Abstract

The project outlined in this report was the design and development of new software to control an industrial robot system used by the company Aixtron AG. 

Based in Aachen, Germany, Aixtron AG are the world-leaders in the manufacture of MOCVD (Metal Oxide Chemical Vapour Deposition) systems. MOCVD is the process by which compound semiconductors (used in applications such as LEDs, solar cells and high efficiency transistors) are produced. The robot system is used in the MOCVD machine for the transportation of processed and unprocessed semiconductor material.

The control software was developed using a combination of COM+ objects, Visual Basic and Visual Basic Script (VBScript). In the project, the COM+ objects communicated directly to the physical hardware, the Visual Basic application hosted the scripts and the VBScript code used the COM+ objects to control the robot. A graphical user interface to the control software was also developed with HTML and VBScript. 

The end result of the project was a completely functional software package capable of controlling the robot system.
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Nomenclature

Acronyms

CACE

Computer Aided Control Environment

COM

Component Object Model

DMS 

DehnungMessStreifen – Strain Gauge

HBT 

Heterojunction Bipolar Transistor

HTML 
Hyper Text Mark-up Language

GUI 

Graphical User Interface

MOCVD 
Metal Oxide Chemical Vapour Deposition

MOVPE 
Metal Oxide Vapour Phase Epitaxy

pHEMT 
Pseudomorphic High Electron Mobility Transistor

PLC

Programmable Logic Controller

SLC

Small Logic Controller

Metric conversions

Torr – unit of pressure to measure partial vacuums (1/760 standard atmosphere)
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1.0 Introduction

The project undertaken was to design and develop software to control an industrial robot used by the company, Aixtron AG. The robot is used in the transportation of objects, automating previously human activities.

Upon initiation of the project, a robot system already existed complete with operational software. However, the control structure for the robot had been updated and the old software became obsolete. Therefore, new software had to be developed pertaining to the specifications of the updated control structure.

There were two main objectives for the project –

1. Develop new control software for the robot with the ability to perform all the same tasks as the old software.

2. Develop a user interface for the new control software.

The first objective, developing new control software for the “wafer handler” (the name given to the robot), was achieved by writing the software using a combination of COM+ objects, Visual Basic and Visual Basic script. A graphical user interface was also developed in HTML and VBScript during the course of this project.

1.1 Project overview

The wafer handler is a module in a larger system, a MOCVD (Metal Oxide Chemical Vapour Deposition) machine, which is the main product developed by Aixtron AG. The machines are capable of producing compound semiconductors used in LEDs, solar cells and transistors. The semiconductor material in the MOCVD machine is “grown” on substrates called wafers. The wafer handler is used primarily in the transportation of these wafers.

Since the development of the first wafer handler in the early 1990s, the wafer handler has not been significantly changed. However, the company commissioned an update of the robot in mid-2000 as a feasibility study. The control structure of the wafer handler was then subsequently improved.

When the project was begun in February 2001, the control structure had been completely updated, but no software had been written to run the wafer handler. The project was then started with the goal of developing the software to operate the robot.

1.2 Project Timeline and Milestones

There were several stages involved in accomplishing the project. The first stage was to become familiar with the MOCVD machine and the original wafer handler. This involved demonstrations of the respective machines in action, detailed discussions with technicians, assisting in the construction of wafer handler units and reading technical manuals and user guides.

The second stage was to conduct a detailed examination of the updated control structure and determine the workings of each component. This was achieved through discussions with the project leader, consultation of manuals and through experiments and exploration of the system.

The final stage was software development, where the code for the control of the wafer handler was written and the user interfaces designed.

1.3 Organization of Report

The next three chapters (2,3 and 4) represent the first stage of the project timeline – familiarisation with the MOCVD machine and the wafer handler. Chapter 2 outlines the background of Aixtron AG and introduces the MOCVD process and the significance of compound semiconductors. The third chapter presents an overview of the wafer handler detailing the physical components of the robot. In the fourth chapter, the original control structure is examined, discussing the reasons why the system required an update. Chapter five deals with the second stage – familiarisation of the updated control structure. This section explains the changes made to the control structure.

Chapter six, seven, eight and nine deals with the third stage – software development. Chapter six provides a general overview of the software design. Chapter seven deals with the scripting engine client application, chapter eight deals with the design of the scripts and chapter nine discusses the development of the user interface. The last section, chapter ten contains the conclusion and the recommendations for future work.

2.0 Background
2.1 Aixtron AG

Aixtron are the world market leaders, as well as the technological leaders in the manufacturing of MOCVD systems. These systems constructed by Aixtron are used in the production of compound semiconductors and ferroelectric or high--dielectric materials.

Founded in 1983 by Dr. Holger Juergensen and Kim Schindelhauer in Aachen, Germany (which still remains the base of operations), the company has grown rapidly to establish offices worldwide with representation in 15 countries. With the 100% acquisition of the Thomas Swan Scientific Equipment Research Division in September 1999, a majority shareholder position (70%) in Epigress AB in October 1999 and a 7.4% stake in J.I.P Electronics, Aixtron is cementing its place as the world leaders in the manufacture of MOCVD equipment. Aixtron also prides itself on their extensive customer support services for the maintenance and upgrading of existing systems.

Aixtron has sold over 500 systems worldwide since its inception, and with the recent opening of a new production facility in Herzogenrath, Aixtron’s future is looking bright. The new facility at Herzogenrath has greatly increased their production capacity to handle the escalating number of orders. Aixtron has also won several industry awards including the Technology Transfer Award in 1986 and the Innovation Award in 1988.

Aixtron has been a publicly listed company on the German Stock Exchange since 6th November 1997 when Aixtron launched its successful Initial Public Offering. Since the IPO, the share price has increased rapidly with news of continual growth and good earnings.

The products that can be created from the materials grown on Aixtron machines include ultra-high-brightness light emitting diodes (UHB-LEDs), laser diodes, heterojunction bipolar transistors (HBTs), pseudomorphic high electron mobility transistors (pHEMTs) and space solar cells. The applications for such products are infinite ranging from lighting and full colour displays to opto-electronic applications such as data storage devices (CD and DVD) and infrared imaging.

With growing world demand for Aixtron MOCVD systems comes the customer need for increased system size for greater production output. But as systems become larger, the requirement for system automation becomes more apparent. Handling individual wafers for a 35 x 2” (35 wafers each of 2” diameter) system by hand would become a tedious job for the operator. Therefore, this is the motivation behind the use of an automated wafer handler, which would take care of these jobs without human intervention other than the press of a button to start the process. Process Automation is the department in Aixtron that deals with the automation issues such as the wafer handler.

2.2 Compound Semiconductors

Whilst silicon is the most popular semiconductor material used to make electronic components currently, there is a category of semiconductors, Compound Semiconductors, which can perform functions well beyond the limits of the electrical properties of silicon.

Compound semiconductors are created by the combination of various elements in the Periodic Table. Although there are many possibilities, the most common material combinations come from group III and group V of the Periodic Table (called III-V Compound semiconductors). Examples of III-V compounds include Gallium Arsenide (GaAs), Indium Phosphide (InP) and Gallium Nitride (GaN).

Compound semiconductors are becoming more important in high complexity electronic components due to the fact that they have superior qualities over silicon. For instance, compound semiconductors can transmit data faster (switching speed). Also due to the fact that they have optoelectronic properties, they are able to convert energy to light (LEDs) and light to energy (Solar cells).

And the widespread demand for compound semiconductors is increasing rapidly. Lighting and signalling and full colour display technology has been given an overhaul with the introduction of ultra-high brightness LEDs and colour variety in LEDs (AlGaAs or AlGaInP for red to yellow/green light and (In)GaN for green and blue light). 

In the field of telecommunications and data communications, HBTs are being used in mobile telephones as high performance transistors and light sensors and light signal transmitters are being used in fibre optic networks. In the area of optoelectronics, diode lasers are becoming more commonly used and in the area of solar cells, high efficiency solar cells constructed from compound semiconductors are being used in hundreds of space applications.

2.3 The MOCVD Process

Metal Oxide Chemical Vapour Deposition (MOCVD) and Metal Organic Vapour Phase Epitaxy (MOVPE) are interchangeable terms used to describe the process by which thin solid films (usually compound semiconductors) are grown or deposited on solid substrates called wafers.

MOCVD is a complex process involving a series of gas phase and surface reactions. Firstly, the precursors or reagents (and dopants if necessary) are evaporated into a gas mixture and transported into the reactor, which has been pumped down to very low pressures. The gas mixture is then passed over a heated substrate. Under the high temperature conditions and lack of oxygen, the chemicals in the gas mixture decompose into their constituent atoms (pyrolysis) onto the surface of the substrate. The atoms deposited on the surface bond to the substrate and a crystalline layer is formed.

For example, tri-methyl Gallium, (CH3)3Ga and Arsine, AsH3 decompose to form layers of Gallium Arsenide. The overall reaction can be summarized by –
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Lastly, the remaining fragments (3CH4 gas in this case) of the decomposition reaction must be removed from the reactor. Desirable properties in precursors for successful application in the MOCVD process are:

· Precursor should be indefinitely stable at room temperature

· Vapour pressure between 1 and 200 Torr at room temperature

· Precursors should be readily pyrolysed on the hot substrate

· Inexpensive and easily synthesized on a large scale

· Precursors should be of low toxicity and other potential dangers such as pyrophoricity (spontaneous combustion on exposure to air) should be minimised

· Decomposition of the precursors should be clean with minimised carbon contamination (unintentional C doping)

3.0 The Wafer Handler

After the MOCVD process was examined, the next task of the project was to study the wafer handler to gain a familiarity of the system and what it does. A sound understanding of the wafer handler is required to write the control software, the goal of the project. Specifically, the knowledge about the wafer handler needed to write the software is listed below –

· Components of the wafer handler (Chapter 3.1 – 3.7)

· What the wafer handler does with respect to the interaction of the individual components (Chapter 3.7 – Sequences)

· How to interface and control the components of the wafer handler and gather input and output information (Chapter 4 and 5 – Control structures)

3.1 MOCVD System Overview

A typical MOCVD machine equipped with a wafer handler is divided up into four discrete modules as shown in figure 3.1. The machine consists of the following –

The E-Rack: contains the controls and fuses for all the electrical circuits within the system, as well as some temperature and pressure controllers.

The Gas Mixing System: controls the flow of gas into the reactor and the wafer handler through the use of devices such as mass flow controllers, bubblers and valves.

The Reactor: is where the actual MOCVD process takes place. The wafer handler places wafers into the reactor and the combinations of gases are fed into the reactor by the gas mixing system.

The Wafer Handler: is the module that loads and unloads wafers into the reactor.
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Figure 3.1 – Block Structure of the typical system
3.2 Purpose of the Wafer Handler

The purpose of the wafer handler is primarily to automate the loading and unloading of the wafers to and from the reactor. The wafer handler fulfils several objectives –

· The wafer handler eliminates the requirement for a human element in the loading and unloading sequences. This can be tedious work for larger systems and a human element is more prone to error than a machine.

· It reduces the amount of time needed for the loading and unloading sequences.

· The wafer handler makes the system more conducive to expansion in size (i.e. the number of wafers produced simultaneously) where it is not feasible to have a human operator managing the sequences manually. For instance, in large systems such as a 95 x 2 inch system, the manual loading and unloading of wafers out of the reactor would be more time consuming and costly than with the use of a wafer handler.

· The wafer handler also reduces the amount of particles entering the reactor leading to a cleaner environment for the epitaxy process.

Additionally from an economic standpoint, the wafer handler is much more advantageous in production systems where the goal is to produce as many high quality epitaxed wafers in the shortest possible time. The operator of the system need only start the process (via recipes) and the wafer management is taken care of by the robot. This means that the wafer handler will automatically load and unload wafers until the process is finished or there are no more wafers left.

3.3 Components of the wafer handler

The wafer handler consists of several key components. This is shown in the top down view of the physical structure of the machine in the figure 3.2.

The main areas of the wafer handler are –

i) The Robot Chamber – consists of the robot arm and its end effector. Attached to the chamber is a Pre-Aligner box containing the Pre-Aligner and the Cooling Station.

ii) The Elevator Chamber – which holds the cassettes and is separated from the robot chamber by a gas-tight elevator gate.

iii) The Reactor – connected to the robot chamber via a gas-tight reactor gate and contains the susceptor and recesses for the wafers.
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Figure 3.2 – Top down view of the wafer handler

3.4 The Robot Chamber

The robot chamber is the central unit within the wafer handler system linking the elevator chamber and the reactor via gas-tight gates. The actual chamber itself is a helium gas-tight metal cage that houses the robot arm, the pre-aligner and the cooling station.
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Figure 3.3 – View of the robot chamber and its components

Atmospheric pressure within the robot chamber can be varied by the pressure control and vacuum systems. These systems alter the pressure within the robot chamber to that of the reactor. The reactor gate cannot be opened unless the pressure in the reactor is lower than the pressure in the robot chamber.

3.4.1 The Robot Arm

The main component of the wafer handler is the single arm robot arm positioned in the center of the robot chamber. The robot arm has two main functions –

i) The transportation of wafers to different locations (ie. from the elevator chamber to the reactor), and

ii) The measurement of edges with an optical sensor.

The robot arm has the following structure –
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Figure 3.4 – Basic Structure of robot arm

Attached to the end of the upper limb is the end-effector consisting of a tongue and star to manipulate wafers (retrieval and release), an optical sensor for the measurement of edges, and a strain gauge and flow sensor for control purposes.

3.4.1.1 Movement of the Robot Arm

The robot arm has three axes of movement in space, equivalent to that of a cylindrical coordinate system. Any point in the robot space can be determined by –
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Figure 3.5 – Cylindrical Coordinate System

The rotation angle, , is relative to a base angle that represents the  axis. The z coordinate represents the height of the arm and the r coordinate represents the extension of the arm to the base of the end effector (not the tip).
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Figure 3.6 – Kinematics of the arm

The kinematics of the arm revolves around the hinges of the limbs. The base of the bottom limb rotates the entire arm to modify the angle,  (shown as the blue lines in figure 3.6). For an extension, the arm extends radially outward and the upper and bottom limbs always form an isosceles triangle (shown as the red outline in figure 3.6). The base of the triangle is the coordinate r.

In the actual robot coordinate system, the coordinates r,  and z are all represented in counts. A count is a convenient unit common to all three axes, but with different conversion factors to real world values such as distance (inches) and angle (degrees). For example, 1 degree = 100 counts and 1 inch = 1000 counts.

Using this coordinate system, the robot is taught pre-set coordinates in robot space called teachpoints, assigned to the letters of the alphabet. Teachpoints allow the robot arm to move to commonly used pre-defined locations such as the cooling station, reactor, or to a safe position by invoking a single command.

3.4.1.2 The End Effector

Whilst the robot arm can move, the end effector is required to pick up and drop wafers (using the tongue or star) and as a probing tool to gather information (strain, gas flow, optical edge measurements, etc). The end effector has the following components –
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Figure 3.7 – Components of the end effector

The Star – is used for the transportation of wafers between the pre-aligner and the reactor. To pick up a wafer, the star is positioned over the center of the wafer and slowly lowered. Upon a certain amount of contact with the wafer (determined by the DMS strain gauge), vacuums at the edge of the star activate, suck the wafer onto the star and hold it in place. With the wafer securely held underneath the star, the arm is slowly raised back to the initial position. Figure 3.7 shows the robot arm carrying a wafer to the reactor by the star.

The Tongue – is used for the transportation of wafers between the cooling station and pre-aligner to the elevator (cassette). The tongue also has a vacuum to keep the wafer stable during movement (particularly at higher speeds). To pick up a wafer using the tongue, the robot arm is positioned such that the tongue is underneath the wafer. The tongue vacuum is activated and the arm is slowly raised until the wafer is securely placed on the tongue. The distance the arm moves up from the underneath the wafer to pick it up is called the stroke value. Figure 3.8 shows the robot transporting a wafer via the tongue.


[image: image9.png]


Figure 3.8 – Transportation of wafers via the tongue

DMS Sensor – is a strain gauge measuring the amount of strain being applied to the end effector. This is significant when picking up the wafer via the star. The DMS sensor is able to detect pressure changes when the star is in contact or pressed against the wafer. The controller has two configuration variables regarding the DMS sensor –

· (DMScontact – determines the difference (() between the mean DMS value and the DMS value when contact is made with the star.

· (DMSpressed – is essentially the same as (DMScontact, but determines the difference when the star is pressed against the wafer.

These variables are modifiable by the user. During the wafer pick up procedure using the star, the vacuum is only enabled when the (DMSpressed value is reached. If the value is never reached, the vacuum is not activated and an error is returned.

MFM Sensor – the Mass Flow Meter sensor measures the amount of gas flow running through the end effector. This is significant to monitor and control the amount of gas flow available to the tongue and star vacuums. It is used to determine whether the star has successfully picked up a wafer.

Optical Sensor – the Keyence manufactured optical sensor is used in the measurement of wafer or reactor pocket edges. The optical sensor works by measuring the reflection of the laser from the surface and determining the brightness of the surface. Therefore, to measure an edge –


[image: image10.png]Chamber





Figure 3.9 – Edge measurement using the optical sensor

i) The optical sensor is first calibrated to the brightness levels of two surfaces. In the case of the example in figure 3.9, the surfaces are points A and B, the wafer and the chamber respectively.

ii) The sensor calculates the activation threshold level using the brightness levels of the two surfaces. Typically, this threshold level is half the brightness of A and B, i.e. (A + B)/2.

iii) Moving the sensor slowly from B to A, the sensor stops when the activation threshold level is reached. This usually occurs at the edge of the wafer or the pocket.

Inaccuracies may occur if the two surfaces are of similar brightness, or foreign objects lie between A and B. Therefore, great care is taken to ensure that the surfaces are of different levels of brightness and the area is suitably clean.

3.4.2 The Pre-Aligner

The pre-aligner is used to measure the misalignment of the wafer on the pre-aligner and then calculate the true center of the wafer. With the true center established, the wafer handler can then pick up the wafer using the end effector star. The pre-aligner is also used to position the flats of the wafer (because a wafer is not perfectly circular for reasons related to the homogeneity of the semiconductor growth layer in the MOCVD process).
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Figure 3.10 – The pre-aligner and cooling station

To measure the misalignment of the wafer, the pre-aligner uses a laser barrier connected above the robot chamber. The pre-aligner rotates the wafer at 10-degree increments making 36 measurements. The measurements are of the amount the wafer covers the laser barrier. The amount of coverage corresponds to the misalignment of the wafer, i.e. the greater the coverage, the greater the misalignment. The measurements are collected and put through an algorithm that calculates the offset of the true wafer center to the center of the pre-aligner.

The pre-aligner has a gap through the middle (as shown in the figure 3.10) allowing the tongue to pick up or place a wafer on the pre-aligner. Note that the pre-aligner must be rotated to the home position when the tongue is to be used. Otherwise, the gap may not be facing the robot and the tongue may collide with the pre-aligner instead.

3.4.3 The Cooling Station

The primary function of the cooling station is to allow the wafer to be exchanged from the star to the tongue. Like the pre-aligner, the cooling station also has a gap through the middle for the tongue. However, the cooling station does not rotate and remains stationary, gap always facing the robot.

The cooling station is mostly used during the unloading sequence. A wafer is picked up from the reactor using the star and deposited on the cooling station. The wafer is allowed time to cool before being picked up by the tongue and returned to the cassette.

A question remains on whether the pre-aligner can be used for both the role of cooling station as well as the pre-aligner. It is possible to do so, but then the wafer exchange sequence cannot be run. This is because during the exchange sequence, both the pre-aligner and the cooling station are used simultaneously. The loading and unloading sequence would work however.

3.5 The Elevator Chamber

The elevator chamber contains the cassettes (storage for the wafers) and its purpose is to position the cassettes (via an elevator) to a specific wafer location to be taken by the robot arm. The elevator contains two platforms and has one axis of movement (up/down). The chamber is a helium gas-tight compartment interfacing the robot chamber with the outside world.
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Figure 3.11 – Elevator Chamber (6” wafers)

The elevator chamber has a loading door for placing or retrieving cassettes from the elevator. The loading door locks in conjunction with the elevator gate to the robot chamber. The loading door can only be opened if the elevator gate is closed and the chamber has been purged of toxic gases.

The capacity of the elevator chamber for cassettes depends on the size of the wafers. For 2” wafers, the elevator chamber accommodates 6 cassettes, for 3” or 4” wafers, 4 cassettes and for 6” wafers, 2 cassettes. Each cassette is capable of storing up to 25 wafers. Figure 3.12 shows the configurations available.
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Figure 3.12 – Cassette configurations for different wafer size

The letters in the cassettes denote the teachpoint for the cassette in that particular configuration. In configurations larger than 2”, some letters are unused.

3.6 The Reactor

The planetary reactor is the main component of the MOCVD system. It is the place where the CVD process occurs and where wafers are epitaxed.
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Figure 3.13 – Model of the reactor

A more stripped down version of the reactor is shown in figure 3.14. In this figure, only the susceptor is exposed with the collector ring (that usually surrounds the susceptor) and much of the reactor housing uncovered.

The susceptor is responsible for the main rotation of the reactor, spinning around on its central axis. Pockets on the susceptor allow for the placement of smaller planetary disks called satellites. Depending on the configuration, the satellites contain one or more recesses where the wafers are positioned. The satellites also rotate around their central axis. The mark refers to the position of the first pocket and the rotation monitoring window is used by a laser to measure the rotation speed of the satellites during a process.
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Figure 3.14 – Susceptor components

3.7 Robot Sequences

The wafer handler’s task is the loading, unloading and exchanging of wafers between the elevator chamber and the reactor. This task is completed by way of sequences. There are six main sequences primarily used by the wafer handler – single load, single unload, single exchange, reactor load, reactor unload and reactor exchange. Also, an additional sequence is the tidy sequence, used to collect wafers from all possible locations and return them to an empty cassette in the event of a system failure.

3.7.1 Single Load Sequence

In a single load sequence (shown in figure 3.15), the susceptor rotates only if there is a wafer present on the current satellite. In this case, the susceptor rotates to the next free satellite (see wafer management in Appendix D).

1. The elevator is moved to the location of the nearest slot containing an unprocessed wafer. The robot arm then picks up the wafer with the tongue and retracts to a safe position. If there are no wafers in the cassette, the sequence exits.

2. The pre-aligner is rotated to its home position such that gap for the tongue is facing in line with the robot arm. The robot places the wafer onto the pre-aligner and it starts to measure the misalignment of the wafer on the pre-aligner. Once completed, the offset of the true center of the wafer is calculated with respect to the center of the pre-aligner.
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Figure 3.15 – Single load sequence

3. While the pre-aligner is measuring the misalignment, the robot moves to the empty satellite and conducts a four-point edge measurement of the pocket. The four points are used to calculate the true center of the pocket.

4. The robot picks up the wafer from the pre-aligner with the star and places it on the satellite. The robot arm then retracts to a safe position (robot chamber).

3.7.2 Single Unload Sequence
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Figure 3.16 – Single unload sequence

The susceptor only rotates if there is no processed wafer on the current satellite. If there are no processed wafers or no wafers at all in the reactor, the unload sequence does nothing.

1. The robot arm measures the true center of the pocket (as in step 3 of the loading sequence) using a four-point edge measurement.

2. The robot picks up the wafer from the satellite with the star and the arm retracts back into the robot chamber.

3. The robot places the wafer on the cooling station via the star. The end-effector tongue then picks up the wafer while the elevator moves the cassette to the next empty slot.

4. The wafer is then placed back into the cassette slot and the arm retracts to the robot chamber.

3.7.3 Single Exchange Sequence
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Figure 3.17 – Single exchange sequence

The exchange sequence is a combination of the loading and unloading sequences. The conditions for an exchange sequence are i) there is an unprocessed wafer in the cassette and, ii) there is a processed wafer in the reactor.

1. Firstly, the susceptor rotates to the next processed wafer and the elevator is moved to the location of the next slot containing an unprocessed wafer. The robot arm then picks up the wafer with the tongue and retracts to a safe position.

2. The pre-aligner is rotated to its home position. The robot places the wafer onto the pre-aligner and it starts to measure the misalignment of the wafer on the pre-aligner.

3. While the pre-aligner is measuring the misalignment, the robot moves to the current satellite and conducts a four-point edge measurement of the pocket. The four points are used to calculate the true center of the pocket.

4. The robot picks up the wafer from the satellite with the star and places it on the cooling station.

5. The robot then picks up the wafer with the tongue and transports it back to the empty cassette slot.

6. The robot picks up the wafer from the pre-aligner with the star and places it on the satellite. The robot arm then retracts to a safe position (robot chamber).

3.7.4 Reactor Sequences

The reactor load, unload and exchange sequences are essentially identical to the single wafer sequences except that all the wafers in the reactor are loaded, unloaded or exchanged.

Reactor Load – the sequence runs through every satellite on the susceptor and checks if there is a wafer on the satellite. If the current satellite is empty, a single load sequence is started. Otherwise, the sequence moves directly to the next satellite.

Reactor Unload/Exchange – the sequence runs through every satellite on the susceptor and checks if there is a wafer on the satellite. If the current satellite is filled and has been processed, then a single unload/exchange sequence is started. Otherwise, the sequence moves to the next satellite.

3.7.5 Robot Tidy Sequence

In the event of a system or power failure, the wafer tracking information regarding the location of all the wafers in the machine is lost. The robot tidy sequence is called after a failure to clean up any wafers left in the system. Two assumptions are made regarding the tidy sequence – i) there is an empty cassette in the elevator, and ii) there are no wafers on the tongue or the star (due to the absence of the tongue/star vacuum).

The sequence cycles through all the possible locations wafers could be and returns them back into the empty cassette – the pre-aligner, cooling station and every satellite on the susceptor.

4.0 Existing Control Structure

The original control structure was examined so that comparisons could be made with the updated control structure and to justify the reasons for why the update was conducted.

4.1 Structure Overview

To interface the wafer handler hardware components with the user and the rest of the MOCVD system, the existing control structure was organised hierarchically. At the top layer is the user interface (in the form of a graphical application) and at the bottom layer are the actual controllers to the physical devices. The existing control structure for the wafer handler is shown in figure 4.1.
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Figure 4.1 – Existing control structure hierarchy
4.2 IBM-PC and CACE

The personal computer is the main user interface to the MOCVD system. From this station, the complete process (including all the wafer handler procedures required) can be controlled. This is achieved using the CACE (Computer Aided Control Environment) software; a Windows based application able to control the entire system.

Using this centralised control environment, most of the devices that make up the wafer handler can be manipulated. However, changes to the configuration of the cassettes (i.e. full, empty, variable number of wafers in the cassette) cannot be made from the CACE screen. Rather, this can only be done using PanelView.
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Figure 4.2 – Wafer handler control section of the CACE screen

[image: image21.png][EeE]  Bution

(Green pressed / Blue depressed)

Pump Green on / Blue off)
3

or [aawor Fieldfo disploy
Read ou)

- Opensdt
el

© tomnication  Alarm
(Filed on / Empty off)

5ot [C3]  Fieldfor data ety
et Poin)




Figure 4.3 – CACE controls
Figure 4.2 shows the graphical interface of a typical module in CACE (in this case it is the wafer handling module) and figure 4.3 gives a brief explanation for the symbols used. As seen in figure 4.2, there are buttons for the necessary wafer handling sequences – WaferLoad, WaferUnload, WafExchange and RobotTidy. The TotalReactor button is a toggle between single wafer and full reactor sequences. When in the inactive state (blue), the sequences are valid for single wafers only. When activated, the sequences are valid for the whole reactor.

Although the loading and unloading process of the wafer handler can be handled manually either using the buttons on the CACE screen or with PanelView, the CACE software also offers to further automate the process with the use of recipes. Similar to scripts, recipes are written in code and interpreted by CACE, which then sends commands down to the system devices as prescribed by the recipes. Not only do recipes help automate a system; they are also used to control the timing and interaction of its components. [Operator’s Manual, 2000]

4.3 The PLC Layer

The Programmable Logic Controller (PLC) is connected to the IBM-PC and CACE via an Ethernet network. The PLC is used for the communication between the separate modules of the MOCVD system and the centralised controller (CACE).

The primary duty of the PLC is to interpret and translate commands from CACE and send them down to the relevant module. For example, if the user requested for a single wafer load sequence from CACE, the PLC would receive, translate and redirect the command to the Reactor SLC, which is the module encompassing all wafer handler and susceptor procedures. The PLC also works in the reverse direction, delivering status information from the lower levels to CACE.

4.4 The SLC Layer

At the Small Logic Controller (SLC) layer, commands are processed bi-directionally. Status information is sent up to the PLC and operating instructions from CACE or PanelView are sent down to the appropriate devices. There are SLCs for every major module in the system, but the relevant module for the wafer handler is the Reactor SLC. As mentioned earlier, the Reactor SLC is the controller that encompasses all robot and susceptor operations.

Commands are passed down to the Reactor SLC from either CACE or PanelView (Operator console). Upon receipt of any instructions, the Reactor SLC either executes the commands directly or redirects the command to the Robot IPC. Instructions handled and controlled by the SLC are –

· Main rotation of the susceptor

· Robot vacuum system

· Reactor and robot chamber switching valves (loading doors and gates)

· Robot chamber and reactor status data (loading doors and gates, susceptor position etc)

· PanelView is controlled entirely by the Reactor SLC (including wafer configuration data)

Instructions transferred to the Robot IPC are –

· Robot arm and elevator movements

· Pre-aligner rotation and measurements

· End-effector sensor data (strain gauge, flow sensor and optical sensor)

Additionally, the Robot IPC is able to transmit commands to the Reactor SLC to control the main rotation of the susceptor. The SLC communicates with the PLC over a Data Highway Plus (DH+) network and communicates with the Robot IPC and PanelView over a Data Highway 485 (DH 485) network. These networks are Allen-Bradley manufactured industrial local area networks designed for factory-floor applications. The DH+ network can connect 64 nodes and is used for the remote programming of logic controllers. The DH 485 network is a scaled down version of the DH+ and can connect up to 32 devices.

4.5 PanelView

The PanelView operating console is a physical device attached on an exterior panel next to the elevator chamber. The device consists of a flat-screen display with buttons (function keys, numeric keypad and arrow keys) arranged around the screen. Figure 4.4 shows the typical PanelView screen (the numeric keypad and arrow keys have been removed and are usually located to the right of the screen).
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Figure 4.4 – Typical screen on a PanelView console (Wafer Handling mask)
The PanelView console allows the same functions as CACE. Therefore, as in the case with CACE, the user is able to exercise complete control over the wafer handler from PanelView (as shown in the Wafer Handling mask in figure 4.4). The PanelView console however has greater functionality in that preliminary wafer configuration data (the initial allocation of wafers in each cassette) can only be set in PanelView. PanelView also displays status information (errors, state of doors/gates, satellite positions, etc) as well as wafer management information (location of wafers).

PanelView is controlled completely by the Reactor SLC. The console itself is only an interface and a display unit.

4.6 Robot IPC

The Robot Industrial PC (IPC) controls the sequences for the loading, unloading and exchange process of the wafer handler. The Industrial PC is a typical IBM-compatible machine with additional fail-safe hardware to cope with rigorous industry conditions.

The IPC accepts commands from the Reactor SLC. For any issued command (for example, a single wafer load), the sequence for the command is stored in script-like files readable using the Sequence Language (SQS) software. The SQS software interprets the sequence files into control instructions to be sent to the robot controller or the pre-aligner.

The IPC is able to directly control the pre-aligner. However, the robot arm and the elevator is operated directly by the robot controller and the IPC only issues instructions to the controller over a RS-232 standard serial link. The IPC also evaluates signals obtained by the flow sensor and strain gauge.

Other duties carried out by the IPC are wafer management, which involves determining the location of all the wafers in the system at any given time, and various mathematical calculations such as the evaluation of the center of a wafer given four edge measurements.

In summary, the IPC is responsible for –

· Interpretation of the wafer handler sequences using sequence language (SQS)

· Communication to the robot controller

· Control of the pre-aligner (rotation and measurements)

· Communication with the Reactor SLC to receive and issue instructions

· Evaluation of the strain gauge (DMS) and flow sensor (MFM) signals

· Wafer management

· Calculations

4.7 Robot Controller

A controller manufactured by PRI Automation (Equipe Division) allows the control of the robot arm and the elevator. The controller itself is connected by serial (RS-232) to the IPC. This way, the user is able to manipulate the robot by sending commands to the PRI robot controller via the serial cable. The control scheme is shown in figure 4.5.
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Figure 4.5 – Robot Controller Scheme
The PRI controller (also known as an ESC – Equipe Smart Controller) is a Class 1 clean room-compatible device that provides control for the robot and elevator servomotors, power supplies and diagnostics. [PRI Automation, 1999]
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Figure 4.6 – PRI Robot Controller
The controller consists of several components –

· CPU Board: powered by a 386 processor and containing EPROMs, Non-Volatile Static RAM (NVSRAM), and conventional RAM.

· Motion Control Board: manufactured by Galil Inc., controls and monitors all motion within the robot environment.

· Input / Output Board: provides input and output facilities (at least eight)

The PRI controller has inherent commands for the robot and elevator for basic movements and the storage/retrieval of data. Furthermore, the controller has the ability to store macros written using the inherent low-level commands of the controller (which do more than just robot movement, but can also control logic flow). The low-level commands and Firmware are stored in the EPROM and the macros are stored in the NVSRAM. The NVSRAM also stores the important parameter (speed settings, acceleration, software limits etc) and coordinate (teach points, offsets, strokes, etc) files.

The teach pendant provides an additional interface to the robot in the form of a handheld terminal. The teach pendant has two modes of operation – Terminal mode and Teach mode. In Terminal mode, low-level commands and macros can be executed using the alphabetic and numeric keypads. In Teach mode, the robot can be directly controlled using the directional keys. Teach points can also be stored in this mode.
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Figure 4.7 – Teach Pendant

4.7.1 Controller Commands and Macros

The PRI controller can process both low-level commands and macros.

4.7.1.1 Low-level Commands

The low-level commands contain the set of routines that control robot motion and control logic flow in macros. A few examples of each type of command and a brief explanation of the operation of each command follow.

4.7.1.2 Motion Control Commands

These commands also encompass the specific commands that are related to the movement of the robot such as teach point coordinates and stroke values. Commonly used commands are shown in the table.

	Command & Syntax
	Example
	Description

	ABM
	ABM
	Abort all motion

	MOVA axis, position
	MOVA T, 200
	Move Absolute - Moves theta axis 200 counts from zero position.

	MOVR axis, position
	MOVA T, 100
	Move Relative - Moves theta axis 100 counts from current position.

	RCS station
	RCS A
	Read Coordinate Setting - Reads coordinates (t, r, z) for station A

	SVON axis
	SVON Z
	Switch on Servo motor - for Z axis


Table 4.1 – Robot controller motion control commands

4.7.1.3 Logic Flow Commands

These commands are primarily used within macros in conjunction with variables and macro parameters.

	Command & Syntax
	Example
	Description

	CMP

operand, operand
	CMP C1, C2
	Compare - Compares variable C1 with C2

	JPG label
	JPG 5000
	Jump Greater than zero - used with CMP jumps to label 5000 if > 0

	JPZ label
	JPZ 2200
	Jump equal to zero - used with CMP jumps to label 2200 if = 0

	LABEL label
	LABEL 4000
	Label - Labels that line 4000

	NTOS number, string, radix
	NTOS R2, S1, 16
	Convert Numeric (R2) to String stored in S1 with radix 16


Table 4.2 – Robot controller logic flow commands

4.7.1.4 Macros

Macros are essentially a combination of low-level commands run sequentially. However, the PRI controller also supports the declaration and invocation of variables, making macros more powerful than just a list of commands run one after the other. Examples of macros used for the wafer handler are shown in the table.

	Command & Syntax
	Example
	Description

	REATP TP, TP
	REATP N, N
	Read Teachpoint - reads the coordinate teachpoint N in (t, r, z)

	CGETC
	CGETC
	Get wafer from cassette with tongue

	ELPOS TP,TP,Slot,Slot
	ELPOS A,A,1,1
	Elevator Position - to teachpoint A, slot 1

	REAOF TP,TP
	REAOF O,O
	Read Offset - reads the offset for teachpoint O in (t,r,z)

	RELAX
	RELAX
	Retracts the robot arm to safe position


Table 4.3 – Robot controller macros

Note that in the macros that require a teachpoint as a parameter, the teachpoint has to be entered twice. This is one of the conditions within all the macros that stipulate strict checking of teachpoints and coordinates (where coordinates are required, the sum of all the coordinates must also be entered). These conditions are in place to avoid -

i) Human errors – accidents in key presses, untrained operators etc

ii) Machine errors – bit errors during communication can drastically alter values

4.7.2 Controller Responses

The robot controller evokes standard responses from its low-level commands. Any read command (for example, Read Current Position – RCP) will return a response of theta, radius, zeta in robot coordinates, eg. 20774, -9078, 220.

The status of the robot can be checked using the STAT command. This will return a 16-bit word in hexadecimal format. Below is a list describing the meaning of each bit in the STAT response.

	Bit
	Description

	0
	Previous command not executed

	1
	Previous command invalid

	2
	Vacuum sensor is activated

	3
	Vacuum switch is on

	
	

	4
	Motor error on one or more axis

	5
	One or more limit switches are triggered

	6
	One or more axes are not homed

	7
	Error on last alignment

	
	

	8
	Running Macro

	9
	One or more axes are moving

	10
	Servo off on one or more axes

	11
	Error on COM2

	
	

	12
	Unused (Always 1)

	13
	NV-SRAM error

	14
	Controller error

	15
	Error on COM1


The standard status response when the robot is idle or has just completed a task successfully is hexadecimal 1008 (or binary 0001 0000 0000 1000). This means bit 3 (Vacuum is on) and bit 12 (Unused) are active.

The status of the robot can be checked to determine proper operation of the robot and is a good means of troubleshooting. For instance, if the robot failed in the execution of a command, the STAT command could be invoked to determine a starting point for determining the error.

4.8 Control Structure Limitations

The current control structure for the wafer handler has some limitations. There are also aspects of the system which are outdated or where improvements can be made.

Hierarchical Organisation – the structure of the current system is hierarchical. To access the robot controller from CACE, data must pass through the RS-232 serial cable, the DH 485 network, the DH+ network and the Ethernet network. If there were communication errors on just one of the transmission media, the data would be lost. Therefore an improvement to the structure of the system would be to reduce the number of layers between the user and the end-device and make the structure more horizontal.

Distributed I/O – the input/output information of the wafer handler is located in different areas of the system. The Robot IPC has information regarding the pre-aligner, the strain gauge and the flow sensor, while the Reactor SLC has information regarding the alignment of the susceptor, the state of doors and gates etc. Centralised I/O would be an improvement in order to make finding information easier.

DOS Based Software – the IPC uses completely DOS based software (eg. SQS sequence language). DOS based applications could offer compatibility and upgrade issues if new devices were to be added to the system. As other areas of the system have been updated to Windows (eg. CACE), this software should also be phased out and revised.

4.9 Improvement Goals

In upgrading the control structure of the system, the goal would be to develop a system with a more horizontal architecture, centralised I/O and Windows-based software.
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Figure 4.8 – Control structure goal

Figure 4.8 shows a graphical representation of the ideal control structure. There is a controller for each module of the system (eg. wafer handler, reactor, etc). The device layer is a common, centralised location for the devices in that module. The user operates the IBM-PC, which sends commands onto the Ethernet. The controllers accept the commands off the Ethernet and then execute them immediately. Meanwhile status information is being sent from the device layer back to the user where it is displayed.

5.0 Updated Control Structure

5.1 Structure Overview

The updated control structure aims to overcome the limitations and problems of the existing control structure as described in section 4.8. The horizontal architecture goal is only partially achieved because of the fact that only the wafer handler was being updated. The other modules of the CVD system have remained unaltered. As a result, the updated control structure represents a transitional phase for improving the entire system. By updating the control structure of the wafer handler successfully, it proves that the new concepts are viable. Figure 5.1 shows the diagram of the updated control structure.
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Figure 5.1 – Updated control structure
Much of the system is unaffected by the changes. The IBM-PC still uses the CACE software as a tool for centralized control. The operation of the PLC and SLCs are also unchanged as these units belong to the other modules of the CVD system. However, what has been altered is the addition of a ControlLogix system and the centralized device layer. The PanelView console and the Industrial PC have also been removed and replaced by a single Panel PC (IBM-PC with a touch screen facility) connected via Ethernet to the ControlLogix system. The robot controller is the same as previously, connected to the Panel PC via a RS-232 serial cable.

Whilst not fulfilling the complete horizontal architecture as stated in the improvement goals in section 4.9, the control structure has at least removed one layer (IPC and PanelView console layer) and consolidated the other improvement goals (centralized I/O and Windows based software).

5.2 ControlLogix

ControlLogix is an Allen Bradley manufactured control system designed for flexibility and customisation. The ControlLogix control system implemented in the wafer handler consists of the following components –

Logix 5550 Processor Module – is the heart of the control system. The processor module replaces the old Reactor SLC and provides seamless integration with the rest of the system. The RSLogix 5000 software package is used to program the processor to give the same functionality as the Reactor SLC. Additionally, new programs were written to control the pre-aligner (substituting the Logix 5550 processor for the IPC pre-aligner control software). The processor is able to handle up to 250 I/O connections and provides modular, upgradeable user memory (64KB to 7.5MB).

ControlNet Communication Interface Module – establishes communications across a ControlNet network and the ControlLogix system. The ControlNet network is a field bus type network used to connect factory floor devices (such as SLCs and industrial computers). The wafer handler uses the ControlNet bus to connect the centralized device layer to ControlLogix.

Ethernet Communication Interface Module – establishes communications between ControlLogix and an Ethernet network.

The communication interface modules interpret and translate data signals for use with the Logix 5550 processor (for input data) or for the specific network protocol (for output data). For example, Ethernet data packets are converted into signals that can be used by ControlLogix (and vice versa).

One of the advantages of the ControlLogix system is the ability to access every part of the network from any location through the communication interface modules. For example, a node located on the Ethernet can access the status of devices on ControlNet, data being routed through the Ethernet and ControlNet communication interface modules.

The interconnections of modules and external devices is shown in figure 5.2 –
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Figure 5.2 – ControlLogix module interconnections
5.3 Device Layer

As shown in figure 5.2, the device layer is connected to ControlLogix through the ControlNet network. The actual device layer is a collection of interlinked bus terminals for input and output. Devices such as sensors (for input) and physical valves and switches (for output) are connected to these terminals. The structure of the bus terminal interface is shown in figure 5.3.
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Figure 5.3 – Arrangement of device layer

At the ends of the device layer are the ControlNet bus coupler and the bus end terminal. The bus end terminal signifies the endpoint of the device layer and the bus coupler links the interface with the ControlNet network.

There are a total of 48 digital input and output channels (12 terminals each), 8 analogue input channels, 2 analogue output channels, a single resistance bridge input and a 100kHz up/down counter.

5.4 Panel PC

The Panel PC is a regular IBM compatible machine with touch screen functionality (though this is not necessary). Replacing most of the operations of the Industrial PC, the Panel PC is responsible for the interpretation of the wafer handler sequences (using scripting code), communication to the robot controller and ControlLogix (Logix 5550 processor and device layer), wafer management and calculations. The Panel PC also replaces the PanelView console with an HTML software version of it. From the Panel PC, a user can also completely operate the wafer handler using an additional graphical user interface that was specifically designed for the development and troubleshooting of the software.

The subsequent chapters deal with the software of the Panel PC and how they interact with each other and control the wafer handler.

6.0 Control Software Development

The design and development of the control software and the user interfaces were the main goals of the project. The detailed examination of the wafer handler and its control structure (both original and updated) provided the background and prior knowledge that was needed to create the software.

This software was developed because of the change in control structure. Along with the industrial PC, the old DOS software was no longer being used and a replacement had to be designed. Additionally, all the software was written for use with the Panel PC.

6.1 Requirements Definition

The software must provide complete control of the wafer handler with exactly the same functionality as the software in the old control structure (except for any gas related components which are beyond the scope of the project).

6.1.1 Requirements Specification

1. The software should first be able to communicate to all components of the wafer handler (robot controller, pre-aligner and susceptor) and control them.

2. The wafer handler should be able to perform load, unload and exchange sequences (for both single wafer and full reactor).

3. The wafer handler should be able to perform robot tidy sequences.

4. All wafers in the system should be tracked, accounted for and managed.

6.2 Design Constraints

Upon initiation of the project, the control structure had already been updated. Software had also been developed externally (outsourced to a software engineering company). The developed software was a set of language independent COM+ objects. Collectively, the set of objects has the following capabilities –

1.) Communication with the robot controller, and the ability to issue commands to the robot arm and the elevator.

2.) Communication with ControlLogix, and the ability to issue commands to the pre-aligner and susceptor, and gather input/output information.

3.) A scripting engine, with the ability to execute scripts written in Jscript and VBScript.

4.) Tracing facility, with the ability to trace commands issued to the other COM+ objects.

Independently, these COM+ objects aren’t particularly useful as they can each only control specific sections of the wafer handler. The objects are also discrete entities and have no connections to each other (except for the trace object, which works on threads), thus cannot work together without another application to organise them. Therefore, these objects alone are not able to fulfil the requirements of controlling the wafer handler.

The constraint on the design of the control software was that the COM+ objects had to be utilised. The constraint was imposed due to the fact that there was not enough time during the course of the project to design new software to interface with the physical devices. Additionally, the COM+ objects were already operational (despite having many software bugs) and functioned properly to a certain extent. During the project, the COM+ objects were frequently modified to meet the requirements of the project.

6.3 Analysis of the COM+ Objects

Before embarking on the design of the control software, an analysis of the COM+ objects already developed was first necessary to determine in detail their characteristics and capabilities. It was required that the objects were used in the software design, thus knowledge of their operation was of paramount importance. However, before an analysis into the workings of the objects can proceed, a brief introduction into the concept of COM+ objects is required.

6.3.1 Introduction to COM+ Objects

The Component Object Model (COM) is a software architecture developed by Microsoft that allows applications to be built from binary software components. COM objects are language independent in that objects can be developed and used by any programming language. COM+ is a merging of COM with other Microsoft technologies – DCOM (distributed COM) and MTS (Microsoft Transaction Server).

A component is a self-describing program that can be used in conjunction with other components. When run concurrently with each other, each component is able to understand the capabilities and characteristics of the other components. Therefore, it is possible to build an entirely new application by re-using already existing components.

COM+ objects contain one or more classes that describe objects and the methods or actions that can be performed on the objects. Each class exposes an interface, which describes its own properties. Because COM+ objects are language neutral, any programming language (C/C++, Java, Visual Basic etc) that supports the COM/COM+ interface can create instances of the objects and use its methods. Also, the objects are pre-compiled and can be used dynamically during execution of the program (similar to a Dynamic Link Libraries).

COM+ is an improvement on its predecessor COM, adding a new set of system services for application components during execution. One such improvement is the event registry that allows components to publish the occurrence of an event and also allows other components to subscribe to be notified when that event occurs. For example, an event could be a user request to execute a robot sequence. When this event takes place, the component receiving the event can notify any other subscribing components.

6.3.2 Wafer Handler COM+ Objects

At the beginning of the project, there were six main COM+ objects already developed for the wafer handler. These objects were 1.) AixScriptServer, 2.) AixTrace, 3.) AixRobotController, 4.) AixOPCServer, 5.) AixSLCServer, and 6.) AixPreAlignerServer. Each one is discussed in further detail below.

6.3.2.1 AixScriptServer COM+ Object

The AixScriptServer COM+ object exposes the scripting engine (a version of Microsoft Script Control), which supports both VBScript and Jscript. AixScriptServer allows scripts (as a text buffer) to be loaded into the engine. If the scripts contain functions, the script is compiled into an internal memory location where AixScriptServer allows the execution of the functions. Otherwise, the script is executed immediately upon loading.

The AixScriptServer object has the following features and properties –

· Support for the embedding of external COM+ objects within script, with the facility to sink and catch events thrown by the objects.

· Functions loaded from scripts are exposed globally within AixScriptServer.

· Instances of objects created within script can be added to a global registry so that they are visible anywhere within the scripting environment.

· In the event of an error during either the compilation of script functions or during run-time, error information is traced and recorded in the trace database.

· A trace log of all activities by AixScriptServer is recorded in the trace database.

· Events can be raised from within script to the scripting engine.

6.3.2.2 AixTrace COM+ Object

The AixTrace object provides a mechanism for recording trace logs and error information from within all the wafer handler COM+ objects. The information is stored in a Microsoft Access database specifying the time, date, trace caller (module name e.g. AixScriptServer) and the trace information. The other COM+ objects create an instance of the AixTrace object internally when they have information to relay, so there is no need to create this object independently.

6.3.2.3 AixRobotController COM+ Object

The robot controller is connected to the Panel PC via a serial cable. There is a standard interface provided by PRI Automation that can be used to communicate to the controller from the PC, but a customised interface (the AixRobotController COM+ object) was created instead. This was because the standard interface was not compatible with the other COM+ objects and lacked some important services (for example error tracing and logging).

The main goal of the AixRobotController object is to provide complete communication between the Panel PC and the robot controller. There are several main objectives to achieve this goal –

· Safe transmission across the physical communication medium (RS-232 serial cable) and the reliable execution of low-level commands and macros by the robot controller. Reliable execution implies the detection of communication problems, timeout checks and the acquisition of robot controller responses.

· Monitoring and reporting of the status of the robot controller. This means the determination of initialisation, job and response statuses.

· The tracing and logging of all information (normal communication and errors)

The AixRobotController module also supports the simulation of the controller in the absence of a real robot controller. This provides the opportunity for using the AixRobotController module and a testing tool for the simulation of scenarios not usually attainable during the normal operation of the robot controller (for example various error conditions that could cause damage if tested on the real system).

6.3.2.4 AixOPCServer COM+ Object

The AixOPCServer COM+ object establishes communications between the Panel PC and ControlLogix. The AixOPCServer module has simple functions enabling it to retrieve and set values of inputs and outputs in the device layer. The object interface exposes to main functions – GetValue and SetValue. Calls to these functions are typically followed by the tag name of the device and the set value (or variable to store the value).

6.3.2.5 AixSLCServer and AixPreAlignerServer COM+ Objects

Both of these modules are derived from the AixOPCServer object, as they both rely on it to communicate with ControlLogix. The AixPreAlignerServer interface exposes functions related to the movement and measurement of the pre-aligner (initialisation, misalignment measurement, pre-aligner positioning) while the AixSLCServer interface has functions regarding susceptor rotation and sequence notification from CACE (a robot sequence button has been pressed in CACE).

These objects are not absolutely essential as the functions exposed by the objects are generally made up of calls to the AixOPCServer. However, these objects are useful in that the functions remove abstract complexity in the future and also make clear distinctions between the susceptor and the pre-aligner functions.

6.4 Architectural Considerations

With the analysis of the COM+ objects complete, the task now is to determine a design architecture for specifying the control software. From the context diagram in figure, it can be seen that the COM+ objects are currently arranged in no particular structure. In fact, the objects do not even communicate with each other. So the question is how should the objects be connected and organised?
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Figure 6.1 – System context diagram (Initial design stage)

There are several possible options. The obvious option would be to build an integrated application in C/C++ (or any other programming language) that creates instances of and uses the COM+ objects to implement the wafer handler sequences. This is shown in the context diagram below (note that the AixScriptServer object has been discarded in this architecture) –
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Figure 6.2 – Proposed system context diagram (Single control application)

The main advantage of this architecture is that it is straightforward. Build an application integrating a set of COM+ objects to control a robot system and then generate a user-interface (in Windows using Microsoft foundation classes for example). However, this architecture lacks simple upgradability. For every change to the software that is made, the control application has to be re-compiled. This would have made testing the software a laborious procedure if there were frequent errors.

The preferred option was to use the AixScriptServer object as a scripting engine and use scripts to create instances of the other COM+ objects and subsequently implement the robot sequences. This architecture trades off complexity for simple upgradability. The scripts are not compiled; rather they are translated to machine language dynamically during execution. Therefore, the scripts can be easily modified and upgraded. Furthermore, using script allows more efficient testing and troubleshooting (there is no need to re-compile the code after every alteration). This design architecture was decided as the most suitable for the project.

The AixScriptServer object is able to host the scripts and allows the execution of script functions. However, AixScriptServer is simply an object and does not expose a user-interface. It therefore requires another application to create an instance of the AixScriptServer object and provide an interface between the user and the scripting engine (A script engine client / interface). The context diagram for this architecture is shown in figure.
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Figure 6.3 – Proposed system context diagram (Scripting engine)

6.5 Detailed Software Design

From the context diagram in figure, two separate software modules that need to be developed can be identified – 1.) The scripting engine client / interface and 2.) The scripts.

The next chapter will focus on the design of the scripting engine client and the subsequent chapter will focus on the development of the scripts.

7.0 Scripting Engine Client Design

The scripting engine client was the first task in the detailed design of the control software. The motivation behind the scripting engine client was the fact that the AixScriptServer object cannot do anything without an application to invoke its methods. In other words, the AixScriptServer object needs to be controlled by a client application. Futhermore, the client application is not autonomous and must expose a user interface (so it can be controlled by the user).

7.1 Initial Requirements Specification

The scripting engine client is a stand-alone application that essentially forms the front-end interface for the AixScriptServer COM+ object. The application must be able to perform the following duties (in no particular order) –

· Create an instance of the AixScriptServer object and be capable of using all the properties and methods of the object.

· The application should be able to start and shut down the scripting engine.

· There should be support for both VBScript and Jscript.

· The application should have a facility allowing users to load scripts into the scripting engine. If the scripts are not arranged into functions, the scripts should be executed immediately.

· If the scripts loaded into the scripting engine are arranged into functions, the application should display a list of the functions on screen. The user should then be able to select a function and execute it.

· The application should have a facility to reset the scripts already loaded into the scripting engine (clear the memory buffer).

· Any output information from command acknowledgements, errors and script execution should be displayed on screen.

· Users should be able to exit from the application.

Creating an instance of the AixScriptServer COM+ object and exploiting its methods and properties should prove to be no great difficulty as most of the current commercially available programming languages support COM/COM+ objects to a certain degree. The problem here is to create an intuitive and user-friendly interface to the AixScriptServer object that is also functional. Apart from creating the COM+ object, the interface is the most important part of the client application.

7.2 Basic User Interface

Based on the requirements specification, a plan of the basic user interface was developed. The intended display of the program would follow a standard Windows interface, incorporating a Graphical User Interface (GUI). The GUI should have large intuitive buttons for user input and text boxes for program output. This would make the software extremely easy to learn with minimal documentation. A basic design of the display based on these requirements is shown in the figure below –
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Figure 7.1 – Initial scripting engine client display

7.3 Rudimentary Description of Operation

Before the detailed software specification stage, a brief digression must be made describing in abstract terms how the application should operate. 

From figure 7.1, the buttons on the right represent the standard functions of the scripting engine. There are two buttons with the label Start Server, one to start the engine initialised to host scripts in VBScript and the other button to start the engine initialised to host scripts in Jscript. The Stop Server button should shut down the scripting engine and Exit should quit the application.

The Load VBScript and Load Jscript buttons should open up dialog boxes to open the respective script files (*.vbs or *.js). Upon the selection of a file, the application should read the file into a text buffer and parse it for subroutines. Any subroutine should be placed into the list box with the label List of Subroutines. The text buffer should then be added as script code into the scripting engine. The Reset Code button should clear the scripting engine of any previously loaded script code.

Double-clicking on any subroutine entry in the List of Subroutines list box should execute the function immediately (with no arguments). Subroutines that require arguments to run will not be executed correctly. Any output messages should be displayed in the Info text box.

7.4 Detailed Specification

From the basic layout and description of operation of the application, a more detailed specification of the software can be developed. Firstly, a table of events and the actions that handle the events is described in the following table –

	Event
	Object
	Flags
	Actions
	Messages

	 
	 
	 
	 
	 

	Mouse Down
	Start Server
	EngineStopped
	Start scripting engine
	Scripting engine started

	 
	(VBScript)
	 
	Set language to VBScript
	Language set to VBScript

	 
	 
	 
	Set EngineStarted flag
	 

	Mouse Down
	Start Server
	EngineStarted
	-
	Scripting engine already started

	 
	(VBScript)
	 
	 
	 

	Mouse Down
	Start Server
	EngineStopped
	Start scripting engine
	Scripting engine started

	 
	(Jscript)
	 
	Set language to JScript
	Language set to Jscript

	 
	 
	 
	Set EngineStarted flag
	 

	Mouse Down
	Start Server
	EngineStarted
	-
	Scripting engine already started

	 
	(Jscript)
	 
	 
	 

	Mouse Down
	Load VBScript
	EngineStarted
	Load *.vbs file into buffer
	Loading VBScript….

	 
	 
	 
	Add buffer to engine
	<Filename.vbs>

	 
	 
	 
	Add functions to list box
	Script loaded

	Mouse Down
	Load VBScript
	EngineStopped
	-
	Scripting engine offline

	Mouse Down
	Load Jscript
	EngineStarted
	Load *.js file into buffer
	Loading Jscript….

	 
	 
	 
	Add buffer to engine
	<Filename.js>

	 
	 
	 
	Add functions to list box
	Script loaded

	Mouse Down
	Load Jscript
	EngineStopped
	-
	Scripting engine offline

	Mouse Down
	Reset Code
	EngineStarted
	Reset code in engine
	Code reset.

	 
	 
	 
	Clear function list box
	 

	Mouse Down
	Reset Code
	EngineStopped
	-
	Scripting engine offline

	Mouse Down
	Stop Server
	EngineStarted
	Stop scripting engine
	Script engine shut down

	 
	 
	 
	Clear function list box
	 

	 
	 
	 
	Set EngineStopped flag
	 

	Mouse Down
	Stop Server
	EngineStopped
	-
	Scripting engine offline

	 
	 
	 
	 
	 

	Mouse Down
	List Box Element
	-
	Select function
	-

	 
	 
	 
	 
	 

	Double Click
	List Box Element
	-
	Execute function (with
	Script output

	 
	 
	 
	no arguments)
	 


Table 7.1 – Event handler table

The event handler table shows that the application has only two states of operation, 1.) The scripting engine is offline and 2.) The scripting engine is running. Using the event handler table as a guide, flow charts for the functions invoked when the events take place were then developed. These flow charts are shown in figure 7.2.


[image: image34.png]anqyo s s
Smdzosusya
oo e Bl

xoq i vioyy
suoomy w1

ed =
papeIgaUBuy
T
xog 351
=30
T
aufiug
Smduag doig

anogs ap vy

vogauny sy

o e
oy
ooy anptscy

aurey
wonouny 139

G910 190)
uawarg

s0g 157

B é\ o

sansag doig

E_;EEE
sy |

i [
sy [0
o

Ca

Famlg
soa é\ o

apop gasay

poase
s s o
Tagpng et g

Jr—
Jares poagna
o

g et
on g peey.

g ydoss
et sy

o

3p00 PPV
I

s0g 1511 0

suonaung ppy

suonoung
apd asrd

a1 pEay
=

e

ﬁ/é& o

=0g S0RIq
4 vadg
—

gy

Famlg
soa é\ o

(aduosy
3d5dA)
105 peo

oeado st
s Byduss
e a5 o1

gy
103dmsas

190 +1H0D
ponet ey

aup=
papeIgaUBuy

afensue a5

aufiug
Bunduag peig

Famlg
sS4 é\ o

s
JEC 0N
Taniag IS





Figure 7.2 – Scripting engine flowcharts

7.5 Programming Considerations

The scripting engine client was developed in the Microsoft Visual Basic environment because of the easy and accessible nature in which Visual Basic can wrap applications around COM/COM+ objects. The AixScriptServer object needed only to be referenced and created once as a global object for it to be used. 

The Visual Basic environment also supports the rapid development of simple GUIs. For a low complexity standalone application such as the scripting engine client, Visual Basic was perhaps the ideal environment. Writing the code for the first version of the client application was not a difficult task due to the existence of a design specification and the ease of the programming language.

7.6 Testing and Troubleshooting

The scripting engine client was extensively tested during the development of the scripts. This was because all scripts had to be tested using this application, as there was no other way to make the AixScriptServer COM+ object host the scripts. Overall, the client application proved to be robust, relatively fast and very simple to use. 

During the period of time that the client application was used, an error as a direct result of the application occurred only once. This error was discovered when functions with long time durations to complete (in excess of one minute) were executed. The error was due to not setting the timeout property of the AixScriptServer object. The default timeout was one minute and anytime a function exceeded the timeout, the scripting engine would simply cancel the execution of the function. Increasing the timeout to a large enough value easily solved this problem.

7.7 Revisions to Version 1.0

Changes to the initial design were mainly cosmetic and were intended to make the application more appropriate for use with the control scripts. The revision was made during the evolution of the scripts to make them easier to test. Figure 7.3 shows the display of the modified client application (Version 1.1). An outline of the major changes are summarised in the points below –

· The client application now only supports VBScript code. During the initial design of the scripting engine client application, the scripting language had not been decided. Therefore, the option was there for both VBScript and Jscript. However, as development on the scripts reached the coding stage, VBScript had become officially adopted as the scripting language, thus the Jscript option was no longer required.

· Instead of loading the script files individually, the Load All Scripts button was implemented. Pressing this button scanned a fixed (pre-determined) directory for VBScript files (*.vbs) and loaded them all into the scripting engine. At the conclusion of the project, there were ten script files that had to be loaded to control the wafer handler. Loading the ten files individually every time the software was started would have been a time wasting exercise. Therefore, to save time the Load All Scripts button was developed.

· The Init Robot button simply executes the script initialisation functions for the wafer handler (see section 8.5) in the correct order. This button was implemented to save the user time manually running the initialisation functions individually.
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Figure 7.3 – Scripting engine client application Version 1.1
The code for the scripting engine client application can be found on the attached disc under the directory /Scripting Engine Client. 

8.0 Script Design and Development

Having developed an application client for the scripting engine, the scripts themselves now needed to be designed. If the COM+ objects represent the raw communication to the wafer handler components (robot arm, pre-aligner, etc), then the scripts represent the recipes detailing the interaction of the components with each other.

8.1 Requirements Specification

The requirements of the scripts are very similar to the overall control software requirements outlined in the specification section 6.1.2.

1.) Scripts should first establish communication with the COM+ objects.

2.) Scripts should be able to initialise the robot controller and pre-aligner.

3.) The robot sequences (single/reactor load, unload, exchange and tidy) should be implemented by the scripts.

4.) All the wafers in the system should be tracked, accounted for and managed (Wafer management). 

8.2 Function-oriented Software Design

In the pre-development stage of the script design, a decision had to be made regarding the script software design approach. The function-oriented approach was deemed the most suitable as the system had many properties that fit with the function-oriented model. Firstly the system responds to a single input and the responses are not dependent on previous inputs. Secondly, there are a minimal number of states in the system making the function-oriented approach very appropriate.
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Figure 8.1 – Function-oriented design

In function-oriented software design, the system is decomposed into a set of interacting functions with a centralised system state shared by all the functions. In the script software, the shared system state is the idle state (when the system is waiting for an input). 

All the script functions are loaded into the scripting host (AixScriptServer). Any function that has been loaded is callable from the scripting host (in the idle state) because all the functions have equal priority (all functions are global).

8.3 COM+ Object Communication

The first task in the software design of the scripts was to establish communication with the COM+ objects and through them, the physical devices of the wafer handler. The scripting host (AixScriptServer) has a facility for embedding COM/COM+ objects into script (via the CreateObject command). This means that the COM+ objects (with the exception of the AixScriptServer) can be individually created in script. 

It was also desired that the COM+ objects have global scope and are visible anywhere in the scripts. Another feature of the scripting host is the ability to add script objects to a global registry (via the AddObject command). Therefore, the COM+ objects declared in script can be easily added to this registry, providing them with global scope.

Establishing communication to the COM+ objects thus requires a single function that firstly creates instances of the objects (CreateObject), and then gives them global scope (AddObject).

8.4 Information Storage using Object Classes

The next task was to decide on a method of preserving information and storing data globally (and locally) in script. Global variables could be used to implement information storage, but they are generally messy to code and increasing the number of variables could also lead to confusion and inefficiency in programming.

It was decided that two global object classes and one local object class would be used for information storage. With these objects, the stored information is associated with classes to improve variable identification. The global object classes are the 1.) Wafer management class and 2.) Configuration module class, and the local object class is the 3.) Coordinate memory (End effector) class. 

There should only be a single, global, object instance of the wafer management and configuration module classes in the scripts. The scopes of both these objects are global, and the properties and information stored within these objects are visible and accessible from any function in the scripts. 

On the other hand, there can be many instances of the coordinate memory class. The local coordinate memory class is instantiated any time a function requires internal (i.e. within script) coordinate data. The scope of the coordinate memory class is therefore local and visible only within the function that created the object instance of the class. The purpose of a local object class, as opposed to local variables, is the re-use factor of the coordinate memory class. Instead of declaring the same set of variables in different functions (for cylindrical robot coordinates, each function must declare integer variables theta, radius and zeta), the coordinate memory class requires only a single declaration for every set of coordinates required. Also, the coordinate memory class is helpful in conversions (for example, converting the theta angle from counts to degrees).

Each of the object classes were described in an object model, which has the following format –
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Figure 8.2 – Class object model template

Attributes describe the visible properties of the object and are used to store variable data. Examples of attributes are vehicle speed, fuel level, temperature etc. Services are operations that the object can perform (typically using the attributes). For example, a service could be a graph generator using values obtained from an attribute array. 

8.4.1 Coordinate Memory Class

The coordinate memory class is used for the local storage of coordinate data. During calculations, coordinate information needs to be stored and manipulated. Local variables are inefficient for this purpose due to multiple re-use of coordinate data. Hence it was decided to use of an object class to fulfil the requirements. The coordinate memory class has the following object model –
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Figure 8.3 – Coordinate memory class object model

8.4.1.1 Class Attributes and Services

The robot coordinates [rtp,ttp,ztp] are the cylindrical coordinates of the robot arm generated and used by the robot controller (as shown in section 3.4.1.1). The coordinates are all expressed in counts.

In robot coordinates [rtp,ttp,ztp], the extension radius (rtp) is measured as the length of the base of the isosceles triangle formed by the upper and lower limbs (as shown in figure 3.6). This excludes the length of the end-effector arm, which is important in circle center calculations. Also in robot coordinates, the angle theta (ttp) is expressed in counts rather than degrees (or radians). Angles expressed in counts are not suitable for calculations. Therefore internal coordinates [r,t] were implemented, converting the radius and theta of the robot coordinates into coordinates that can be specifically used for calculations. The vertical translation (ztp) is not affected.

When it is necessary to pick up the wafer with the star, an offset must be added to the calculated center of the wafer. The star coordinates [rstar, tstar] add the star offset to the radius such that rstar = rtp + star offset. The theta value, tstar, is exactly the same as in the robot coordinates (ttp), but is added for consistency. Again the vertical translation is unaffected.

The conversions are summarised in the table below –

	Coordinates
	Radius
	Theta
	Zeta

	Robot (rtp,ttp,ztp)
	rtp
	ttp
	ztp

	Internal (r,t)
	rtp + ArmLength
	ttp/100
	ztp

	Star (rstar,tstar)
	rtp + StarOffset
	ttp
	ztp


Table 8.1 – Coordinate memory attribute conversions

The only service available for this class object is Enter new robot coordinates. As the name suggests, this service allows quick robot coordinate entry without having to specify each value independently.

8.4.2 Configuration Module Class

The configuration module class is used for the storage of global configuration information specific to the type of system being used (for example, the number of satellites in the susceptor, the number of cassettes etc). This class adds robustness to the software as it can be used in wafer handler systems with different specifications (for example different wafer sizes – 2”, 3”, 4” or 6”). 

The object model for the configuration module class is shown in the figure below –
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Figure 8.4 – Configuration module class object model

8.4.2.1 Class Attributes and Services

The configuration module class has no services. It is an object intended only for the storage of information. The attribute NumSatellites corresponds to the number of satellites on the susceptor. NumCassettes is the maximum number of cassettes available in the elevator and CassetteSize is the number of wafer slots in each cassette.

The CassetteConfig and VariableSize attributes are entered when the operator loads the cassettes into the elevator. CassetteConfig is a one-dimensional array that stores the configuration of each available cassette. There 4 discrete number of configurations available – 1.) Cassette is full, 2.) Cassette is empty, 3.) Cassette is partially full and 4.) There is no cassette (i.e. empty cassette space). VariableSize is also a one-dimensional array that stores the initial number of wafers in each available cassette. These attributes are required to provide the initial state (number and location) of all the wafers in the system.

8.4.3 Wafer Management Class

The wafer management class is intended to be responsible for tracking the location of all the wafers in the system at any time of operation. Through the tracking of the wafers, the wafer management class should also be able to determine whether actions performed by the robot are valid. For example, if there is already a wafer on a particular recess, wafer management should make sure that it is not possible to place another wafer there. Wafer management must also track the state of wafers (whether the wafers are unprocessed or epitaxed). The object model for the class is shown below –
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Figure 8.5 – Wafer management class object model

8.4.3.1 Class Attributes and Services

The attributes OnStar, OnTongue, OnPA and OnCoolingStation are Boolean variables (true or false) indicating the presence of a wafer on the star, the tongue, the pre-aligner and the cooling station respectively.

The CassetteFree (CassNum, SlotNum) attribute is a two-dimensional array storing the status of every slot in every cassette. For example, calling CassetteFree(1,12) provides the current status of the 12th slot in cassette 1. The elements of the array are tri-state – 1.) True if there is an unprocessed wafer in the slot, 2.) False if the slot is empty and 3.) Epitaxed if there is a processed wafer in the slot. The RecessFree (RecessNum) attribute is the same except that the array is one-dimensional and stores the status of every recess in the reactor. For example, calling RecessFree(4) provides the current status of the 4th recess. 

The services for this class, NextFreeSlot, NextDoneWafer, NextFreeRecess and NextNewWafer provide pointers to positions within the CassetteFree and RecessFree arrays. Each service sorts through one of the arrays in search of a particular status. If a status is found, then the position of the element in the array is outputted. If a status is not found, then a “Not Available” message is outputted. A description of the services is shown in the table below –

	Service
	Sorts Through
	Searches For
	Description

	NextFreeRecess
	ReccessFree
	FALSE
	Outputs the location of next vacant recess

	NextDoneWafer
	ReccessFree
	EPITAXED
	Outputs the location of next epitaxed wafer in reactor

	NextFreeSlot
	CassetteFree
	FALSE
	Outputs the location of the next vacant cassette slot

	NextNewWafer
	CassetteFree
	TRUE
	Outputs the location of the next unprocessed wafer


Table 8.2 – Wafer management class services

8.5 Initialisation Functions

The third task in the script design was to develop routines to initialise the system. The initialisation functions are collectively defined as the routines that are performed during robot start-up, directly before normal operation. At this point, the machine has been switched on, the scripting host started and the scripts loaded into memory. 

The initialisation functions consists of six stages –

1.) Establish communication with the COM+ objects (as described earlier)

2.) Create global object instances (Configuration module and wafer management objects)

3.) Initialise the robot controller (using inbuilt controller routine)

4.) Initialise the pre-aligner (using pre-aligner synchronisation routine)

5.) Initialise wafer management (set up arrays and attributes such that there are no wafers in the system)

The functions are processed sequentially in this order during the initialisation process. Each stage is already quite explicit and is sufficiently detailed enough to code directly without further elaboration.

8.6 Sequence Functions – Top Down Function-oriented Design

Lastly, the sequence functions that actually operate the wafer handler need to be addressed. The sequence functions are the core procedures that perform the robot sequences as described in section 3.7. It was decided that a top down approach to designing these set of functions would be the most appropriate method.

The purpose of the top down approach for software design is the systematic decomposition of abstractions. At the top layer, the level of abstraction is high and as the design delves deeper into detail, the abstraction is reduced and the functions become more explicit. Using this approach, the functions are hierarchically arranged such that the higher layer procedures derive much (if not all) of their operation from lower layer procedures. This means that the higher-level functions depend on and require the lower level functions in order to operate.

As stated earlier, the functions in the script software have equal priority, so although the sequence functions are organised in a hierarchy this is not strictly true. Any function is accessible from the idle state, but it is the top-level functions that are typically called. This is because the lower level functions are useless if called independently.

8.7 Top Layer Functions

The top layer is composed of the sequence functions themselves. It was decided that the desired top-level functions would represent the seven sequences available to the end-user – 1.) Single wafer load, 2.) Single wafer unload, 3.) Single wafer exchange, 4.) Reactor load, 5.) Reactor unload, 6.) Reactor exchange and 7.) Robot tidy. 

Design entity descriptions are intended to briefly provide a short design specification for each function in a software design. The design entity descriptions for the layer one functions are shown in the table below.

	Entity Name
	 
	Description

	 
	 
	 

	Single Wafer Load
	Inputs:
	None

	 
	Function:
	Implements a single wafer load

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 

	Single Wafer Unload
	Inputs:
	None

	 
	Function:
	Implements a single wafer unload

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 

	Single Wafer Exchange
	Inputs:
	None

	 
	Function:
	Implements a single wafer exchange

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 

	Reactor Load
	Inputs:
	None

	 
	Function:
	Implements a reactor load sequence

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 

	Reactor Unload
	Inputs:
	None

	 
	Function:
	Implements a reactor unload sequence

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 

	Reactor Exchange
	Inputs:
	None

	 
	Function:
	Implements a reactor exchange sequence

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 

	Robot Tidy
	Inputs:
	None

	 
	Function:
	Implements a robot tidy sequence

	 
	Layer:
	1

	 
	Returns:
	None

	 
	 
	 


Table 8.3 – Design entity descriptions for layer 1 function

Flow charts were developed for these functions (as shown in figures 8.6 – 8.8).
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Figure 8.6 – Flow charts for single wafer sequences
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Figure 8.7 – Flow charts for reactor sequences
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Figure 8.8 – Flow chart for robot tidy sequence

It is interesting to note that the functions that are invoked in the flow charts are quite abstract (e.g. Wafer to Reactor). They are easily understandable to a human reader, but not necessarily so to a computer. Another significant point is that many of the functions called by the sequences are re-used. It would have been possible to program the sequences independently as stand-alone functions, but this would have been inefficient (not exploiting the large amount of function re-use available) and more difficult to read and troubleshoot (it is quicker and simpler to test small functions by themselves).

8.8 Second Layer Functions

From the flow charts of the top layer functions, the re-used functions can be identified. For some of these functions, it may not be necessary to create dedicated procedures for the reasons that they either i) require very little code to implement, or ii) are rarely used. The necessary functions were identified as – 1.) WaferToPreAligner, 2.) WaferToReactor, 3.) WaferToCassette, 4.) MeasureReactor, 5.) WaferToCoolingStation, 6.) MoveToSat. The sequence functions in layer 1 are made up of the combination of functions from layer 2 and below. The design entity descriptions for the layer 2 functions are shown in the table below –

	Entity Name
	 
	Description

	 
	 
	 

	WaferToPreAligner
	Inputs:
	none

	 
	Function:
	Gets a wafer from a free slot, puts it on the

	 
	 
	pre-aligner and begins measurement

	 
	Layer:
	2

	 
	Returns:
	none

	 
	 
	 

	WaferToReactor
	Inputs:
	none

	 
	Function:
	Gets a wafer from the pre-aligner and puts

	 
	 
	it onto a free recess in the reactor

	 
	Layer:
	2

	 
	Returns:
	none

	 
	 
	 

	WaferToCassette
	Inputs:
	none

	 
	Function:
	Gets a wafer from the cooling station and

	 
	 
	puts into a free cassette slot

	 
	Layer:
	2

	 
	Returns:
	none

	 
	 
	 

	MeasureReactor
	Inputs:
	none

	 
	Function:
	Measures the center of the current

	 
	 
	recess in the reactor

	 
	Layer:
	2

	 
	Returns:
	Teachpoint of the recess center (N)

	 
	 
	 

	WaferToCoolingStation
	Inputs:
	none

	 
	Function:
	Gets a wafer from a filled reactor recess

	 
	 
	and puts it onto the cooling station

	 
	Layer:
	2

	 
	Returns:
	none

	 
	 
	 

	MoveToSat
	Inputs:
	Satellite position

	 
	Function:
	Moves the susceptor to the specified

	 
	 
	satellite position

	 
	Layer:
	2

	 
	Returns:
	none

	 
	 
	 


Table 8.4 – Design entity descriptions for layer 2 functions

The flow charts for the second layer functions are shown in figure 8.9.
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Figure 8.9 – Flow charts for layer two functions

8.9 Bottom Layer Functions

Apart from the MoveToSat function, the other layer two functions are still composed of lower level procedures. The third layer is the bottom level. These are the basic functions that directly communicate with the COM+ objects, which in turn communicate with the physical devices. 

Third layer functions can be identified from the flow charts in figure 8.9. Like in the case with the second layer functions, there are some procedures that are easily implemented and don’t require separate functions. In layer three, PAStart, MoveToChamber and PAHome are short procedures that can repeatedly be written out in full without great inefficiency. (PAStart takes one call to the AixOPCServer object, MoveToChamber derives from the MoveArm routine and PAHome derives from PAMove). 

The design entity descriptions for the third layer functions are shown below –

	Entity Name
	 
	Description

	 
	 
	 

	PosElev
	Inputs:
	Elevator Position



	 
	Function:
	Positions the elevator to a specified

	 
	 
	position

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 

	GetWafer
	Inputs:
	Source, method

	 
	Function:
	Gets a wafer from specified source (eg.

	 
	 
	PA, cassette) using method (star, tongue)

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 

	PutWafer
	Inputs:
	Destination, method

	 
	Function:
	Places a wafer onto the specified

	 
	 
	destination using specified method.

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 

	ReadTP
	Inputs:
	Teachpoint, Coordinate Memory

	 
	Function:
	Reads a system teachpoint into a

	 
	 
	coordinate memory object

	 
	Layer:
	3

	 
	Returns:
	Teachpoint in coordinate memory

	 
	 
	 

	WriteTP
	Inputs:
	Type, Teachpoint, theta, r, z

	 
	Function:
	Writes a coordinate (theta,r,z) into a

	 
	 
	teachpoint (type = offset or absolute)

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 

	MoveArm
	Inputs:
	Destination

	 
	Function:
	Moves the robot arm to a specified

	 
	 
	destination (PA, Reactor, etc)

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 

	Calibrate Reactor
	Inputs:
	none

	 
	Function:
	Calibrates the optical sensor for use in

	 
	 
	4-point edge measurement in the reactor

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 

	Measure Edge
	Inputs:
	Teachpoint, Direction, Coordinate Memory

	 
	Function:
	Measures the coordinates of the edge of a

	 
	 
	wafer and stores it in coordinate memory.

	 
	 
	Direction is forward or backward (1 or 0)

	 
	Layer:
	3

	 
	Returns:
	Edge coordinates

	 
	 
	 

	CalcCoordPoint
	Inputs:
	Base coordinate, Angle, Radius

	 
	Function:
	Calculates the starting coordinate for edge

	 
	 
	measurement (Angle degrees and Radius

	 
	 
	counts away from the base coordinate)

	 
	Layer:
	3

	 
	Returns:
	Starting coordinates

	 
	 
	 

	CalcCircle
	Inputs:
	Edge coordinate array

	 
	Function:
	Takes an array of 3 or more edge

	 
	 
	edge coordinates and calculates the 

	 
	 
	center of the circle.

	 
	Layer:
	3

	 
	Returns:
	Circle center coordinates

	 
	 
	 

	PAMove
	Inputs:
	Angle

	 
	Function:
	Rotates the pre-aligner to the specified

	 
	 
	angle position

	 
	Layer:
	3

	 
	Returns:
	none

	 
	 
	 


Table 8.5 – Design entity descriptions for layer three functions

The flow charts for the layer 3 functions are shown in the following figure –
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Figure 8.10 – Flow charts for the bottom layer functions

From the flow charts of the bottom layer functions, it can be seen that the calls are explicit. They are directed either to the robot controller, ControlLogix or to other bottom level functions. There is no need to reduce the functions any further as these procedures are sufficiently explicit and already directly communicate to the COM+ objects. 

8.10 Sequence Function Hierarchy

The sequence functions can be organised into a hierarchy of parent and child functions according to the layer they belong to. The hierarchy chart in the figure below is an overview of the parent/child relationships of all the functions used to implement the sequences. The arrows represent the decomposition of the higher layer functions into lower layer functions.
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Figure 8.11 – Hierarchy chart of sequence functions

8.11 Programming Considerations

The next task of the script development process was to write the actual code for the scripts. The choice of programming language was decided to be VBScript due to prior familiarity.

In writing the code, it was logical to write the bottom layer functions earliest and then work up toward the top layer. Each of the functions in a particular layer was tested individually with the actual robot system and the whole layer had to be error-free before writing functions for the next layer. 

Although there were many problems encountered during the coding of the scripts, the problems were mainly logical errors (not calibrating the sensor before conducting an edge measurement) and coordinate conversion errors (which gave rise to the conversion properties of the coordinate memory class). All these problems were resolved and the script code was successfully developed. 

The code for all the scripts can be found on the attached disc under the directory /Control Scripts.

8.12 Testing and Troubleshooting

The testing strategy adopted for the scripts was the bottom-up approach. In this approach, the functions at the bottom level of the hierarchy were tested first, working up the hierarchy until the top layer functions were tested. This conforms to the programming approach. Also, functions were tested as soon as they were coded, so there was no real distinction between testing and programming as separate activities. As stated earlier, each function was tested individually for compliance. Every function has a particular duty to perform and provided that the function fulfils the task repeatedly without fail, then the function is deemed to be compliant. Failure to meet compliance meant revising the code and troubleshooting errors. Troubleshooting was typically done with the help of a debugger (Microsoft Visual Studio debugger was used) to monitor the variables and objects of the function during run-time. 

The robot movement functions were tested on the actual robot system after first testing it on a robot controller simulator (Appendix B) to make sure the right commands was being issued. The calculation functions were tested by providing training data (with a known answer) and then cross-referencing the answer with the resultant function output. As the script coding reached the top layer, the sequences were tested first on the simulator to double check the correct order of commands, and then on the robot system.

The sequences were extensively tested under a multitude of conditions. The wafers were placed in various different arrangements and wafer management was initialised to the configurations. The sequences were then called and the resulting operations were observed. The sequences were predicted to perform in a certain way and the observed operations were compared with the predictions. If the observed operation did not conform to the prediction, the sequences were examined and the reasons for the anomalous results extracted. This was repeated until the sequences were running in a completely predictable manner.

9.0 PanelView User Interface Development

For the end-user, the scripting engine client application was not a suitable user interface as it exposed too much of system functionality. It is not intended for the end-user to manipulate and load their own scripts and execute their own functions. Rather, the end-user should be able to only run the default script functions. This was the motivation behind the development of a new user interface. 

The PanelView software was based on the Allen Bradley manufactured PanelView operating console (described in section 4.5). The difference between the two is that the console is a physical device, whilst the PanelView user interface is completely a software implementation. The functions are identical however, although the software version has improved graphics and colour. 

9.1 Requirements Definition

The PanelView user interface should operate with the exact same functionality as the Allen Bradley PanelView operating console.

9.1.1 Requirements Specification

More specifically, the requirements of the PanelView user interface are outlined below –

· The user interface should first establish communication with the scripting engine.

· There should be a means of exchanging information between the user interface and the scripting engine.

· The user interface should be capable of executing the robot sequences (or any function) from the scripting engine. 

· Events should be able to be caught by the user interface.

· The user interface should be capable of initialising the wafer management settings (initial allocation of wafers in the cassettes).

· Wafer tracking information should be visualised in the interface display.

· Input / Output status information should be displayed onscreen.

9.2 Analysis of the Operating Console

To begin the development of the PanelView user interface, the operating console, for which the software is based on needs to be firstly analysed. The operating console has the following general layout –
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Figure 9.1 – General layout of PanelView

The main screen can be changed to one of four different masks, 1.) Chamber gas supply, 2.) Elevator handling, 3.) Robot configuration and 4.) Wafer handling. To change the main screen, the first three function keys are used. F1 scrolls to the previous mask, F2 scrolls to the next mask and F3 brings up the menu. The main screen masks are described briefly below –

1.) Chamber gas supply – is shown in figure 9.2. This screen deals with the pressurisation and pumping of gases into the robot chamber. This mask, along with all other gas related components of the wafer handler was beyond the scope of the project.

2.) Elevator handling – depicts the location of all wafers in the system. The mask is also used to set the initial configuration of wafers in the cassettes. 

3.) Robot configuration – displays information pertaining to the configuration of the robot (number of satellites, speed of susceptor rotation) and also displays functions specific to the pre-aligner. 

4.) Wafer handling – allows control of the wafer handler with the same functions available in CACE, such as load, unload, exchange and tidy. The mask also tracks the number of wafers in the reactor, robot and cassettes and can also be used to position the susceptor.
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Figure 9.2 – Chamber gas supply main screen mask

There are 16 function keys. As stated above, the first three function keys are reserved for main screen navigation. The other function keys are typically mapped to the corresponding function key images in the main screen. Take for example the chamber gas supply mask in figure 9.2. The function key F11 is mapped to Purge in the main screen.

The numeric keypad and the arrow keys work in conjunction with each other. The arrow keys navigate through the text fields in the main screen and the numeric keypad is used to enter values into the current field. 

The next task was to analyse each of the main screen masks to determine all the functions each mask can perform. The chamber gas supply mask is beyond the scope of the project and therefore, none of its functions are implemented.

9.3 Elevator Handling Mask Analysis

The elevator handling mask has two main jobs 1.) Allow the user to set the initial configuration of the wafers in the cassette and send it to wafer management, and 2.) Track the location of all wafers and visualise the positions of the wafers onscreen. The elevator handling mask has the following display (as implemented in the software version of PanelView) –
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Figure 9.3 – Elevator handling mask

The functions keys in this mask have the following outcomes –

	Function Key
	Activity

	F4
	Open / close elevator gate

	F5
	Lock / unlock elevator door

	F6
	Move elevator to level 1

	F7
	Move elevator to level 2

	F8
	Open cycle (not implemented - gas related)

	F9
	Select cassette to view

	F11
	Cassette 1 configuration

	F12
	Cassette 2 configuration

	F13
	Cassette 3 configuration

	F14
	Cassette 4 configuration

	F15
	Cassette 5 configuration

	F16
	Cassette 6 configuration


Table 9.1 – Elevator handling function keys

9.3.1 Setting the Initial Cassette Configuration

In order for the user to set the initial cassette configuration, the elevator door has to be unlocked. This means the user is free to remove the cassettes from the elevator chamber and fill the slots with wafers. Once the user has replaced the cassettes back into the elevator chamber, the cassette configurations need to be entered before the elevator door is locked again. This is achieved by cycling through cassette configuration options. The buttons F11 to F16 are used to cycle through the options for each cassette (1 to 6). There are five different cassette configurations available –

· Full – the cassette is full and has 25 wafers

· Variable – the cassette had between 1 and 25 wafers and must be entered by the user in the variable size field

· Empty – the cassette has 0 wafers

· No Cassette – there is no cassette in the particular cassette space

· Not Changed – there are the same number of wafers in the cassette as previously

Once the configuration data has been changed accordingly, locking the elevator door would send the configuration information to the scripting engine (sent to the CassetteConfig(CassNum) and VariableSize(CassNum) attributes in the configuration module of the scripts – see section 8.4.2). Also, moving the elevator to different levels can only be done when the elevator door is unlocked. Figure 9.3 shows the case when there are seven wafers in the first cassette and no cassettes in the other five cassette spaces.

9.3.2 Wafer Tracking

Tracking the wafers in the system involves communication with wafer management. All the wafer location information is required (OnPA, OnStar, OnCoolStat, OnTongue, CassetteFree and ReactorFree). The information is dynamically updated whenever changes to the positions of any wafers occur.

The positions of the wafers are visualised onscreen and are also dynamically updated. Wafers in the cassette are shown in the current cassette display (in figure 9.3, there are seven wafers displayed in cassette one). To change the current cassette, the cassette number must be entered into the field next to the Select label. Pressing the function key F9 will bring up the display of the next cassette. Wafers in the reactor are shown as filled circles left of the cassette display and wafers in the robot (pre-aligner, cooling station, tongue and star) are shown as filled circles attached to corresponding labels.

The colours of the wafers are also important. In figure 9.3, the wafers in the cassette are all grey. This indicates that the wafers are all unprocessed. Green indicates that the wafer has been epitaxed. 

9.4 Robot Configuration Mask Analysis

The robot configuration mask has two tasks 1.) Display static configuration information and 2.) Allow manual operation of the pre-aligner. The display as implemented in the PanelView user interface is shown in figure 9.4. The function keys in the mask have the following outcomes –

	Function Key
	Activity

	F5
	Home pre-aligner

	F6
	Position pre-aligner to load position

	F7
	Synchronise pre-aligner

	F8
	Rotate pre-aligner to angle


Table 9.2 – Robot configuration function keys

Displaying the static configuration information involves firstly gathering the information from the script configuration module (See section 8.4.2) and then displaying the information onscreen. From figure 9.4, it can be seen that there is a lot of configuration data that does not appear in the configuration module. This is because the configuration module implemented in this project was a simplified model of the final module (to simply run the sequences, this information is not particularly necessary).
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Figure 9.4 – Robot configuration mask

Control of the pre-aligner involves executing the pre-aligner commands from the scripting engine (PAMove and PASync functions). 

9.5 Wafer Handling Mask Analysis

The tasks of the wafer handling mask are simple – execute the robot sequences and allow manual control of susceptor rotation. The display of the mask as implemented in the PanelView user interface is shown in figure 9.5.
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Figure 9.5 – Wafer handling mask

The function keys in the mask have the following outcomes –

	Function Key
	Activity

	F5
	Indicates that a sequence has finished

	F6
	Toggles Single Wafer / Total Reactor Flags

	F8
	Clears error field

	F9
	Sets susceptor to position mode

	F10
	Sets brake on susceptor

	F11
	Changes state of all wafers in reactor to epitaxed

	F12
	Load sequence

	F13
	Unload sequence

	F14
	Exchange sequence

	F15
	Robot tidy sequence

	F16
	Abort current sequence


Table 9.3 – Wafer handling mask function keys

Executing the robot sequences and rotating the susceptor involves running the sequence functions from the scripting engine. The Epi-wafer button (F11) changes the state of all the wafers in the reactor to epitaxed. This means that wafer management must be informed and the ReactorFree array modified accordingly. Wafers need to be in the epitaxed state before they can be unloaded. This is because wafer management needs to differentiate between an epitaxed wafer and a new wafer during an exchange sequence and at any given time, both processed and unprocessed wafers could be in the reactor.

9.6 Communication with the Scripting Engine

With the analysis of the masks complete, the next task was to determine how the PanelView user interface would communicate with the scripting engine. This was achieved by using another COM+ object, AixRobotHTML. The software engineering company that developed the other COM+ objects also wrote this object. It was written during the design of the PanelView user interface as a means to communicate with the scripting engine. 

When an instance of the AixRobotHTML object is created and started, the object is able to communicate directly with any instance of the AixScriptServer object. However, the level of communication available to the AixRobotHTML object was restricted to 1.) Executing script functions and 2.) Catching events from the scripting engine.

9.7 Information Sharing

With a means of communication established, it was now required to develop a method of sharing information between the PanelView user interface and the scripting engine. The exchange of information is a crucial requirement for the PanelView user interface to properly operate. For instance, the elevator handling mask requires wafer management data from the scripting engine to determine the locations of all the wafers and it also needs to send the initial wafer configuration information to the scripting engine. 

The AixRobotHTML COM+ object exposes only two methods of communicating with the scripting engine from the user interface. The first is via the execution of a subroutine within the scripts and the second is through the catching of events. The AixRobotHTML object catches all events, but the most interesting is the event that can be manually raised in script – the ScriptDone event. The event also has an associated message, which can be used to convey information from script to the user interface.
To send information from the scripting engine to PanelView, manually raised ScriptDone events with the appropriate information can be employed. However, the messages associated with a ScriptDone event should be arranged in a certain manner so that PanelView can determine quickly if the information is relevant. The method of message arrangement used in the project was – <Display Mask>, <Tag Name>, <Data>.

The Display Mask represents the different PanelView masks available (eg. Elevator Handling), Tag Name defines the particular label of the information required (eg. DoorUnlocked, NumCassettes, etc) and Data consists of the corresponding information. Commas are the delimiters for the individual sections of the message string. 

For the scripting engine to receive information from PanelView, subroutines in the scripting engine are executed with arguments containing the information that PanelView wants to send. The subroutines should accept the arguments and assign it to variables within the scripts.

9.7.1 The Query Script

The method of information sharing described previously requires a new control script to be developed for the sole purpose of exchanging information between PanelView and the scripting engine. The Query script consists of functions that either sends data in the form of ScriptDone events to PanelView or functions that accept arguments and assign them to the appropriate variables. 

9.8 PanelView Navigation

There are two forms of navigation required by the PanelView user interface, 1.) Navigation of the main screen masks and 2.) Navigation of the text fields using the arrow keys. 

9.8.1 Main Screen Navigation

Navigating the main screen masks is easily handled by the first three function keys (F1-F3), which correspond to previous screen (F1), next screen (F2) and menu (F3). The menu screen brings up a list of all the masks available as shown in the menu screen fragment in figure 9.6 –
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Figure 9.6 – PanelView menu screen

The main screen navigation was achieved by cycling through an array with the names of the masks as its elements. Pressing the next button (F2) would increment the array to the next element and pressing the previous button (F1) would decrement the array. Incrementing the array past the last element would reset the array to the first element (and vice versa).

9.8.2 Text Field Navigation

The navigation of the text fields with the arrow keys is achieved through the use of matrix maps of the text fields. A matrix with elements corresponding to the name of the fields is arranged in the form of a map. Pressing the left and right arrow keys correspond to a horizontal traversal through the matrix, while the up and down arrow keys correspond to vertical movement. The size of the matrix and zero entries represent the boundaries. Movement is restricted if the user tries to navigate across the boundaries of the map.

As an example, the fields of the elevator handling mask (figure 9.3) are numbered as follows –
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Figure 9.7 – Numbering of elevator handling mask fields

Although several combinations of the navigation matrix is possible, the matrix used for the elevator handling mask is –
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From field 1, only movement to the right (to field 2) is possible. Implementing this navigation scheme requires that each mask has its own navigation matrix.

9.9 Programming Considerations

From the outset, it was decided that the development of the PanelView user interface was going to be done in HTML (Hyper Text Mark-up Language) and VBScript. Specifically, the user interface was to be developed for Microsoft Internet Explorer (Version 5.0 and above).

At Aixtron, the process automation division has a resident web designer and graphic artist whose job is to create graphical illustrations and web pages. The web designer created the basic framework and graphical representations in the PanelView software. The actual code however still needed to be written.

The first duty that was completed in programming the PanelView user interface was embedding the AixRobotHTML COM+ object into the HTML page as a global object. The instance of the AixRobotHTML object has to be created on the same machine as the other COM+ objects. This means that the PanelView user interface can only be run on the machine that has all the COM+ objects registered on it.

The next part of the code that was developed was the main screen and text field navigation system. Once the navigation system was operational, the main screen masks were coded individually. Knowing what information and functions were required for each mask made this section of the programming process swift and efficient.

The code was written in VBScript and HTML using a combination of Allaire Homesite and Macromedia Dreamweaver. The code for the PanelView software as well as a working version of the user interface can be found on the attached disc under the directory /PanelView. To run PanelView, make sure Internet Explorer 5.0 or above is installed and then run default.htm in the PanelView directory.

9.10 Testing and Troubleshooting

The PanelView user interface was first tested in isolation, making sure the navigation of the main screen masks and the fields were working properly and that the buttons were being processed accordingly. 

Once satisfied that the navigation and buttons were functioning, the software was transferred to the robot test system where it was tested in conjunction with the scripting engine. The setting of the initial cassette configuration was tested under a series of different conditions and wafer management was checked to see if it had been initialised correctly. 

The sequences were then tested to see check if the wafer tracking was working properly. Predictions were made regarding the location of wafers and the observed results were cross-referenced to the predictions. During the testing process, if the observed results failed to match the predicted outcome, the code was revised to discover the reasons behind the incongruity. Many of the problems encountered were logical mistakes that were easily rectified when examined closely. 

The end result was a completely functional user interface that was able to execute sequences, track the location of wafers, set the initial configuration of wafers in the cassettes and manually control the pre-aligner. 

10.0 Conclusion

The goals of the project were to design and develop control software and user interfaces for the updated wafer handler system. The goals were met successfully and by the completion of the project in July 2001, the wafer handler was operational and was giving demonstrations to management.

10.1 Summary of Results

The control software that was developed was based on a set of existing COM+ objects written externally before the initiation of the project. These objects are able to communicate directly with the physical hardware of the robot system. However, these objects independently are unable to control the wafer handler.

The aim of the project was to conceive and create new software applications with the purpose of organising and arranging the COM+ objects such that they are able to control the wafer handler and run the robot sequences. There were three pieces of software developed to achieve this goal.

The first was the scripting engine client application designed to allow a user to load scripts written in VBScript (or Jscript) into a scripting engine. The client application then allows the user to run subroutines from the loaded scripts.

Secondly, scripts to control the robot were designed. These scripts were capable of implementing the robot sequences and tracking the locations of all the wafers in the system. 

Lastly, a user interface application was developed in HTML and VBScript (intended for use with Internet Explorer). The PanelView user interface was able to execute the robot sequences, visualise the tracking of wafers, set the initial configuration of wafers in the cassettes and manually control the pre-aligner. 

10.2 Significant Results

The use of commercially available scripting languages (VBScript and Jscript) to program the control of the wafer handler is the main significant result. Instead of developing a standalone application (in a language such as C/C++, Java, Basic etc), which may be difficult to modify after compilation, scripts and language independent COM+ objects were used to control the system. In this case, the scripts are used to organise the COM+ objects, which directly communicate with the system devices.

The use of scripts makes the code more manageable and upgradeable. It is convenient to update and alter the code because the scripts do not need to be pre-compiled before being parsed by the scripting engine. Scripts can therefore be modified using a simple text editor. Furthermore, because the scripts are written in a well-defined and high-level scripting language, they are easily understandable. Therefore reading and understanding the scripts should not be a demanding task. 

However, the simple modification of code through a text-editor may also be a disadvantage. Currently, there are security precautions related to the modification of the control scripts. Therefore, accidental (or misguided) changes to the scripts could lead to unpredictable results, such as incorrect operation of the robot even causing hardware damage.

Using commercially available scripting languages also means that propriety scripting software need not be developed or used. A corollary of this is that no further instruction (other than basic VBScript/Jscript education) is required to program the scripts.

10.3 Future work

There are a few aspects of the wafer handler project that have not been completed and there are also various possible improvements.

Gas supply – sections have not been completed as yet. This part is critical in the integration of the wafer handler with the complete system.

Error handling – is one of the chief features that need to be implemented. Currently, if an error occurs, the scripts continue through to completion of the current script. This has the potential to damage equipment if serious errors (especially in the calculation of coordinates) occur during the running of a script. The idea behind error handling would be to stop a script anytime an error is generated and retract the robot arm to a safe position for further instructions.

Validity checking – runs in conjunction with error handling. If there exists coordinates, either calculated or read from teach points, which are not within the prescribed limits of the system, an error should be generated. For instance, during the edge measurement routine, if an edge is not found five times, an error should be generated, as opposed to calculating an erroneous wafer/recess centre coordinate.

User manuals and guides – for any the software developed in the project has not been written. Despite the intention for all the software to be intuitive and verbosely commented code, manuals regarding the operation and some troubleshooting advice would be helpful. 

Help or tutorial files – inbuilt into the user interface describing the operation of buttons and guiding the user through the basic processes. 

Appendix A – Circle Center Calculation

The calculation of the center of a circle requires firstly that the coordinates of at least three edges on the circumference of the circle is known. The wafer handler achieves this using a four-point edge measurement with an optical sensor (see section 3.4.1.2 on the optical sensor). The four edges that are measured vary, but for the reactor pockets (which is the circle most often measured), the edges measured correspond to the angles 300, 1500, 2100 and 3300. This is shown in figure A.1.
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Figure A.1 – Edge measurement angles

The optical sensor requires a straight-line length before and after the edge to conduct a proper measurement. To determine the starting coordinates to run the edge measurement, given a radial distance from the approximate center of the circle, R0, the angle from the center,  and the radian coordinates of the approximate center of the circle (RT, T) –
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Figure A.2 – Calculating the starting coordinate

From the derivation in figure A.2, the starting coordinates (RN, N) can be calculated for any angle.

After the measurement of the edge points at the circumference of the circle, the calculation of the center of the circle can be applied to any three edges. In the wafer handler project, four edges were measured and four center calculations were conducted and averaged. 
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Figure C.3 – Three edges on the circumference of the circle

Consider the three points P1, P2 and P3 in the Cartesian plane lying on the circumference of a circle as shown in figure C.3. The points are such that –


[image: image61.wmf])

,

(

)

,

(

)

,

(

3

3

3

3

2

2

2

2

1

1

1

1

y

x

P

P

y

x

P

P

y

x

P

P

=

=

=


Starting with the line segment connecting P1 and P2 –
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Figure C.4 – Line segment joining P1 and P2
The midpoint of the line segment is –
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The gradient of the line segment is –
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The gradient for the perpendicular bisector is –
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Therefore, the equation of the perpendicular bisector line, given that the perpendicular bisector passes through the midpoint of the line segment is–
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Repeating the above equations for the second line segment connecting P2 to P3 yields –
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The intersection of the two perpendicular bisectors is the center of circle. Solving the simultaneous equations –
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The center of the circle C(x, y) is –
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Appendix B – Robot Controller Simulator

The robot controller simulator was developed so that scripts involving the robot controller could be tested in a simulation environment. The scripts were first simulated to make sure that the correct commands were being issued. Incorrect commands could lead to the robot arm colliding with a wall and subsequent hardware damage. 

The simulator developed for the project is shown in the figure below –
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Figure B.1 – Robot controller simulator

The simulator was based on the AixRobotController COM+ object. The object supports the simulation of a controller in the absence of a real controller. This application simply exploits this property, creating an instance of the object in Visual Basic and then building a user interface around it. 

From screenshot in figure B.1, the simulator can be started and shutdown. When the simulator has been started, any commands to the controller from any other instance of the AixRobotController object will be caught and displayed in the output text box. There are two methods of responding to controller commands, 1.) Manually by filling in the fields at the bottom of the screen and then pressing the respond button or 2.) Loading a simulation file (*.sf). 

A simulation file basically consists of possible controller commands and the standard response to the command on the next line. Below is a listing of a simulation file (Defaul.sf) used in the actual testing of the control scripts.

APRO A,A

C,1008,1008,FCF8,FCF8,0,0,A,A,20425,-9467,220,11178

MSTAT N,N

S,1008,1008,FCF8,FCF8,0,0,N,N

ROBVER

Alpha Controller Server

STRET

S,1008,1008,FCF8,FCF8,0,0,A,A

INIT

S,1008,1008,FCF8,FCF8,0,0,A,A

WSUCK N,N

C,1008,1008,ECFA,ECFA,0,0,N,N,20752,-13586,38,7204

REATP N,N

C,1008,1008,FDD8,FDD8,0,0,N,N,20774,-11491,220,9503

ELPOS A,A,1,1

S,1208,1208,FDD8,FDD8,0,0,A,A

APUTA G,G

S,1008,1008,FDD8,FDD8,0,0,G,G

REATP H,H

C,1008,1008,FDD8,FDD8,0,0,H,H,10656,-5265,460,5851

MSTAT T,T

S,1008,1008,FDF8,FDF8,0,0,T,T

WRIOF R,R,0,800,0,800

S,1008,1008,FDF8,FDF8,0,0,R,R

The simulation files are a quick way of testing to see if the commands issued to the controller by the scripts have the correct syntax. Sometimes the commands issued by the scripts have arguments in the wrong place, incorrect checksums etc. The simulator allows for a risk-free environment for which to test syntax. 

If a response is not included in the simulation file, the user can respond to the command manually. By entering the response data in the fields (with optional teachpoint coordinates), a response can be generated quickly. 

This application was programmed in Visual Basic. The code can be found on the disc attached in the directory /Controller Simulator.
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