, and the SO2 signal is shifted out on the 128th clock cycle. The rising edge of the 129th clock cycle resets the second section and puts AO2 into the high-impedance state. Both AO1 and AO2 remain in this high-impedance state until a new external SI pulse appears on SI1. When the TSL215 is connected in serial mode, the analog output appears as a continuous string representing the 128 pixels.

[image: image10.png]ouT+
ouT-

IN+

Figure 8: Connection of the TSL215 CCD in serial mode.
On completion of the integration period, the charge contained in each pixel is transferred in turn to the sense node under the control of the clock (CLK) and serial-input (SI) signals.

The analog output voltage corresponds to the level of the first pixel after settling time (ts) and remains constant for a minimum time (tv). A voltage corresponding to each succeeding pixel is available at each rising edge of CLK.

[image: image11.png]128 Total Cycles. t
oK {"eacydes | sacyoes | — I]
B D
ExternalSi '_\ I—_l
so1, 52 M

Plasis 1128
40 Comman [— | —
a0t Aoz
i) (65-128)

GLK comtirues or gos ow aer 129 cyses.

o+

e
By

W . U
o £ e

Figure 9: Timing requirements for the linear array.

To achieve the required delay of the clock rising edge with respect to the SI pulse (tSU(SI)), as depicted
Figure 9
, the clock was delayed via a 74LS31 delay line and SI was synchronised with the rising edge of the undelayed clock.

1.6.4 Codewheel Construction

To enable the rate of movement of the scanning device to be determined, a codewheel mechanism was constructed. The original unit was obtained from Robotron Pty Ltd, and modified to suit the scanner arrangement. This device consists of a slotted disk driven via a gear reduction to supply a resolution of 200 vertical slices per inch. The slotted disk interrupts an infra red beam generated by a spectrally matched narrow beam angle infrared emitter and received by a filtered narrow acceptance angle detector to provide the sensing signal as depicted in Figure 12.

[image: image12.png]Code Wheel

Photo-Detector Pair

Infra Red Emitter

Code Wheel

|

————
—

Infra Red Detector

Figure 10: Codewheel mechanical assembly.
[image: image13.jpg]&
(iII|.(:1;|\H

[image: image14.jpg]

Figure 11: Codewheel gears and under side view of scanner assembly.

Details of the construction are depicted in Figure 10 and Figure 11. Note that two codewheel discs were used, one rotating proportional to the linear rate of movement and one in a fixed position. This acted similar to a shutter and resulted in a greatly improved timing signal generation.

[image: image15.png]

Figure 12: Output from codewheel assembly.

1.7 Timing and Interface Circuit

A separate timing sub-system was developed to provide the necessary signals to interface the various components of the scanner.

1.7.1 Generation of the Start Integration Pulse

The CCD array requires a start integration pulse as outlined in section 3.2.3. This pulse is generated by a 555 timer every 10mseconds and has its duty cycle determined by the 74LS221 mono stable multivibrator at 40(seconds (two CCD clock cycles).

[image: image16.png]

Figure 13: SI pulse generation circuit

This signal is used in conjunction with the codewheel pulse to trigger an image slice capture on the DSP interrupt three.

1.7.2 CCD Clock Generation

The CCD clock is derived from the internal timer incorporated on the TMS320C50. This ensures synchronisation with the CCD pixel clock and SI pulse. The TOUT clock provides the necessary 10Mhz master clock for the analog interface circuit (AIC) and must be reserved for that purpose. To obtain a 50kHZ clock, TOUT is passed through two 74LS90 decade counters configured to divide the signal by 10 each stage. A single ‘D’ type flip flop reduces the TOUT to 50kHz. This signal must be delayed with respect to the start integration pulse (SI) that initiates the data transfer from the CCD array. To achieve this the 50khz clock is passed through a delay line of 80 nano seconds as previously described in section 3.2.3.

[image: image17.emf]R0(1)

2

R0(2)

3

R9(1)

6

R9(2)

7

CKA

14

QA

12

CKB

1

QB

9

QC

8

QD

11

U3

SN74LS90

R0(1)

2

R0(2)

3

R9(1)

6

R9(2)

7

CKA

14

QA

12

CKB

1

QB

9

QC

8

QD

11

U4

SN74LS90

SI

Clock in 10Mhz

Divide by 10

Divide by 10

PRE

4

CLK

3

D

2

CLR

1

Q

5

Q

6

U5A

MC74HCT74A

VCC

Divide by 2

50Khz CCD clock Delayed 80ns

4

5

6

U7B

SN74LS00

9

10

8

U7C

SN74LS00

SI

2A

3

2Y

4

1A

1

1Y

2

U8

74LS31

CLK IN

R0(1)

2

R0(2)

3

R9(1)

6

R9(2)

7

CKA

14

QA

12

CKB

1

QB

9

QC

8

QD

11

U3

SN74LS90

R0(1)

2

R0(2)

3

R9(1)

6

R9(2)

7

CKA

14

QA

12

CKB

1

QB

9

QC

8

QD

11

U4

SN74LS90

SI

Clock in 10Mhz

Divide by 10 Divide by 10

PRE

4

CLK

3

D

2

CLR

1

Q

5

Q

6

U5A

MC74HCT74A

VCC

Divide by 2

50Khz CCD clock Delayed 80ns

4

5

6

U7B

SN74LS00

9

10

8

U7C

SN74LS00

SI

2A

3

2Y

4

1A

1

1Y

2

U8

74LS31

CLK IN

Figure 14: CCD clock derivation circuit.

1.7.3 Codewheel Signal Conditioning

The frequency of the signal produced by the codewheel assembly is proportional to the rate of movement of the hand scanner. A comparator is used to convert this analog wave to a pulse as depicted in Figure 15.

[image: image18.png]e e
"
3 4
B o oz
i a o
y — 5 .
B do as
Pl 2
73 Az
g S
o
m
j
dise

Figure 15: Interrupt 3 generation from codewheel input.

This pulse acts as the trigger to a non-retriggerable monostable multivibrator producing a pulse of the correct length to act as an interrupt to the DSP. This duration is determined by the internal clock rate of the TMS320C50. Interrupts must be active low for a minimum of three machine cycles, which corresponds to 150ns, although the actual time constant for the codewheel pulse being asserted is for the full integration time, thus allowing no further interrupts until the current readslice operation is concluded. This signal nanded with the SI pulse of 20(s duration, to produce INT3 only at the start of an integration period.

[image: image19.png]

Figure 16: Continuous INT3 or codewheel interrupts.

1.8 DSP Platform

The platform chosen for processing the analog output of the CCD and to perform the recognition of Braille was the TMS320C50 Digital Signal Processor Starter Kit (DSK). This system was utilised due to its low cost and ability to rapidly process the data in the frequency spectrum of that supplied by the CCD array.

[image: image20.png]Expansion

connector

32K x 8
PROM
bootcode

TNS320C50
Control
D0-D15
AO-A15

Serial port
TDM port

JTAG
emulation port

XDSS10 port
in header

I

Analog
erface
TLC32040

Analog out

Analog in

Figure 17: The DSK platform.
Figure 17 depicts the basic block diagram of the DSK showing the interconnection between the host interface, analog interface and emulation interface. PC communications are via the RS-232 port on the DSK board, which will be described fully later. The 32K bytes of PROM contain the kernel program for boot loading. All pins of the TMS320C50 are connected to the external I/O interfaces and are available for examination and inspection via the four 24-pin headers, a 4-pin header, and a 14-pin XDS510 header. The TLC32040 AIC interfaces to the TMS320CC50 serial port with two RCA connectors providing analog input and output on the board.

The TLC32040 AIC on the board provides a single-channel, input/output, voice-quality analog interface with the following features.
1. Single-chip digital-to-analog (D/A) and analog to digital (A/D) conversion with 14 bits of dynamic range.
2. Variable D/A and A/D sampling rate and filtering.
3. The AIC interfaces directly to the ’C50 serial port and requires the master input clock to the AIC to be provided by a 10-MHz timer output from the ’C50 (TOUT).
4. The reset pin of the AIC is connected to the BR pin of the ’C50 and must be asserted during reset.
10K words of on chip memory is provided, of which 1096 words are dual access RAM (DARAM) and 9K is single access RAM (SARAM).

Figure 18 contains the memory map as implemented on the DSK. The on chip DARAM B2, is reserved for use as a buffer to the status registers. The SARAM is configured as program and data memory with the kernal program stored in the area 0x840h to 0x980h and therefore this area cannot be configured as data memory only. The interrupt vectors are allocated starting at 0x800h.

[image: image51.wmf]Bootloader

(on-chip)

ROM

Interrupt Vectors

Debugger

Kernal

Program

User's

Program

External

Space

Block 0

Block 2

Reserved

by Kernal

Reserved

Reserved

Block 0

Block 1

Reserved by

Debugger Kernal

User's

Space

Memory-mapped

Registers

External

Space

Data

Program

0060h

0080h

0100h

0300h

0500h

0800h

0980h

2C00h

FFFFh

FFFFh

FE00h

2C00h

0980h

0840h

0800h

0000h

Figure 18: Memory map of the TMS320C50.

The most significant features, with respect to this project, of the TMS320C50 are detailed below.

· Single cycle multiply and accumulate.

· Cycle time of 50nS.

· Single instruction repeat and block repeat operations.

· Two indirectly addressed circular buffers.

1.9 PCB Layout and Design

The circuit described in the preceding chapters was entered into Protel Advanced Schematic and the PCB layout completed with Protel Advanced PCB. The overlay and track layouts are detailed in Appendix II: Schematic Diagrams. This PCB includes only the timing board components and not ancillary power supplies, the CCD or LED illumination circuits. It is intended that the DSP board, yet to be developed, will contain power supplies and CCD illumination circuits.

SOFTWARE DESIGN AND IMPLEMENTATION

1.10 Host Computer Interface

The communications between host and DSK are necessary for Braille decode from the binary Braille representation to fully expanded text. The routines to achieve this are detailed in this section. Not included in this table are the functions in conv.c. These functions are called from Blenkhorns original code and were not significantly altered in this project.

Used In
Function Name
Description

STAND ALONE
HEXDUMP.C
Dumps the contents of a binary Braille file to screen.

STAND ALONE
TEXTTOBRL.C
Converts an ASCII file to binary Braille. Test purposes only.

CONVERT.C
CONVERT_TO_USSBC
Converts raw data to US standard Braille code

CONVERT.C
READ_LINE
Reads a line from the Braille input stream.

CONVERT.C
ADD_TO_

OUTPUT
Outputs a converted character

Table 1: Significant host routines.

1.10.1 Host and DSK Interface Routines

Texas Instruments supply a library of routines that allow communications between the DSK and a host computer. The DSK and host computer communicate serially through an RS-232 cable with the host computer transmitting data from serial communications port. The host transmits and receives through its on-board UART but the DSK does not have a UART and therefore must simulate one. This is achieved by the use of two hardware pins known as the External Flag output (XF) and the Branch control Input (BIO). The XF line is connected to the communications port receive pin and the BIO pin is connected to communications port transmit line with the host’s DTR line connected to the TMS320C50 reset pin, therefore remaining high unless resetting the DSP.

Voltage conversion from TTL levels to RS232 levels is achieved via the buffers on the DSK.

An application must be executed on the host to begin DSK communications, with the program running on the host initiating all of the communication processes. The communications kernel residing in the DSP responds to the hosts requests. To initiate data transfers the first word which must be sent to the DSK is a control word. The five operations which the DSK can perform are detailed below in Table 2.

Control word
Description

DD
Display Data memory (PC rcv data data)

DP
Display Program memory (PC rcv pgm data)

LD
Load Data memory (Send DSK data value)

LP
Load Program memory (Send DSK pgm value)

XG
Execute DSK code (FreeRun())

Table 2: Control Words

After the control word has been sent, the address of the desired data value(s) followed by the length of the data block to transfer are transmitted. After each word has been received by the DSK, the DSK responds by sending an echo of the received data back to the host. In all communications used in this project, the echoed character is ignored.

Receiving data from the DSK requires reading the host RS-232 registers. However, transmission of data back to the host is accomplished by simulating an RS-232 UART as mentioned above. The assembly code for transmitting a 16-bit word back to the PC is shown overleaf. The data to be sent to the PC is assumed to be in the accumulator at this point.

 SACL PCDATA
; Store data word in temp

; location

 RPT #7
; Shift Rt until LSB of high

; byte

; is in

 SFR
; the Carry bit location of

; accumulator

 CALL xfrbyte ; Transmit high byte (8-bits)

 LACC PCDATA ; Reload data word in

 ; accumulator

 ; contiune to send low byte

;(8-bits).

xfrbyte:

 CLRC C
; clear carry bit in accumulator

 LAR AR1,#8
; load AR1 with 8 nextbit:

 BCND ZERO,NC
; If C=0 then send a zero bit

ONE:

 SETC XF
; Otherwise send ONE by setting

; XF

; pin high.

 B send
; send it

ZERO:

 CLRC XF
; Clear XF (brings XF pin low)

;send:

 RPT #pwidth
; RPT for UART bit duration.

; (Keep XF low)

 MAR *,AR1
; AR1 is the current Auxillary

; Register

 ROR
; Rotate Acc Rt to next bit.

 BANZ nextbit,*-
; Goto nextbit if AR1 is not

; zero

 SETC XF
; If AR1=0 then send stop bits

; (XF pin high)

 RPT #pwidth
; RPT nothing and keep XF high

; for one stop

 NOP

; bit duration.

 RPT #pwidth
;RPT nothing and keep XF high

; for second

 NOP
; stop bit duration.

The value of the variable pwidth (pulse width) determines the baud rate of the communications and are detailed in Table 3
Pwidth value in HEX
Baud Rate

0xa9
115200 baud

0x159
57600 baud

0x40f
19200 baud

0x81e
9600 baud

Table 3: Communications baudrates.

A description of the COMM_LIB routines is detailed in

Routine
Description

InitialiseMonitor
This function calls InitPort() and BaudRateDetect() to initialise the DSK environment. InitialiseMonitor also calls InitMonitor() to load the DSK's vector table. If any errors occur during initialisation it is reported to the messenger function named MSGR().

Sendbyte
This function sends a byte (8-bits) to the DSK and waits for the echoed value. If the value is not equal to the sent value, then it reports the error to the messenger MSGR() with a "DSK did not receive correct data"

Sendword
This function is the same as sendbyte except it sends the DSK two 8-bit words. It reports errors to the messenger with "DSK did not receive correct word." if an error occurs

FreeRun
This function is a free run for the DSK. It sends the XG command to the DSK along with the starting address. The function sends a NULL to begin the Free Run and returns a Boolean NO.

WaitFor
This function is a wait loop. It polls the PC's UART until the condition determined by the passed UINT is true. If the WaitFor loop expires then an error is reported to the messenger as "Wait loop finished in WaitFor()".

InitPort
This function resets the PC's UART and initialises it for the correct baud rate determined by the member prm.speed in the PARAMETER structure. The comport is selected by the value of prm.com member. Constants BRDL and BRDH are used as the baud rate devisors for the low and high bytes respectively. The port is configured for 8 data bits, 2 stop bits and no parity.

InitMonitor
This function sends random data to test and compare the returned echo value. The DSK is then sent a break command (ESC) and reads the DSK's Int2,Trap and Reset vector values from the communication kernel's vector table. Any errors are reported by return value.

Reset50
This function performs the hardware reset on the DSK.

BaudRateDetect
This function resets the 'C50 DSK by calling reset50(). It also sends test data to the DSK at the baud rate determined by the prm.speed value or command line argument -bxxxx. The DSK receives this word and calculates the appropriate baud rate.

Getwordcom
This function receives a word from the DSK. No parameters are passed to this function since it is used in conjunction with the sendcommand in-line function.

InitRegister
This function initialises the register inside the Digital Signal Processor. The IMR register is initialised for PC-to-DSK communication by sending the DSK members imr.add and imr.debug of the IMR structure.

LoadDsk
This function reads a .DSK file from current host directory and loads it to the DSK. The file pointer named *stream opens and reads data from a file determined by appfile[]="filename.dsk". If the file cannot be opened, "Cannot open Application file" will be reported to the messenger MSGR().

GetDskAdd
This function gets the address characters of a DSK file at pointer pbuf and converts them to an integer. This function is used when loading application files to the target DSK.

GetDskData
This function converts the ASCII data pointed to by pbuf to integer format. The integer is stored to a location pointed to by *data. This function is used when reading ASCII DSK files and loading the target DSK.

GetArguments
The GetArguments() function reads the command line arguments of the host's application program. Command line arguments include Baud Rate (-b), Communication Port (-c) and inverse DTR line (-i). Command line arguments will override the initial values of members prm.speed, prm.com and
 prm.INVERSE of the PARAMETER structure.

MSGR
This function is the system messenger. Error or status messages of up to 50 characters can be sent to the messenger. The messages are display in a scrolling format in a 35x3 window. MSGRx and MSGRy are global variables which determine the X and Y coordinates of the window.

Rcvdata
This function reads the commport specified by the passed integer and waits for a character to enter the UART. If a timeout error occurs the function will return a -1, otherwise it will return the character received.

Table 4: COMM_LIB routines.

Many of the routines, as supplied by Texas Instruments, required significant modification for use with the Braille scanner. Those code segments modified are marked as such in the listings title header.

1.10.2 Grade 2 Decompression

To achieve the translation of compressed Braille to expanded text, several programs needed to be written. Firstly an application to create a file to simulate the output from the scanner, then a program to check the created file and finally the conversion program itself.

To simulate decoding of Braille, a utility was created to read a text file and convert the input to the format that is output by the scanner. The format from the scanner uses the high order byte of a 16 bit word with a set bit representing a dot being present and a zero as no dot present. For example, the code 10101000 in the high byte indicates that dot 1, dot 3 and dot 5 are set which is lower case o. To check the conversion is done correctly, a hexdump routine was also written that read the binary file and dumped the hex representation to screen.

The conversion routine uses much of the code developed by Blenkhorn, 1995. The main difference lies in the way Braille is presented to the conversion program. The original format was used to decode a file of USBC characters and create a file of ASCII text. In the prototype a single character representing dot positions is accepted by the convert application, decoded if possible, and sent to the output stream. If it is unable to be decoded, such as the case of a contraction or format sign, the code is stored and then decoded when the context has been determined.

The algorithm for the conversion routine is detailed below.

 initialise and load tables

 while not end of input do

 begin

 input text is read in

 while still converting do

 begin

 start at rule defined by current character

 match = FALSE

 do

 if focus matches

 and state is ok

 and right context is ok

 and left context is ok

 begin

 output right hand side of rule

 set new state

 match = TRUE

 move along input buffer

 end

 else go to next rule

 until match

 end

 end

1.11 DSP Algorithms

The algorithms used to capture and convert the image are detailed in the following sections. The steps involved may be specified in several sections, being the real time schedule, initialisation routines, image slice capture, recognition and data transmission.

Relevant routines are described in Table 5.

Used In
Function Name
Description

MAIN
RECOGNISE
Performs the recognition of the scanword array.

SLICERD
AICINIT
Initialise AIC on DSK board.

AICINIT
AIC_2ND
Serial port enable and send AIC parameters.

MAIN
LOADSLICE
Reads one CCD sample and determines dot positions.

MAIN
RECOGNISE
Performs correlation of Cell maps to scanword array.

Table 5: Significant DSP routines.

1.11.1 Real Time Schedule

The flowchart depicted in Figure 19 illustrates the program flow for the image capture and recognition routines. Time for processing is detailed in Table 6
Image Capture 2.6mseconds

Average and compare

2.7(Seconds

Match all 64 possible Cells

(50uSeconds
Tx word

@115kbaud Maximum of 20 bits 174(Seconds

10 mSeconds Minimum time between vertical slices

Table 6: Real time schedule

[image: image21.wmf]Initialise DSP and

AIC

INT3 (linear

movement

detected)

Read 22 Samples

from AIC int DSP

Average Regions

and truncate

Compare to

Reference

Write to scanword

Match to

template Cell

No

Look up Binary

Braille Code

Send binary Braille

Code

Clear Scanword

Buffer

Yes

Figure 19: DSP algorithm flowchart.

As may be seen from the above table, sufficient time exists to perform all the necessary tasks. A total processing time of under three mseconds is required and a total time between incoming captures is ten mseconds, hence ample slack is available in this implementation.

1.11.2 Initialisation Routines

Prior to executing any applications, the DSK must be initialised. Three components require configuration and initialising routines.

1. The TMS320C50 on chip timer.

2. The TMS320C50 serial port.

3. The analog interface circuit. (TLC32040)

In order to communicate with the analog interface circuit (AIC), the on chip timer , within the DSP chip, must be first configured to supply the AIC master clock and secondly initialise the serial communication port.

Tout is used to supply the AIC with the required Master Clock (MCLK). The Tout pulse is activated each time the DSP period counter decrements to zero and therefore the maximum Tout rate is calculated by minimising the denominator (minimum =two) of the equation given in the C5x users guide to produce a MCLK of 10Mhz, which is half the C5x cycle time.

The code necessary to produce this signal is illustrated below.

SPLK
#01h, PRD
; Load PRD register for a period

; of 100nS

SPLK
#20h, TCR
; Begin timer operation

With the execution of the second SPLK instruction, Tout will generate the 10Mhz square wave.

1.11.3 Serial Port Initialisation

The DSP serial port must be initialised by altering the contents of the SPC register. In order to transmit and receive data from the AIC, the serial port of the C50 must be set to frame sync mode(FSM=1) and be reset by writing zeros to the XRST and RRST bits. Two consecutive writes must be made to bring the serial port out of reset. The code fragment below will initialise the serial port.

SPLK
#08h, SPC

; FSM=1, XRST & RRST=00

SPLK

#0C8h, SPC

; FSM=1, XRST & RRST=11

It is recommended in the C50 user guide that a dummy word be sent to the DXR to clear any unwanted data from the serial port registers.

Figure 20 below illustrates the serial port configuration of the DSK board.

[image: image22.png]ouT+
ouT-

IN+

Figure 20: Connection of the AIC to DSP.

1.11.4 AIC Initialisation

On application of MCLK and initialisation the C50 serial port, a reset of the AIC is performed to force the AIC into a known state. The reset of the AIC is connected to the *BR of the C50. The *BR is driven low when external global memory is accessed and therefore global memory is defined using the GREG register. The code segment below is an implementation to achieve this process.

LACC
#80h

; Init from 8000h to FFFFh as

; global memory

SACL
GREG

; Store to global memory

; allocation register

LAR
AR0,#0FFFFh
; Use AR0 to point to

; location FFFFh

RPT
#10000

; Access 10000 times to drive

; pin low

LACC
*,0,AR0

; for necessary duration

SACH
GREG

; Restore GREG to 0000h

After the AIC is forced into a known state, sample rate and filter options may be set. Sample rates are determined by the contents of the A and B registers of the AIC transmit and receive circuits (TA and TB set the D/A conversion timing, RA and RB set the A/D conversion).

TA is chosen to be 17 so that the sample rate given by;

[image: image23.wmf]Hz

TB

TA

MCLK

10081

2

*

31

*

16

10

*

10

2

*

*

6

=

=

As;

TA=16 so that MCLK/(2*TA)=288Khz

This master clock frequency is necessary as the switched capacitor filter in the AIC requires this, otherwise complex frequency scaling of sample rate and pass band response is required.

A bandpass filter is incorporated into the AIC analog to digital converter circuit. This filter may be selected or bypassed via software control. Response of the filter is determined by the contents of the RA and RB registers and was set for a pass band of 300Hz to 3.6kHz and gain of one.

TOUT is used to supply the master clock signal for the AIC and is also used to derive other necessary timing signals.

The above functions were implemented in the routine AICINIT as detailed in Appendix IV: DSP Source Code.

1.11.5 Image Slice Capture

Illustrated in Figure 21 is a CCD signal of the bright areas illuminated as the CCD first approaches the column of Braille dots (at bottom) followed by the shadow cast as the CCD and lens passes over said column. It may be noted from this diagram that an average level is obtained at the reference points in this figure. One major concern in this project was the fact that Braille is embossed on many forms of material, ie high quality paper, plastic thermoform (beige coloured) and standard 80 GSM paper. CCD voltages obtained from these mediums differ quite markedly. By obtaining an averaged reference level from areas that should contain only reflection from blank paper (see Figure 21), automatic contrast, with respect to the backing medium, may be obtained. This will then yield a reference level to threshold the incoming signal.

From the fact samples are captured, from the time of the SI pulse, at 100(s intervals, samples 1 through 4 may be discarded as they lie off the lens area. The same applies to samples over number 22. Samples 5, 6 and 20,21 should, if the device is correctly aligned, provide the reference level. This has the added advantage that as the reference level is obtained for every slice taken, dirt appearing in the image should, in all but the most extreme cases, be compensated for. These samples, when averaged, also overcome the discrepancy in CCD array sections.(see Figure 32) Dot positions are obtained by averaging and saving the relevant samples for those positions. Figure 32 illustrates a captured slice over the illuminated section of the Braille cell. There appears in the image a step where the second 64 pixel array commences.

Sample Number
Dot Position

7,8,9,10,11
dot one

11,12,13,14,15
dot two

14,15,16,17,18,19
dot three

Table 7: Dot position within the scanword

It is worth noting the overlap as an attempt to overcome positional errors. This method is inferior to the application of fuzzy logic. By the use of membership functions, a far more intelligent decision as to dot location may be made. This concept will be marked for further investigation.

It must be mentioned at this point that for interpoint Braille to be read, it is necessary to know the order of bright and shadow. If an interpoint dot is scanned, the bright/dark order is reversed. As the interpoint dot is a dip in the paper, CCD signals showed that the dot appeared as a shadow followed by a bright (low CCD level followed by high CCD level). In the context of Braille OCR this is an important point of consideration.

[image: image24.png]Shadow

Bright Reference level

Figure 21: Image slice signals.

A comparison of relevant signals may be found in Appendix VI: CCD Signals.

1.11.6 Recognition

Once the image of each vertical scan is captured, averaged and compared to the reference level they are stored as depicted in Table 8.

Bright
Shadow
Reference
Status

10
01
00
XX

Table 8: Scanword storage

Vertical slices are stored in a single byte, position oriented. That is 3 pairs of 2 bits representing whether that position is bright, shadow or reference. Two bits are reserved for either 8 dot Braille or status. These results are captured in a first in first out (FIFO) buffer of 50 vertical slices, or scanwords. As slices come into this array, the old slices are rolled off the storage area and the new slice is placed on the top of the stack. The circular buffer used in conjunction with the data move abilities of the TMS320C50 allows the FIFO buffer to be maintained with very few overheads. The code fragment detailed below illustrates that just 2 instructions are required to maintain the FIFO buffer and safeguard against overflow and underflow of that buffer.

RPT #49 ; Shuffle data down FIFO

DMOV *- ; Update data positions

After each slice capture an attempt to recognise the image in the FIFO buffer is made. This is achieved by a bit mask comparison with ideal masks

On a successful match, the binary Braille code is transmitted to the host for decoding into expanded text and the buffer is cleared. Otherwise the system waits for the next vertical slice to see if that completes the cell. With this method 50 slices equates to 6.35mm and as Braille cells are 4mm edge to edge allows a slight overlap.

The cell maps used are detailed in Table 10 and Table 11, Appendix IX: Braille Test Page and Cell Maps

1.11.7 Transmission

Communications between the host PC and the DSK are conducted via a RS232 link as described earlier. The matched cell is transmitted to the host for decompression in the high byte of a 16 bit word. The low byte is ignored by the host and is only sent due to the DSP’s 16 bit word size. The routines COMM_LIB were used to achieve this data transfer. The listings are contained in Appendix V: Host Source Code.

DEVICE TESTING

1.12 Image Capture and Scanner Testing

For testing purposes, test patterns of Braille dot combinations were produced. These patterns are ideals, in that the embossing is not degraded by use and they are produced on a Perkins Brailler in good condition, yielding high quality dots.

All alignment of scanner and illumination as well as parts of the recognition process were performed using these ideal sheets. To simulate marks, ink and pencils were used. Worn Braille was created by “flattening” a test sheet, achieved by placing it under several books. This last aspect closely resembles the way stored Braille degrades.

Sample test pages are included in Appendix IX: Braille Test Page.

Results from this testing may be seen in Appendix VI: CCD Signals. The overall image capture was clear and well defined. Adequate voltage levels for comparisons were achieved even on worn and thermoform Braille.

1.13 Recognition Algorithm Testing

For testing purposes, two reference cells were developed for the correlation routine matching the incoming scanwords. The first had all dots set, that is dots 1,2,3,4,5,6 are raised, and the second with dots 1,4,5,6 raised. This was considered sufficient for testing and evaluation of the recognition algorithm. Cell map bit patterns are contained in Appendix IX: Braille Test Page and Cell Maps.

1.14 Braille Decode Software Testing

Several applications, as described previously, were constructed to simulate the Braille decode section of this project. Under the test conditions a limited number of exceptions were incorporated. It was not expected that all contractions will decode correctly, in particular the syllable boundary rule. Simulations indicated that on implemented rules and contractions, the convert program functioned as intended.

CONCLUSION

1.15 Project Achievements

A device that optically scanned Braille and recognised the cell was successfully developed. The scanner assembly provided signals of a suitable quality and level to enable processing of the relative dot positions with a high degree of reliability and flexibility. The process of decoding literary Braille to text was achieved, although not all contractions in English Braille were implemented. This is of little consequence, as alternate rules will be required in the near future when the new standard for universal Braille code is released.

Partial implementation of the cell recognition was completed. This section requires storage of cell patterns to correlate with the stored data in “scanword”. This was a major task in itself and was not given a high priority, as proving the approach required only some sample cell maps. Additionally, the cell maps are dependant on the linear rate of movement or slice captures per inch. As it is intended to alter this specification in future work (detailed in section 6.4), few cell maps were generated. The storage of these maps had an influence on the slice rate capture, at 200 slice captures per inch, 2048 words are needed for storage. This reduces to 756 words at 75 slice captures per inch.

1.16 Significant Aspects of the Project

The most significant achievements of this project may be separated into two areas, being the image capture of a tactile medium and the digital signal processing recognition system.

As stated earlier, the capture of a tactile written medium has unique demands. This section of the project must be considered both the most difficult and significant achievement in this project. The method of capturing the image of an embossed cell by selfoc lens, oblique illumination and linear CCD array provided excellent imaging and allowed for a much reduced level of processing when compared to area arrays and commercial flatbed scanners. It must be stated, however that this style of scanner has a major disadvantage. It is difficult to keep vertical with respect to the Braille line and tends to wander off the ideal alignment.

The use of the TMS320C50, as the development platform illustrated the strengths of digital signal processor with respect to real time processing and also the deficiencies of evaluation kits. The application programming of digital signal processor chips is quite different to that of a microprocessor. If any benefit is to be gained by the use of DSP, algorithms must take advantage of the unique structure and instruction set these devices use. For example the data move, hardware loops and circular buffer as used in the recognition process. The DSP’s Havard requires has several speed advantages over the Von Neumann architecture of microprocessors, but only if correct memory allocation is applied to the DARAM and SARAM.

1.17 Difficulties Encountered

Many difficulties were encountered during the course of developing this system. The most pertinent of these was the interrupt structure implemented on the DSK board. In conjunction with the supplied development software, the board could not handle interrupt service routines without causing “handshake” errors, due to the real time nature of the processing. To complete the development of this device it is recommended that the TMS320C50 Evaluation Module is used. The EVM contains full JTAG emulation and therefore may be debugged in real time. Unfortunately the EVM is also very expensive hence it could not be used in this prototype development.

Additionally, the complexity and quantity of the development required meant that the project has not achieved the status of a complete working prototype. Each individual module has been shown to work as described in the previous sections, but the communications structure that will enable the components of the prototype to interface with each other has not been completed. To complete this facet of the Braille scanner would be a simple but time consuming task.

1.18 Recommendations for Future Development

There are several aspects of the prototype that require further development to bring this device to a point that it is of practical use.

Storage of Cell Maps

For testing purposes, each cell map contains 32 words, covering column one, the column break and column two. This method was simple to implement but also inefficient. The most obvious inefficiency is in the column break. This area should contain all zeros, ie at reference level, for sixteen samples (scanwords). Therefore there is no need to store a zero array. A check to see if sixteen consecutive words are all zero would perform the same function. As the pattern necessary for each column combination is 23, or eight possible variants, and column one possibilities are identical to column two possible dot patterns, there is no need to store both. A check of column one or two will yield an octal number for that column. The result being a two digit octal number corresponding to the unique dot pattern of that cell. Some examples are shown in Table 9.

column one

(dots set)
column two

(dots set)
Result

Octal Number

5--
04

1--

40

--3
--6
11

4,5,6
07

1,2,3

70

1,2,3
4,5,6
77

Table 9: Improved cell map.

A look up table using the octal reference may be used to transmit the assigned binary Braille code to the host.

By this method, cell maps would be an array of eight words. Just seven of each would be required as a cleared column is not required to be stored, ie. one that has no dots set could be checked for zero contents as described for column spacing. This requires 64 words of cell map storage compared to 2048 words as implemented in the prototype.

1.18.1 Linear Motion Detection

By replacing the present codewheel arrangement with a quadrature linear motion detector, that is, one that has two outputs that are 90 degree out of phase, the direction of scan may be discerned. Normal hand jitter or missed characters that are re-scanned by moving the scanner backwards over the line, may be easily allowed for and corrected. Such devices are commonly available from suppliers such as Hewlett Packard. The suggested device is the HP 9100 two channel optical incremental encoder module, as detailed in Figure 22. This device when coupled with a codewheel, translate rotary motion of a shaft into a two channel digital output. Due to the integrated phasing technique, the digital output of channel A is quadrature to that of channel B. (Hewlett Packard,1996)

[image: image25.png]DETECTOR SECTION

g
§

[image: image26.png]Output Waveforms

AMPLITUDE

cHannEL B

v

ROTATION

Figure 22: HP's HEDS-9100.

This will also allow for decreased resolution to 75 scans per inch which is ample for Braille as the characters are of fixed size and quite large (4mm by 8mm). By doing so, processing time is reduced and a cheaper processor may be used. The scan rate would also increase from its present half inch per second.

1.18.2 Recognition of Dot Position

The use of fuzzy logic in determining dot position may allow for positional errors within each vertical slice better than a crisp decision as used in the prototype. The dot position could be determined by the strength of its membership in a fuzzy set, thereby allowing a greater degree of positional flexibility.

1.18.3 The Illumination System

The illumination is required only during the integration time of the CCD. By illuminating the Braille cell only when linear motion is detected for the integration time of 10 mseconds would constitute a major power saving. A necessary consideration in portable devices. In conjunction with the proposed decrease in linear resolution, the Braille illumination period would be reduced by a factor of 75/200 if the same scan rate was maintained. The suggested circuit is depicted in Figure 23.

[image: image27.png]ST Pulse

ol

2

Figure 23: Improved illumination circuit.

1.18.4 Ergonomics and Alignment Method

The device in its prototype form is very hard to keep vertical and on the Braille line. Development of the ergonomics would improve recognition and ease of use by keeping the image within the defined lens area.

By incorporating a second roller on the scanner assembly, the lens may be kept better aligned. If the lens begins to move off the Braille line, the lines above or below will be felt as they pass under one of the rollers. Having two rollers will also have the effect of forcing the scanner to move in a straight line with respect to the Braille line being scanned. Figure 24 illustrates a possible method of including this change.

[image: image28.png]Lens
Array

Roller Roller

Line being scanned

Figure 24: Improving alignment.

Bibliography

Bledsoe W,1972, Braille: A Success Story, Evaluation of Sensory Aids for the Visually Handicapped, National Academy of Sciences, Washington U.S.A. pp 3-36.

Blenkhorn P.L, 1986, Personal Transcription Systems, Computerised Braille Production, The Proceedings of the 5th Annual Workshop, Winterthur October 30-November 1,1985,J M Ebersold, T Schwyter Eds. Katholiseche University pp. 33-38.

Blenkhorn P L,1995,A system for converting Braille into print. IEEE Transactions on Rehabilitation Engineering, Vol 3 No 2, 215-221

Bunke H, Wang P, 1997, Handbook of Character Recognition and Document Analysis, World Scientific, Singapore

Calders P, Mennens J et al, 1986, Optical Pattern Recognition of Braille Originals, in Proceedings of 3rd International Symposium Optical and Optoelectronic Applied Sciences and Engineering, Innsbruk, pp229-232

Constable I, 1996, Personal communication.

Dubas J, Benjelloun M et al, 1988, Image Processing Techniques to a Perform Autonomous System to Translate Relief Braille Back into Ink called LectoBraille, in IEEE 10th International Conference in Medicine and Biology Society, New Orleans, pp 1585-84

Eurika A4 Technical Manual,1988,Robotron Australia.

Fran(ois G, Calders P, 1985, The reproduction of Braille Originals by means of Optical Pattern recognition, in Proceedings 5th International Workshop on Computerised Braille Production, Winterthur, pp119-122

Hentzschel T, 1993, An Optical Braille Reading System, MSc Thesis, University of Manchester – UMIST, Manchester

Hewlett Packard, 1996, Isolation and Control Components Designers Catalog, Hewlett Packard, USA

Ifeachor E, Jervis B, 1998,Digital Signal Processing: A Practical Approach, Addison Wesley, London ,England

Jahne B, 1991, Digital Image Processing, Springer-Verlag, Berlin, Germany

Lachiver G, Vachon J, Seufert W, An optoelectronic device to read and spell Braille, in IEEE Transactions on Biomedical Engineering, Vol BME-31 No 8,560-563

Laplante P, Stoyenko A,1996, Real-Time Imaging: Theory, Techniques and Applications, IEEE Press, New York U.S.A

Lapsley P, 1997, DSP Processor Fundimentals : Architectures and Features, IEEE Press, New York

Marvin C, Ewers G,1996, A Simple Approach to Digital Signal Processing, Wiley Interscience, New York, USA

Mennens J, Tichelen L, 1992, Using Asymmetrical Illumination to Recognise Double Sided Braille, Internal Report, Catholic University of Lueven, Belguim

Mennens J, Tichelen L, Francois G, Engelen J, 1994, Optical recognition of Braille writing using standard equipment, IEEE Transactions on Rehabilitation Engineering , Vol 2 No 4, 207-212

Newport,1997, Optics, Newport USA

Nitta S, Oshima J, 1986, Recognition Algorithm on Transparent Braille, in Proceedings SICE ’89, pp1017-1020

Priwler M, 1988, Eureka A4: The Arrival of a new Concept, Braille Monitor, April, pp 164-167

Spragg J,1984,Interfacing a Perkins Brailler to a BBC Micro, Microprocessors and Microsystems, Vol 8 pp 524-527

Texas Instruments, 1996, TMS320 DSP Designers Notebook, Volume one, Texas Instruments, USA

Texas Instruments, 1996, TMS320C5X DSP Starters Kit Users Guide, Texas Instruments, USA

Texas Instruments, 1997, TMS320C5X Users Guide, Texas Instruments, USA

Williams I, 1969 Braille Primer with Exercises, Royal Institute for the Blind, London.

Appendix I: Braille Table

In the following table of Braille, the meanings given for each of the dot configurations are representative ones, though not necessarily all the meanings, that apply in English usage.

For reference purposes, the last item in each entry, in square brackets, is the "North American ASCII Equivalent" character(s) that represent that Braille character. The code formed by those ASCII assignments is fundamentally a machine code, used for communication with Braille embossing printers and Braille keying devices. It also forms the basis for (but is not identical to) the Computer Braille Code (CBC), a code adopted by the Braille Authority of North America (BANA) for the representation of computer programs and other computer notation.

Note that, within the first four lines of the table, every character contains both of these features:

(a) at least one top-row dot (dot 1 or dot 4)

(b) at least one upper left-column dot (dot 1 or dot 2)

Line 1 (one or more of dots 1, 2, 4 and 5)

 dot 1

: letter a, digit 1 [a]

 dots 1-2

: b, 2, contraction "but" [b]

 dots 1-4

: c, 3, contraction "can" [c]

 dots 1-4-5
: d, 4, contraction "do" [d]

 dots 1-5

: e, 5, contraction "every" [e]

 dots 1-2-4
: f, 6, contraction "from" [f]

 dots 1-2-4-5
: g, 7, contraction "go" [g]

 dots 1-2-5
: h, 8, contraction "have" [h]

 dots 2-4

: i, 9 [i]

 dots 2-4-5
: j, 0, contraction "just" [j]

Line 2 (line 1 plus dot 3):

 dots 1-3

: k, contraction "knowledge" [k]

 dots 1-2-3
: l, contraction "like" [l]

 dots 1-3-4
: m, contraction "more" [m]

 dots 1-3-4-5
: n, contraction "not" [n]

 dots 1-3-5
: o [o]

 dots 1-2-3-4
: p, contraction "people" [p]

 dots 1-2-3-4-5
: q, contraction "quite" [q]

 dots 1-2-3-5
: r, contraction "rather" [r]

 dots 2-3-4
: s, contraction "so" [s]

 dots 2-3-4-5
: t, contraction "that" [t]

Line 3 (line 1 plus dots 3-6):

 dots 1-3-6
: u, contraction "us" [u]

 dots 1-2-3-6
: v, contraction "very" [v]

 dots 1-3-4-6
: x, contraction "it" [x]

 dots 1-3-4-5-6
: y, contraction "you" [y]

 dots 1-3-5-6
: z, contraction "as" [z]

 dots 1-2-3-4-6
: contraction "and" [&]

 dots 1-2-3-4-5-6: contraction "for" [=]

 dots 1-2-3-5-6
: contraction "of" [(]

 dots 2-3-4-6
: contraction "the" [!]

 dots 2-3-4-5-6
: contraction "with" [)]

Line 4 (line 1 plus dot 6):

 dots 1-6

: contraction "ch" [*]

 dots 1-2-6
: contraction "gh" [<]

 dots 1-4-6
: contraction "sh" [%]

 dots 1-4-5-6
: contraction "th" [?]

 dots 1-5-6
: contraction "wh" [:]

 dots 1-2-4-6
: contraction "ed" [$]

 dots 1-2-4-5-6
: contraction "er" []]

 dots 1-2-5-6
: contraction "ou" [\]

 dots 2-4-6
: contraction "ow" [[]

 dots 2-4-5-6
: w, contraction "will" [w]

Line 5 (line 1 "lowered"):

 dot 2

: comma (,), contraction "ea" [1]

 dots 2-3

: semicolon (;), contraction "bb" [2]

 dots 2-5

: colon (:), contraction "cc" [3]

 dots 2-5-6
: period (.), contraction "dis" [4]

 dots 2-6

: contraction "en" [5]

 dots 2-3-5
: exclamation (!), contraction "to"

 [6]

 dots 2-3-5-6
: opening or closing round

 parenthesis,

 contraction "gg" [7]

 dots 2-3-6
: opening quote, contraction "his"

 [8]

 dots 3-5

: contraction "in" [9]

 dots 3-5-6
: closing quote, contraction "was"

 [0]

Line 6 (dots 3, 4, 5, 6):

 dots 3-4

: slash (/), contraction "st" [/]

 dots 3-4-6
: contraction "ing" [+]

 dots 3-4-5-6
: numeric indicator, contraction

 "ble" [#]

 dots 3-4-5
: contraction "ar" [>]

 dot 3

: apostrophe (') [']

 dots 3-6

: hyphen (-), contraction "com" [-]

Line 7 (dots 4, 5, 6):

 dot 4

: accent indicator [@]

 dots 4-5

: prefix for certain contractions [^]

 dots 4-5-6
: prefix for certain contractions [_]

 dot 5

: prefix for certain contractions ["]

 dots 4-6

: decimal point, emphasis indicator,

 prefix for certain contractions [.]

 dots 5-6

: letter indicator, prefix for

 certain contractions [;]

 dot 6

: capital indicator, prefix for

 certain contractions [,]

Appendix II: Schematic Diagrams and PCB Layout

[image: image29.png]C——T11%°8 C4
oz é.8n
z —r
o
o
w T
s & |3 g
w NZ
S ol % 4
« 2N
wa mxw
—r Tt — =
N
N
(2]
|
+
e wgl
R7 (oo} o 01
2K ome on
T T3¢
c1 A
.O1u 5
== S s
T o) -2
9Z OE .
2Y 0o
-8 wm 8
210 —
S —
—F +2 o=
mET o 53
2 —
GAT
™

U3

SN74L SS90
3

. 1Uf

1

c
0]

Figure 25: PCB overlay.

[image: image30.png]

Figure 26: PCB bottom layer

[image: image31.png]

Figure 27: PCB top layer

Appendix III: Mechanical Drawings

[image: image32.png]35.000

wo0 1700 430
%
34.408° -
!
o
R e [

Side Elevation

Figure 28: CCD and lens housing.(side view)
[image: image33.png]15.000

19,300

2650

35.000

25.000

10.000

17.650

14,000

8350

Front View

Figure 29: CCD and lens housing.(front view)

Appendix IV: DSP Source Code

 .MMREGS

 .ds 0f00h

TA .word 17 ;

RA .word 17 ; This set up of AIC registers give

 ; a sampling freq of 10,000 Hz

 ;

TB .word 15 ;

RB .word 15 ;

AIC_CTR .word 08h ; AIC is in sync mode w/ preamp gain =1

pwidth .set 015ah ; a6h for 115200 baud

 ; 15ah for 57600 baud

 ; 040fh for 19200 baud

 ; 081eh for 9600 baud

REF .word 00h ; Reference Level

DOT1 .word 00h ; Dot one average

DOT2 .word 00h ; Dot two average

DOT3 .word 00h ; Dot three average

REGION1 .set 7 ; Start of region 1

REGION2 .set 10 ; Start of region 2

REGION3 .set 14 ; Start of region 3

WIDTH .set 5 ; Width of regions

SCALER .set 8 ; Drop lower byte of averaged sample

AVDOT .set 6 ; 6 Shifts for 13/64 in dot regions,WIDTH+1

 .ds 1050h

SCANARR .space 816 ; Space for scanword array

**

* Set up the ISR vector *

**

 .ps 00806h ; The assembler will not accept branch

INT3: B 02000h ; to labels. Physical addresses used.

 .ps 0080ah ; Allowing 100 words for the ISR,this

rint: B 02100h ; will probably not be enough for the

xint: B 02200h ; INT3 ISR.

 .ps 0980h

 .entry

 SETC INTM
; Disable interupts

 LDP #0
;

 OPL #0834h,PMST
;

 LACC #0
;

 SAMM CWSR
; Clear Wait state control Reg

 SAMM PDWSR
; Clear Program/Data wait state Reg

 SPLK 00000h,IOWSR
; Clear software wait states on I/O

 SETC SXM
; SXM MUST BE SET

 SPLK #0,IFR
; CLEAR ints

; SPLK #06h,IMR
; This turns on transmit interrupt only

; Now also int3 on

; CALL AICINIT
; Init AIC

 CLRC OVM

 SPM 0
;

 CLRC SXM
;

 LACC #0FFFh,4

 CLRC INTM
; Enable interupts

; LDP #pwidth

 LAR AR7,#SCANARR
; Store start of scanword in AR7

**

* Circular Buffer Setup at Data address 1000-1015h *

* 21 samples kept. *

* AR6= start circ buffer address slice samples *

**

**

* Enable circular buffer *

**

 SPLK #0feh,CBCR
; Enable circ buf 1 Start addr in AR6

; Enable circ buf 2 Start Addr in AR7

 LACC #01000h
; Load ACC with data start address

 SAMM CBSR1
; and store in CBSR1

 SAMM AR6

 ADD #21
; Load ACC with data end address

 SAMM CBER1
; and store in CBER1 - 20 words long

 LACC #1050h
; Start of CB2

 SAMM CBSR2

 ADD #50
; Calculate end address

 SAMM CBER2
; Store end address

 SAMM AR7

 ZAP

WAIT:
; wait for a codewheel (int3)

 BIT IFR,13
; Check for codewheel int

 BCND LOADSLICE,TC

 B WAIT

;STOP: B STOP

;------- end of main program ----------;

; Codewheel interrupt service routine

 .ps 2000h

LOADSLICE:

 LDP #0

; Load data pointer

 SPLK #14h,IFR

; Clear ints

 SPLK #02h,IMR

; Set int mask

 MAR *,AR6

; Modify ar6 to current

 LACL #20

; set couter to 20

 SACL BRCR

; and save

 RPTB BLOCK
; get 21 samples

WAITRINT:

 BIT IFR,11

; Check flags

 BCND WAITRINT,NTC

; Wait

 SPLK #10h,IFR

; Clear flag

 LACC DRR

; Get sample

 SACL *+

; Increment counter

BLOCK

; End REPEAT

 LACC CBSR1

; Set acc to CB1

 MAR *,AR1

; Modify Ar to 1

 SAMM AR1

; Store CB to AR1

 ADRK #05h

; Index to correct sample

 LACL *+

 ADD *

 ADRK #14

 ADD *+

; Add each sample for

 ADD *

; reference level

 BSAR 2

 SACL REF
; Reference averaged and saved

 SPLK #06h,IMR

; Clear int

* Average dot regions and threshold (truncate) WRT reference *

 LDP #REGION1

; Point to data region1

 LAMM CBSR1

;

 ADD #REGION1

; Move to region1

 SAMM AR1

 RPT #WIDTH

; Add width

 LACL *+

 SPLK #13,TREG0

 SACL DOT1
; 11/64 = average

 MPY DOT1

 ZAP

; Clear acc

 APAC
; PREG to ACC

 BSAR AVDOT
; AVERAGED

 BSAR SCALER
; Scale to lower byte

 SACL DOT1

; Store dot1

 LAMM CBSR1

; Repeat for dot2

 ADD #REGION2

 SAMM AR1

 RPT #WIDTH

 LACL *+

 SPLK #13,TREG0

 SACL

 MPY DOT2

 ZAP

 APAC
; PREG to ACC

 BSAR AVDOT
; AVERAGED

 BSAR SCALER ;
 Scale to lower byte

 SACL DOT2

 LAMM CBSR1

; And repeat for dot 3

 ADD #REGION3

 SAMM AR1

 RPT #WIDTH

 LACL *+

 SPLK #13,TREG0

 SACL DOT3 ;

 MPY DOT3

 ZAP

 APAC
; PREG to ACC

 BSAR AVDOT
; AVERAGED

 BSAR SCALER
; Scale to lower byte

 SACL DOT3

 B WAIT

COMPARE:

 LACC REF

 SAMM DBMR
; Place ref value in DBMR

 ZAP
; Clear ACC

 SACL SCANARR
; Clear first scanword

 LACC DOT1
; Get DOT1

 SUB REF
; Compare to reference

 NOP
; XC delay 1 cycle

 XC 2,GT
; Execute next 2 words if GT ref

 OPL #08000h,*
; Set MSB if bright

 XC 2,LT
; Execute next 2 words if LT ref

 OPL #04000h,*
; Set bit 3 for shadow

 LACC DOT2
; Get DOT2

 SUB REF
; Compare to reference

 NOP
; XC delay 1 cycle

 XC 2,GT
; Execute next 2 words if GT ref

 OPL #02000h,*
; Set bit if bright

 XC 2,LT
; Execute next 2 words if LT ref

 OPL #01000h,*
; Set bit 3 for shadow

 LACC DOT3
; Get DOT1

 SUB REF
; Compare to reference

 NOP
; XC delay 1 cycle

 XC 2,GT
; Execute next 2 words if GT ref

 OPL #0800h,*
; Set bit if bright

 XC 2,LT
; Execute next 2 words if LT ref

 OPL #0400h,*
; Set bit 3 for shadow

 RPT #49
; Shuffle data down FIFO

 DMOV *-
;

 B LOADSLICE
; Get new slice

; DO RECOGNITION OF SCANWWORD ARRAY

 ; no match goto loadslice

 ; else clear scanword array

 ; and reset AR7 to start

 ; transmit char

 .include “recognise.asm”

; RECEIVER INTERRUPT SERVICE ROUTINE

;

RCV:

 .ps 02100h

 MAR *,AR6
; ARP-> AR6

 LACC DRR
; Read the AIC

 SACL *+,0,AR1
; Store in circular buffer and ARP-> AR1

 MAR *+,AR6
; Increment AR1 ARP-> AR6

 RETE

;

; TRANSMIT INTERRUPT SERVICE ROUTINE

;

XMIT:

 .ps 02200h

 RETE

* Not in current use

 .include "initdsk.asm"

 .end

**

*
*

* Initialisation routine.
*

* Calls: AICINIT
*

* Version 2.1 ; 9 August 1998
*

*
*

**

 .MMREGS

 .ds 0f00h

TA .word 17

;

RA .word 17

; This set up of AIC registers give

; a sampling freq of 10,000 Hz

;

TB .word 30

; BP =300-3.6khz

RB .word 30

;

AIC_CTR .word 08h

; AIC is in sync mode w/ preamp gain =1

pwidth .set 015ah

; a6h for 115200 baud

; 15ah for 57600 baud

; 040fh for 19200 baud

; 081eh for 9600 baud

SLCBUFF .word 016h

; Storage for 22 image slices

DOTSBUFF .word 032h

; Storage for 50 dot positions

**

* Set up the ISR vector
*

**

 .ps 00806h

; The assembler will not accept branch

INT3: B 02000h

; to labels. Physical addresses used.

 .ps 0080ah

; Allowing 100 words for the ISR, this

rint: B 02100h

; will probably not be enough for the

xint: B 02200h

; INT3 ISR.

 .ps 0980h

 .entry

 SETC INTM

; Disable interupts

 LDP #0
;

 OPL #0834h,PMST
;

 LACC #0
;

 SAMM CWSR
; Clear Wait state control Reg

 SAMM PDWSR
; Clear Program/Data wait state Reg

 SPLK 00000h,IOWSR
; Clear software wait states on I/O

 SETC SXM
; SXM MUST BE SET

 SPLK #026h,IMR
; This turns on transmit interrupt only

; Now also int3 on

 CALL AICINIT
; Init AIC

 SPLK #002h,IMR
; Disable RINT and XINT and INT3

 CLRC OVM

 SPM 0
;

 CLRC SXM
;

 LACC #0FFFh,4

 CLRC INTM
; Enable interrupts

; LDP #pwidth

**

* Circular Buffer Setup at Data address 1000-1019h

*

* 25 samples kept.
*

* Circular Buffer setup 2 at data address 1020-1052h

*

* AR6= start circ buffer address slice samples
*

* AR7= start circ buffer address filtered slice sample

*

**

**

* Enable circular buffer

*

**

 SPLK #0feh,CBCR
; Enable circ buf 1 Start addr in AR6

; Enable circ buf 2 Start Addr in AR7

 LACC #01000h
; Load ACC with data start address

 SAMM CBSR1
; and store in CBSR1

 SAMM AR6

 ADD SLCBUFF
; Load ACC with data end address

 SAMM CBER1
; and store in CBER1 - 25 words long

 ADD #1
; Add 1 blanks

 SAMM CBSR2
; Start of circ buffer 2 #1020h

 SAMM AR7
; Store in AR7

 ADD DOTSBUFF
; Store 50 slices

 SAMM CBER2
; End circ buffer2 #1052h (50 samples)

 ZAP
; Clear Accumulator

DSK initialisation routine.

* Inserted by .include directive in main programs

**

* DESCRIPTION: This routine initializes the TLC320C40 for *

* a 10Khz sample rate with a gain setting of 1 *

* BP filter cut off at 3.125k and 260Hz *

**

* aic initialization data

*

AICINIT: SPLK #20h,TCR
; To generate 10 MHz from Tout

 SPLK #01h,PRD
; for AIC master clock

 MAR *,AR0

 SPLK #08,SPC
; Serial port set up

 SPLK #0c8h,SPC
; Enables Tx And Rx ie out of reset

 LACC #080h
; Init 8000h-ffffh as global mem

 SACH DXR
; Dummy word sent to clear SPC reg

 SACL GREG
; Store to global mem alloc reg

 LAR AR0,#0FFFFh
; Use AR0 to pnt to loc FFFFh

 RPT #10000
; Access global mem 10000 cycles

 LACC *,0,AR0
; to drive pin low for duration

 SACH GREG
; Restore GREG to 0000

*Send parameters TA,TB,AIC_CTR to AIC. 10khz sample gain=1 BP enabled

 LDP #TA
; Init data page

 SETC SXM
; Set sign extension mode

 LACC TA,9
; TA shifted 9 bits

 ADD RA,2
; RA shifted 2 bits

 CALL AIC_2ND
;

 ;------------------------

 LDP #TB
; Init data page

 LACC TB,9
; Initialize TB and RB register

 ADD RB,2
; As above

 ADD #02h
;

 CALL AIC_2ND
;

 ;------------------------

 LDP #AIC_CTR
; Init data page

 LACC AIC_CTR,2
; Shift AIC_CTR 2 bits left

 ADD #03h
;

 CALL AIC_2ND
;

 RET
;

**

* This routnine inits a secondary transmission, by the following steps

*

* 1: Enable serial port transmit interupt

*

* 2: Send 03h to init transmission

*

* 3: Wait for new data (idle)

*

* 4: Send AIC Parameter

*

* 5: Disable serial port transmit int

*

**

AIC_2ND:

 LDP #0
; Data page point is 0 (MM regs)

 SACH DXR
; Send ACChi 00 dummy word

 CLRC INTM
; Enable interrupts

 IDLE
; Wait for TX interrupt

 ADD #6h,15

; 0000 0000 0000 0011 XXXX XXXX XXXX XXXX b

 SACH DXR
; Send ACChi (03) to initiate secondary protocol

 IDLE
; Wait for interrupt

 SACL DXR
; Send the AIC DX data word

 IDLE
; Wait for interrupt

 LACL #0
; Clear ACClo

 SACL DXR
; Send another to make sure 1st word got sent

 IDLE
; Wait for interrupt

 SETC INTM
; Disable interupts

 RET
;

*

Appendix V: Host Source Code

/* ***/

/* Title
: hexdump.c
*/

/* Author
: Iain Murray
*/

/* Purpose : Reads a binary Braille code input file
*/

/*
 and dumps to screen the hex value in
*/

/*
 16 bit blocks. This is to test the Braille
*/

/*
 creation routine
*/

/* Date
: 8 September 1998
*/

/* Version : 1.0
*/

/* **
*/

#include <stdio.h>

int main(int argc, char** argv)

{

FILE *infile,*outfile;

unsigned char buf[80];

int i,numread;

if (argc == 1)

{

 printf("usage: hexdump infile <outfile>\n");

}

 else

{

 infile = fopen(argv[1],"rb");

 if (argc > 1)

 outfile = fopen(argv[2],"wb");

 while (!feof(infile))

 {

 numread = fread(buf, 1, 80, infile);
/* Read in bytes from infile

 if(outfile != NULL)

 {

 for(i = 0 ; i < numread ; i+= 2)

 fprintf(outfile,"%x %x ",buf[i], buf[i+1]);

 fprintf(outfile,"\n");

 }

 else

 {

 for(i = 0 ; i < numread ; i+= 2)

 printf("%x %x ",buf[i], buf[i+1]);

 printf("\n");

 }

 }

 }

return(0);

}

/* **/

/* Title : txttobrl.c

*/

/* Author : Iain Murray

*/

/*

*/

/* Purpose
: Read in a text file and convert it to binary Braille

*/

/*
 Code and act as simulated input to the main

*/

/*
 Braille conversion routine

*/

/*

 High byte will contain char, low byte pad will nulls

*/

/* Date : 8 September 1998

*/

/* Version
: 1.0

*/

/* ** */

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#define MAXSTRINGLEN 1024

#define CAPITALINDICATOR
0x4

#define NUMBERINDICATOR
0x3c

#define NULL1

0x0

#define CR

0x0a

#define LF

0x0d

int main(int argc, char** argv)

{

FILE *infile, *outfile;

int i,j,bufferlen;

unsigned char outbuffer[MAXSTRINGLEN],inbuffer[MAXSTRINGLEN],temp,temp1,end;

/* Brailleequiv is an array that is used for checking what the Braille cell

looks like for that character. */

unsigned int Brailleequiv[128] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xff,0x5b,0xff,0xff,0xb3,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0x00,0x74,0x08,0x3c,0xd4,0x94,0xf4,0x20,0xec,0x7c,0x84,0x34,0x04,0x24,0x14,

0x30,0x2c,0x40,0x60,0x48,0x4c,0x44,0x68,0x6c,0x64,0x28,0x8c,0x0c,0xc4,0xfc,

0x38,0x9c,0x12,

/*A*/0x82,0xc2,0x92,0x9a,0x8a,0xd2,0xda,0xca,0x52,0x5a,0xa2,0xe2,0xb2,0xba,

0xaa,0xf2,0xfa,0xea,0x72,0x7a,0xa6,0xe6,0x5e,0xb6,0xbe,0xae,0x56,0xce,0xde,

0x1a,0x1e,0x10,

/*a*/0x80,0xc0,0x90,0x98,0x88,0xd0,0xd8,0xc8,0x50,0x58,0xa0,0xe0,0xb0,0xb8,

0xa8,0xf0,0xf8,0xe8,0x70,0x78,0xa4,0xe4,0x5c,0xb4,0xbc,0xac,0x54,0xcc,0xdc,

0x18,0x1c};

if (argc < 3)

 {

 printf("Usage txttobrl infile outfile\n");

 exit(1);

 }

if ((infile = fopen(argv[1],"r")) == NULL)

 {

 printf("Could not open text file\n");

 exit(1);

 }

else

 printf("%s opened successfully\n",argv[1]);

if ((outfile = fopen(argv[2],"wb")) == NULL)

 {

 printf("Could not open text file\n");

 exit(1);

 }

else

 printf("%s opened successfully\n",argv[2]);

i = 0; /* read in file into inbuffer */

end = NULL1;

 for(i = 0; i<= 20; i++)

 {

 inbuffer[i] = '0';

 outbuffer[i] = '0';

 }

i = 0;

while (!feof(infile))

 {

 inbuffer[i] = (char)fgetc(infile);

 i++;

 }

bufferlen = i;

/* find out how long string in buffer is */

i = 0;

j = 0;

while (i < bufferlen)

 {

 temp = inbuffer[i];

 if ((temp >= 0x41) && (temp <=0x5a))

 {

 temp1 = CAPITALINDICATOR;

 outbuffer[j] = temp1;

 j++;

 }

 else if ((temp >= 0x30) && (temp <=0x39))

 {

 temp1 = NUMBERINDICATOR;

 outbuffer[j] = temp1;

 j++;

 }

 outbuffer[j] = Brailleequiv[temp];

 i++;

 j++;

 }

bufferlen = j;

outbuffer[j-1] ='\0';

for (i = 0; i < bufferlen; i++)

 fprintf(outfile,"%c%c",outbuffer[i],end);

fprintf(outfile,"%c%c",CR,LF);

fclose(infile);

fclose(outfile);

return(0);

}/* end main */

/* **/

/* Title
: convert.c

*/

/* Author
: Iain Murray

*/

/*

: Modified from P Blenkhorn

*/

/* Purpose
: Translate the incoming stream of binary Braille code

*/

/*

 from the Braille scanner unit.

*/

/*

 High byte will contain char, low byte pad will nulls

*/

/* Date : 11 September 1998

*/

/* Version
: 2.0

*/

/* ** */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define
NUMBER_OF_CHARACTERS
256

#define
SPACE_BIT
8

#define
CAPITAL_INDICATOR

0x04

#define
NUMBER_INDICATOR

0x3c

#define
LETTER_INDICATOR

0x0c

#define
SPACE
0

#define
NUMBITS

1024

#define
SHIFTBACK
3

#define
CAPITAL
3

#define
NUMEXCEPTIONS
2

extern struct {

/* info for character set */

unsigned char input_trans;
/* mapping for input chars */

unsigned char to_up;
/* lower to upper case conversion */

unsigned char data;
/* data for if chars are punc etc. */

unsigned int hash;
/* position for hashing into tables */

} ch_info[NUMBER_OF_CHARACTERS];

#define STR_SIZE 256

enum BOOLEAN { FALSE, TRUE };

#define
NUL

'\0'

FILE *infile, *outfile;

void add_to_output(unsigned char);

/* **/

/* Title : Convert_to_USSBC

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Convert the raw data into United States Standard Braille Code.
*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 3.0

*/

/* Parameters:

*/

/*

character that has just been read from the stream

*/

/*
Return:

*/

/*

Nil

*/

/* ** */

unsigned int convert_to_USSBC(unsigned int ussbchr, unsigned char *flags)

{

static int numcaps = 0, is_digit = FALSE, is_alpha = TRUE;

int i;

unsigned int exceptions[NUMEXCEPTIONS] = {0x18,0x1c};

ussbchr >>=8;

switch(ussbchr)

 {

 case CAPITAL_INDICATOR:

 {

 numcaps ++;

 *flags += 1;

 break;

 }

 case NUMBER_INDICATOR:

 {

 is_digit = TRUE;

 is_alpha = FALSE;

 break;

 }

 case LETTER_INDICATOR:

 {

 is_alpha = TRUE;

 break;

 }

 case SPACE:

 {

/* Reset all values to default */

 numcaps = 0;

 is_alpha = TRUE;

 is_digit = FALSE;

 break;

 }

 default:

 {

 if (is_alpha)

/* Know its a letter */

 {

 for (i = 0; i <= NUMEXCEPTIONS; i++)

 {

/* These exceptions will not have the capital

 indicator in

 front of them but need to have the extra

 added onto them */

if (ussbchr == exceptions[i])

{

 ussbchr += 3;

 break;

 }

 }

 if (numcaps)

/* If a capital letter */

 {

ussbchr += CAPITAL;
/* Add on 3 to make USSBC capital */

if (is_digit)
/* Must be Roman Numeral */

 numcaps = 2;

 if (numcaps == 1)
/* Only first letter capital */

 numcaps = 0;
/* Reset,no more letters capitalised */

 }

/* end if numcaps */

 }

/* end if is_alpha
*/

 else
/* Must be a number */

ussbchr <<= 1;
/* Can shift left 1 to be in right places */

 }

/* end default

*/

 }

/* end switch */

return ussbchr;

}

/* **/

/* Title
: read_line

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read in a line from the input file.

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 3.0

*/

/* Parameters:

*/

/*

buffer to read text into

*/

/*
Return:

*/

/*

whether end of file reached

*/

/* ** */

*/

int read_line(unsigned char buffer[])

{

 register int i = 0;

 unsigned int chr;

 unsigned int ussbchr;

/* Used to hold top byte of each integer */

 unsigned char flags = 0;
/* Indicator of Capital indicator etc */

 int new_line;

 do {

fscanf(infile,"%d",&ussbchr);

if (feof(infile)) {

buffer[i] = NUL;

return(EOF);

 }

 chr = (unsigned int)convert_to_USSBC(ussbchr, &flags);

 new_line = (chr == '\n');

 chr = ch_info[chr].input_trans;

/* translate input ready for

 conversion */

 buffer[i++] = chr;

 if (i >= STR_SIZE)

 break;
/* don't let input line be too long */

 } while (!new_line);

 buffer[i] = NUL;

 return(TRUE);

}

main(int argc, char *argv[])

{

unsigned char

 input_txt[STR_SIZE];
/* put input text into this ready to translate it */

 unsigned char out_dat[256];
/* buffer for output data */

/* get input and output file name from

 the command line */

 if((infile=fopen(argv[1],"rb")) == NULL) {

printf("Input file %s not found/n",argv[1]);

exit(1);

 }

 if((outfile=fopen(argv[2],"w")) == NULL) {

printf("Can't open output file %s/n",argv[2]);

exit(2);

 }

 main_initialise("FLTAB");
/* load in tables and initialise */

 while (read_line(input_txt) != EOF) {
/* read lines up to EOF */

 if (strlen(input_txt))
/* if got text then convert */

pas_convert(0,input_txt,out_dat);

add_to_output('\n');
/* put out line feed */

printf("%s\n",out_dat);

fprintf(outfile,"%s",out_dat);

 } /* while */

 return(0);

}

/* **/

/* Title : Extra functions for interface between turbo pascal & c

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Calls made to Blenkhorns original Functions in Pascal

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

convert_to is set for how many chars, or character type

*/

/*

to convert to input_dat is the input data

*/

/*

output_dat is the output buffer

*/

/*
Return:

*/

/*

number of characters converted

*/

/* ** */

static int out_upto = 0;

static unsigned char *out_buff;
 /* pointer to output buffer */

int pas_convert(int convert_to, unsigned char input_dat[],unsigned char output_dat[])

{

 out_upto = 0;

 out_buff = output_dat;
/* use global to retain pointer for output buffer */

 return(convert(0,input_dat));

}

/* Function: add_to_output

 output a character to output file

 Parameters:

 chr is the character to add

 Returns:

 nothing

*/

void add_to_output(unsigned char chr)

{

#define NO_CAPS 0

#define CAPS_TEMP 1

#define CAPS_LOCK 2

 static char caps = NO_CAPS;

 if (chr == '^')

 caps++;

 else {

 if ((chr == ' ') || (chr == '-'))

 caps = NO_CAPS;

 if (caps) {

 chr = ch_info[chr].to_up;

 if (caps == CAPS_TEMP)

 caps = NO_CAPS;

 }

 out_buff[out_upto++] = chr;

 out_buff[out_upto] = '\0';

 if (out_upto > 255)

 out_upto = 255;

 }

}

/* **/

/* Title : Conv.c

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: To decode a file (eg. Braille to text, text to Braille,

*/

/*
 microwriter to text)

*/

/*
 Calls made to functions contained in conv.c by Convert.c

*/

/*
 Very few modifications to Blenkhorns original were made.

*/

/*

*/

/* Date : 28 October 1998

*/

/* Version
:

*/

/* Parameters:

*/

/*

N/A

*/

/*
Return:

*/

/*

N/A

*/

/* ** */

/*

/* Notes:(By Paul Blenkhorn)

1. Main tables are loaded by: tables().

2. Initialisation of arrays etc for each translation is performed by:

 main_initialise()

3. Text is presented to convert() which return how many characters

 it has translated.For grade II Braille to text this will be a word.

 For text to grade II Braille this will noramlly be a word (stream changed

 for use with Braille scanner. I. Murray) (sometimes more eg. AND WITH).

 For Microwriting this will be a character at a time.

4. To make the system multi-lingual the information for the character

 set, the code, wildcards, decision tables and exceptions table are all

 configurable. These are read in from the file passed to

 main_initialise(), having been constructed by MK.EXE.

 More information on this can be found in FL_BTDAT.TXT and MK.C.

*/

/*
Structure of file FLTAB

This data contains:

The input mapping to be done (eg. ASCII 187->space).

The mapping for lower to upper case letters for this character set

8 bits set for the user's choice (see fl_btdat.txt for example)

Note: bits 3 and 6 are used for white space and wild cards

respectively. Other bits can be used as required.

*

The number of wildcards used. (1 byte).

The data for the wildcards.

Format for Wildcards is:

wildcard character

whether to match one character, one or more characters,

or zero or more characters

the bitmap to match against (as set for character data above)

ie. 3 bytes times number of wildcards.

*

The number of input classes and states for decision table. (2 bytes)

The decision table. (number of input classes times number of states)

The rules for convertion with the last line being just #

The tabs are removed from each rule and they are output in the format:

input class.

length of the rule (to speed up searching).

the body of the rule in the format:

{left context}[focus]{right context}=output.

a NUL at the end of each rule.

the new state.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define STR_SIZE 256 /* number of characters in strings */

#define TAB_SIZE 25000 /* size of tables */

#define NUL '\0'

#define FALSE 0 /* logical constants */

#define TRUE !FALSE

#define NO_MOVE 0

#define NOT_DEFINED 0

#define NUMBER_OF_CHARACTERS 256

#define NO_FILE 15

#define VERSION_FAULT 16 /* error conditions */

#define CHAR_FAULT 17

#define WILD_FAULT 18

#define DECISION_FAULT 19

#define SIZE_FAULT 20

#define MATCH_SEVERAL 3

#define MATCH_ONE 2

#define MATCH_NONE 1

#define WILD_MATCH 1

#define WILD_BIT_PATTERN 2

#define WILD_DATA 3

#define SPACE_BIT 8

#define WILD_BIT 64

char

 caps,

 caps_lock;

/* caps word flag */

unsigned char

 table[TAB_SIZE],

/* area to hold exceptions table */

 current_state = 1;

/* the current state */

unsigned char

 *wild_tab,

/* wildcard table */

 *decision_table;

/* state table */

unsigned int

 no_wilds,

/* number of wildcards */

 no_input_classes,

/* number of input classes */

 no_states;

/* number of states */

struct {

/* info for character set */

 unsigned char input_trans;
/* mapping for input chars */

 unsigned char to_up;
/* lower to upper case conversion */

 unsigned char data;
/* data for if chars are punc etc. */

 unsigned int hash;
/* position for hashing into tables */

} ch_info[NUMBER_OF_CHARACTERS];

/**************************** function prototypes ***************************/

static int find_match(int up_to, unsigned char input_dat[]);

static int still_converting(int convert_to, int count, unsigned char input_dat[]);

static int words_match(int up_to, unsigned char input_txt[]);

static int check_state(unsigned char inp_class);

static int right_context(int up_to, unsigned char input_dat[]);

static int left_context(int up_to, unsigned char input_dat[]);

static int wild_match(int step, int up_to, unsigned char input_dat[]);

static void initialise(void);

static void next_entry(unsigned char *this_table_entry);

static void match_found(void);

static void read_version_number(FILE *fp);

static void read_main_tables(FILE *fp);

static void read_character_data(FILE *fp);

static void read_decision(FILE *fp);

static void read_wildcards(FILE *fp);

void add_to_output(unsigned char chr);
/* in user programs - not here */

/************************ end function prototypes ***************************/

/* **/

/* Title : Function convert

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Translate the text in the buffer input_dat.

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
 Convert_to is set for how many chars, or character type to
*/

/*

 convert to

*/

 input_dat is the input data

*/

/*

*/

/*

*/

/*
Return:

*/

/*

number of characters converted

*/

/* ** */

int convert(int convert_to, unsigned char input_dat[])

{

 int up_to = 0;
/* position in input buffer */

 int step;
/* amount to step along input buffer */

#ifdef TESTING

printf("convert: ");

#endif

 initialise();

 do {

/* check the table, return how far to move along

 input buffer If no match then move 1 char

 along the input buffer. */

 if (step = find_match(up_to,input_dat))

 up_to += step;

 else {

/* output input character and change

 state to 1*/

 add_to_output(input_dat[up_to]);

 current_state = 1;

 up_to++;

 }

 } while (still_converting(convert_to,up_to,input_dat));

#ifdef TESTING

printf("\nconverted up to %d.",up_to);

#endif

 return(up_to);

}

/* **/

/* Title : Function: still_converting

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Have enough characters been converted - reached end condition?
*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
 convert_to is set for:

*/

/*

 how many chars (if < 32)

*/

/*

 specific character to convert to

*/

/*

 of convert to NUL (if convert_to == 0)

*/

/*

 up_to is current position in input data

*/

/*

 input_dat is the input text

*/

/*

*/

/*
Return:

*/

/*

whether end condition satisfied

*/

/* ** */

static int still_converting(int convert_to,int up_to,unsigned char input_dat[])

{

#ifdef TESTING

printf("still converting?: up_to= %d convert to <%c>.\n",up_to,convert_to);

printf("ch <%c> info = <%d>.",input_dat[up_to], ch_info[input_dat[up_to]].data);

#endif

 if (input_dat[up_to] == 0)

 return(FALSE);

 if (convert_to == 0) /* do till end of buffer */

 return(TRUE);

 if (convert_to < 32) /* convert fixed number of characters */

 return(up_to > convert_to);

 else if (convert_to == ' ') { /* convert to white space character */

#ifdef TESTING

printf(" space ");

#endif

 return(!(ch_info[input_dat[up_to]].data & SPACE_BIT));

 }

 else /* convert to specific character */

 return(convert_to == input_dat[up_to]);

}

/* **/

/* Title : Function: initialise

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Initialise for each group of characters to convert

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 3.0

*/

/* Parameters:

*/

/*

Nil

*/

/*
Return:

*/

/*

Void

*/

/* ** */

static void initialise(void)

{

 caps = caps_lock = FALSE;

}

/* **/

/* Title : Function: find_match

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Try to find a match in table for current position

*/

/*

 in input buffer from tables.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters
: up_to is position in input buffer

*/

/*
 input_dat is the input data

*/

/*

*/

/*
Return:

*/

/*

number of characters converted - NO_MOVE (0) if none

*/

/* ** */

static int find_match(int up_to, unsigned char input_dat[])

 {

 int move_no; /* how far to move along input buffer */

 unsigned char *this_table_entry; /* pointer to input class of current table entry */

#ifdef TESTING

printf("find match: ");

#endif

 /* quick hash into the contraction table from first character in buffer.

 *looking == 0 if no entry found.

 */

 this_table_entry = looking = &table[ch_info[input_dat[up_to]].hash];

#ifdef TESTING

printf("character %c table pos = %d ",input_dat[up_to],ch_info[input_dat[up_to]].hash);

#endif

/* if hash character then check rules */

 if (*looking == NOT_DEFINED)

 return(NO_MOVE);

 else {

 do { /* go through the table entries */

 while (*looking++ != '['); /* get to character after '[' */

#ifdef TESTING

printf("<%s>",looking);

#endif

if (*looking != input_dat[up_to]) /* run out of table entries for this letter? */

return(NO_MOVE);

 if (move_no = words_match(up_to,input_dat))

 if (check_state(*(this_table_entry-1)))

 if (right_context(up_to+move_no,input_dat))

 if (left_context(up_to,input_dat)) {

 match_found();

 return(move_no);

 }

/* go to next entry in the table */

 looking = (this_table_entry += *this_table_entry);

 } while(TRUE);

 }

/* *looking */

}

/* **/

/* Title : Function: check_state

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Check the input class against the current state

*/

/*

 in the state table

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters
: chr is the input class

*/

/*

*/

/*
Return:

*/

/*

whether input class is acceptable for match

*/

/* ** */

static int check_state(unsigned char inp_class)

{

#ifdef TESTING

printf("in. cl.=%d state = %d.",inp_class,current_state);

#endif

 return(decision_table[(no_input_classes*(current_state-1)) + inp_class-1]);

}

/* **/

/* Title : Function: left_context

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Check to see if the left context of the match string is valid
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

up_to is end of match string in input data

*/

/*

input_dat is the input text

*/

/*
Return:

*/

/*

whether left context is satisfied.

*/

/* ** */

static int left_context(int up_to,unsigned char input_dat[])

{

#ifdef TESTING

printf("check left: ");

#endif

 while (*looking-- != '[')

 ;

 return(wild_match(-1,--up_to,input_dat));

}

/* **/

/* Title : Function: right_context

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Check to see if the right context of the match string is valid
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

up_to is end of match string in input data

*/

/*

input_dat is the input text

*/

/*
Return:

*/

/*

whether right context is satisfied.

*/

/* ** */

static int right_context(int up_to,unsigned char input_dat[])

{

#ifdef TESTING

printf("check right: ");

#endif

 looking++;

 return(wild_match(+1,up_to,input_dat));

}

/* **/

/* Title : Function: wild_match

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Used by left_context and right_context to check contexts.

*/

/*

 It uses wild cards and other characters to validate context
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

step is +ve or -ve to tell function which way to increment

*/

/*

up_to is end of match string in input data

*/

/*

input_dat is the input text

*/

/*
Return:

*/

/*

 whether match is successful

*/

/* ** */

static int wild_match(int step,int up_to,unsigned char input_dat[])

{

 register int i;

 unsigned char bits;

#ifdef TESTING

printf("wild match ");

#endif

 while (*looking >= ' ') {

/* work through the entries */

 if (*looking == '=' && step == 1)

 break;

 if (ch_info[*looking].data & WILD_BIT)

{

/* got wildcard */

 for (i = 0; i < no_wilds; i++)

 if (*looking == wild_tab[i*WILD_DATA])

 {

/* found wild card */

 bits = wild_tab[i*WILD_DATA+WILD_BIT_PATTERN];

 switch (wild_tab[i*WILD_DATA+WILD_MATCH]) {

 case MATCH_ONE :

 if (!(ch_info[input_dat[up_to]].data & bits))

 return(FALSE);

 up_to += step;

 break;

 case MATCH_SEVERAL :

 if (!(ch_info[input_dat[up_to]].data & bits))

 return(FALSE);

 do {

 up_to += step;

 } while (ch_info[input_dat[up_to]].data & bits);

 break;

 case MATCH_NONE :

 while (ch_info[input_dat[up_to]].data & bits)

 up_to += step;

 break;

 } /* switch */

 break;

 } /* (if) found wild card */

 } /* got wildcard */

 else { /* not wildcard */

 if (*looking != input_dat[up_to])

 return(FALSE);

 up_to += step;

 } /* not wildcard */

 looking += step;

 } /* while work through the entries */

 return(TRUE);

}

/* **/

/* Title : Function: words_match

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: compare input buffer with focus of entry in table [in brackets]
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

up_to is end of match string in input data

*/

/*

input_txt is the input text

*/

/*
Return:

*/

/*

whether words do match

*/

/* **/

static int words_match(int up_to,unsigned char input_txt[])

{

 int start = up_to;

#ifdef TESTING

printf("words match: ");

#endif

 do {

 if (*looking++ != input_txt[up_to++])

 return(FALSE);

 } while (*looking != ']');

#ifdef TESTING

printf("yes:");

#endif

 return(up_to-start);

}

/* Function: match_found

 move the transcribed text (right hand side of the rule) to the output buffer.

 update the state of the system.

 Parameters:

 none

 Returns:

 void

*/

static void match_found(void)

{

#ifdef TESTING

printf("match found: ");

#endif

 while (*looking++ != ']') /* get to rhs of rule */

 ;

 while (*looking++ != '=') /* get to rhs of rule */

 ;

 while (*looking) /* output info */

 add_to_output(*looking++);

 ++looking;

 if (*looking != '-') /* ie. no state change */

 current_state = *looking; /* update state */

#ifdef TESTING

printf("New state %d:",current_state);

#endif

}

/****************************** end find match ******************************/

/********************************* read tables ******************************/

/* **/

/* Title : Function: main_initialise

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Main initialisation for program - read in tables from disc.
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

Name the name of the file.

*/

/*

*/

/*
Return:

*/

/*

Nil.

*/

/* **/

void main_initialise(char *name)

 {

 FILE *fp;

 if ((fp = fopen(name,"rb")) == NULL) {

 printf("Fatal error! Cannot find file %s!",name);

 exit(NO_FILE);

 }

 read_version_number(fp);

 read_character_data(fp);

 read_wildcards(fp);

 read_decision(fp);

 read_main_tables(fp);

 fclose(fp);

}

/* **/

/* Title : Function : table_fault

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Fault occured in reading table. Report fault and exit.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fault_no the fault to be reported

*/

/*

*/

/*
Return:

*/

/*

Nil.

*/

/* **/

static void table_fault(int fault_no)

{

 printf("\n");

 switch (fault_no) {

 case VERSION_FAULT:

 printf("%%Error in reading version number!\n");

 break;

 case CHAR_FAULT:

 printf("%%Error in reading character data!\n");

 break;

 case WILD_FAULT:

 printf("%%Error in reading wild card data!\n");

 break;

 case DECISION_FAULT:

 printf("%%Error in reading decision tables!\n");

 break;

 case SIZE_FAULT:

 printf("%%Error in reading rule tables!\n");

 break;

 }

 printf("Aborting.\n");

 exit(fault_no);

}

/* **/

/* Title : Function: read_version_number

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify version number from program data file

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void.

*/

/* **/

static void read_version_number(FILE *fp)

{

 int version_number;

 if (fgetc(fp) != 17)

 table_fault(VERSION_FAULT);

 if (fgetc(fp) != 12)

 table_fault(VERSION_FAULT);

 if (fgetc(fp) != 8)

 table_fault(VERSION_FAULT);

 version_number = fgetc(fp);

#ifdef TESTING

printf("%d:",version_number);

#endif

}

/* **/

/* Title : Function: read_character_data

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify data for 256 characters.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void.

*/

/* **/

static void read_character_data(FILE *fp)

{

 register int i;

 register int chr;

 for (i = 0; i < 256; i++) {

 if ((chr = fgetc(fp)) == EOF)

 table_fault(CHAR_FAULT);

 else

 ch_info[i].input_trans = chr;

 if ((chr = fgetc(fp)) == EOF)

 table_fault(CHAR_FAULT);

 else

 ch_info[i].to_up = chr;

 if ((chr = fgetc(fp)) == EOF)

 table_fault(CHAR_FAULT);

 else

 ch_info[i].data = chr;

 }

}

/* **/

/* Title : read_wildcards

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify number of wildcards from program data file.
*/

/*

 Allocate memory and read and verify wildcard data.

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void

*/

/* **/

static void read_wildcards(FILE *fp)

{

 register int i;

 register int chr;

 if ((no_wilds = fgetc(fp)) == EOF)

 table_fault(WILD_FAULT);

 wild_tab = (char *) malloc(no_wilds*WILD_DATA);

#ifdef TESTING

printf("Wildcards:");

#endif

 for (i = 0; i < no_wilds*WILD_DATA; i++) {

 if ((chr = fgetc(fp)) == EOF)

 table_fault(WILD_FAULT);

 wild_tab[i] = chr;

#ifdef TESTING

printf("%c",chr);

#endif

 }

#ifdef TESTING

printf("\n");

#endif

}

/* **/

/* Title : Function: read_decision table

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify number of states and input classes from

*/

/*

 program data file.

*/

/*

 Allocate memory and read and verify decision table data.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void.

*/

/* **/

static void read_decision(FILE *fp)

{

 int i, j, chr;

 if ((no_states = fgetc(fp)) == EOF)

 table_fault(DECISION_FAULT);

 if ((no_input_classes = fgetc(fp)) == EOF)

 table_fault(DECISION_FAULT);

 decision_table = (char *) malloc(no_input_classes*no_states);

 for (i = 0; i < no_states; i++) {

#ifdef TESTING

printf("\n%d: ",i);

#endif

 for (j = 0; j < no_input_classes; j++) {

 if ((chr = fgetc(fp)) == EOF)

 table_fault(DECISION_FAULT);

 decision_table[i*no_input_classes+j] = chr;

#ifdef TESTING

printf("%d",chr);

#endif

 }

 }

}

/* **/

/* Title : Function: read_main tables

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read into table[] and verify exceptions from program data file.
*/

/*

 Build hash into table[] based on first character

*/

/*

 of focus [in brackets].

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void

*/

/* **/

static void read_main_tables(FILE *fp)

{

 register int i;

 register int chr;

 int start;

 for (i = 0; i < 256; i++)
/* initialise hash table */

 ch_info[i].hash = NOT_DEFINED;

 i = 0;

 table[i++] = 0;

/* at start of table have dummy NUL and

 new state */

 table[i++] = 1;

/* to ensure that algorithms work */

 while (!feof(fp)) {

 table[i++] = fgetc(fp);
/* input class */

 start = i;

 table[i++] = fgetc(fp);
/* length of entry */

 if (feof(fp))

 break;

 while ((table[i++] = fgetc(fp)) != '[')

/* skip over left context and '[' */

 ;

 table[i++] = chr = fgetc(fp);

/* first character of focus */

 if (ch_info[chr].hash == NOT_DEFINED) {

#ifdef TESTING

printf("%c%d:",chr,start);

#endif

 ch_info[chr].hash = start;

 }

/* read to the end of the line */

 while (table[i++] = fgetc(fp))

 if (feof(fp))

 break;

 table[i++] = fgetc(fp);
/* new state */

 if (i >= TAB_SIZE)

 table_fault(SIZE_FAULT);

 }

}

/***************************** end read tables ******************************/

The COM_LIB library contains additional data types to the normal C data types. ie.

UINT defined as an unsigned integer. (16bits).

UCHAR defined as an unsigned char.

STRING defined as a pointer of the type char*.

ULONG defined as an unsigned long integer. (32 bits).

The constants defined in the COM_LIB.H file are listed below:

define KB_ESC 0x01b /* Defines the ESC PC keyboard

character */

ACCU =0x60,
/* Addr of the DSP Accumulator */

ACCB =0x62,
/* Addr of the DSP Accumulator B*/

PREG =0x64,
/* Addr of the DSP Product Register */

ST0 =0x66,
/* Addr of the DSP ST0 register */

ST1 =0x67,
/* Addr of the DSP ST1 register */

TREG =0x68,
/* Addr of the DSP TREG register */

STACK =0x69,
/* Addr of DSP on-chip software stack */

ARX =0x71,
/* Addr of DSP Auxiliary Registers */

TIMER =0x74,
/* Addr of the DSP Timer register */

/* **/

/* Title : COM_LIB.CPP

*/

/* Author : Iain Murray

*/

/*
 Modified from Texas Instruments host library

*/

/* Purpose : Allows communication between host application

*/

/* and the DSP board.

*/

/*

*/

/*

*/

/* Date : 8 September 1998

*/

/* Version : 1.3

*/

/* ** */

#include "COM_LIB.H"

FILE *stream;

extern char appfile[];

/* app filename with .DSK extension
*/

extern int MSGRx=2,MSGRy=21;

/* x&y coordinates of messenger window */

extern UINT pcom=0;

/* commport address

*/

extern PARAMETER prm;

/* use these in main

*/

extern STRUCT_IMR imr;

/*
*/

/* --
*/

/* void InitializeMonitor(void)

*/

/*

*/

/* This function calls InitPort() and BaudRateDetect() to initialize the DSK
*/

/* environment. InitializeMonitor also calls InitMonitor() to load the DSK's
*/

/* vector table. If any errors occur during initialization it is reported to
*/

/* the messenger function named MSGR().

*/

/*

*/

/* Passed Arguments: none

*/

/* Returned value: none

*/

/* Modified: NO

*/

/*--
*/

void InitializeMonitor(void)

{

 InitPort();

 BaudRateDetect();

 delay(2);

 switch(InitMonitor()){

case NORESPONSE: MSGR("Didn't get response from DSP"); break;

case TESTERROR: MSGR("Didn't return right value"); break;

case NOESCAPE: MSGR("Didn't receive ESC from DSP"); break;

case GOOD: MSGR("DSK is functioning properly!");

 return;

 }

 delay(1000);

 exit(0);

}

/* ---
*/

/* void sendbyte(UINT)

*/

/*

*/

/* This function sends a byte (8-bits) to the DSK and waits for the echoed

*/

/* value. If the value is not equal to the sent value, then it reports the

*/

/* error to the messenger MSGR() with a "DSK did not receive correct data".
*/

/*

*/

/* Passed Arguments: 8-bit data of type UINT to be sent to DSK.

*/

/* Returned value: none, but reports errors to MSGR().

*/

/* Modified: YES

*/

/*---*/

void sendbyte(UINT send)

{

 WaitFor(XMT_BUF_EMPTY);

/* wait for buff empty
*/

 outportb(pcom,send);

/* send a byte
*/

 WaitFor(DATA_READY);

/* wait for data received
*/

 delay(1);

 UINT receive=inportb(pcom);

 if (receive != send)

 MSGR("DSK did not receive correct data. ");

}

/*---*/

/*

*/

/* UINT sendword(UINT)

*/

/*

*/

/* This function is the same as sendbyte except it sends the DSK two 8-bit

*/

/* words. It reports errors to the messenger with "DSK did not receive correct
*/

/* word." if an error occurs.

*/

/*

*/

/* Passed Arguments: 16-bit data of type UINT to be sent to DSK.

*/

/* Returned value: returns echoed value and report errors to the messenger.
*/

/* Modified: NO

*/

/*--*/

UINT sendword(UINT send)

{

 WaitFor(XMT_BUF_EMPTY);

/* wait for empty
*/

 UINT s1 = (send>>8)&0xff;

 outportb(pcom,s1);

/* send high byte of end address */

 WaitFor(DATA_READY);

/* wait for data received
*/

 delay(1);

 UINT receive=inportb(pcom);

 WaitFor(XMT_BUF_EMPTY);

 s1 = send&0xff;

 outportb(pcom,s1);

/* send low byte of end address*/

 WaitFor(DATA_READY);

/* wait for data received
*/

 delay(1);

 if((receive=(receive<<8)+inportb(pcom))!=send)

 MSGR("DSK did not receive correct word. ");

 return receive;

/* return sent word for check if

 necessary */

}

/*---*/

/*

*/

/* BOOLE FreeRun(UINT address)

*/

/*

*/

/* This function is a free run for the DSK. It sends the XG command to the DSK
*/

/* along with the starting address. The function sends a NULL to begin the

*/

/* Free Run and returns a Boolean NO.

*/

/*

*/

/* Passed Arguments: A 16-bit unsigned integer indicating the start address.
*/

/* Return value: Boolean NO where BOOLE can be NO or YES

*/

/* Modified: NO

*/

/*--*/

BOOLE FreeRun(UINT address)

{

 sendbyte(XG); sendword(address);

/* execute */

 outportb(pcom,NULL);

/* Startpulse */

 return NO;

}

/*--*/

/*

*/

/*void WaitFor(UINT)

*/

/*

*/

/* This function is a wait loop. It polls the PC's UART until the condition
*/

/* determined by the passed UINT is true. If the WaitFor loop expires then an
*/

/* error is reported to the messenger as "Wait loop finished in WaitFor()".
*/

/* Passed Arguments: Data of type UINT corresponding to certain UART

*/

/* conditions, such as, DATA_READY and XMT_BUF_EMPTY. These

*/

/* constants have values 0x1 and 0x20 respecively.

*/

/* Returned value: none, but reports timeout errors to the messenger.

*/

/* Modified: YES

*/

/*--*/

void WaitFor(UINT what)

{

 int j=5000,i=j;

 while(!(inportb(pcom+LSR) & what) && i--);

 if(i<1)

 MSGR("Wait loop finished in WaitFor() ");

}

/*---*/

/* void InitPort(void)

*/

/*

*/

/* This function resets the PC's UART and initializes it for the correct baud
*/

/* rate determined by the member prm.speed in the PARAMETER structure. The

*/

/* commport is seleced by the value of prm.com member. Constants BRDL and

*/

/* BRDH are used as the baud rate devisors for the low and high bytes

*/

/* respectively.The port is configured for 8 data bits, 2 stop bits and no parity.
*/

/* Passed Arguments: none

*/

/* Returned values: none

*/

/* Modified: No

*/

/*---*/

void InitPort(void)

{

 UINT COMADD[]={0x3f8, 0x2f8, 0x3e8, 0x2e8};

 int BRD=115200l/prm.speed;

 pcom = COMADD[prm.com];

 UINT port_no=pcom;

 asm mov DX,word ptr port_no

 asm add DX,3

 asm mov AL,0x87

/* SET BAUD access */

 asm out DX,AL

 asm sub DX,3

 asm mov AX,word ptr BRD

/* LO Set 19200 baud */

 asm out DX,AL

 asm add DX,1

 asm mov AL,byte ptr BRD

/* HI */

 asm xchg AL,AH

 asm out DX,AL

 asm sub DX,1

 asm add DX,3

 asm mov AL,0x7

/* CLR BAUD access... N-8-2 */

 asm out DX,AL

 asm out DX,AL

/* N-8-2 */

 asm mov DX,port_no

/* 0x3FC 0x2FC modem control

 register */

 asm add DX,5

/* check LINE_STATUS 0x2FD 0x3FD

 (+5)*/

xempty0:

 asm in AL,DX

 asm and AL,0x60

/* wait for DXR&TXR to empty before RST*/

 asm cmp AL,0x60

 asm jne xempty0

}

/*--*/

/* INITMONITOR InitMonitor(void)

*/

/*

*/

/* This function sends random data to test and compare the returned echo

*/

/* value. The DSK is then sent a break command (ESC) and reads the DSK's

*/

/* Int2,Trap and Reset vector values from the communication kernel's vector table
*/

/* Any errors are reported by return value.

*/

/*

*/

/* Passed Arguments: none

*/

/* Returned value: Returns value of type INITMONITOR which can be the

*/

/* following:

*/

/* NORESPONSE - Waited for echo. Timeout occurred

*/

/* TESTERROR - Echo value does not equal sent value
*/

/* NOESCAPE - did not receive echoed break

*/

/* GOOD - all test and transfers were OK

*/

/* Modified: NO

*/

/*--*/

INITMONITOR InitMonitor(void)

{

 int i=10000;

 int ans=inportb(pcom+LSR);

 while(!(ans & DATA_READY) && i)

{

/* data received? */

ans = inportb(pcom+LSR);

i--;

 }

 if(i<1)

 return NORESPONSE;

 if(inportb(pcom)!=KB_ESC)

 return NOESCAPE;

 UINT send=0x55;

/* test for reponse with random pattern */

 WaitFor(XMT_BUF_EMPTY);

/* wait for buff empty
*/

 outportb(pcom,send);

/* send a byte

*/

 WaitFor(DATA_READY);

/* wait for data received
*/

 delay(1);

 if (inportb(pcom)!=send)

 return TESTERROR;

 WaitFor(XMT_BUF_EMPTY);

/* wait for buff empty
*/

 outportb(pcom,(send=KB_ESC));

/* send a byte

*/

 WaitFor(DATA_READY);

/* wait for data received
*/

 delay(1);

 if (inportb(pcom)==send){

 return GOOD;

/* all tests are successful!
*/

 }

 return TESTERROR;

/* Failed test

*/

}

/*---*/

/*viod reset50(

)

*/

/*

*/

/* This functionPerforms the hardware reset on the DSK

*/

/* Modified: NO

*/

/*---*/

void reset50()

{

 UINT port_no=pcom;

 if(prm.INVERSE) {

/* do inverse DTR for reset of c50*/

 asm mov DX,word ptr port_no

/*modem control register 02FC 03FC */

 asm add DX,4

/* */

 asm mov AL,0xB

/* RTS=1, DTR=0 */

 asm out DX,AL

 delay(1);

 asm mov DX,word ptr port_no

/* modem control register

*/

 asm add DX,4

 asm mov AL,0xA

/* RTS=1, DTR=0
*/

 asm out DX,AL

 delay(1);

 asm mov DX,word ptr port_no

/* modem control register
*/

 asm add DX,4

 asm mov AL,0xB

/* RTS=1, DTR=0
*/

 asm out DX,AL

 delay(1);

 }

 else {

/* else we have hardware negate function

 from PC to c50*/

 asm mov DX,word ptr port_no

/* modem control register */

 asm add DX,4

 asm mov AL,0xA

/* RTS=1, DTR=0

*/

 asm out DX,AL

 delay(1);

 asm mov DX,word ptr port_no

/* modem control register

*/

 asm add DX,4

 asm mov AL,0xB

/* RTS=1, DTR=0

*/

 asm out DX,AL

 delay(1);

 asm mov DX,word ptr port_no

/* modem control register

*/

 asm add DX,4

 asm mov AL,0xA

/* RTS=1, DTR=0
*/

 asm out DX,AL

 delay(1);

 }

}

/*--*/

/* void BaudRateDetect(void)

*/

/*

*/

/* This function resets the 'C50 DSK by calling reset50(). It also sends test
*/

/* data to the DSK at the baud rate determined by the prm.speed value or

*/

/* command line argument -bxxxx. The DSK receives this word and calculates
*/

/* the appropriate baud rate.

*/

/*

*/

/* Passed Arguments: none

*/

/* Returned value: none

*/

/* Modified: YES

*/

/*---*/

void BaudRateDetect()

{

 reset50();

 delay(12);

 if(prm.speed<57600){

 while(!(inportb(pcom+LSR) & XMT_BUF_EMPTY));

 outportb(pcom,0x80);

/* write a byte to the com port (320c50) */

 }

 else

 outportb(pcom,0x80);

/* write a byte to the com port (320c50) */

}

/*--*/

/* UINT getwordcom(void)

*/

/*

*/

/* This function receives a word from the DSK. No parameters are passed to

*/

/* this function since it is used in conjunction with the sendcommand in-line
*/

/* function.

*/

/*

*/

/* Passed Arguments: none

*/

/* Returned value: received 16 bit unsigned integer

*/

/* Modified: NO

*/

/*---*/

UINT getwordcom(void)

{

 WaitFor(XMT_BUF_EMPTY);

 outportb(pcom,NULL);

/* write a NULL to the com port (320c50) */

 WaitFor(DATA_READY);

 delay(1);

 UINT high=inportb(pcom)<<8;

 outportb(pcom,NULL);

/* write a NULL to the com port (320c50) */

 WaitFor(DATA_READY);

 delay(1);

 high+=inportb(pcom);

 return high;

}

/*---*/

/*

*/

/* void InitRegister(BOOLE all)

*/

/*

*/

/* This function initializes the register inside the Digital Signal Processor.
*/

/* The IMR register is initalized for PC-to-DSK communication by sending the
*/

/* DSK members imr.add and imr.debug of the IMR structure. The InitRegister()
*/

/* function then places the pgm counter on the stack by sending the DSK member
*/

/* prm.PGM_CNT of the PARAMETER structure. The function will continue

*/

/* initializing the registers if passed a boolean YES. The additional

*/

/* registers will be initialized if InitRegister(YES) is called:

*/

/*

*/

/* Accumulator = 0

*/

/* Accumulator B = 0

*/

/* Product Register = 0

*/

/* ST0 = prm.INIT_ST0

*/

/* ST1 = prm.INIT_ST1

*/

/* Timer = 0xFFFF

*/

/* TREG = 0

*/

/* Stack is cleared to zero.

*/

/*

*/

/* Passed Arguments: BOOLE YES or BOOLE NO

*/

/* Returned value: none

*/

/* Modified: YES

*/

/*---*/

void InitRegister(BOOLE all)

{

 imr.add=4;

 imr.user=imr.debug=2;

 imr.modified=NO;

 SendDataWord(imr.add,imr.debug);

 SendDataWord(STACK,prm.PGM_CNT);

 if(!all)

 return;

 sendcommand(LD,ACCU,8);

 sendword(0);

/* Accu

*/

 sendword(0);

 sendword(0);

/* Accb

*/

 sendword(0);

 sendword(0);

/* Preg

*/

 sendword(0);

 sendword(prm.INIT_ST0);

 sendword(prm.INIT_ST1);

 SendDataWord(TIMER,0xffff);

/* TIMER

*/

 SendDataWord(TREG,0);

/* TREG

*/

 int i=10;

 sendcommand(LD,STACK+1,i);

 for(;i;i--){

 sendword(0);}

}

/*---*/

/* double LoadDsk(void)

*/

*/

*/

/* This function reads a .DSK file from current host directory and loads it to
*/

/* the DSK. The file pointer named *stream opens and reads data from a file
*/

/* determined by appfile[]="filename.dsk". If the file cannot be opened,

*/

/* "Cannot open Application file" will be reported to the messenger MSGR().
*/

/*

*/

/* Passed Arguments: none

*/

/* Returned value: -Double integer which corresponds to number of data words
*/

/* received.

*/

/* -This function also reports status to the messenger MSGR().
*/

/* The following are status reported to the messenger:

*/

/*

*/

/* "Loading complete" - complete & OK

*/

/* "Cannot open application file" - cannot open file
*/

/* "Corrupted Tag value in DSK file" - wrong file type
*/

/* Modified: YES

*/

/*--*/

double LoadDsk(void)

{

 char linebuf[MAXLINE], *pbuf=linebuf;

 UINT data[MAXLINE];

/* max 100. words to download
*/

 UINT numdata=0;

/* num of words to download
*/

 ULONG sumdata=0;

/* sum of all downloaded words
*/

 UINT address;

/* address for download
*/

 BOOLE program;

/* type: if program 'yes', no if data 'no'*/

 if ((stream = fopen(appfile, "r")) == NULL)

 {

MSGR("Cannot open Application file.");

fcloseall();

return 0;

 }

 while(1)

 {

 pbuf=fgets(linebuf,MAXLINE,stream);

 switch(*pbuf)

 {

case ':':

case NULL: fclose(stream);

 MSGR("Loading complete ");

 fcloseall();

 return 0;

case 'K': numdata=0;break;

case '9': address=GetDskAdd(pbuf+1);
 /* DSK for an address

*/

 switch(*(pbuf+5))

 {

 case '7': break;

 case 'M': program=NO; break;

 case 'B': program=YES; break;

 default : MSGR("Error 1: Corrupted Tag in DSK file");

return 0;

 }

 numdata=GetDskData(pbuf+5,data);

 sumdata +=numdata;

 break;

case '1': address=GetDskAdd(pbuf+1);
/* Entry address

*/

 if(address==0 || prm.PGM_CNT>0)

 break;

/* dska generates

 addr=0 if no entry defined*/

 else

 prm.PGM_CNT=address;

 break;

default : MSGR("Error: 'Corrupted tag value in DSK file");

 return 0;

 }

 if(numdata)

/* download line

*/

 {

 UINT i,cmd=(program==YES) ? LP:LD;

 sendcommand((c50COMMANDS) cmd,address,numdata);

 for(i=0;i<numdata;i++)

 sendword(data[i]);

 }

 }

}

/*--*/

/* UINT GetDskAdd(STRING pbuf)

*/

/*

*/

/* This function gets the address characters of a DSK file at pointer pbuf and
*/

/* converts them to an integer. This function is used when loading application
*/

/* files to the the target DSK.

*/

/*

*/

/* Passed Arguments: Pointer pbuf of type STRING.

*/

/* Returned value: 16-bit unsigned integer

*/

/* Modified: NO

*/

/*--*/

UINT GetDskAdd(STRING pbuf)

{

 UINT x=0,i=4;

 char c=*pbuf++;

 for(;i;i--,c=*pbuf++)

 {

 x =(x<<4) + c;

 if(isdigit(c))

 x -= '0';

 else

 x -= 'A'-10;

 }

 return x;

}

/*--*/

/* UINT GetDskData(STRING pbuf,UINT *data)

*/

/*

*/

/* This function converts the ASCII data pointed to by pbuf to integer format.
*/

/* The integer is stored to a location pointed to by *data. This function is
*/

/* used when reading ASCII DSK files and loading the target DSK.

*/

/*

*/

/* Passed Arguments: -Pointer of type STRING pointing to the location to read.
*/

/* -Pointer of type UINT pointing to the location to write
*/

/* after conversion.

*/

/* Returned value: 16-bit insigned integer indicating the number of data words
*/

/* converted.

*/

/* Modified: NO

*/

/*---*/

UINT GetDskData(STRING pbuf,UINT *data)

{

 UINT x,num=0,i;

 UCHAR c;

 while(*(pbuf++)!='7')

 {

 for(*data=0,i=4;i;i--)

 {

 c = *pbuf++;

 *data<<=4;

 if(isdigit(c))

 *data +=c-'0';

 else

 *data +=c-'A'+10;

 }

 data++;

 num++;

 }

 return num;

}

/*--*/

/* void GetArguments(void)

*/

/*

*/

/* The GetArguments() function reads the command line arguments of the host's
*/

/* application program. Command line arguments include Baud Rate (-b),

*/

/* Communication Port (-c) and inverse DTR line (-i). Command line arguments
*/

/* will override the initial values of members prm.speed, prm.com and

*/

/* prm.INVERSE of the PARAMETER structure.

*/

/*

*/

/* Passed Arguments: none

*/

/* Returned value: none

*/

/* Modified: NO

*/

/*--*/

void GetArguments(void)

{

 int i=0, c, k=0;

 extern char **_argv;

 extern int _argc;

 char *ptr, *endptr;

 for(i = 1; i < _argc; k=0, i++){

 while((c=_argv[i][k])!=0){

/* loop the entire argument
*/

 if((c=='-') || (c=='\\')){

 k++;

 c = _argv[i][k];

 }

 else{ return;}

 strupr(_argv[i]);

 switch(toupper(c)){

 case 'B': long sp=0;

while(isdigit(c=_argv[i][++k]))

 sp=sp*10+c-'0';

if((115200L % sp) == 0l)

 prm.speed=sp;

else

 MSGR("ERROR: Invalid baudrate\n");

break;

 case 'C': while(!isdigit(_argv[i][k])) k++;

switch((c=_argv[i][k++])){

 case '1':

 case '2': prm.com=c-'1';break;

 case '3': case '4': /* illegal in this version*

/

 default : MSGR("ERROR: Invalid comport\n");

}

break;

 case 'I': prm.INVERSE=NO;k++;break;

 }

 }

 }

}

/*--*/

/* void MSGR(char *message)

*/

/*

*/

/* This function is the system messenger. Error or status messages of up to 50
*/

/* characters can be sent to the messenger. The messages are display in a

*/

/* scrolling format in a 35x3 window. MSGRx and MSGRy are global variables

*/

/* which determine the X and Y coordinates of the window.

*/

/*

*/

/* Passed Arguments: pointer of type CHAR pointing to a message string.

*/

/* Returned value: none

*/

/* Modified: NO

*/

/*---*/

void MSGR(char *message)

{

movetext(MSGRx,MSGRy+1,MSGRx+35,MSGRy+1,MSGRx,MSGRy);

/* move text up one line

*/

movetext(MSGRx,MSGRy+2,MSGRx+35,MSGRy+2,MSGRx,MSGRy+1);

gotoxy(MSGRx,MSGRy+2);

cprintf("

 ");

gotoxy(MSGRx,MSGRy+2);cprintf("%s",message);

}

/*--*/

/* UCHAR rcvdata(int port_no)

*/

/*

*/

/* This function reads the commport specified by the passed integer and waits
*/

/* for a character to enter the UART. If a timeout error occurs the function
*/

/* will return a -1, otherwise it will return the character received.

*/

/*

*/

/* Passed Arguments: integer corresponding to the commport number.

*/

/* Returned value: returns data from UART.

*/

/* Modified: YES

*/

/*--*/

unsigned char rcvdata(int port_no)

{

 unsigned char c;

 asm mov DX,word ptr port_no

/* RECV a character*/

 asm add DX,5

/* check LINE_STATUS 0x2FD 0x3FD (+5)*/

 asm mov BX,4000

chkst:

 asm sub bx,1

 asm jz timerr

 asm in AL,DX

 asm and AL,061h

 asm cmp AL,061h

 asm jne chkst

/* wait for DRR & RSR to fill

*/

 asm sub DX,5

 asm in AL,DX

 asm mov byte ptr c,AL

 return(c);

timerr:

 return(-1);

}

Appendix VI: CCD Signals

[image: image34.png]

Figure 30: Three bright regions.

[image: image35.png]

Figure 31: CCD reference level on white paper.

[image: image36.wmf]Section

Break

Figure 32: Three "bright" dots, including section break.

[image: image37.png]

Figure 33: CCD image capture of three shadows.

[image: image38.png]

Figure 34: Single INT3 pulse.

[image: image39.png]

Figure 35: Multiple INT3 Pulses illustrating maximum scan rate.

[image: image40.png]

Figure 36: Timing of SI pulse and CCD analog output.

[image: image41.png]

Figure 37: CCD capture of two dots (1 and 3).

[image: image42.png]

Figure 38: 555 timer output and SI pulse.

Appendix VII: Miscellaneous Calculations

AIC CONFIGURATION

SFC clock frequency =
[image: image43.wmf]kHz

counterA

of

Contents

Freqency

Clock

Master

294

17

2

10

10

_

_

2

_

_

6

=

´

´

=

´

Equation 1: SFC frequency.

Conversion Frequency =
[image: image44.wmf]kHz

counterB

of

Contents

frequency

clock

SCF

8

.

9

30

10

294

_

_

_

_

3

=

´

=

Equation 2: Sample rate.

Shift Clock Frequency =
[image: image45.wmf]MHz

frequency

clock

Master

5

.

2

4

10

10

4

_

_

6

=

´

=

Equation 3: Shift clock frequency.

SI PULSE GENERATION

555 Timer

[image: image46.wmf]ms

Hz

F

k

k

C

R

R

Frequency

42

.

11

6

.

87

7

.

4

)

0

.

1

(

2

5

.

1

44

.

1

)

2

(

44

.

1

1

2

1

=

=

W

+

W

=

+

=

m

[image: image47.wmf]ms

F

k

C

R

TimeLow

ms

F

k

k

C

R

R

TimeHigh

25

.

3

)

7

.

4

)(

1

(

693

.

0

)

)(

(

693

.

0

14

.

8

)

7

.

4

)(

0

.

1

5

.

1

(

693

.

0

)

(

693

.

0

1

2

1

2

1

=

W

=

=

=

W

+

W

=

+

=

m

m

Equation 4 : 555 Timer calculations.

NOTE: Due to component tolerances actual timing was slightly over 10ms.

74LS221 Monostable multivibrator

Pulse width =
[image: image48.wmf]s

nF

k

R

C

Ln

R

C

out

t

EXT

EXT

EXT

EXT

w

m

8

.

37

)

7

.

4

)(

20

(

7

.

0

)

(

7

.

0

2

)

(

=

W

=

»

=

Equation 5 : Monostable Calculation (SI).
Appendix VIII: Major Parts List

[image: image49.wmf]Part

Supplier

Description

Qty

Cost

Total

Comments

TMS320C50 DSK

Memec EVB

DSP starter kit

1

289.00

$

289.00

$

TSL215

Memec EVB

128 Pixel CCD array

1

17.73

$

17.73

$

*

Curtin University

Camera housing

1

-

$

-

$

In house manufacture. No price given.

74LS31

Dick Smith Electronics

Delay element

1

1.25

$

1.25

$

74LS90

Dick Smith Electronics

Decade counter

2

0.95

$

1.90

$

74LS221

Dick Smith Electronics

Dual Monostable

2

1.50

$

3.00

$

74LS00

Dick Smith Electronics

Quad 2 I/p Nand

1

0.75

$

0.75

$

74HC74

Dick Smith Electronics

Dual D flipflop,edge trig

1

1.20

$

1.20

$

uA741

Dick Smith Electronics

Op amp

1

1.25

$

1.25

$

PT481F

RS Components

Filtered Photottransistor

1

1.25

$

1.25

$

GL480

RS Components

IR Emitter

1

1.33

$

1.33

$

LM555

Dick Smith Electronics

Timer

1

0.95

$

0.95

$

7805

Jaycar

5v regulator

1

1.95

$

1.95

$

7809

Jaycar

9v regulator

1

1.95

$

1.95

$

187-292

RS Components

500 ohm potentiometer

1

1.95

$

1.95

$

375-174

RS Components

2K ohm Potentiometer

1

1.95

$

1.95

$

*

Robotron

Code wheel assembly

1

-

$

Sample, no part no. or price available

*

Robotron

Selfoc lens

1

-

$

Sample, no part no. or price available

RR-0580

Jaycar

Resistor 2K2

3

0.30

$

0.90

$

Packs size=8

RR-0584

Jaycar

Resistor 3K3

1

0.30

$

0.30

$

Packs size=8

RR-0576

Jaycar

Resistor 1K5

1

0.30

$

0.30

$

Packs size=8

RR-0534

Jaycar

Resistor 26

1

0.30

$

0.30

$

Packs size=8

RR-0579

Jaycar

Resistor 2K

1

0.30

$

0.30

$

Packs size=8

RZ-6624

Jaycar

Capacitor 0.33uF

9

0.70

$

6.30

$

Tantalum

RZ-6636

Jaycar

Capacitor 4.7uF

1

0.70

$

0.70

$

Non polarised electrolytic

RM-7135

Jaycar

Capacitor 0.15uF

1

0.45

$

0.45

$

MKT miniture polyester

RG-5055

Jaycar

Capacitor 6.8nF

1

0.30

$

0.30

$

100v Greencap

RG-5012

Jaycar

Capacitor 1.2nF

1

0.30

$

0.30

$

100v Greencap

RG-5065

Jaycar

Capacitor .01uF

1

0.35

$

0.35

$

100v Greencap

337.91

$

Appendix IX: Braille Test Page and Cell Maps

replace this page with the Braille sample

Column One

Column Space
Column Two

DOT
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0

ONE
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

DOT
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0

TWO
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

DOT
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0

THREE
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

Table 10: Cell map dots 1,2,3,4,5,6 set.

Column One

Column Space
Column Two

DOT
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0

ONE
0
0
1
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

DOT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0

TWO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

DOT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0

THREE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

Table 11: Cell map dot 1,4,5,6 set.

Appendix X: The Prototype System

[image: image50.png]SZR 833

Host
Computer

Signal
Processing
Board

Figure 39: The prototype system.

� EMBED Visio.Drawing.4 ���

PAGE
i

[image: image52.wmf]Bootloader

(on-chip)

ROM

Interrupt Vectors

Debugger

Kernal

Program

User's

Program

External

Space

Block 0

Block 2

Reserved

by Kernal

Reserved

Reserved

Block 0

Block 1

Reserved by

Debugger Kernal

User's

Space

Memory-mapped

Registers

External

Space

Data

Program

0060h

0080h

0100h

0300h

0500h

0800h

0980h

2C00h

FFFFh

FFFFh

FE00h

2C00h

0980h

0840h

0800h

0000h

_970856666.vsd

_970943392.bin

_970947186.vsd

_970948080.unknown

_970944277.bin

_970863162.bin

_970941045.xls
Sheet1

		Part		Supplier		Description		Qty		Cost		Total		Comments

		TMS320C50 DSK		Memec EVB		DSP starter kit		1		$ 289.00		$ 289.00

		TSL215		Memec EVB		128 Pixel CCD array		1		$ 17.73		$ 17.73

		*		Curtin University		Camera housing		1		$ - 0		$ - 0		In house manufacture. No price given.

		74LS31		Dick Smith Electronics		Delay element		1		$ 1.25		$ 1.25

		74LS90		Dick Smith Electronics		Decade counter		2		$ 0.95		$ 1.90

		74LS221		Dick Smith Electronics		Dual Monostable		2		$ 1.50		$ 3.00

		74LS00		Dick Smith Electronics		Quad 2 I/p Nand		1		$ 0.75		$ 0.75

		74HC74		Dick Smith Electronics		Dual D flipflop,edge trig		1		$ 1.20		$ 1.20

		uA741		Dick Smith Electronics		Op amp		1		$ 1.25		$ 1.25

		PT481F		RS Components		Filtered Photottransistor		1		$ 1.25		$ 1.25

		GL480		RS Components		IR Emitter		1		$ 1.33		$ 1.33

		LM555		Dick Smith Electronics		Timer		1		$ 0.95		$ 0.95

		7805		Jaycar		5v regulator		1		$ 1.95		$ 1.95

		7809		Jaycar		9v regulator		1		$ 1.95		$ 1.95

		187-292		RS Components		500 ohm potentiometer		1		$ 1.95		$ 1.95

		375-174		RS Components		2K ohm Potentiometer		1		$ 1.95		$ 1.95

		*		Robotron		Code wheel assembly		1				$ - 0		Sample, no part no. or price available

		*		Robotron		Selfoc lens		1				$ - 0		Sample, no part no. or price available

		RR-0580		Jaycar		Resistor 2K2		3		$ 0.30		$ 0.90		Packs size=8

		RR-0584		Jaycar		Resistor 3K3		1		$ 0.30		$ 0.30		Packs size=8

		RR-0576		Jaycar		Resistor 1K5		1		$ 0.30		$ 0.30		Packs size=8

		RR-0534		Jaycar		Resistor 26		1		$ 0.30		$ 0.30		Packs size=8

		RR-0579		Jaycar		Resistor 2K		1		$ 0.30		$ 0.30		Packs size=8

		RZ-6624		Jaycar		Capacitor 0.33uF		9		$ 0.70		$ 6.30		Tantalum

		RZ-6636		Jaycar		Capacitor 4.7uF		1		$ 0.70		$ 0.70		Non polarised electrolytic

		RM-7135		Jaycar		Capacitor 0.15uF		1		$ 0.45		$ 0.45		MKT miniture polyester

		RG-5055		Jaycar		Capacitor 6.8nF		1		$ 0.30		$ 0.30		100v Greencap

		RG-5012		Jaycar		Capacitor 1.2nF		1		$ 0.30		$ 0.30		100v Greencap

		RG-5065		Jaycar		Capacitor .01uF		1		$ 0.35		$ 0.35		100v Greencap

												$ 337.91

Sheet2

		

Sheet3

		

_970860064.unknown

_969818063.unknown

_969818136.unknown

_969818139.unknown

_969818141.unknown

_970780777.bin

_969818140.unknown

_969818137.unknown

_969818134.unknown

_969818042.doc
[image: image1.png]Code Wheel

Photo-Detector Pair

Infra Red Emitter

Code Wheel

|

————
—

Infra Red Detector

_969818061.vsd

_969818033.unknown

