A Portable Device for the Translation of Braille to Text

By

Andrew Pasquale
A Report for the Degree of Bachelor of Engineering (Computer Systems)

ABSTRACT

Roughly 324 000 Australians (or 1.8 % of the population) suffer from vision impairment, many of whom must rely on embossed braille as a means for written communication (Australian Bureau of Statistics 1998). The objective of the device developed in this project is to provide a written communications gateway between these visually impaired, braille literate persons, and the sighted, braille illiterate social majority. This is achieved by providing seeing, braille illiterate persons with a portable handheld scanner which moves over braille medium and in real time translates the equivalent literary text for output to a LCD display or text to speech converter depending on the application. The device will also allow blind persons who exhibit Diabetic Peripheral Polyneuropathy (diabetes is the major cause of blindness in Australia) and have lost sensitivity in their fingers, to still be able to communicate through their preferred written medium. The device differs from existing research in braille to text translation (no commercial products exist) in that it is portable and translates braille to text in real time, which greatly increases its practical application.

The developed handheld device uses a linear pixel array and camera assembly to optically detect the presence of embossed braille dots when rolled over the braille medium. In real time, fuzzy logic fundamentals then determine the position of braille dots within the braille cell from the camera output. This is accomplished using a Texas Instruments TMS320VC5402 digital signal processor, which subsequently converts the located braille dots into a computer braille code to be then translated, depending on the braille type and the associated rules, into literary text

A device that rolls over embossed braille and converts the written medium into literary text in real time was successfully developed. Useability and accuracy were adequate as a prototype model and the device has potential for practical application when fully developed.

ACKNOWLEDGMENTS

I would like to thank Iain Murray my academic supervisor, for his continued help, support and direction in the development of this project. This project would not exist without his initiative and he deserves much of the credit for the work completed. Thanks to John Heppel, for his practical guidance and use of tools without want of thanks.. Also I would like to thank the following people who aided the development of this project to a significant degree,

Ivus Siewart, Roy Mercer, Mark Fowler:
Practical Support

Clive Maynard:

Hardware Development

Manav Bhalla:

Practical guidance and soldering

Guy Crossley:

Media Capture and equipment

Ryan Binns:

Software Development Support

Daniel Jackson:

Hardware Development

.

Nomenclature

AIC
Analogue Interface Circuit, a system used for interfacing analogue and digital signals

Binary Coded Braille Cell
Numeric representation of all unique braille cell dot combinations.

CCD
Charge Coupled Device, electrical based image capture

Cell
A combination of six Braille dots that form a Braille character.

DSP
Digital Signal Processor, a unique form of computer structure for data processing

Codewheel
A slotted disk used to obtain linear rate of movement.

Interpoint
Braille that is printed on both sides of the paper. See also recto and verso.

LCD
Liquid Crystal Display, an electrical based screen display

Literary Braille
A contracted form of Braille. Also known as Grade two Braille.

Quadrature Linear Motion Detection
A means of determining distance and direction of movement with the use of a codewheel

Recto
Braille cells embossed on the obverse side of the paper.

Slice
One camera vertical image frame.

SELFOC
Trade name of a gradient refraction lens.

Verso
Braille cells embossed on the side of the paper being currently read.

V.I.P.
Vision Impaired Person.

INDEX

1. INTRODUCTION
1

2. BACKGROUND
4

2.1 Existing Research and Development
4

2.2 Methodologies Considered
7

2.3 The Braille System
9

3. HARDWARE DEVELOPMENT AND IMPLEMENTATION
163

3.1 System Block Diagram
163

3.2 Image Capture System
16

 3.2.1 Linear CCD Array Operation
17

 3.2.2 SI Pulse and Clock Generation
210

3.3 Quadrature Linear Motion Detection
213

 3.3.1 Quadrature Linear Motion Detection: Theory of Operation
224

 3.3.2 Implementation
225

 3.3.3 Quadrature Linear Motion Detection Implementation Problem
238

3.4 DSP Platform
31

4. SOFTWARE DESIGN AND IMPLEMENTATION
34

4.1 Fundamental DSP Software Operation
34

4.2 DSP Setup and Initialisation
36

4.3 Quadrature Linear Motion Detection Logic
37

4.4 Frame Sampling
38

4.5 Braille Dot Recognition
41

4.6 Scanner Angular Misalignment Correction
44

4.7 Braille Cell Compilation
46

4.8 Ambiguous Single Sided Braille Cell Compilation
49

4.9 Braille to Text Translation
21
5. DEVICE TESTING
54

5.1 Image Capture
54

5.2 Quadrature Linear Motion Detection
54

5.3 Recognition Algorithm Testing
55

6. CONCLUSION
56

6.1 Project Achievements
56

6.2 Significant Aspects of the Project
57

 6.3.1. Clock Noise on CCD Output Signal
57

 6.3.2 Code Composer Studio Problems
58

6.4 Recommendations for Future Development
60

 6.4.1 Alternate Camera Assembly.
60

 6.4.2 Braille to Literary Text Decompression
60

 6.4.3 Ergonomic Developments
61

 6.4.4 Inter point Braille Compatibility
61

 6.4.5 DSP CCD Clock Generation
62

 6.4.6 Illumination System Redesign
64

 6.4.7 Text Reader Compatibility
64

7. Bibliography
66

Appendix I: Historical Development of Braille
67

Appendix II: Miscellaneous Calculations
68

Appendix III: Schematic Diagram
69

Appendix IV: Camera Design
70

Appendix V: Binary Coded Braille Cell Table
73

Appendix VI: DSP Source Code
75

Appendix VII: Braille To Text Decompression
81

Table of Figures

4Figure 1: Braille Scanner

Figure 2: The Braille cell.
9
Figure 3: English Grade 2 Braille Alphabet
12
Figure 4: System Block Diagram and Flow (Adapted from Murray)
13
Figure 5: Prototype System Implementation (View 1)
15
Figure 6: Prototype System Implementation (View 2)
155

Figure 7: Handheld Scanner Assembly
16
Figure 8: Camera system in operation and dot shadow’s effect
166

Figure 9: CCD Timing Requirements and Operation
20
Figure 10: SI Pulse and Clock generation circuit.
21
Figure 11: SI 555 timer and Multivibrator SN74LS221 Output
21
Figure 12: 74LS31 Delay line Operation
21
Figure 13: CCD SI and 50 kHz clock signals
22
Figure 14: CCD output displaying 3 braille dots
22
Figure 15: CCD output of 3 worn (flattened) braille dots.
23
Figure 16: Example codewheel design
24
Figure 17: Codewheel assembly
25
Figure 18: Phototransistor Output Conditioning Circuitry
26
Figure 19: Photodiode, Comparator Output
26
Figure 20: Codewheel outputs illustrating Forward Motion
27

Figure 21: Codewheel outputs illustrating backward Motion
27

Figure 22: Positive Edge triggering of Negative edge triggered Interrupt
28

Figure 23: Positive Edge triggering of Negative edge triggered Interrupt
208

Figure 24: Comparator Operational Limitations
219

Figure 25: Positive Edge Compensating Logic
30

Figure 26: Comparator Outputs
30

Figure 27: Resultant DSP interrupt signal
30

Figure 28: Proof of “negative edge trigger” problem solution correctness
31

Figure 29: C5402 Digital Signal Processor
33

Figure 30: DSP Functional Block Diagram
33

Figure 31: DSP Algorithm Software Flow
35

Figure 32: DSP initialisation routine
36

Figure 33: Quadrature Linear Motion Detection Logic
38

Figure 34: Data sampling code
35

Figure 35: Sample data for 3 dots (shadows)
39

Figure 36: Sample Magnitude versus Sample Number for 3 dot shadows
36

Figure 37: Sample Magnitude versus Sample Number for 2 adjacent dots.
37

Figure 38: Sample data for 2 non-adjacent dots
41

Figure 39: Sample Magnitude versus Sample Number for 2 adjacent dots
21
Figure 40: Braille Dot Recognition Working Range
42

Figure 41: Dot Recognition Software
43

Figure 42: DSP output when scanning a line of 6 dot braille cells
44

Figure 43: Sequential appearance of braille dots from angular misalignment
45

Figure 44: Angular Misalignment Correction Software
45

Figure 45: Braille cell’s with angular misalignment correction
26
Figure 46: determining a 1-1-1-0-1-1 braille cell (111011 binary = 59 (BCBC))
47

Figure 47: Indistinguishable Single Sided Braille Cells in Grade 2 English Braille
49

Figure 48: DSP cell compilation
51

Figure 49: Prototype operation in scanning the English Alphabet.
52

Figure 50: Prototype operation when scanning a line of ‘X’ characters
53

Figure 51: Clock noise on camera output signal for 3 braille dot illumination peaks
58

Figure 52: CCD output when scanning the illumination peaks of 3 braille dots.
62

Figure 53: CCD output when scanning the illumination shadows of 3 braille dots
62

Figure 54: C5402 DSP onboard timer system.
63

Figure 55: Camera literary text output proof of operation
65

Figure 56: LED array circuit
70

Figure 57: Gradient index lens properties
71

Figure 58: Focal distance for 0.29 pitch lens
71

Figure 59: CCD and lens housing.(side view)
72

Figure 60: CCD and lens housing.(front view)
72

TABLES

Table 1: Indistinguishable Single Sided Braille Cells in Grade 2 English Braille
50

Table 2: Binary Coded Braille Cell (BCBC) to braille cell dots combination
73

Table 3: States, Input Classes and Decision Table for Standard English Braille to Text
81

Table 4: Rule Table for Standard English Braille To Text
84

1. Introduction

1.5 percent of the Australian population suffer from some form of severe vision impairment (Australian Bureau of Statistics 1998). The preferred means of written communications for many of these persons is through tactile braille mediums. While these persons can read and write using the braille system, the majority of sighted persons in society can not, and thus there exists a written communications barrier between seeing and vision impaired persons (VIP’s).

This problem is particularly apparent in the schooling system, where nowadays blind students are taught in mainstream schools. Many of these students perform all assessment, tests and homework writing using the braille medium. However most teachers of these students are braille illiterate, so presently all the students work must first be sent to a special unit of the Ministry for Education, where the braille is translated to literary text and then sent back to the teacher before it can marked. This creates unnecessary hindrance and cost for the student, teacher and government. Problems also exists in the workplace where any information written by a VIP in braille that is to be interpreted by other braille illiterate persons, needs to be first translated by the VIP themselves.

To overcome this communications barrier, the device developed in this project provides a means by which braille illiterate persons can read what a VIP has written in braille. The device is essentially a hand held scanner that is rolled along the desired braille line, and in real time the equivalent literary text is computed for visual display, on a Liquid Crystal Display (LCD) for example.

The device also has application for vision impaired persons who suffer Diabetic Peripheral Polyneuropathy (DPP). Diabetes is the major cause of blindness in Australia, and persons who suffer DPP lose touch sensitivity in their fingertips, causing considerable distress as they are unable to read even braille mediums. (Similar conditions exist for geriatrics and persons suffering head injuries, Iain Murray 1998). These persons could use this device to roughly feel the location of dots on the braille line to operate the scanner, with the literary text equivalent spoken out in real time through the use of a text to speech converter with speaker output.

The project described in this report is a direct continuation of Iain Murray’s 1998 thesis, ‘A Portable Device for the Recognition of Braille’. All of the specifications and requirements as such were sourced from the Association for the Blind (WA). The aim of this project was to continue the progress made in that thesis to achieve a working prototype system that is functional, accurate and ergonomic. Specifically, the project was also to utilise a new superior digital signal processor, quadrature linear motion detection and fuzzy logic fundamentals for the purpose of braille cell recognition.

This report begins with a brief overview of past research into braille recognition and translation followed by the device system’s considered methodologies of operation. To understand the requirements of the project at hand, a discussion of braille mediums is then given portraying its unique characteristics. The construction of the developed device then follows beginning with the hardware architecture and implementation in chapter 3. Chapter 4 introduces the workings of the software environment and chapter 5 describes the operation of the device in testing. In conclusion the project achievements are summarised and possible future improvements are listed.

2. Background

2.1 Existing Research and Development

There exists already much research and development into braille to text conversion systems. The following describes these developments and the various approaches they undertook to fulfil the requirements of braille to text translation.

1. The “Braille Reader for the Blind” by Nippon Telesoft Co Japan, is described following.
“High-speed and accurate reading equipment or an analysis system for double-sided documents has not been available, although a Braille printer and an automatic Braille character system does exist. This new Braille reader makes it possible to display written Braille documents using a special Braille scanner. Also, such documents can be electronically saved and retrieved. At present, this new reader has been put into practical use at social welfare centers.” Nedo (1993)

[image: image1.png]

Figure 1: Braille Scanner

No other information was given or could be found, and the device has made no further appearance’s since 1993.

2. “In the “Spermalie Institute” in Bruges, Belgium, a simple scanning device was made using a plotter. The pen was replaced with four light sensitive elements. This method could not be used with “Interpoint Braille”. An average fault of 2% was claimed.

3. At the Technical University of Delft, the Netherlands produced a Braille reading tablet. This device used a ruler with a reading head that contained three light sensitive cells. The head needs to be moved along the lines of Braille, using the ruler. This system was very prone to positional errors.

4. In Le Centre Marie Morel, Paris, France, A standard scanner was used to digitise the Braille pages. The sensitivity of the scanner was reduced to a very low value, so that the Braille dots would appear as dark spots in the resulting image. The results appeared promising but according to Mennens, 1996 no further research was undertaken.

5. At the University of Sciences and Technology in Lille, France, a CCD camera with 512x512 pixel resolution was used to digitise the image. Due to the low resolution, the original is digitised in two steps. The system had an average error of 2% and an average conversion time of 7 seconds per line. The system was never used outside the laboratory (Mennens,1996).

6. At the University of Agriculture and Technology in Tokyo, Japan, research was conducted on recognition of both opaque and transparent Braille. A CCD camera was used for the detection of bright regions caused by LED illumination. The articles describe the recognition probability of the different set ups. No indications were given on practical use.

7. At the University of Sherbroke in Quebec, Canada, an optical probe was developed to read and spell Braille. The reading speed was five characters per second and the recognition rate appeared high. This device could read both single sided and interpoint Braille. It appears, however to be extremely difficult to position correctly.

8. At the University of Manchester, England, a system utilising illumination from two different angles and digitised with a CCD area array was reported. Both images are subtracted from each other. The result is an image that is insensitive to stains or stripes on the papers surface. This system has an average conversion error rate of 8%. This work was a masters thesis and no further research has been attempted.

9. At Katholiek Universiteit Leuven, Belguim, a method of scanning interpoint Braille on standard flat bed scanners was undertaken. This appeared to have good results in both accuracy and conversion speed (60-80 seconds per braille page). (
Murray (1998)

The above display great progress in braille to text conversion in a way that suits the requirements of their potential applications, and in fact the flatbed scanner technique is quite commonly used today. Yet none have made considerable advance or come close to producing a commercial device that meets the real-time, portable requirements considered in this project.

2.2 Methodologies Considered

Many methodologies of operation were considered at the beginning of this project to improve on the design used in Iain Murray’s project ‘A Portable device for the Optical Recognition of Braille’. Required improvements included a reduction in hardware requirements, faster and more accurate scanner operation, and greater ease of use. These were also to make full use of the availability of superior equipment, namely the Texas Instruments TMS320C5402 Digital Signal Processor and Evaluation Board.

Three methodologies were considered for system development, namely the ‘Optical Mouse Approach, the ‘Handheld Flatbed Scanner Approach”, and the ‘Improved Tried and True linear CCD approach’.

The ‘Optical Mouse Approach’, was to simulate the way commercial optical mouses perform motion tracking and image detection. This method requires no codewheel for motion tracking and with the use of an electronically variable lens, would allow the scanner to be held above the braille page and ‘aimed’ at the desired braille cells. The device would also be immune from scanner to braille cell angular misalignment, making for easy, carefree operation. However this system must use area (two dimensional) CCD’s for scanning, and even considering a low resolution 128x128 CCD, would still require 16384 pixels to interpolate, compared with 128 pixels for a 128 x 1 linear CCD array. Using this method would not only require a more expensive CCD, but also a faster, more expensive DSP to process the data and still allow a practical rate of scan. Thus, while this approach would allow a most ergonomic and accurate device, it was left to be considered a possible future development due its high cost.

The ‘Handheld Flatbed Scanner” approach was to utilise a linear CCD array the horizontal width of braille page to scan vertically the page a line at a time, ie the same way a flatbed scanner’s operate. This method would allow high braille to text conversion rates, without too much computational burden (using a row of 15 linear CCD’s with the same resolution as used in this project would require only 1850 pixels per scan of the braille page width to be processed). The problem of keeping the scanner perfectly horizontal while scanning, can be compensated by software in the same way that flatbed scanners using OCR can compensate for documents placed at angle. However along with expected high cost, the illumination of the entire braille line will severely limit the operating time of the portable device.

The ‘Improved Tried and True Linear CCD’ approach is essentially the same as the method used in the project “A Portable Device for the Optical Recognition of Braille’, but with improvements. This approach uses a linear 128 x 1 pixel array, a codewheel with quadrature linear motion detection capabilities and the performance potential of the Texas Instruments TMS320C5402 Digital Signal Processor (DSP). These can increase scanner operational accuracy and speed, and a list of ergonomic improvements and software techniques will serve to make the scanner easier to use. This is the chosen approach and hence was consequently developed in this project.

2.3 The Braille System

“Braille is a system of embossed (raised) signs, which are formed by six dots arranged and numbered as in Figure 2. Eight dot Braille is in limited use in the computer application area and is used in the display of text attributes. As such eight dot Braille will not be further considered. Each dot can be set or cleared giving 2 6 (64) possible characters in the code. As can be seen from this available number of combinations, not all characters may be represented directly by this system. (ie. 26 upper case letters +26 lower case letter +10 numerals + punctuation marks greatly exceeds 64) Therefore, a system of contractions and abbreviations for words and letter combinations exists. This is commonly termed grade 2 or literary Braille. Each of these cells (Braille characters) is context sensitive, depending on absence/existence of previous, following and symbol characters in the string being read.

[image: image2.png] Figure 2: The Braille cell.
All dots on a Braille page should fall on an orthogonal grid. When texts are printed double sided (Interpoint), the grid of the interpoint text is shifted so that the dots fall in between the primary side dots. For reference purposes, a particular combination may be described by naming the positions where dots are raised, the positions being universally numbered 1 through 3 from top to bottom on the left, and 4 through 6 from top to bottom on the right. For example, dots 1-3-4 would describe a cell with three dots raised, at the top and bottom in the left column and on top of the right column. In the original French, also in English and all other languages written in the Roman alphabet, that pattern would most often be used for the letter "m”. It can also have other meanings depending on language, Braille code and context.

The basis of the various Braille codes for the world's natural languages is a straight forward assignment of most of the dot patterns to letters of the alphabet, punctuation marks and other symbols. This is done with a certain consistency, quite often with reference to Louis Braille's original assignments, to the extent possible given the great variety of alphabets, accent marks, vocalisation marks, etc that are in use. For example, the "m" mentioned above would be used for mu in Greek, and mim in Arabic, both of which have an "m" sound. It is worth noting that it is not considered important for a Braille character to resemble the corresponding print symbol in "shape" and so few of them do.

Dot height, cell size and cell spacing are always uniform, and so many significant characteristics of the text, such as italics used for emphasis, must be handled by such indicators in Braille. An exception is that formatting, such as the centring of main headings, is commonly used in Braille in much the same way and for most of the same purposes, as in print.

Separate Braille codes may be used for notation systems other than natural languages, such as music, mathematics and computer programming, and even for highly specialised pursuits such as chess. The basis of such codes remains an association between the 64 possible Braille characters, or distinct sequences of such characters, and the symbols and other notational elements of interest. There is current research, under the auspices of the International Council on English Braille (ICEB), as to whether some of these separate codes, notably for mathematics and the sciences, should be combined along with the literary code into a single Unified Braille Code (UBC) for English.

As earlier stated the 64 distinct characters are insufficient to cover all possible print signs and their variants, it is necessary to use multi-character sequences for some purposes. Often this is accomplished by using certain characters as "prefixes" or "indicators" that affect the meaning of subsequent cells. For example, in English a dot 6 before a letter indicates that the letter is a capital, whereas otherwise it is understood to be lower case. For another example, dots 3-4-5-6, called the "numeric indicator", causes certain following letters (a through j) to be interpreted as digits.

The size of the Braille cell is such that only 25 lines of 40 cells each, that is 1000 characters, can fit on a page of the usual size, which is normally 11 inches wide by 11 to 12 inches deep. This contrasts with the 3500 characters that will fit on a standard, smaller, typed page. Moreover, Braille paper must be much heavier to hold the dot formation and the dots themselves considerably increase the effective thickness of a page. The result is that embossed Braille is very bulky. To mitigate this problem somewhat, most larger Braille books are published in "interpoint", that is with the embossing done on both sides of each sheet, with a slight diagonal offset to prevent the dots on the two sides from interfering with each other. (see figure 2)

Partly because of the bulk problem, and partly to improve the speed of writing and reading, the literary Braille codes for English and many other languages, employ contractions that substitute shorter sequences for the full spelling of commonly-occurring letter groups. For example, THE is usually just one character in English Braille, not only in the definite article but also in words such as THis. However, that contraction may not be used in shorTHand, because of the way those words are constructed or pronounced. In other words, phonetics play a role in modern Braille but not so as to compromise an accurate representation of spelling or break syllable boundaries. Wherever the Braille character for THE appears, the reader can be sure that it stands for exactly those three letters and not some other sequence that may sound the same. This creates major problems in computer decomposition of grade two Braille with respect to syllable boundaries.

When contractions are used, the Braille is usually called grade two in contrast to grade 1 transcriptions where all words are spelled out letter-for-letter. In English, which has 189 contractions, almost all Braille is grade two.” Murray (1998)
[image: image61.png]
Context Sensitive contractions example, in English Grade 2 Braille.

The complete Grade 2 English Braille Alphabet is shown in the following figure. [image: image3.png] Figure 3: English Grade 2 Braille Alphabet

For a historical perspective of the braille system please refer to Historical Development of the Braille System

3. Hardware Development and Implementation

3.1 System Block Diagram

To allow the method of braille to text translation to be a user friendly operation the prototype system uses a hand held unit that incorporates a camera system for the image capture of the braille medium. The device can then be scanned along the desired braille line with the equivalent literary text displayed in real time, mimicking the abstract reading method of sighted readers with standard text.

The prototype system block diagram can be seen below in Figure 4.

[image: image4.jpg]
Figure 4: System Block Diagram and Flow (Adapted from Murray (1998))

Basically, in operation the camera system on the hand held unit captures one dimensional photo frames of the braille page as the device is scanned along the braille line. These frames are then sent to a digital signal processor (DSP) which optically recognises the braille characters present and determines the equivalent literary text equivalent for real time display on the host PC. (The display of output on the host PC is purely for prototyping purposes, the final developed device will utilise a LCD display or text to speech converter to enable the device to be truly portable)

The codewheel assembly, also located on the handheld unit, provides the DSP with information on the scanner’s direction and distance of movement for the correlation of photo frames from the camera system with the actual physical braille page. Doing so allows the DSP to construct an accurate two dimensional map of the braille page for optical character recognition from a one dimensional camera system.

A timing board is included to manage the operation of the camera system and also to condition the various control signals from the handheld device for the DSP.

The prototype of the system is displayed in figure 5 and 6. Note however that in the developed device all of the system components should be located all within a handheld unit for ease of use and portability.

[image: image62.png]
Figure 5: Prototype System Implementation (View 1)

[image: image63.png]
Figure 6: Prototype System Implementation (View 2)

3.2 Image Capture System

[image: image64.png]The image capture of the braille medium is achieved by a camera system consisting of an illumination source, focusing lens and linear CCD photodiode array. These various parts can be seen in figure 7.

Figure 7: Handheld Scanner Assembly

[image: image65.png][image: image66.png]When in operation, the illumination source, constructed of a row of 4 LED’s, shines at a right angle to the braille page causing shadows to form behind the raised dots of the braille cell as seen in figure 8.

Figure 8: Camera system in operation and dot shadow’s effect

A detailed description of the illumination LED’s operation can be found in Camera Design.

The selfoc lens used consists of a 2*12 array of micro – lens, designed to focus the braille dot shadows image onto to the linear CCD photodiode array. The lens as seen in figure 8, moves above the braille cell in when the scanner is in motion, and as such causes no wear and tear on the braille medium. A detailed description of the selfoc lens operation can be found in Camera Design.

3.2.1 Linear CCD Array Operation

The CCD utilised in this application is the Taos TSL202R 128 x 1 Linear Sensor Array. The device contains 128 photodiode pixels orientated in a row as indicated in figure 8 by the grey line on the linear CCD array. The CCD outputs each photo frame of the braille page serially, pixel by pixel, on the AO pin, which is connected to the ADC (analogue to digital converter) of the DSP. The voltage output of each pixel is proportional to the amount of light incident on that pixel since the last camera frame. For a detailed description on the workings of the linear CCD array consult Camera Design. The camera system works on the principle that the voltages of those pixel’s overlooking braille dot shadows will comparatively be much less than those pixels not overlooking shadows.

For correct CCD operation, two control signals, a clock signal (between 5 KHz and 5 MHz) and a start-integration (SI) pulse (between 10 Hz and 30.7 kHz) must be supplied. The SI signal initiates frame serial output and thus defines the amount of time between CCD image slice outputs for the individual pixel’s to accumulate light, and hence the corresponding camera frame rate. The clock signal is used to synchronise the serial output of pixel’s in each camera frame.

To choose an appropriate clock and SI frequency, aspects of system operation including scanner speed, camera signal quality, DSP processing time requirements, and ADC (analogue to digital conversion)) were taken into account. The following derivations describe.

1.
The TLCAD50 AIC (Analogue Interface Circuit) found on the 5402 Evaluation Board, used to convert the analogue signal of the CCD to the DSP required digital form, is capable of sampling the CCD output at 22.05 KHz. If the linear 128 pixel CCD operates serially at 50 kHz,

Number of Pixel’s Sampled From 128 = (22.05 kHz / 50 kHz) x 128 = 56.4

 , the maximum possible number of samples taken by the AIC of the analogue waveform is 56, which is adequate vertical resolution for dot position recognition.

2.
Given CCD operation at 50 kHz and a total serial output duration of 130 cycles,

Duration of Serial Output = 130 . (1 / 50 kHz) = 2.6 mS

 , the length of time required to output each linear image slice is 2.6 mS. Therefore, theoretically the SI pulse could be applied every 2.6 mS, to allow maximum scanning speed. But an important point of consideration is the processing requirement time of the DSP and the pixel output voltage of the CCD.

 If the DSP operates at 100 MHz and samples at 22.05 kHz then there are,

(DSP Cycle Speed) / (AIC Sampling Rate) = 100 M / 22.5 k = 4444

 , 4444 cycles between each sample for the DSP to perform necessary operations. With future requirements dictating that all braille recognition, conversion and comprehension (and overhead such as LCD display control etc) operations to be performed on the DSP not on a host computer, more than 4444 DSP cycles may be needed.

Also, the individual pixel voltage’s from the CCD are inversely proportional to the camera frame rate. Through trial, it was found that any frame rate above 100 Hz allowed transmission noise to dominate the CCD output signal. Hence as a safety factor, the SI pulses will only be every 11.4 mS, giving a frame rate of 87 Hz and a DSP computational redundancy of over,

Redundancy time x DSP cycles per second = (11.4 mS – 2.6 mS) x 100 M

 = 880 000 cycles

 , 880 000 cycles (near overkill) after the sampling period.

Now, the scanning speed of the device is limited by the camera frame rate and the need for braille line horizontal resolution (determined by the number of frames taken per inch). Given that the codewheel assembly only provides 92 scan interrupts per inch, the scanner can still operate at,

 Max Scanner Velocity = 1 / (Interrupts per inch / SI frequency)

 = 1 / (92 / 87)

 = 0.94 inch/s = 2.36 cm/s

, 2.36 cm a second, which is inadequate for practical use but sufficient for prototype development.

The timing of CCD operations are shown in figure 9.
[image: image67.png]

Figure 9: CCD Timing Requirements and Operation, Taos (2001)

3.2.2 SI Pulse and Clock Generation

The SI pulse is generated using a 555 timer in conjunction with a 74LS221 non-retriggerable multivibrator. The 555 timer creates a 87 Hz square wave signal, and consecutively the multivibrator is triggered every negative edge of the 555 signal to produce a pulse of 23 (S duration (at least 1 50kHz clock cycle). This signal is then AND’ed with the 50 kHz clock signal generated by another 555 timer for correct synchronisation . To provide the required SI pulse to CCD clock signal delay as seen in Figure 9, the DSP clock is delayed 80 nS by a 74LS31 delay line. The timing hardware implementation and oscilloscope measurements proof of operation are shown in figure 10 and figures 11, 12 and 13 respectively.

[image: image68.png]
Figure 10: SI Pulse and Clock generation circuit.

[image: image69.png][image: image70.png]
Figure 11: SI 555 timer and Multivibrator SN74LS221 Output

Figure 12: 74LS31 Delay line Operation

[image: image71.png]The resulting CCD control signals are shown below, displaying the synchronisation requirements as given in figure 9.

Figure 13: CCD SI and 50 kHz clock signals

The entire image capture system (illumination, lens and CCD combination) produced the following output frame of 3 braille dots. Clearly from this output the position of braille dots within an image slice can be determined.

[image: image72.png]

Figure 14: CCD output displaying 3 braille dots

The developed device in application must also be able to deal with worn braille mediums with flattened braille dots that result from age, usage and incorrect storing methods. Worn braille was simulated by flattening a braille page, and the camera output is shown in figure 15.

[image: image5.jpg]

Figure 15: CCD output of 3 worn (flattened) braille dots.

Clearly, the camera system is still able to produce a good quality signal for dot recognition from worn braille mediums.

3.3 Quadrature Linear Motion Detection

The codewheel arrangement located on the handheld unit has facility to perform quadrature linear motion detection which allows the scanner direction of movement (backward or forward) and distance travelled along the braille line to be determined. In scanner operation, the assembly always provides 92 interrupt pulses per inch to the DSP as indication for camera frame capture. From this distance travelled information, the DSP can correlate the constant flow of incoming camera frames with the actual braille line for correct optical braille character recognition, irrespective of scanner speed . The scanner direction information allows the DSP to disregard camera frames in cases where the scanner is moving backwards along the braille line. Backward scanner motion may occur due to hand jitter or when the user wishes to rescan a braille line without physically lifting the device off the braille page.

In effect, the use of the codewheel assembly and quadrature linear motion detection allows the DSP to construct a two dimensional map of the braille line from a one dimensional camera system.

3.3.1 Quadrature Linear Motion Detection: Theory of Operation

As seen in figure 16 a codewheel is a circular disc which has a number of slots cut into it, 6 in this simplified case.

[image: image6.png]

Figure 16: Example codewheel design
 “ Shining through the slots are two LEDs (Light Emitting Diodes) shown by the black dots. Each LED shines on to a light sensitive transistor. The two emitters are spaced so that, when one transistor can 'see' its LED through the centre of its window, the other LED is looking at an edge and is therefore switching on or off.. In the diagram LED A is fully illuminated and LED B is switching. Note that LED B may be switching from light to dark or from dark to light - this depends on the rotation direction.

If LED A is measured everytime LED B goes from light to dark, if LED A is light then we are rotating clockwise, but if LED A is dark, then we have anticlockwise rotation. The number of transitions can also be measured to determine distance.”

 Torrens (1995)

All the required logic to determine codewheel direction of rotation and distance of movement is performed by the DSP.

3.3.2 Implementation

[image: image73.png]For quadrature linear motion detection, the 36 slot codewheel and shutter arrangement from a Generic Serial Mouse was used with GL480 LED’s and PT481H filtered phototransistor’s (see Figure 17). A gear set was then utilised with a tracking wheel which rolls along the braille page to spin the codewheel, and thus provide an effective 92 light to dark transitions per inch (in turn giving a suitable number of image capture signals per inch for sufficient horizontal resolution) when scanning.

Figure 17: Codewheel assembly

In this application the PT481F phototransistor produced a voltage between 1V and 5V depending on the position of the codewheel shutter. For correct quadrature linear motion detection operation it was found necessary to pass they’re output through LM311 comparators so they’re output is either low (0V) or high (5V). Hence a cutoff voltage to represent a high voltage was chosen to be 2.5 V, and implemented by resistor voltage divider circuitry connected to pin 3 of the LM311. (see below figure) The 1K resistor’s at the output are included as voltage divider circuitry to reduce the 5V CMOS logic circuitry output to 2.5 V, below the input voltage maximum threshold of the DSP board.

[image: image7.png]
Figure 18: Phototransistor Output Conditioning Circuitry
[image: image74.png]Figure 19 portrays the photodiode conditioning operation of the LM311 Comparator when the scanner is in motion and the codewheel is spinning.

Figure 19: Photodiode, Comparator Output

[image: image75.png]The codewheel and shutter arrangement from the Generic Serial Mouse performed as expected providing the following output signals and illustrating the ability to determine direction from the high or low logic state of phototransistor B at the exact time a Phototransistor A state transition edge occurs. Ie,

Figure 20: Codewheel outputs illustrating Forward Motion

[image: image76.png]Note when comparator A goes from low (0V) to high (5V), comparator B is low.

Figure 21: Codewheel outputs illustrating backward Motion
Note, when comparator A goes from low (0V) to high (5V), comparator B is high.

Comparator A output is connected to the X_INT0 (external interrupt 0) pin, and comparator B is connected to the X_BIO (general purpose input) pin on the expansion peripheral interface of the 5402 DSP evaluation board. The DSP performs the quadrature linear motion detection logic as described in section 3.3.1.

3.3.3 Quadrature Linear Motion Detection Implementation Problem

As stated previously, the codewheel assembly should interrupt the DSP 92 times per inch of scanner forward movement. Using the comparator A output which produces 92 square waves per inch and the fact that the DSP uses only negative edge triggered external interrupts, correct operation should be justified. However, in operation the positive edge of the comparator output square wave was able to trigger the DSP negative edge triggered external interrupt. This condition is demonstrated below using a simple DSP program which produces an external pulse on the XF (External Flag) pin whenever an interrupt event occurs on the X_INT0 pin, which the comparator A output is connected to. (The comparator A output is low pass filtered as seen below to reduce any potential high frequency oscillations)

[image: image77.png][image: image78.png]
Figure 22: Positive Edge triggering of Negative edge triggered Interrupt

Figure 23: Positive Edge triggering of Negative edge triggered Interrupt (Magnified)

This hardware characteristic inhibits the ability of the DSP to perform the required quadrature linear motion detection logic, which must only use the positive edge OR negative edge as the point in time to check the Comparator B output for the determination of direction of scan (as described in 3.3.1). The most probable cause for this peculiar characteristic of the DSP’s negative edge triggered external interrupts is the comparator’s output, as described below.

[image: image8.png]

Figure 24: Comparator Operational Limitations, National (2001)

Referring to Figure 19, it is quite clear that the photodiode input into the comparator is a voltage ramp and thus causes this condition. Now, instead of correcting the problem using the suggested circuitry in figure 24 which requires a large amount of hardware, it was taken upon to instead use the redundant AND logic gates existing on the timing board.

[image: image79.png]The logic constructed in the figure below was utilised to exploit the ‘phase’ difference of the two comparator outputs as seen below in figure 26 to produce an inverse square wave every time there is comparator A positive edge. This effectively allows the positive edge of comparator A to act solely as the codewheel interrupt and prevents the negative edge, giving equivalent correct quadrature linear detection operation.
[image: image9.png]

Figure 25: Positive Edge Compensating Logic

[image: image80.png]

Figure 26: Comparator Outputs

Figure 27: Resultant DSP interrupt signal

Below the Comparator A output in relation to the DSP interrupt indication pulse can be seen. Clearly the revised system only produces one interrupt per comparator square wave, allowing 92 DSP interrupts per inch and ensuring quadrature linear motion detection correctness of operation

[image: image81.png]
Figure 28: Proof of “negative edge trigger” problem solution correctness

3.4 DSP Platform

The Digital Signal Processor used in this project for the optical recognition of Braille and the translation to literary text was the Texas Instruments TMS320VC5402 (in starter kit form with evaluation board). The DSP is highly suitable for this application due to the following reasons:

1. High Computational Speed: The C5402 DSP operates at 100 MHz and uses a special architecture suited to the task of processing large amount of data, required in this application for the demands of real time image processing.

2. Low Power Usage: Considering the portable requirements of the device and the need to run on batteries, it is paramount that the DSP operates with minimal power consumption. The C5402 DSP was designed for low power consumption (down to 0.33mA/MHz) and accommodates many features (such as the ability to power only the required areas of the DSP chip) to conserve battery energy.

3. Low Cost: At a cost of $5.66 US per DSP at 1000 unit volumes, this should allow the developed device to be financially accessible and a cost effective device for most users.
[http://www.dspvillage.com/docs/catalog/generation/overview.jhtml?]
The prototype constructed takes advantage of the starter kit DSP evaluation board utilities to decrease hardware complexity and development time. A few important evaluation board utilities and their use’s are described following.
1. Onboard Analogue Interface Circuit (AIC):

 The evaluation board contains an interfaced AIC with programmable analogue to digital (A/D) and digital to analogue (D/A) converters. These allow software controlled passband filters, gain amplification and a range of sampling rates up to 22 KHz. The A/D converter was used in the prototype to sample the incoming camera frames.

2. Real Time Debugging Support:

Conveniently, the evaluation board comes with full JTAG emulation allowing interface (through a parallel port) with the host PC for real time download and debugging of DSP programs. This feature was further extended in the prototype to display in real time the literary text output of the DSP braille recognition and translation algorithm.

Seen in figure 29 and 30 respectively is the physical DSP evaluation board and functional block.

[image: image82.png]
[image: image10.png]

Figure 29: C5402 Digital Signal Processor, Texas Instruments (1997)

Figure 30: DSP Functional Block Diagram, Texas Instruments (1997)
Other notable C5402 DSP features include,

· Code Composer Studio Integrated Development Environment (IDE) with parallel assembly and C language support

· Extensive chip support and code library with a large community base for modular development
· 64 KBytes of external 100 MHz SRAM, and 256K words of FLASH

· Expansion memory and external peripheral interface

4. Software Design and Implementation

4.1 Fundamental DSP Software Operation

The DSP’s main computational tasks in the prototype device are to perform,

1. Quadrature linear motion detection

2. Sampling of camera output frames

3. Fuzzy logic dot detection

4. Camera Angular Misalignment Correction

5. Braille Cell Compilation

6. Braille to text translation

7. Text Output Display

The DSP control algorithm used for handling these tasks is interrupt driven and the software event flow is shown in figure 31. The algorithm works as follows:

· in its initial state, the codewheel interrupt is unmasked and camera frame interrupts (from SI pulse) are masked.

· the DSP waits for the a codewheel interrupt indicating scanner motion.

· Once interrupted, the DSP then determines if the scanner is moving in the forward direction and if it is, the codewheel interrupt is masked and the camera SI interrupt is unmasked to allow the SI pulse to interrupt the DSP when a relevant camera frame is ready to be sent

· When the camera interrupt occurs the DSP then samples the incoming camera frame

· Braille optical character recognition techniques then take place, and if possible, equivalent text output is sent to the host PC for display

· The camera SI interrupt is then masked, the codewheel interrupt unmasked, and the algorithm then repeats

·
[image: image11.png]
Figure 31: DSP Algorithm Software Flow
4.2 DSP Setup and Initialisation

[image: image83.png]

Figure 32: DSP initialisation routine

The 5402 DSP’s Code Composer Studio integrated development environment provides many high level, abstract, C based functions which can be called to perform rudimentary and frequently used tasks. This greatly simplifies the DSP software by distancing much of the hardware’s low level detail and set up requirements from the developer. These functions are also computationally optimised and still allow low level characteristics to be modified if need be through the C compiler’s assembly language interface.

To initialise the DSP environment, the ‘brd_init(100)’ function is used which sets the 100 MHz operating frequency and most of the required registers for typical DSP operation.

The INTR_HOOK function physically ties an event on a expansion peripheral interface interrupt pin to the corresponding interrupt service routine (ISR). These include, the ‘codewheel_interrupt0’ ISR for handling scanner movement events on pin #X_INT0 and ‘SI_interrupt2” ISR indicating an incoming camera frame on pin #X_INT2.

The onboard analogue to digital converter (ADC) is programmed for 16 KHz sampling frequency and zero gain, 15 bit data operation (giving a range from –32768 to 32768 for an input voltage of –0.5 V to 0.5 V). While the ADC is capable of higher and more desirable 22 KHz sampling, this requires assembly based Analogue Interface Circuitry (AIC) set up, interface connection and control and was thus left for future development considering the present acceptable operation of the prototype device.

4.3 Quadrature Linear Motion Detection Logic

The underlying logic to determine the scanners direction of movement with quadrature linear motion detection is quite simple. Sequentially: comparator A provides a pulse when the scanner is moved, which interrupts the DSP and forces the service of the ‘codewheel_interrupt0’ routine. ‘Codewheel_interrupt0’ ISR then immediately calls the bio_test routine to test the logic state of the #X_BIO pin which comparator B is connected to. Referring back to figure 20 and 21, clearly if the state of the #X_BIO is low (0V) the scanner is presently in forward motion, if high (5V) it is in backward motion. This logic is displayed in the software of figure 33, note the interaction of the C based ISR and assembly code ‘bio_test’ routine.

[image: image12.png]……

[image: image13.png]

Figure 33: Quadrature Linear Motion Detection Logic

If forward movement is determined, ‘Codewheel_interrupt0’ ISR then masks its own interrupt event and unmasks the ‘SI_interrupt2’ which indicates an incoming frame for processing. If backward movement is detected, the program just waits for the next codewheel interrupt. This allows the DSP to capture 92 camera frames per inch for correct optical character recognition operation, no matter which way the scanner is moved.

4.4 Frame Sampling

The ‘SI_interrupt2’ ISR is triggered by the SI pulse of the camera system which is also used to initiate CCD serial frame output for synchronisation. Once the ISR is triggered it immediately starts sampling the camera output, and places the samples into the array ‘data_array’, as seen in the code below.

[image: image14.png]

Figure 34: Data sampling code

For testing purposes the sampled data for one camera frame was displayed in Code Composer Studio standard output window using simple printf commands. The sample magnitudes for the case where the camera is overlooking 3 braille dot shadows are shown below.

Note: The input range from for the ADC on the TLC320AD50 AIC is –0.5 to 0.5 V. Now referring to figure 14, to limit the CCD output to a suitable voltage and thus prevent overflow, it is passed though a resistor voltage dividor circuit to reduce the scanner output by a factor of 5.

[image: image15.png]

Figure 35: Sample data for 3 dots (shadows)

Transferring this data to Matlab, and plotting the sample magnitudes versus sample index number in ‘data_array’ with the following method,

[image: image16.png]
, yielded the chart.

[image: image17.png]
Figure 36: Sample Magnitude versus Sample Number for 3 dot shadows

Quite clearly, the existence of braille dots from their shadows can be determined from the sampled camera frame. Similarly for 2 adjacent braille dots,

[image: image18.png]

 Sample data for 2 adjacent dots (shadows)
[image: image19.png]

Figure 37: Sample Magnitude versus Sample Number for 2 adjacent dots

For 2 non-adjacent braille dots.

[image: image20.png]

Figure 38: Sample data for 2 non-adjacent dots

[image: image21.png]

Figure 39: Sample Magnitude versus Sample Number for 2 adjacent dots

4.5 Braille Dot Recognition

To determine the existence of braille dots from their shadows a reference magnitude was taken to be an average of a few samples that are at the edges of the camera’s field of view. Samples are then compared with this reference magnitude to gain a relative value to indicate whether that samples magnitude is affected by a braille dot shadow. This allows the device to operate on many different types of braille paper, and compensates for paper discolouring with aging. The reference magnitude can also be taken from the left or right hand side of the camera’s field of view to compensate for situations where braille dot shadows may affect the reference sample regions (Conveniently the vertical page height of the braille cell, and thus range of braille dot shadows is less the camera’s view height, so one side is always available as a correct reference) See figure 41 for implementation.

When a user is operating the device, it would be unreasonable to assume they would hold the scanners camera over the braille line perfectly constant and stable when in motion. The device needs to be tolerant to any changing location of dots within the camera frames so that the user can concentrate on understanding the text they are scanning, not on the actual scanning process itself. The DSP can allow for the varying location of braille dots within the camera image by using fuzzy logic principles to ‘estimate’ whether a particular braille dot is present. The range of allowed variability for particular dots is shown in figure 40, and is restricted soli by the height of the braille cell and the camera’s limited field of view.

[image: image22.png]

Figure 40: Braille Dot Recognition Working Range

The fuzzy variables are essentially sample magnitude scalars for the individual frame sample’s, given according to how likely they are to be affected by a particular braille dot’ shadow within the camera image when the device is in motion. The fuzzy scalars were chosen using the Matlab charts for test base, and the existence of any of the 3 possible dots from one side of the braille cell are indicated by ‘1’ in the ‘dot1’, ‘dot2’ and ‘dot3’ variables. (See implementation in figure 41)
. In scanning a line of 6 dot braille cells (as shown), the DSP internal calculations are displayed in figure 42 (following the context of the printf command in the figure 41), with each new line representing the processing of a new camera frame. Clearly the operation of the fuzzy dot determination consistently locates braille dot shadows despite the dynamic nature of the scanned braille line.

[image: image23.png]

Figure 41: Dot Recognition Software

[image: image24.png]
Figure 42: DSP output when scanning a line of 6 dot braille cells

4.6 Scanner Angular Misalignment Correction

Considering the camera system in the prototype uses a one dimensional (linear) CCD array, when moving over the braille line the handheld scanner is often at an angle to the braille cell. This results in the dots from one side of a braille cell to appear in different camera frames. This is demonstrated in figure 43 when scanning a 6 dot braille cell.

[image: image25.png]

Figure 43: Sequential appearance of braille dots from angular misalignment

To overcome this operational constraint, the DSP uses a simple technique where the successive found braille dots from camera frames or logically OR’ed with each other. In time, this allows dots from one side of the braille cell to be represented in the same camera frame slice for correct optical braille character recognition operation.

[image: image26.png]
Figure 44: Angular Misalignment Correction Software

This correction technique is however limited by the fact that at angles greater than 25 degrees, the CCD will pick up the braille dot shadows from the other (left or right) side of the braille cell, for which it cannot compensate. Below is displayed the ‘dot1’, ‘dot2’ and ‘dot3’ variables that are modified with the angular misalignment [image: image84.png]correction technique for the case when the device is scanning a line of 1-1-1-0-1-1 braille cells,

[image: image27.png]Figure 45: A line of 1-1-1-0-1-1 braille cell’s with angular misalignment correction

Following the results a line at a time, it is apparent that there is least one point in time the when the misaligned dots are all represented in one slice variable, indicating the correct presence of dots from the braille line.

4.7 Braille Cell Compilation

Now that a slice variable has been accurately created that represents the presence of dots from one side of a braille cell, another old slice representing the other side of the braille cell is added, resulting in a unique braille cell characterising the actual cell’s dot combination. The distance information obtained from quadrature linear motion detection now comes to use in correlating slices of braille cells with each other, since there is less distance inbetween the sides of a braille cell than between two adjacent braille cells.

From the determined braille cell a specific braille code decompression algorithm to translate the context sensitive braille characters into literary text for display output could then be applied. However for the device to be of practical application it needs to be able to decompress all the different types of braille codes, be it English Grade 2, Greek, Arabic, Math, Music etc. It would be inappropriate to use a different scanner for all the different types of braille codes encountered. An example of a unique braille cell’s possible meanings follows,

[image: image28.png]
Hence to allow a truly universal device, a base system was devised which represents only the unique braille cell combination found (not its meaning) for all braille code decompression algorithms to use.

The system assigns each unique braille cell with a Binary Coded Braille Cell (BCBC) number which represents the combinations of dot present. BCBC is assigned using the following formula (also refer to figure 46),

[image: image85.png]BCBC = dot1*25 + dot2*24 + dot3*23 + dot4*22 + dot5*21 + dot6*20
, where dotX is one if the dot exists or zero if it doesn’t.

Figure 46: Braille cell dot locations and respective dot number.

Example’s of BCBC calculation are shown below.

[image: image29.png]
A table correlating all the BCBC number’s with the braille cell dot combination’s exists in table 2. The Grade 2 English Braille Meaning is also given for reference, and was used for device testing purposes.

The software algorithm to obtain the BCBC is simplified as following, (refer to Source Code for full implementation).

[image: image30.png]
The internal workings of the DSP were screen captured and are shown in figure 47 as the device was scanning a line of 1-1-1-0-1-1 braille cells.

Note: (slice_left 8) + slice_right = (7*8) + 3 = 59

[image: image31.png] Figure 47: determining a 1-1-1-0-1-1 braille cell (111011 binary = 59 (BCBC))

Evidently, the cell compilation software provided correct and consistent operation.

4.8 Ambiguous Single Sided Braille Cell Compilation

When a vision impaired person (VIP) reading braille encounters a single sided braille cell, they have no ‘physical’ way of determining if the dots they are feeling belong to the left or right hand sided of the braille cell, giving two possible meanings. Thus there exists physical ambiguity in braille mediums in respect to single sided braille cells. However, braille codes are developed so that single sided braille cells that could be confused with each other have totally different meaning, for example in Grade 2 English code,
Braille Cell
Meaning
Braille Cell
Meaning

1
a (1)
4
Accent indicator

2
Comma, contraction “ea”
5
Contractions prefix

3
Apostrophe
6
Capital indicator, contractions prefix

1-2
b (2)
4-5
Contractions prefix

1-3
k, contraction “knowledge”
4-6
Decimal point, Contractions prefix

2-3
Semicolon, contraction “bb”
5-6
Letter indicator, Contractions prefix

1-2-3
l, contraction “like”
4-5-6
Contractions prefix

 Table 1: Indistinguishable Single Sided Braille Cells in Grade 2 English Braille

Hence when a VIP encounters a single sided braille, they subconsciously calculate both possibilities and depending on the context, choose the most appropriate meaning. For example, in Grade 2 English Braille consider the two physically indistinguishable single sided braille cells.

[image: image32.png]
Clearly, if the ambiguous character was inbetween 2 numerals, the character is representing decimal point and if it was not, would represent the letter ‘k’. The DSP in the same respect can determine the correct meaning of single sided braille by applying simple rules. Considering there are only 14 single sided braille cells in the 6-dot system, only 7 rules are required to distinguish cells which can be confused with each other. These rules need to be integrated into the braille to text decompression algorithms to allow the device to handle the ambiguity in all types of braille codes.

Since the exact braille character is unknown, the BCBC number system provides both possibilities for interface to the decompression algorithm. Cell compilation operation when scanning a line of single sided braille cells is shown below.

[image: image33.png]

Figure 48: DSP cell compilation, BCBC could equally be 56 or 7 (56@7)

4.9 Braille to Text Translation
Once the binary coded braille cell has been determined, the task of converting to literary text is dependent on the type of braille code being scanned and is a relatively trivial and well understood task. Decompression algorithms for translating the context sensitive braille medium to literary text have already been developed. For example, the algorithm developed by Paul Blenkhorn / Iain Murray consists basically of a state machine for control with switchable look up tables for the different braille codes (math, Greek, English etc) to allow universal operation.

For prototype testing purposes a greatly simplified decompression algorithm for translating Grade 2 English Braille into literary text was used. The algorithm just substitutes braille characters for literary text equivalent characters on a one to one basis. Hence the prototype’s operation for the case when scanning the alphabet could be examined for testing purposes. Refer to the screen capture of figure 49.

[image: image34.png]
Figure 49: Prototype operation in scanning the English Alphabet

In scanning the grade 2 English alphabet, the prototype system averaged an accuracy of 80.7 %. The accuracy is however totally dependent on the users ability to keep the camera’s limited field of view over the braille line and roughly straight. This is due to the fact that the prototype handheld device is quite large and clumsy in the hand, and rests on a one wheel tracking system when in motion, making it quite easy to twist, turn and roll off the braille line ((dots out of the camera’s field of view). In a developed device however, the handheld ergonomics should be improved and ideally ought to run on a four wheel tracking system. This would prevent any twisting and turning of the scanner on the page and would force the scanner to move consistently in parallel with the braille line, keeping the braille dots within the vertical view range of the camera.

In fact, the system delivered nearly 100 % accuracy when ideal (straight and on the braille line) scanner operating conditions were forced. Such operation is portrayed below when scanning a line of ‘X’ characters.

[image: image35.png]
Figure 50: Prototype operation when scanning a line of ‘X’ characters

5. Device Testing

5.1 Image Capture

The camera system produced a good quality output signal from which the presence of braille dots could quite easily be determined, as seen in the oscilloscope printouts of figure 15. The quality was adequate still for degraded and worn braille and the camera frame rate was high enough to allow practical scanning speeds. The angular misalignment problem, inherent of one dimensional linear CCD arrays, proved solvable through DSP algorithm correction techniques at moderate and reasonable scanner to braille cell angles.

The camera’s limited field of view however severely hindered device ease of operation and braille OCR translation accuracy as view of the braille cell could quite easy be lost in scanner motion.

5.2 Quadrature Linear Motion Detection

The operation of the tracking wheel, codewheel assembly, signal conditioning hardware and DSP combination worked flawlessly in performing quadrature linear motion detection, once the aforementioned edge trigger problem was solved. The DSP software was therefore able to obtain accurate distance and direction information on the scanners movements to perform the required optical braille character recognition.

Correct operation however, can not be guaranteed for cases when scanning speeds were above the physical limits of the system (as dictated by the camera frame rate).

5.3 Recognition Algorithm Testing

The sampling, fuzzy dot recognition, angular misalignment correction, cell compilation and simplified translation algorithm all worked as expected in determining literary text from the dynamic braille page images the camera system provides. However the quadrature linear motion detection, fuzzy principles and angular misalignment correction software, despite their best efforts, can not compensate for excessive scanner to braille cell angle’s or from the camera system losing ‘sight’ of the braille dots in its limited field of view. As stated earlier in section 4.8, these test complications are characteristics of the prototype device, and should largely disappear in the developed system.

However, given acceptable camera operation, the DSP software proved able to accurately perform optical braille character recognition and text translation of the dynamic braille medium in real time.

6. Conclusion

6.1 Project Achievements

The original motivation for this project was to build on the developments made in Iain Murray’s thesis “A Portable Device for the Optical Recognition of Braille”, and to achieve a practical working prototype.

In the course of the project, quadrature linear motion detection was implemented and put to use to compensate for back scanning and hand jitter. A new, more flexible digital signal processor was programmed to determine the location of braille dots from camera images of the braille page using simple fuzzy principles. Software angular misalignment correction techniques were then developed to overcome some of the shortcomings of using a one dimensional camera system. Accurate compilation of the complete braille cell from the located braille dots was achieved and a simplified braille to text translation algorithm was used to test the operation of the device in scanning an actual braille page.

Device testing proved integrated operation of the complete system, and thus a working prototype that could scan a braille page and output the equivalent literary text in real time was developed.

Testing also demonstrated the current system’s high sensitivity to correct scanner operation. In a developed device therefore, an improved wheel tracking system and ergonomical scanner, or a complete architectural redesign need to be realised to achieve practical ease of operation.

6.2 Significant Aspects of the Project

The most significant aspect of the project was the development of a proven architecture for a portable, real time braille to literary text translation device. The unique optical method of operation has many inherent advantages in practical use and allows reasonable device cost.

Thus a practical written communications gateway between seeing and vision impaired persons now exists. The device conveniently will also allow blind person’s suffering Diabetic Peripheral Polyneuropathy to continue to communicate through their preferred written medium.

6.3 Difficulties Encountered

There were many unforseen difficulties encountered in the course of the project. These are listed below and may go some way to explain the unique design and implementation of the device.

6.3.1. Clock Noise on CCD Output Signal

In an effort to increase the maximum rate of scan, the camera frame rate was increased to 200 Hz. This in effect reduces the amount of time the scanner has to collect light and hence, the corresponding “light” voltage was not greater than about 0.5V. This was deemed acceptable since the determination of braille dots is done a relative scale. However when sending the CCD signal from the camera to the DSP, the intermediate cable allowed the clock signal also on the cable to act as a quite noisy source of interference. This made the signal inadequate for sampling, as seen in figure 51.

[image: image36.png]
Figure 51: Clock noise on camera output signal for 3 braille dot illumination peaks

Hence the camera frame rate was reduced to 87 Hz, and the corresponding accurate CCD signal can be seen in figure 51 at the expense of scanner speed. This problem should be alleviated when the scanner and DSP are integrated onto the same housing and a long, noisy cable is not used, thus allowing greater rate of scan.

6.3.2 Code Composer Studio Problems

a).DSP Startup Procedure:

It is important to follow the below procedure every time the computer has been turned off, otherwise the Code Composer Studio IDE will not be able to communicate with the DSP through the parallel port.

1. Connect Parallel port cable, and power cable to DSP.

2. Turn on the computer.

3. Connect Parallel port cable to computer.

4. Turn on the DSP power supply.

5. Perform software controlled hardware reset.

6. Start the Code Composer Studio IDE.

b) The 16 KHz Codec Problem:

The TLC320AD50 analogue to digital converter found on the TMS320C5402 evaluation board is capable of sampling at 22.05 KHz. However the “codec” header used for sampling function calls only allows certain sampling rates, and only up to 16 KHz. Attempts to modify the header function proved fruitless, and thus to gain the full 22.05 KHz sampling rate, the TLC320AD50 must be initialised, setup for AIC to DSP communication and controlled using assembly code, which was not attempted in this project.

c) The Code Composer Studio “Stop DSP” Facility:

When running code on the DSP from Code Composer Studio, it is essential to close the disassembly window before stopping the run time execution of the DSP. Failure to do so will after a few repetitions make the DSP perform incorrectly or become unresponsive to any outside events, necessitating a GEL reset.

d) Quadrature Linear Motion Detection Failure with ‘ \n ’

For unknown reasons when using the standard output window to display text, the new line command “\n” requires an enormous amount of transmission from the DSP to host computer. It can cause so much delay that it became the bottleneck on translation speed, rather than the CCD slice frequency. Due to the interrupt structure of the control algorithm this would cause codewheel interrupt’s indicating motion to be ignored, thus compromising the accuracy of the quadrature linear motion detection in providing accurate scanner movement distance and direction information.

6.4 Recommendations for Future Development

The following possible developments that should have been implemented in this project, but where not due to schedule constraints are listed following. They are then left for the undertakings of future development.

6.4.1 Alternate Camera Assembly

To fix the one dimensional camera angular misalignment and limited filed of view problems a new, larger two dimensional area CCD array could be used. This method would also not require a codewheel’s for motion tracking and with the use of an electronically variable lens, would allow the scanner to be held above the braille page and ‘aimed’ at the desired braille cells. In effect the device should become very easy to use and significantly more accurate. While this would make the system more expensive, previous difficulties with this approach being too computationally slow should be compensated for by now by the advent of new, faster and cheaper DSP’s.

 6.4.2 Braille to Literary Text Decompression

Taking the lead of Iain Murray / Paul Blenkhorn, the complete decompression of braille from its many forms of contractions, (be it maths, music, english US etc) can be accomplished giving practical use in the workplace and teaching scenarios. The decompression algorithm basically consists of a base state machine with switchable look up tables for the different types of braille that are available.

Functionality will also have to be provided on the scanner so that the user can choose the correct look up table for the braille medium they are scanning. Conveniently this algorithm developed by Iain Murray / Paul Blenkhorn was written in C, and using the 5402 DSP C compiler could be ported to the device with minimal modification and complexity. Note though, that single sided braille cell determination rules will have to added. The software algorithm and C language implementation are given in Braille to Text Decompression.

6.4.3 Ergonomic Developments

At present the scanner assembly is quite difficult to operate due to a number of problems. Firstly, the prototype handheld device is quite large, so the user can not easily see the desired braille cells they wish to scan, and it is quite clumsy ergonomically to use. Combined with the limited view of the camera system this results in severe impediment to the device accuracy of operation. The developed device needs to be reduced in size and made more ergonomic to hand held scanning, and the timing board, DSP and scanner will also have all have to be implemented in the same housing for ease of portability.

The one wheel tracking system will also need to be replaced by a four wheel tracking system as mentioned previously, to keep the scanner correctly aligned with the braille line in operation and to allow ease of use and improve accuracy.

6.4.4 Inter Point Braille Compatibility

At present, the prototype system can not deal with interpoint braille mediums, as described in section 2.3. By taking into account the arrival order of peaks and shadows however, the device has potential capability. By considering only braille dots that consist of an illumination peak followed by a shadow (indicating a raised dot) and disregarding dots with the illumination shadow arriving before the peak (indicating a dot depression from a braille cell character on the back side of the braille page), interpoint compatibility can be reassured. Refer to the figures 52 and 53 displaying consecutive CCD output frames when scanning 3 raised braille dots. Scanning the dots depressions from dots made on the back side of the page would result in a reversal in the order of the camera frames.

[image: image37.png]Figure 52: CCD output when scanning the illumination peaks of 3 braille dots.

[image: image38.png]Figure 53: CCD output when scanning the illumination shadows of 3 braille dots.
6.4.5 DSP CCD Clock Generation

Presently a 555 timer produces the 50 KHz Clock signal required by the linear CCD array. However the C5402 DSP has timers onchip included to provide external clock signals for whatever reasons. Hence as method to reduce power consumption and the amount of glue logic required in a developed device this facility can be used to generate the CCD 50 kHz clock signal instead of the 555 timer. The following describes briefly how to set DSP accordingly.

The 5402 DSP evaluation board runs at 100 MHz, and due to functional reasons the CLKOUT1 input into the timer sub-system is half the DSP clock speed, ie 50 MHz. To obtain the required 50 kHz TOUT frequency, the timer sub-system effectively performs the following operation where the 16 bit PRD (PeRioD relative to input signal) register is set to 999 (decimal), and the TDDR (timer divide down register) is set to 0.

[image: image39.png]
[image: image86.png]The resultant 50 kHz signal is available at the X_TOUT (External timer out) pin on the Expansion Peripheral Interface with a duty cycle that can be determined by a simple external latch.

Figure 54: C5402 DSP onboard timer system

6.4.6 Illumination System Redesign

A major consideration for the developed system that will be portable and hence rely on batteries, is power consumption. At present the scanner illumination LED’s are on continuously, regardless of CCD operation. Ideally illumination is only required when scanner motion is detected, and due to the operation of DSP image capture algorithm (where only relevant image slices are processed, refer to section 3.4.2) operation would not suffer if the LED’s were powered only after a codewheel triggering event. This task could easily be implemented with a multivibrator triggered by the conditioned comparator A positive edge in conjunction with an op-amp to power the LED’s.

6.4.7 Text Reader Compatibility

To increase the usefulness of the device, the scanner system could also be used to double as a text reader for vision impaired persons. These products already exist commercially and basically just use a small pen sized scanner to read literary text and then using OCR, display the text on a large LCD screen or output audibly through a text to speech converter. Possible applications include miscellaneous situations where a VIP person may need to read the cash amount on a cheque, for example.

The scanners output when scanning the word ‘the’, can be seen in figure 55. Clearly CCD output quality for literary text is adequate and then using the software techniques on commercial text reader’s, the same functionality could be provided on this device.

[image: image40.png]
Figure 55: Camera literary text output proof of operation

7. Bibliography

1. Blenkhorn Paul (1997), A System for Converting Print into Braille, IEEE Transactions on Rehablitation Engineering, Vol 5 No 2, pp 121-130

2. Murray Iain (1998), A Portable Device for the Optical Recognition of Braille, Curtin University of Technology, Perth Western Australia

3. National (2001), LM111 / LM211 / LM311 Voltage Comparator, National Semiconductor Corporation, USA

4. Nedo (1993) (New Energy and Industrial Technology Development Organisation), Project Themes of R&D on Practical Welfare Equipment for which Subsidy will be Provided, [Online], Available:

 http://www.nedo.go.jp/iry/JITSUYOKA/e_jitu04_a.html [1993]

5. Taos Instruments (2001), TSL202R 128 x 1 Linear Sensor Array, Taos Instruments , USA

6. Texas Instruments (1997), TMS320C5X Users Guide, Texas Instruments, USA

7. Texas Instruments (2002), Code Composer Studio / Help Index, Texas Instruments, USA

8. Torrens Richard (1995), Mice: How do they Work?, [Online], Available:

 www.howstuffworks.com
Appendix I: Historical Development of Braille

“Louis Braille was born in the French town of Coupvray, near Paris in 1809. At the age of three, while playing in his father's shop, Louis injured his eye on a sharp tool. Despite the best care available at the time, infection set in and soon spread to the other eye, leaving him completely blind.

At the age of ten, Braille was sent on scholarship to the Royal Institution for Blind Youth in Paris where most instruction was oral, although there were some books in a raised-print system developed by the school's founder, Valentin Haüy.

It was a French army captain, Charles Barbier de la Serre, who invented the basic technique of using raised dots for tactile writing and reading. His original objective was to allow soldiers to compose and read messages at night without illumination. Barbier later adapted the system and presented it to the Institution for Blind Youth, hoping that it would be officially adopted there. He called the system Sonography, because it represented words according to sound rather than spelling. While the Institution accepted Sonography only tentatively, Braille set about using and studying it. Soon he had discovered both the potential of the basic idea and the shortcomings in some of Barbier's specific provisions, such as a clumsy 12-dot cell and the phonetic basis. Within three years, Braille had developed the system that is known today, employing a 6-dot cell and based upon normal spelling.”

Murray (1998)

Appendix II: Miscellaneous Calculations
SI Pulse Generation

555 Timer:

Frequency = ___1.44____ = _______1.44_______ = 87 Hz = 11.4 mS

 (R1 + 2R2) C1
 (1.5k(+ 2*1k()24.7(F

SN74LS221 Multivibrator

Pulse Width = Rext .Cext.ln 2 = 5k(. 6.8nF. ln 2 = 23 (S

50 KHz Clock Generation

555 Timer:

Frequency = ___1.44_____ = _______1.44_______ = 49416 Hz

 (R1 + 2R2) C1
 (1.2k(+ 2.5k()4.7nF

Appendix III: Schematic Diagram

[image: image41.png]
Appendix IV: Camera Design

“

Illumination

Illumination is supplied by an array of 4 red LEDs. The schematic diagram for this sub-system is illustrated in Figure 56 below. The package supplies 45mcd luminance intensity at 635nM wavelength. This corresponds to the peak sensitivity of the linear array CCD of 600 to 950nm. Additionally, it was found that discolouration of the Braille paper is less noticeable under this particular wavelength of illumination when compared to the yellow, green and white illuminations also tested.

[image: image42.emf]

R1

100

+12

R2

500

R1

100

+12

R2

500

Figure 56: LED array circuit.

Physical placement of the LED array was determined by trial and error. An angle of incidence of approximately 20 degrees with respect to paper surface and a driving current of 40mA rendered highly discernible results.

The Lens System

Gradient index micro lenses have a radial varying index of refraction that causes an optical ray to follow a sinusoidal propagation path through the lens (Newport,1997). They combine refraction at the end surfaces along with continuous refraction within the lens. Such lenses are said to have a pitch of 1.0 when its length is such that a ray completes one sinusoidal period in travelling through the lens. Information contained in Newport, 1997 stated that for a working distance (Braille to lens) of 1mm and a focal length to CCD of 3mm, that a pitch of 0.29 was most suitable under red visible light.

[image: image43.png][image: image44.png]
[image: image45.png]
Figure 57: Gradient index lens properties.

The lens system used contains a 2 by 12 array of such elements mounted in the camera housing as detailed in Figure 59 and Figure 60.
[image: image46.png]
Figure 58: Focal distance for 0.29 pitch lens

[image: image47.png]
Figure 59: CCD and lens housing.(side view)
[image: image48.png]
Figure 60: CCD and lens housing.(front view)

“
Murray (1998)

Appendix V: Binary Coded Braille Cell Table

Note: The braille dots are represented by their existence with 1, and non-existence with 0 in the following manner: dot1 dot2 dot3 dot4 dot5 dot6

Decimal (BCBC)
Braille Dots
Grade 2 English Braille Literary text equivalent

0
000 000
space

1
000 001
capital indicator, prefix for certain contractions

2
000 010
prefix for certain contractions

3
000 011
letter indicator, prefix for certain contractions

4
000 100
accent indicator

5
000 101
decimal point, emphasis indicator, prefix for certain contractions

6
000 110
prefix for certain contractions

7
000 111
prefix for certain contraction

8
001 000
apostrophe (')

9
001 001
hyphen (-), contraction "com"

10
001 010
contraction "in"

11
001 011
closing quote, contraction "was"

12
001 100
slash (/), contraction "st"

13
001 101
contraction "ing"

14
001 110
contraction "ar"

15
001 111
numeric indicator, contraction "ble"

16
010 000
comma (,), contraction "ea"

17
010 001
contraction "en"

18
010 010
colon (:), contraction "cc"

19
010 011
period (.), contraction "dis"

20
010 100
i, 9

21
010 101
contraction "ow"

22
010 110
j, 0, contraction "just"

23
010 111
w, contraction "will"

24
011 000
semicolon (;), contraction "bb"

25
011 001
opening quote, contraction "his"

26
011 010
exclamation (!), contraction "to"

27
011 011
opening or closing round parenthesis, contraction "gg"

28
011 100
s, contraction "so"

29
011 101
contraction "the"

30
011 110
t, contraction "that"

31
011 111
contraction "with"

32
100 000
letter a, digit 1

33
100 001
contraction "ch"

34
100 010
e, 5, contraction "every"

35
100 011
contraction "wh"

36
100 100
c, 3, contraction "can"

37
100 101
contraction "sh"

38
100 110
d, 4, contraction "do"

39
100 111
contraction "th"

40
101 000
k, contraction "knowledge"

41
101 001
u, contraction "us"

42
101 010
o

43
101 011
z, contraction "as"

44
101 100
m, contraction "more"

45
101 101
x, contraction "it"

46
101 110
n, contraction "not"

47
101 111
y, contraction "you"

48
110 000
b, 2, contraction "but"

49
110 001
contraction "gh"

50
110 010
h, 8, contraction "have"

51
110 011
contraction "ou"

52
110 100
f, 6, contraction "from"

53
110 101
contraction "ed"

54
110 110
g, 7, contraction "go"

55
110 111
contraction "er"

56
111 000
l, contraction "like

57
111 001
v, contraction "very"

58
111 010
r, contraction "rather"

59
111 011
contraction "of"

60
111 100
p, contraction "people"

61
111 101
contraction "and"

62
111 110
q, contraction "quite"

63
111 111
contraction "for"

Table 2: Binary Coded Braille Cell (BCBC) to braille cell dots combination

Appendix VI: DSP Source Code

/***

* CCD Output - braille project C5402 target software

* Andrew Paquale 09913770

* 26/7/2002

***/

#include <type.h>

#include <board.h>

#include <codec.h>

#include <mcbsp54.h>

#include <stdio.h>

#include "target.h"

#include "intr.h"

void codewheel_interrupt0();

void SI_interrupt2();

void setup_interrupt();

/**************** Global Variables**********************/

HANDLE hHandset;

s16 data;

int data_array[60];

static short codewheel_var = 0;

int i = 0, newline_var = 0;

int reference_amplitude, reference_amplitudeL, reference_amplitudeR;

int sam31, sam32, sam33, sam34, sam35, sam36, sam37;
//sample number, fuzzy dot variable

int sam38, sam39, sam40, sam41, sam42, sam43;
//sample number, fuzzy dot variable

int sam44, sam45, sam46, sam47, sam48;
//sample number, fuzzy dot variable

int dot1, dot2, dot3, dot1_value, dot2_value, dot3_value;

int dot1_new, dot2_new, dot3_new, dot1_old1, dot2_old1, dot3_old1;

int slice_new, slice_old1, slice_old2;

int braille_cell, slice_goodnew, slice_good1, slice_good2, slice_good3, slice_good4, slice_good5;

int slice_good6, slice_good7, slice_good8, slice_good9, slice_good10, slice_good11, slice_good12;

int slice_good13, slice_good14, slice_good15, slice_good16, slice_good17, slice_good18;

char temp[80];

/* 0 = space, 6(dot) = 1(binary) = capital indicator, 1-2-3-6(dot) = 39 (bin) = 'v' etc

- does not include single sided cells (* = single side) (always does letter), or prefix's

- bin2CAP is capital equivalent, bin2NUM is decimal equivalent

Dec |Braille |Meaning |ASCII

0
000 000
space

1*
000 001
capital indicator, prefix for certain contractions
 ,

2*
000 010
prefix for certain contractions
 "

3*
000 011
letter indicator, prefix for certain contractions
 ;

4*
000 100
accent indicator
 @

5*
000 101
decimal point, emphasis indicator, prefix for certain contractions
.

6*
000 110
prefix for certain contractions
 ^

7*
000 111
prefix for certain contraction
 _

8*
001 000
apostrophe (')
 '

9
001 001
hyphen (-), contraction "com"
 -

10
001 010
contraction "in"
 9

11
001 011
closing quote, contraction "was"
 0

12
001 100
slash (/), contraction "st"
 /

13
001 101
contraction "ing"
 +

14
001 110
contraction "ar"
 >

15
001 111
numeric indicator, contraction "ble"
 #

16*
010 000
comma (,), contraction "ea"
 1

17
010 001
contraction "en"
 5

18
010 010
colon (:), contraction "cc"
 3

19
010 011
period (.), contraction "dis"
 4

20
010 100
i, 9
 i

21
010 101
contraction "ow"
 [

22
010 110
j, 0, contraction "just"
 j

23
010 111
w, contraction "will"
 w

24*
011 000
semicolon (;), contraction "bb"
 2

25
011 001
opening quote, contraction "his"
 8

26
011 010
exclamation (!), contraction "to"
 6

27
011 011
opening or closing round parenthesis, contraction "gg"
 7

28
011 100
s, contraction "so"
 s

29
011 101
contraction "the"
 !

30
011 110
t, contraction "that"
 t

31
011 111
contraction "with"
)

32*
100 000
letter a, digit 1
 a

33
100 001
contraction "ch"
 *

34
100 010
e, 5, contraction "every"
 e

35
100 011
contraction "wh"
 :

36
100 100
c, 3, contraction "can"
 c

37
100 101
contraction "sh"
 %

38
100 110
d, 4, contraction "do"
 d

39
100 111
contraction "th"
 ?

40*
101 000
k, contraction "knowledge"
 k

41
101 001
u, contraction "us"
 u

42
101 010
o
 o

43
101 011
z, contraction "as"
 z

44
101 100
m, contraction "more"
 m

45
101 101
x, contraction "it"
 x

46
101 110
n, contraction "not"
 n

47
101 111
y, contraction "you"
 y

48*
110 000
b, 2, contraction "but"
 b

49
110 001
contraction "gh"
 <

50
110 010
h, 8, contraction "have"
 h

51
110 011
contraction "ou"
 \

52
110 100
f, 6, contraction "from"
f

53
110 101
contraction "ed"
$

54
110 110
g, 7, contraction "go"
 g

55
110 111
contraction "er"
]

56*
111 000
l, contraction "like
l

57
111 001
v, contraction "very"
 v

58
111 010
r, contraction "rather"
 r

59
111 011
contraction "of"
 (

60
111 100
p, contraction "people"
p

61
111 101
contraction "and"
 &

62
111 110
q, contraction "quite"
 q

63
111 111
contraction "for"
 =

*/

char bin2char[64] = {' ',NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,'-',

 NULL,'"','/',NULL,NULL,NULL,',',NULL,':','.',

 'i',NULL,'j','w','"','!',NULL,'(','s',NULL,

 't',NULL,'a',NULL,'e',NULL,'c',NULL,'d',NULL,

 'k','u','o','z','m','x','n','y','b',NULL,

 'h',NULL,'f',NULL,'g',NULL,'l','v','r',NULL,

 'p',NULL,'q',NULL};

char bin2CAP[64] = { NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

 'I',NULL,'J','W',NULL,NULL,NULL,NULL,'S',NULL,

 'T',NULL,'A',NULL,'E',NULL,'C',NULL,'D',NULL,

 'K','U','O','Z','M','X','N','Y','B',NULL,

 'H',NULL,'F',NULL,'G',NULL,'L','V','R',NULL,

 'P',NULL,'Q',NULL};

char bin2NUM[64] = { NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,

 '9',NULL,'0',NULL,NULL,NULL,NULL,NULL,NULL,NULL,

 NULL,NULL,'1',NULL,'5',NULL,'3',NULL,'4',NULL,

 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,'2',NULL,

 '8',NULL,'6',NULL,'7',NULL,NULL,NULL,NULL,NULL,

 NULL,NULL,NULL,NULL};

char bin2contr[64][12] = {"", "", "", "","","","","","","com"

"in", "was", "st", "ing","ar","ble","ea","en","cc","dis"

"", "ow", "just", "will","bb","his","to","gg","so","the"

"that", "with", "", "ch","every","wh","can","sh","do","th"

"knowledge", "us", "", "as","more","it","not","you","but","gh"

"have", "ou", "from", "ed","go","er","like","very","rather","of"

"people", "and", "quite", "for"};

/***

--------------------------------------- Main function --

1. set up interrupts

2. set up tlc320AD50 (initailise MsCbs serial port, set sampling rate etc)

3. wait for events

***/

void main()

{

 if (brd_init(100))

 return;

//------------------1. set up interrupts------------------

INTR_INIT

//initailise pointer to vector table

INTR_HOOK(16,codewheel_interrupt0)

//put ISR into vector table

INTR_HOOK(18,SI_interrupt2)

//put ISR into vector table

// Setup the interrupt handler

setup_interrupt();

port0 = 0x80;

//sets CNTL1 register, enable int2

//------------------2. Setup the ADC -------------------

 /* Open Handset Codec */

 hHandset = codec_open(HANDSET_CODEC); // Acquire handle to codec

 // Set codec parameters

 codec_adc_mode(hHandset, CODEC_ADC_15BIT); // ADC in 15-bit mod

 codec_ain_gain(hHandset, CODEC_AIN_0dB); // 0dB gain on analog input to ADC

 codec_sample_rate(hHandset,SR_16000); // 16KHz sampling rate

i = 0;

while (1);

 /* Polling and digital loopback */

return;

/* END of Main */

}

/**

---------------------------- codewheel_interrupt --

The SI Pulse provides an interrupt to X_INT1 every 5.3 mS,

the DSP will only process the CCD image slice from the AIC if

a X_INT0 event (indicating a codewheel trigger signal)

occurred in the last 5.3 mS AND XF equals zero (indicating forward motion)

***/

interrupt void codewheel_interrupt0()

{

asm(" SSBX INTM");

// Disable interrupts

codewheel_var = bio_test();

//test to see if codewheel is moving forward

if (codewheel_var == 1) {

//enable the SI interrupt

brd_led_enable(BRD_LED0);

brd_led_enable(BRD_LED1);

asm("
SSBX 1, 13");

asm("
STM #5,IFR");
// Clear the interrupt0 so may be used again (IFR)

asm("
STM #4,0h");

//but disable it until SI interrupt service routine

}

//completes,and enable SI interrupt 1 (IMR)

if (codewheel_var == 0)
{

//keep waiting, dont enable SI interrupt

brd_led_disable(BRD_LED0);

brd_led_disable(BRD_LED1);

brd_led_disable(BRD_LED2);

}

asm(" RSBX INTM");

//globally enable interrupts

/* END of codewheel__interrupt0 */

}

/***

------------------------------- SI_interrupt ---

1. record the CCD output (57 samples after SI pulse)

2. determine braille cell

-determine dots within image slice of 57 samples

-store then correlate with previous or latter slices constituting a braille cell

-determine braille cell

3. apply braille rules to create text from braille cells and rules

***/

interrupt void SI_interrupt2()

{

asm(" SSBX INTM");

// Disable interrupts

//------------ 1. record the CCD output (57 samples after SI pulse)--------------

while (i < 59)

 {

 /* Wait for sample from handset */

 while (!MCBSP_RRDY(HANDSET_CODEC)) {};

 /* Read sample from and write back to handset codec */

 data = *(volatile u16*)DRR1_ADDR(HANDSET_CODEC);

 data_array[i] = data;

 ++i;

 }

/*----------2. determine braille cell-----------------------------------

 a. use at least 3 image slices to detemine dots in a "slice', since ccd

 may not be perfectly horizontal

 b. apply fuzzy logic fundamentals to determine dots within sample array*/

/* i = 20;
// first 20 samples are out of lens view

 while (i < 58) {

if (newline_var == 20) {printf("\n"); newline_var = 0;}
//prevent output window horizontal overflow

printf(" %d", data_array[i]);

++i;

++newline_var;

}

*/

reference_amplitudeL = ((data_array[27] / 3) + (data_array[28] / 3) + (data_array[29] / 3)); //divide by 3 to

reference_amplitudeR = ((data_array[50] / 3) + (data_array[51] / 3) + (data_array[52] / 3)); //prevent overflow

if (reference_amplitudeL >= reference_amplitudeR)

//try find reference amplitude least

{reference_amplitude = reference_amplitudeL;}

//affected by dot shadows

else { reference_amplitude = reference_amplitudeR;}

sam31 = (reference_amplitude - data_array[31]);
//since the sample is subbed from the reference

sam32 = (reference_amplitude - data_array[32]); //it does no matter if the dot is not there

sam33 = (reference_amplitude - data_array[33]); //because the result will be almost zero and thus

sam34 = (reference_amplitude - data_array[34]); //does not affect the fuzzy determined result

sam35 = (reference_amplitude - data_array[35]); // (the dot shadow due to its limited size is only

sam36 = (reference_amplitude - data_array[36]); // ever going to affect a few of the samples)

sam37 = (reference_amplitude - data_array[37]);

sam37 = (reference_amplitude - data_array[38]);

sam39 = (reference_amplitude - data_array[39]);

sam40 = (reference_amplitude - data_array[40]);

sam41 = (reference_amplitude - data_array[41]);

sam42 = (reference_amplitude - data_array[42]);

sam43 = (reference_amplitude - data_array[43]);

sam43 = (reference_amplitude - data_array[44]);

sam45 = (reference_amplitude - data_array[45]);

sam46 = (reference_amplitude - data_array[46]);

sam47 = (reference_amplitude - data_array[47]);

sam48 = (reference_amplitude - data_array[48]);

//determine using fuzzy priniciples if a dot exists

dot1_value = ((sam31 /10)+(sam32 /10)+(sam33 /10)+(sam34 /10)+(sam35 /10)+(sam36 /20)+(sam37 /50));

dot2_value = ((sam37 /40)+(sam38 /20)+(sam39 /10)+(sam40 /10)+(sam41 /10)+(sam42 /20)+(sam43 /40));

dot3_value = ((sam42 /50)+(sam43 /20)+(sam44 /10)+(sam45 /10)+(sam46 /10)+(sam47 /10)+(sam48 /30));

if (dot1_value > (reference_amplitude / 6)) { dot1 = 1; dot1_new = 1;}

else { dot1 = 0; dot1_new = 0;}

if (dot2_value > (reference_amplitude / 6)) { dot2 = 1; dot2_new = 1;}

else { dot2 = 0; dot2_new = 0;}

if (dot3_value > (reference_amplitude / 6)) { dot3 = 1; dot3_new = 1;}

else { dot3 = 0; dot3_new = 0;}

//to fix vertical misaligment of braille dots, make determined slice a culmination of a few horizontal slices

if ((dot1 == 1) || (dot1_old1 == 1)) {dot1 = 1;}

if ((dot2 == 2) || (dot2_old1 == 1)) {dot2 = 1;}

if ((dot3 == 1) || (dot3_old1 == 1)) {dot3 = 1;}

dot1_old1 = dot1_new;

//refresh dots to culminate new dots with

dot2_old1 = dot2_new;

dot3_old1 = dot3_new;

//printf("%d%d%d %d %d %d %d ", dot1, dot2, dot3, dot1_value, dot2_value, dot3_value, reference_amplitude);

//get highest value image over range of slices affected by dot shadow for correct braille cell

slice_new = (dot1 * 0x04) + (dot2 * 0x02) + (dot3 * 0x01); //ie, 110=0x06, 011=0x03, 001=0x01 etc

if ((slice_old1 >= slice_old2) && (slice_old1 > slice_new)) { slice_goodnew = slice_old1;}

else {slice_goodnew = 0;}

//printf ("%d ", slice_goodnew);

/*if (newline_var == 50) { printf("\n"); newline_var = 0;}

++newline_var;*/

slice_old2 = slice_old1;

//refresh the reference slices

slice_old1 = slice_new;

//correlate dots on right hand side of braille cell with dots on left hand side of braille cell

if ((slice_goodnew != 0) && (slice_good9 != 0)) {

//for double sided braille cells

braille_cell = slice_goodnew + (slice_good9 *8);
//only good_slice 3,4, or 5 will != 0

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);}

if ((slice_goodnew != 0) && (slice_good8 != 0)) {

braille_cell = slice_goodnew + (slice_good8 *8);

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);}

if ((slice_goodnew != 0) && (slice_good7 != 0)) {

braille_cell = slice_goodnew + (slice_good7 *8);

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);}

if ((slice_goodnew != 0) && (slice_good6 != 0)) {

braille_cell = slice_goodnew + (slice_good6 *8);

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);}

if ((slice_goodnew != 0) && (slice_good5 != 0)) {

braille_cell = slice_goodnew + (slice_good5 *8);

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);}

//for single sided braille cells display, check it really isn't a double sided cell,

//refer to figure "1-1-1-0-1-1 cell with vertical misalignment correction" for understanding

if ((slice_good9 != 0) && (slice_goodnew == 0) && (slice_good1 == 0) && (slice_good2 == 0) &&

 (slice_good3 == 0) && (slice_good4 == 0) && (slice_good14 == 0) && (slice_good15 == 0) &&

 (slice_good16 == 0) && (slice_good17 == 0) && (slice_good18 == 0))

 {

braille_cell = slice_good9 *8;

//if assume is left side print

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);

/*braille_cell = slice_good9;

//if assume is right side

printf("bc=%d %c \n", braille_cell, bin2char[braille_cell]);*/

}

//-------------3. apply braille rules to create text from braille cells and rules--------

/* for literary braille, need to test

- is letter indicator

- is capital indicator

- is number indicator

- is decimal point or letter 'k' etc etc*/

/*printf("%c",bin2CAP[braille_cell]);

printf("%c",bin2NUM[braille_cell]);
*/

slice_good18 = slice_good17;

//refresh the reference correct slices

slice_good17 = slice_good16;

slice_good16 = slice_good15;

slice_good15 = slice_good14;

slice_good14 = slice_good13;

slice_good13 = slice_good12;

slice_good12 = slice_good11;

slice_good11 = slice_good10;

slice_good10 = slice_good9;

slice_good9 = slice_good8;

slice_good8 = slice_good7;

slice_good7 = slice_good6;

slice_good6 = slice_good5;

slice_good5 = slice_good4;

slice_good4 = slice_good3;

slice_good3 = slice_good2;

slice_good2 = slice_good1;

slice_good1 = slice_goodnew;

i = 0;

//re-initialise after each interrupt, for sample array

brd_led_toggle(BRD_LED2);

asm(" STM #5,1h");
// Clear any previous interrupt in IFR

asm(" STM #1,0h");

// Enable the int0 interrupt, disable SI(int1) in IMR

asm(" RSBX INTM");

// globally disable interrupts

/* END of SI_interrupt2 */

}

//********************** test direction of codewheel movement ************************************

extern int bio_test()

{

asm("_test_bio:");

asm("
LD #0, A ;Set return value to false ");

asm("
BC bio_low, NBIO ;NBIO = high");

asm("
;BIO = 0 => moving forward");

asm("
NOP");

asm("
NOP ");

asm("
LD #1, A ;Set return value to true ");

asm("
RET ;Card present, return normally");

asm("bio_low: ;bio is low ");

asm("
RET ;exit");

/* END of bio_test */

}

//************************ set up interrupts***

void setup_interrupt()

{

asm(" SSBX INTM");
// Globally disable interrupts

asm(" STM #5,1h");
// Clear any previous interrupt in IFR

asm(" STM #4,0h");
// Enable the int2 interrupt, disable codewheel(int0) in IMR

asm(" RSBX INTM");
// Globally enable interrupts

}

Appendix VII: Braille To Text Decompression

The state machine developed by Paul Blenkhorn for the conversion of braille to text is given below along with the respective look up table for Grade 2 English.

 [image: image49.png]
Table 3: States, Input Classes and Decision Table for Standard English Braille to Text [Blenhorn]

 Input Class | Text | State

[image: image50.png]
[image: image51.png]
[image: image52.png]
[image: image53.png]
[image: image54.png]
[image: image87.png][image: image88.png][image: image55.png]
Table 4: Rule Table for Standard English Braille To Text, Blenkhorn (1997)
The braille to text conversion algorithm is described below in Structured English.
[image: image56.png][image: image57.png]
[image: image58.png]
[image: image59.png]
[image: image60.png]

Blenkhorn (1997)
An implementation of the above algorithm in C language by was developed Iain Murray, thus conveniently the porting of the software to the DSP should be of little difficulty. The source code is given below.

“

/* ***/

/* Title
: hexdump.c
*/

/* Author
: Iain Murray
*/

/* Purpose : Reads a binary Braille code input file
*/

/*
 and dumps to screen the hex value in
*/

/*
 16 bit blocks. This is to test the Braille
*/

/*
 creation routine
*/

/* Date
: 8 September 1998
*/

/* Version : 1.0
*/

/* **
*/

#include <stdio.h>

int main(int argc, char** argv)

{

FILE *infile,*outfile;

unsigned char buf[80];

int i,numread;

if (argc == 1)

{

 printf("usage: hexdump infile <outfile>\n");

}

 else

{

 infile = fopen(argv[1],"rb");

 if (argc > 1)

 outfile = fopen(argv[2],"wb");

 while (!feof(infile))

 {

 numread = fread(buf, 1, 80, infile);
/* Read in bytes from infile

 if(outfile != NULL)

 {

 for(i = 0 ; i < numread ; i+= 2)

 fprintf(outfile,"%x %x ",buf[i], buf[i+1]);

 fprintf(outfile,"\n");

 }

 else

 {

 for(i = 0 ; i < numread ; i+= 2)

 printf("%x %x ",buf[i], buf[i+1]);

 printf("\n");

 }

 }

 }

return(0);

}

/* **/

/* Title : txttobrl.c

*/

/* Author : Iain Murray

*/

/*

*/

/* Purpose
: Read in a text file and convert it to binary Braille

*/

/*
 Code and act as simulated input to the main

*/

/*
 Braille conversion routine

*/

/*

 High byte will contain char, low byte pad will nulls

*/

/* Date : 8 September 1998

*/

/* Version
: 1.0

*/

/* ** */

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#define MAXSTRINGLEN 1024

#define CAPITALINDICATOR
0x4

#define NUMBERINDICATOR
0x3c

#define NULL1

0x0

#define CR

0x0a

#define LF

0x0d

int main(int argc, char** argv)

{

FILE *infile, *outfile;

int i,j,bufferlen;

unsigned char outbuffer[MAXSTRINGLEN],inbuffer[MAXSTRINGLEN],temp,temp1,end;

/* Brailleequiv is an array that is used for checking what the Braille cell

looks like for that character. */

unsigned int Brailleequiv[128] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xff,0x5b,0xff,0xff,0xb3,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

0x00,0x74,0x08,0x3c,0xd4,0x94,0xf4,0x20,0xec,0x7c,0x84,0x34,0x04,0x24,0x14,

0x30,0x2c,0x40,0x60,0x48,0x4c,0x44,0x68,0x6c,0x64,0x28,0x8c,0x0c,0xc4,0xfc,

0x38,0x9c,0x12,

/*A*/0x82,0xc2,0x92,0x9a,0x8a,0xd2,0xda,0xca,0x52,0x5a,0xa2,0xe2,0xb2,0xba,

0xaa,0xf2,0xfa,0xea,0x72,0x7a,0xa6,0xe6,0x5e,0xb6,0xbe,0xae,0x56,0xce,0xde,

0x1a,0x1e,0x10,

/*a*/0x80,0xc0,0x90,0x98,0x88,0xd0,0xd8,0xc8,0x50,0x58,0xa0,0xe0,0xb0,0xb8,

0xa8,0xf0,0xf8,0xe8,0x70,0x78,0xa4,0xe4,0x5c,0xb4,0xbc,0xac,0x54,0xcc,0xdc,

0x18,0x1c};

if (argc < 3)

 {

 printf("Usage txttobrl infile outfile\n");

 exit(1);

 }

if ((infile = fopen(argv[1],"r")) == NULL)

 {

 printf("Could not open text file\n");

 exit(1);

 }

else

 printf("%s opened successfully\n",argv[1]);

if ((outfile = fopen(argv[2],"wb")) == NULL)

 {

 printf("Could not open text file\n");

 exit(1);

 }

else

 printf("%s opened successfully\n",argv[2]);

i = 0; /* read in file into inbuffer */

end = NULL1;

 for(i = 0; i<= 20; i++)

 {

 inbuffer[i] = '0';

 outbuffer[i] = '0';

 }

i = 0;

while (!feof(infile))

 {

 inbuffer[i] = (char)fgetc(infile);

 i++;

 }

bufferlen = i;

/* find out how long string in buffer is */

i = 0;

j = 0;

while (i < bufferlen)

 {

 temp = inbuffer[i];

 if ((temp >= 0x41) && (temp <=0x5a))

 {

 temp1 = CAPITALINDICATOR;

 outbuffer[j] = temp1;

 j++;

 }

 else if ((temp >= 0x30) && (temp <=0x39))

 {

 temp1 = NUMBERINDICATOR;

 outbuffer[j] = temp1;

 j++;

 }

 outbuffer[j] = Brailleequiv[temp];

 i++;

 j++;

 }

bufferlen = j;

outbuffer[j-1] ='\0';

for (i = 0; i < bufferlen; i++)

 fprintf(outfile,"%c%c",outbuffer[i],end);

fprintf(outfile,"%c%c",CR,LF);

fclose(infile);

fclose(outfile);

return(0);

}/* end main */

/* **/

/* Title
: convert.c

*/

/* Author
: Iain Murray

*/

/*

: Modified from P Blenkhorn

*/

/* Purpose
: Translate the incoming stream of binary Braille code

*/

/*

 from the Braille scanner unit.

*/

/*

 High byte will contain char, low byte pad will nulls

*/

/* Date : 11 September 1998

*/

/* Version
: 2.0

*/

/* ** */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define
NUMBER_OF_CHARACTERS
256

#define
SPACE_BIT
8

#define
CAPITAL_INDICATOR

0x04

#define
NUMBER_INDICATOR

0x3c

#define
LETTER_INDICATOR

0x0c

#define
SPACE
0

#define
NUMBITS

1024

#define
SHIFTBACK
3

#define
CAPITAL
3

#define
NUMEXCEPTIONS
2

extern struct {

/* info for character set */

unsigned char input_trans;
/* mapping for input chars */

unsigned char to_up;
/* lower to upper case conversion */

unsigned char data;
/* data for if chars are punc etc. */

unsigned int hash;
/* position for hashing into tables */

} ch_info[NUMBER_OF_CHARACTERS];

#define STR_SIZE 256

enum BOOLEAN { FALSE, TRUE };

#define
NUL

'\0'

FILE *infile, *outfile;

void add_to_output(unsigned char);

/* **/

/* Title : Convert_to_USSBC

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Convert the raw data into United States Standard Braille Code.
*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 3.0

*/

/* Parameters:

*/

/*

character that has just been read from the stream

*/

/*
Return:

*/

/*

Nil

*/

/* ** */

unsigned int convert_to_USSBC(unsigned int ussbchr, unsigned char *flags)

{

static int numcaps = 0, is_digit = FALSE, is_alpha = TRUE;

int i;

unsigned int exceptions[NUMEXCEPTIONS] = {0x18,0x1c};

ussbchr >>=8;

switch(ussbchr)

 {

 case CAPITAL_INDICATOR:

 {

 numcaps ++;

 *flags += 1;

 break;

 }

 case NUMBER_INDICATOR:

 {

 is_digit = TRUE;

 is_alpha = FALSE;

 break;

 }

 case LETTER_INDICATOR:

 {

 is_alpha = TRUE;

 break;

 }

 case SPACE:

 {

/* Reset all values to default */

 numcaps = 0;

 is_alpha = TRUE;

 is_digit = FALSE;

 break;

 }

 default:

 {

 if (is_alpha)

/* Know its a letter */

 {

 for (i = 0; i <= NUMEXCEPTIONS; i++)

 {

/* These exceptions will not have the capital

 indicator in

 front of them but need to have the extra

 added onto them */

if (ussbchr == exceptions[i])

{

 ussbchr += 3;

 break;

 }

 }

 if (numcaps)

/* If a capital letter */

 {

ussbchr += CAPITAL;
/* Add on 3 to make USSBC capital */

if (is_digit)
/* Must be Roman Numeral */

 numcaps = 2;

 if (numcaps == 1)
/* Only first letter capital */

 numcaps = 0;
/* Reset,no more letters capitalised */

 }

/* end if numcaps */

 }

/* end if is_alpha
*/

 else
/* Must be a number */

ussbchr <<= 1;
/* Can shift left 1 to be in right places */

 }

/* end default

*/

 }

/* end switch */

return ussbchr;

}

/* **/

/* Title
: read_line

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read in a line from the input file.

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 3.0

*/

/* Parameters:

*/

/*

buffer to read text into

*/

/*
Return:

*/

/*

whether end of file reached

*/

/* ** */

*/

int read_line(unsigned char buffer[])

{

 register int i = 0;

 unsigned int chr;

 unsigned int ussbchr;

/* Used to hold top byte of each integer */

 unsigned char flags = 0;
/* Indicator of Capital indicator etc */

 int new_line;

 do {

fscanf(infile,"%d",&ussbchr);

if (feof(infile)) {

buffer[i] = NUL;

return(EOF);

 }

 chr = (unsigned int)convert_to_USSBC(ussbchr, &flags);

 new_line = (chr == '\n');

 chr = ch_info[chr].input_trans;

/* translate input ready for

 conversion */

 buffer[i++] = chr;

 if (i >= STR_SIZE)

 break;
/* don't let input line be too long */

 } while (!new_line);

 buffer[i] = NUL;

 return(TRUE);

}

main(int argc, char *argv[])

{

unsigned char

 input_txt[STR_SIZE];
/* put input text into this ready to translate it */

 unsigned char out_dat[256];
/* buffer for output data */

/* get input and output file name from

 the command line */

 if((infile=fopen(argv[1],"rb")) == NULL) {

printf("Input file %s not found/n",argv[1]);

exit(1);

 }

 if((outfile=fopen(argv[2],"w")) == NULL) {

printf("Can't open output file %s/n",argv[2]);

exit(2);

 }

 main_initialise("FLTAB");
/* load in tables and initialise */

 while (read_line(input_txt) != EOF) {
/* read lines up to EOF */

 if (strlen(input_txt))
/* if got text then convert */

pas_convert(0,input_txt,out_dat);

add_to_output('\n');
/* put out line feed */

printf("%s\n",out_dat);

fprintf(outfile,"%s",out_dat);

 } /* while */

 return(0);

}

/* **/

/* Title : Extra functions for interface between turbo pascal & c

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Calls made to Blenkhorns original Functions in Pascal

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

convert_to is set for how many chars, or character type

*/

/*

to convert to input_dat is the input data

*/

/*

output_dat is the output buffer

*/

/*
Return:

*/

/*

number of characters converted

*/

/* ** */

static int out_upto = 0;

static unsigned char *out_buff;
 /* pointer to output buffer */

int pas_convert(int convert_to, unsigned char input_dat[],unsigned char output_dat[])

{

 out_upto = 0;

 out_buff = output_dat;
/* use global to retain pointer for output buffer */

 return(convert(0,input_dat));

}

/* Function: add_to_output

 output a character to output file

 Parameters:

 chr is the character to add

 Returns:

 nothing

*/

void add_to_output(unsigned char chr)

{

#define NO_CAPS 0

#define CAPS_TEMP 1

#define CAPS_LOCK 2

 static char caps = NO_CAPS;

 if (chr == '^')

 caps++;

 else {

 if ((chr == ' ') || (chr == '-'))

 caps = NO_CAPS;

 if (caps) {

 chr = ch_info[chr].to_up;

 if (caps == CAPS_TEMP)

 caps = NO_CAPS;

 }

 out_buff[out_upto++] = chr;

 out_buff[out_upto] = '\0';

 if (out_upto > 255)

 out_upto = 255;

 }

}

/* **/

/* Title : Conv.c

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: To decode a file (eg. Braille to text, text to Braille,

*/

/*
 microwriter to text)

*/

/*
 Calls made to functions contained in conv.c by Convert.c

*/

/*
 Very few modifications to Blenkhorns original were made.

*/

/*

*/

/* Date : 28 October 1998

*/

/* Version
:

*/

/* Parameters:

*/

/*

N/A

*/

/*
Return:

*/

/*

N/A

*/

/* ** */

/*

/* Notes:(By Paul Blenkhorn)

1. Main tables are loaded by: tables().

2. Initialisation of arrays etc for each translation is performed by:

 main_initialise()

3. Text is presented to convert() which return how many characters

 it has translated.For grade II Braille to text this will be a word.

 For text to grade II Braille this will noramlly be a word (stream changed

 for use with Braille scanner. I. Murray) (sometimes more eg. AND WITH).

 For Microwriting this will be a character at a time.

4. To make the system multi-lingual the information for the character

 set, the code, wildcards, decision tables and exceptions table are all

 configurable. These are read in from the file passed to

 main_initialise(), having been constructed by MK.EXE.

 More information on this can be found in FL_BTDAT.TXT and MK.C.

*/

/*
Structure of file FLTAB

This data contains:

The input mapping to be done (eg. ASCII 187->space).

The mapping for lower to upper case letters for this character set

8 bits set for the user's choice (see fl_btdat.txt for example)

Note: bits 3 and 6 are used for white space and wild cards

respectively. Other bits can be used as required.

*

The number of wildcards used. (1 byte).

The data for the wildcards.

Format for Wildcards is:

wildcard character

whether to match one character, one or more characters,

or zero or more characters

the bitmap to match against (as set for character data above)

ie. 3 bytes times number of wildcards.

*

The number of input classes and states for decision table. (2 bytes)

The decision table. (number of input classes times number of states)

The rules for convertion with the last line being just #

The tabs are removed from each rule and they are output in the format:

input class.

length of the rule (to speed up searching).

the body of the rule in the format:

{left context}[focus]{right context}=output.

a NUL at the end of each rule.

the new state.

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define STR_SIZE 256 /* number of characters in strings */

#define TAB_SIZE 25000 /* size of tables */

#define NUL '\0'

#define FALSE 0 /* logical constants */

#define TRUE !FALSE

#define NO_MOVE 0

#define NOT_DEFINED 0

#define NUMBER_OF_CHARACTERS 256

#define NO_FILE 15

#define VERSION_FAULT 16 /* error conditions */

#define CHAR_FAULT 17

#define WILD_FAULT 18

#define DECISION_FAULT 19

#define SIZE_FAULT 20

#define MATCH_SEVERAL 3

#define MATCH_ONE 2

#define MATCH_NONE 1

#define WILD_MATCH 1

#define WILD_BIT_PATTERN 2

#define WILD_DATA 3

#define SPACE_BIT 8

#define WILD_BIT 64

char

 caps,

 caps_lock;

/* caps word flag */

unsigned char

 table[TAB_SIZE],

/* area to hold exceptions table */

 current_state = 1;

/* the current state */

unsigned char

 *wild_tab,

/* wildcard table */

 *decision_table;

/* state table */

unsigned int

 no_wilds,

/* number of wildcards */

 no_input_classes,

/* number of input classes */

 no_states;

/* number of states */

struct {

/* info for character set */

 unsigned char input_trans;
/* mapping for input chars */

 unsigned char to_up;
/* lower to upper case conversion */

 unsigned char data;
/* data for if chars are punc etc. */

 unsigned int hash;
/* position for hashing into tables */

} ch_info[NUMBER_OF_CHARACTERS];

/**************************** function prototypes ***************************/

static int find_match(int up_to, unsigned char input_dat[]);

static int still_converting(int convert_to, int count, unsigned char input_dat[]);

static int words_match(int up_to, unsigned char input_txt[]);

static int check_state(unsigned char inp_class);

static int right_context(int up_to, unsigned char input_dat[]);

static int left_context(int up_to, unsigned char input_dat[]);

static int wild_match(int step, int up_to, unsigned char input_dat[]);

static void initialise(void);

static void next_entry(unsigned char *this_table_entry);

static void match_found(void);

static void read_version_number(FILE *fp);

static void read_main_tables(FILE *fp);

static void read_character_data(FILE *fp);

static void read_decision(FILE *fp);

static void read_wildcards(FILE *fp);

void add_to_output(unsigned char chr);
/* in user programs - not here */

/************************ end function prototypes ***************************/

/* **/

/* Title : Function convert

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Translate the text in the buffer input_dat.

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
 Convert_to is set for how many chars, or character type to
*/

/*

 convert to

*/

 input_dat is the input data

*/

/*

*/

/*

*/

/*
Return:

*/

/*

number of characters converted

*/

/* ** */

int convert(int convert_to, unsigned char input_dat[])

{

 int up_to = 0;
/* position in input buffer */

 int step;
/* amount to step along input buffer */

#ifdef TESTING

printf("convert: ");

#endif

 initialise();

 do {

/* check the table, return how far to move along

 input buffer If no match then move 1 char

 along the input buffer. */

 if (step = find_match(up_to,input_dat))

 up_to += step;

 else {

/* output input character and change

 state to 1*/

 add_to_output(input_dat[up_to]);

 current_state = 1;

 up_to++;

 }

 } while (still_converting(convert_to,up_to,input_dat));

#ifdef TESTING

printf("\nconverted up to %d.",up_to);

#endif

 return(up_to);

}

/* **/

/* Title : Function: still_converting

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Have enough characters been converted - reached end condition?
*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
 convert_to is set for:

*/

/*

 how many chars (if < 32)

*/

/*

 specific character to convert to

*/

/*

 of convert to NUL (if convert_to == 0)

*/

/*

 up_to is current position in input data

*/

/*

 input_dat is the input text

*/

/*

*/

/*
Return:

*/

/*

whether end condition satisfied

*/

/* ** */

static int still_converting(int convert_to,int up_to,unsigned char input_dat[])

{

#ifdef TESTING

printf("still converting?: up_to= %d convert to <%c>.\n",up_to,convert_to);

printf("ch <%c> info = <%d>.",input_dat[up_to], ch_info[input_dat[up_to]].data);

#endif

 if (input_dat[up_to] == 0)

 return(FALSE);

 if (convert_to == 0) /* do till end of buffer */

 return(TRUE);

 if (convert_to < 32) /* convert fixed number of characters */

 return(up_to > convert_to);

 else if (convert_to == ' ') { /* convert to white space character */

#ifdef TESTING

printf(" space ");

#endif

 return(!(ch_info[input_dat[up_to]].data & SPACE_BIT));

 }

 else /* convert to specific character */

 return(convert_to == input_dat[up_to]);

}

/* **/

/* Title : Function: initialise

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Initialise for each group of characters to convert

*/

/*

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 3.0

*/

/* Parameters:

*/

/*

Nil

*/

/*
Return:

*/

/*

Void

*/

/* ** */

static void initialise(void)

{

 caps = caps_lock = FALSE;

}

/* **/

/* Title : Function: find_match

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Try to find a match in table for current position

*/

/*

 in input buffer from tables.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters
: up_to is position in input buffer

*/

/*
 input_dat is the input data

*/

/*

*/

/*
Return:

*/

/*

number of characters converted - NO_MOVE (0) if none

*/

/* ** */

static int find_match(int up_to, unsigned char input_dat[])

 {

 int move_no; /* how far to move along input buffer */

 unsigned char *this_table_entry; /* pointer to input class of current table entry */

#ifdef TESTING

printf("find match: ");

#endif

 /* quick hash into the contraction table from first character in buffer.

 *looking == 0 if no entry found.

 */

 this_table_entry = looking = &table[ch_info[input_dat[up_to]].hash];

#ifdef TESTING

printf("character %c table pos = %d ",input_dat[up_to],ch_info[input_dat[up_to]].hash);

#endif

/* if hash character then check rules */

 if (*looking == NOT_DEFINED)

 return(NO_MOVE);

 else {

 do { /* go through the table entries */

 while (*looking++ != '['); /* get to character after '[' */

#ifdef TESTING

printf("<%s>",looking);

#endif

if (*looking != input_dat[up_to]) /* run out of table entries for this letter? */

return(NO_MOVE);

 if (move_no = words_match(up_to,input_dat))

 if (check_state(*(this_table_entry-1)))

 if (right_context(up_to+move_no,input_dat))

 if (left_context(up_to,input_dat)) {

 match_found();

 return(move_no);

 }

/* go to next entry in the table */

 looking = (this_table_entry += *this_table_entry);

 } while(TRUE);

 }

/* *looking */

}

/* **/

/* Title : Function: check_state

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Check the input class against the current state

*/

/*

 in the state table

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters
: chr is the input class

*/

/*

*/

/*
Return:

*/

/*

whether input class is acceptable for match

*/

/* ** */

static int check_state(unsigned char inp_class)

{

#ifdef TESTING

printf("in. cl.=%d state = %d.",inp_class,current_state);

#endif

 return(decision_table[(no_input_classes*(current_state-1)) + inp_class-1]);

}

/* **/

/* Title : Function: left_context

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Check to see if the left context of the match string is valid
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

up_to is end of match string in input data

*/

/*

input_dat is the input text

*/

/*
Return:

*/

/*

whether left context is satisfied.

*/

/* ** */

static int left_context(int up_to,unsigned char input_dat[])

{

#ifdef TESTING

printf("check left: ");

#endif

 while (*looking-- != '[')

 ;

 return(wild_match(-1,--up_to,input_dat));

}

/* **/

/* Title : Function: right_context

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Check to see if the right context of the match string is valid
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

up_to is end of match string in input data

*/

/*

input_dat is the input text

*/

/*
Return:

*/

/*

whether right context is satisfied.

*/

/* ** */

static int right_context(int up_to,unsigned char input_dat[])

{

#ifdef TESTING

printf("check right: ");

#endif

 looking++;

 return(wild_match(+1,up_to,input_dat));

}

/* **/

/* Title : Function: wild_match

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Used by left_context and right_context to check contexts.

*/

/*

 It uses wild cards and other characters to validate context
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

step is +ve or -ve to tell function which way to increment

*/

/*

up_to is end of match string in input data

*/

/*

input_dat is the input text

*/

/*
Return:

*/

/*

 whether match is successful

*/

/* ** */

static int wild_match(int step,int up_to,unsigned char input_dat[])

{

 register int i;

 unsigned char bits;

#ifdef TESTING

printf("wild match ");

#endif

 while (*looking >= ' ') {

/* work through the entries */

 if (*looking == '=' && step == 1)

 break;

 if (ch_info[*looking].data & WILD_BIT)

{

/* got wildcard */

 for (i = 0; i < no_wilds; i++)

 if (*looking == wild_tab[i*WILD_DATA])

 {

/* found wild card */

 bits = wild_tab[i*WILD_DATA+WILD_BIT_PATTERN];

 switch (wild_tab[i*WILD_DATA+WILD_MATCH]) {

 case MATCH_ONE :

 if (!(ch_info[input_dat[up_to]].data & bits))

 return(FALSE);

 up_to += step;

 break;

 case MATCH_SEVERAL :

 if (!(ch_info[input_dat[up_to]].data & bits))

 return(FALSE);

 do {

 up_to += step;

 } while (ch_info[input_dat[up_to]].data & bits);

 break;

 case MATCH_NONE :

 while (ch_info[input_dat[up_to]].data & bits)

 up_to += step;

 break;

 } /* switch */

 break;

 } /* (if) found wild card */

 } /* got wildcard */

 else { /* not wildcard */

 if (*looking != input_dat[up_to])

 return(FALSE);

 up_to += step;

 } /* not wildcard */

 looking += step;

 } /* while work through the entries */

 return(TRUE);

}

/* **/

/* Title : Function: words_match

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: compare input buffer with focus of entry in table [in brackets]
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:

*/

/*

up_to is end of match string in input data

*/

/*

input_txt is the input text

*/

/*
Return:

*/

/*

whether words do match

*/

/* **/

static int words_match(int up_to,unsigned char input_txt[])

{

 int start = up_to;

#ifdef TESTING

printf("words match: ");

#endif

 do {

 if (*looking++ != input_txt[up_to++])

 return(FALSE);

 } while (*looking != ']');

#ifdef TESTING

printf("yes:");

#endif

 return(up_to-start);

}

/* Function: match_found

 move the transcribed text (right hand side of the rule) to the output buffer.

 update the state of the system.

 Parameters:

 none

 Returns:

 void

*/

static void match_found(void)

{

#ifdef TESTING

printf("match found: ");

#endif

 while (*looking++ != ']') /* get to rhs of rule */

 ;

 while (*looking++ != '=') /* get to rhs of rule */

 ;

 while (*looking) /* output info */

 add_to_output(*looking++);

 ++looking;

 if (*looking != '-') /* ie. no state change */

 current_state = *looking; /* update state */

#ifdef TESTING

printf("New state %d:",current_state);

#endif

}

/****************************** end find match ******************************/

/********************************* read tables ******************************/

/* **/

/* Title : Function: main_initialise

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Main initialisation for program - read in tables from disc.
*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

Name the name of the file.

*/

/*

*/

/*
Return:

*/

/*

Nil.

*/

/* **/

void main_initialise(char *name)

 {

 FILE *fp;

 if ((fp = fopen(name,"rb")) == NULL) {

 printf("Fatal error! Cannot find file %s!",name);

 exit(NO_FILE);

 }

 read_version_number(fp);

 read_character_data(fp);

 read_wildcards(fp);

 read_decision(fp);

 read_main_tables(fp);

 fclose(fp);

}

/* **/

/* Title : Function : table_fault

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Fault occured in reading table. Report fault and exit.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fault_no the fault to be reported

*/

/*

*/

/*
Return:

*/

/*

Nil.

*/

/* **/

static void table_fault(int fault_no)

{

 printf("\n");

 switch (fault_no) {

 case VERSION_FAULT:

 printf("%%Error in reading version number!\n");

 break;

 case CHAR_FAULT:

 printf("%%Error in reading character data!\n");

 break;

 case WILD_FAULT:

 printf("%%Error in reading wild card data!\n");

 break;

 case DECISION_FAULT:

 printf("%%Error in reading decision tables!\n");

 break;

 case SIZE_FAULT:

 printf("%%Error in reading rule tables!\n");

 break;

 }

 printf("Aborting.\n");

 exit(fault_no);

}

/* **/

/* Title : Function: read_version_number

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify version number from program data file

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void.

*/

/* **/

static void read_version_number(FILE *fp)

{

 int version_number;

 if (fgetc(fp) != 17)

 table_fault(VERSION_FAULT);

 if (fgetc(fp) != 12)

 table_fault(VERSION_FAULT);

 if (fgetc(fp) != 8)

 table_fault(VERSION_FAULT);

 version_number = fgetc(fp);

#ifdef TESTING

printf("%d:",version_number);

#endif

}

/* **/

/* Title : Function: read_character_data

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify data for 256 characters.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void.

*/

/* **/

static void read_character_data(FILE *fp)

{

 register int i;

 register int chr;

 for (i = 0; i < 256; i++) {

 if ((chr = fgetc(fp)) == EOF)

 table_fault(CHAR_FAULT);

 else

 ch_info[i].input_trans = chr;

 if ((chr = fgetc(fp)) == EOF)

 table_fault(CHAR_FAULT);

 else

 ch_info[i].to_up = chr;

 if ((chr = fgetc(fp)) == EOF)

 table_fault(CHAR_FAULT);

 else

 ch_info[i].data = chr;

 }

}

/* **/

/* Title : read_wildcards

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify number of wildcards from program data file.
*/

/*

 Allocate memory and read and verify wildcard data.

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void

*/

/* **/

static void read_wildcards(FILE *fp)

{

 register int i;

 register int chr;

 if ((no_wilds = fgetc(fp)) == EOF)

 table_fault(WILD_FAULT);

 wild_tab = (char *) malloc(no_wilds*WILD_DATA);

#ifdef TESTING

printf("Wildcards:");

#endif

 for (i = 0; i < no_wilds*WILD_DATA; i++) {

 if ((chr = fgetc(fp)) == EOF)

 table_fault(WILD_FAULT);

 wild_tab[i] = chr;

#ifdef TESTING

printf("%c",chr);

#endif

 }

#ifdef TESTING

printf("\n");

#endif

}

/* **/

/* Title : Function: read_decision table

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read and verify number of states and input classes from

*/

/*

 program data file.

*/

/*

 Allocate memory and read and verify decision table data.

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void.

*/

/* **/

static void read_decision(FILE *fp)

{

 int i, j, chr;

 if ((no_states = fgetc(fp)) == EOF)

 table_fault(DECISION_FAULT);

 if ((no_input_classes = fgetc(fp)) == EOF)

 table_fault(DECISION_FAULT);

 decision_table = (char *) malloc(no_input_classes*no_states);

 for (i = 0; i < no_states; i++) {

#ifdef TESTING

printf("\n%d: ",i);

#endif

 for (j = 0; j < no_input_classes; j++) {

 if ((chr = fgetc(fp)) == EOF)

 table_fault(DECISION_FAULT);

 decision_table[i*no_input_classes+j] = chr;

#ifdef TESTING

printf("%d",chr);

#endif

 }

 }

}

/* **/

/* Title : Function: read_main tables

*/

/* Author : Iain Murray

*/

/*

 Modified from Paul Blenkhorn

*/

/* Purpose
: Read into table[] and verify exceptions from program data file.
*/

/*

 Build hash into table[] based on first character

*/

/*

 of focus [in brackets].

*/

/*

*/

/*

*/

/* Date : 20 August 1998

*/

/* Version
: 1.0

*/

/* Parameters:
:

*/

/*

 fp handle for file

*/

/*

*/

/*
Return:

*/

/*

Void

*/

/* **/

static void read_main_tables(FILE *fp)

{

 register int i;

 register int chr;

 int start;

 for (i = 0; i < 256; i++)
/* initialise hash table */

 ch_info[i].hash = NOT_DEFINED;

 i = 0;

 table[i++] = 0;

/* at start of table have dummy NUL and

 new state */

 table[i++] = 1;

/* to ensure that algorithms work */

 while (!feof(fp)) {

 table[i++] = fgetc(fp);
/* input class */

 start = i;

 table[i++] = fgetc(fp);
/* length of entry */

 if (feof(fp))

 break;

 while ((table[i++] = fgetc(fp)) != '[')

/* skip over left context and '[' */

 ;

 table[i++] = chr = fgetc(fp);

/* first character of focus */

 if (ch_info[chr].hash == NOT_DEFINED) {

#ifdef TESTING

printf("%c%d:",chr,start);

#endif

 ch_info[chr].hash = start;

 }

/* read to the end of the line */

 while (table[i++] = fgetc(fp))

 if (feof(fp))

 break;

 table[i++] = fgetc(fp);
/* new state */

 if (i >= TAB_SIZE)

 table_fault(SIZE_FAULT);

 }

}

/***************************** end read tables ******************************/

“ Murray (1998)
� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

PAGE
69

[image: image89.png][image: image90.png][image: image91.png][image: image92.png][image: image93.png][image: image94.png][image: image95.jpg][image: image96.png][image: image97.png][image: image98.png][image: image99.png][image: image100.png][image: image101.png][image: image102.png][image: image103.png][image: image104.png][image: image105.png][image: image106.png][image: image107.png][image: image108.png][image: image109.png][image: image110.png][image: image111.png]_1095838798

_1095971937

_1096659436

_1096667168

_1096668552

_1096668863

_1096667284

_1096660818

_1096664239

_1096659503

_1096062724

_1096109889

_1096110342

_1096109600

_1096058211

_1096062546

_1095851336

_1095858577

_1095863462

_1095929720

_1095857802

_1095853153

_1095844954

_1095845764

_1095848871

_1095844905

_1095541642

_1095794203

_1095797721

_1095804248

_1095794228

_1095622925

_1095793015

_1095623427

_1095622216

_1095594076

_1090840857

_1093798322

_1095538586

_1095539730

_1095529029

_1093798283

_1093091459

_1093293641

_1093293068

_1091968560

_1090838871

_1090840490

_1090837199

_969818033.unknown

