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Synopsis

Protective relay is important as part of the power system network to protect the network components from thermal damages caused by network faults.

In this project, a neural network based relay detecting faults in 3-phase power system is devised. The relay uses neural network to recognise fault patterns in a transmission line.
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1.0 Introduction

The demand for electricity is ever increasing. It is very important to supply quality electrical power continuously for industrial, business, and residential usage. While failure to supply electricity to residential areas might result in discomfort to those dwelling in them, discontinued supply to business and industrial areas will result in loss of productivity as well as businesses. It is the task of the power supplier to maintain the supply even when disturbances occur. However, supplying electricity to users requires a complex network of power systems where faults due to natural causes, equipment or operator failure are prevalent. Power system faults not only can cause discontinued supply, they can damage the power system equipment that is costly to replace. This will also bring further halt in supplying electricity. Fortunately, those faults can be detected and isolated soon before they cause further damage to equipment.

Electrical Power Systems

Cook (1985) states that a power system consists of,

1. Generators. 

Convert electricity from mechanical energy created by other energy sources such as coal, solar, gas, wind, nuclear, and water.

2. Power transformers.

Step up and down the voltage levels. They transmit electricity from a generator to a long distance load centre. The voltage level needs to be stepped up to reduce transmission loss. At the load centres, the voltage is stepped down for shorter distance transmission.

3. Transmission lines or feeders.

Transmit high voltage electric power to major load centres.

4. Distribution lines.

Distribute electrical power to industrial areas.

5. Domestic distribution lines.

Distribute electricity to residential and business areas.

In most cases, power generators are situated far from where the electric power is needed. This is due to economical, geographical, or environmental concerns. Generators powered by coal are built near coalfield areas to reduce the cost of transporting coal. It is also important from the environmental point of view that the plants are built in remote area to keep the carbon emissions away from residential areas. For generators powered by renewable energy sources such as wind, water, or geothermal energy, they have to be located where those sources are available which is often in remote areas.

1.1 Protective Relay

Transmission lines are a necessary part of power systems due to the reason mentioned before. There are two types of transmission lines, overhead and underground, the former being the most commonly used. The overhead transmission lines are susceptible to faults caused by short circuits between phases or between phase and ground. The majority of faults in power systems occur in the transmission lines. When a fault occurs, the transmitted current rises above the normal operating current. This can cause thermal damage to all other electrical equipment. 

To reduce the adverse effects of faults, protective relays are included as part of power systems. Relays or protective relays detect abnormal power conditions and return the power system to normal operative conditions (Horowitz, 1995). Upon detecting a fault in the relay protection zone, the relay activates the circuit breaker to clear and isolate the fault. In a radial system where there is only one source for multiple loads, the supply will discontinue until the problem causing the fault is fixed. To minimise blackout, it is a common practice to use network of power systems where multiple sources are available in connections for multiple loads.

There are three types of relays:

1. Electromechanical relays.

The first relay developed used electrical and mechanical devices or a combination of both to switch the breaker.

2. Solid-state relays.

Solid state relays use semiconductors and ICs to operate. It is a migration to electronic relays, which gives advantages such as smaller size, more accurate, and is easier to change the characteristics of the relay.

3. Digital relays.

Digital relays use processor to do numerical analysis on the digitised data. Digital relays are modular and can be integrated with other protection functions.

The advancement in numerical analysis and computer technology makes the digital relay a more attractive choice of relay compared to the other types. The digital relay consists of hardware and software components. The characteristics and types of a relay are implemented in the software part. The types and characteristics of a relay can be changed or combined with other types by simply downloading the software to the RAM or EEPROM. Digital relays can be developed and tested offline when a rich input data is available. Typically, the data used to detect them are current, voltage, impedance, and phase of the protected transmission line. The software takes the data as inputs and processes them using a certain algorithm to detect faults and produce outputs accordingly. Johns and Salman (1995) classifies the type of algorithms as:

1. Sinusoidal waveform-based algorithms.

2. Fourier and Walsh-based techniques.

3. Least-square methods.

4. Differential equations methods.

5. Travelling-wave-based methods.

The other detection technique not mentioned above involves the use of Artificial Neural Network (ANN). Neural Network is beneficial when compared to the other mathematical approaches because of its capability to map non-linear input data. Its non-deterministic approach to solve a problem makes ANN a robust tool even in the presence of unexpected input data.

1.2 Project Aims

The aims of this project are to develop a software module acting as a protective relay using neural network techniques. 
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Figure 1‑1: ANN Based Relay Elements

The ANN software module employs the back-propagation method to recognise the waveform patterns of impedance in a transmission line. It produces a trip signal if a fault waveform is recognised and no-trip signal otherwise.

The input waveforms are generated using PSCAD Version 2.00 for Linux. The waveform patterns are generated for unsymmetrical and symmetrical faults that occur on a varied distance in the transmission line. The generated waveforms then are used as training and testing data for the ANN software. The ANN software is simulated using the Neural Network Toolbox of MATLAB Version 6.00 Release 12.

1.3 Report Overview

The report will first establish the background for the project in chapter 2. Overviews of protective relay, fault detection, neural network, and past research on ANN relay are given in this chapter. The next chapter discusses the network model built to implement the relay model. Finally, the network training and its results are discussed. Information on how the simulation was done using PSCAD and MATLAB is also included in this report.

Background

1.4 Transmission Line Faults

In transmission lines with a three-phase power source, there are ten types of faults that can occur. The faults in the order of decreasing frequency of occurrence are: three single-phase-to-ground faults (1LGs), three phase-to-phase faults (2Ls), three double-phase-to-ground faults (2LGs), and a three-phase fault (3Ls) (Sarma, 1994).
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Figure 2‑1: Transmission Line Faults

Single line to ground faults (1LG) occur when one of the phases is shortened to the ground. During the fault the impedance, Zfag, is not necessarily zero (bolted) but it might have a non-zero impedance but still much smaller than the line impedance. The magnitude of current in a faulty line rises significantly higher than the normal operative current while the voltage does not go through significant change in magnitude.
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Figure 2‑2: Phase-a-to-Ground Fault Current Waveforms

As can be seen from the above figure, when the fault occurs on line ‘a’, only current in that line increases significantly, because the impedance in that line drops below the normal operating level. Currents in the other two phases are slightly affected but quite insignificant. Similarly, in other types of fault, overcurrent only occurs in the faulted line. 

1.5 Fault Detection

A fault can be detected by measuring the change in parameters of the power system. When a fault or a short circuit occur, the following parameters change: current, voltage, phase angle, harmonic components, active and reactive power, and frequency of the power system.

1.5.1 Current Detection

The common detection methods use current and impedance of the line. The detection of current is used in overcurrent relays and their variants. The relays are applied to all three phases. The following graph shows overcurrent relay on one line.
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Figure 2‑3: Overcurrent Relay

The relay monitors the current fluctuation in its   protected zone, normally between the current transformers on each end of the line. When relay detects pickup current or current deemed unsafe for the power system, it breaks the circuit breaker in a certain time depending on the relay settings. Normally relay trips instantaneously when the fault occurs in the protected zone and applies time-delayed tripping for other locations.

When a fault occurs, one or more relays could detect this fault and trip. The coordination between relays is needed to reduce the unnecessary tripping. Relays need to detect the location of fault so that only breaker closer to the fault needs to trip. To manage this, directional and differential overcurrent relays are used. The directional overcurrent looks at the direction of fault by measuring the phase difference between current and voltage (current lags voltage when a fault occur). The differential overcurrent compares the current entering and leaving the protection zone to detect fault (Wright & Christopoulos, 1993).

1.5.2 Impedance Detection

The impedance detection based its fault detection on the fact that the input impedance of a transmission line changes when a fault occurs. The magnitude of the impedance varies according to the location of the fault from the relay monitoring it, thus it is called distance relay. 

Distance relay does not need to compare the measurement between two ends of protection zone as in overcurrent relays. However, distance relay needs current and voltage as inputs.
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Figure 2‑4: Impedance Detection

As discussed in Blackburn (1993), in three-phase electric power systems, method of symmetrical components provides simpler analysis for power system performance during unbalanced faults (1LGs, 2LGs, 2Ls). Symmetrical components consist of positive, negative and zero sequence of currents and voltages (symmetrical components derivation is given in appendix A). Symmetrical components analysis is an important tool in analysing the impedance in a distance relay. Horowitz (1995) shows that for both unbalanced and balanced (3Ls) faults, the distance relay will always measure the positive sequence impedance to the fault. The total positive sequence impedance of the line indicates the location and magnitude of the fault upon which the tripping decision is made.

1.6 Neural Networks

Artificial Neural Networks (ANNs), or simply called neural networks, use the neurophysiology of the brain as the basis for its processing model (Browne, 1997). The brain consists of millions of neurons interconnected to each other through the synapse. In the learning process, the weight of the synapse is increased, decreased or unchanged. 

1.6.1 Neuron Model

Neuron (also called node or perceptron) is modelled as follows. 
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Figure 2‑5: Neuron Model

Each node has inputs connected to it and weights corresponding to each input. Each node only has one output. The above neuron, based on the above notation, is called neuron i. It has j inputs Xj and one bias b. Each input correspond to a weight Wij, thus there are j weights in the neuron. The output of the neuron yi is produced by a function of neti where 
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This function is called activation function. There are many types of activation functions; two examples are hardlimit and log-sigmoid functions.
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Figure 2‑6: Activation Functions

Hardlimit function is defined as 



[image: image9.wmf]î

í

ì

q

³

q

<

=

i

i

i

net

1

net

0

)

net

(

f


and the log-sigmoid function is defined as
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The above activation functions will be used in this project.  The reader can refer to MATLAB Version 6.00 help documentation for other types of transfer functions.

1.6.2 Network Model

Every neuron can be interconnected to other neurons by using output of neurons as inputs to other neurons. The interconnection of neurons forms layers of neural network. A neural network consists of three types of layer, input layer, hidden layer, and output layer.
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Figure 2‑7: ANN Layers

The number of inputs in a neural network is equal to the number of nodes in the input layer. Similarly, the number of outputs in the neural network is equal to the number of nodes in the output layer. The number of hidden layers and the number of nodes in the hidden layer are varying depending on its application.

There are two distinctive network topologies with regard to the way neurons are connected namely feedforward and feedback network. In the feedforward network, an output in a layer (except output layer) is an input in the next layer. In feedback network, an output in a layer can be its own input or input of neuron in the previous layer.

1.6.3 ANN Learning

To get the intended outputs for the given inputs, the network weights need to be adjusted. The process of weights adjustment or called network learning/training is done iteratively by presenting a set of input data and desired output data. This type of training is called supervised learning. The weight update can be done in either batch or incremental mode. In batch (epoch) mode, the weights are updated after all training data in the training set has been presented. The incremental mode updates the weights every time a data in the set is presented.

Two issues in updating weights are: when to stop updating, i.e. when to stop the training, and how the weights are changed. 

The training can be stopped in two ways: using maximum epoch and using a cost function. An epoch refers to a complete training data set. Training data for 10 epochs means the weights are updated with the learning rule continuously until input data set has been presented for 10 times. A cost function is a performance measurement. Network training often uses the Mean Square Error (MSE) as the cost function. MSE is defined as follows
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N is the number of pattern in data set, dk(n) and yk(n) are the desired output and the output at layer k for nth training pattern respectively. When there is more than one output, the function becomes
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Where dk and yk are column vectors of desired output and output respectively. The training adjusts the weights by minimising E over all the training set. The training stops when a specified value of cost function is reached. 

The weight (and bias if applicable) update follows a certain optimisation technique. The weights are either increased, decreased or the same. The change in a weight is as follows


Wk(t+1) = Wk(t) + (Wk
The (Wk is the weight correction. The weight correction is a function that minimises the error. In the gradient descent algorithm, the weight correction is the negative gradient of an immediate square error for a pattern
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where E(n) is the immediate square error at nth pattern and ( is the coefficient of change or the learning rate.

Square error at nth pattern is
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1.6.4 Backpropagation

Backpropagation network (BPN) is a feedforward network trained using backpropagation algorithm. The backpropagation algorithm developed by McClelland and Rummelhart (1986) used gradient descent learning rule to update the weights. 

During training, each input is forwarded through the intermediate layer until outputs are generated. Each output is then compared to the desired output to get the errors that will be transmitted backwards to the intermediate layer that contributes directly to the output. Based on these errors, the weights are updated. This process is repeated layer by layer until each node in the network has received an error signal that describes its relative contribution to the total error. Weights adjustment using backpropagation algorithm is given in appendix C.

The gradient descent algorithm suffers from slow training time. Some other fast algorithms such as Levenberg-Marquardt, Quasi-Newton, and conjugate gradients algorithms have been used to optimise the learning rules in BPN. 

Since the network training is done using already developed software, the reader need not be concerned with the details of the algorithm. However, interested reader can refer to appendix C to see the details on backpropagation algorithm. 
1.7 Research in ANN Relay

The research in neuro-based protective relaying has been undertaken with quite satisfying results. Many researches have been done with varying number of inputs, outputs, network architectures, types of input, and types of output. The inputs for the network vary between current, voltage, impedance, frequency, phase, or a combination of them. The outputs range from trip signal to the location of fault or a combination of both.

Vázquez, Altuve, and Chacón (1996) used neural network to sense faults using current. The inputs to the ANN were 5 or 10 overlapping sample data windows covering 2 cycles of prefault and 2 cycles of fault. The data windows were taken from sample current of 16 samples per 60 Hz cycle. After being normalised with the rated current, the prefault data was further normalised again using 1, 0.95, 0.9, and 0.85 to give fluctuation in the prefault current. The input data for training was generated using the following functions:


i = iL + iF
where prefault current

iL = IL sin((t + ( - (L)

and fault current

iF =  IF [sin((t + ( - (F) + sin(( - (F)e-t/(]
t(0

where IL and IF are the maximum value of iL and iF respectively, ( is the angular frequency, ( is fixed angle to adjust the time reference, and (L is the phase angle with reference to voltage.

The neural network structure consists of 5 or 10 input nodes, 20 hidden layer nodes and 1 output node. While the network with both five and 10-sample data windows could successfully detect the faults, the 5-sample data window performed poorly in detecting harmonic contamination compare to the 10-sample data window. The conclusion reached by Vásquez et. al. was that more samples in data window could recognise fault waveform patterns even in the presence of harmonics.

Coury & Jorge (1997 & 1998) used power simulation program instead of mathematical functions to generate faults, thus realistic training data were obtained. They used backpropagation ANN as a pattern classifier for a distance relay of 100 km with two sources at both ends. The protected zone was 80% of the line within which the network was trained to classify fault pattern i.e. to avoid overreaching. One type of fault, phase a to ground fault, was simulated with varying the fault distance, fault resistance, fault inception angles, source impedance, source capacities, and power transfer angle, the total of 2,144 different faulted cases were gathered. The ANN took six inputs namely normalised |Va|, |Vb|, |Vc|, |Ia|, |Ib|, and |Ic|. The ANN had 6 nodes in the input layer, 6 nodes in the first hidden layer, 2 nodes in the second hidden layer and 1 node in the output layer. The logsigmoid functions were used as the output functions. The ANN was successfully trained to detect fault in protection zone only with inaccuracy at 78-82 % of the protection zone. The ANN relay has the ability to learn aspects related to the fault condition as well as network configuration.

An interesting approach in locating the fault in a transmission line was suggested by Mazon et. al. (2000). The neural network used 6 inputs as in Coury and Jorge (1998). The hidden layer consisted of 6 nodes with tansig transfer function. The output layer had one node with linear function. This is mapping of inputs to a number in linear manner, thus the output ranges from 0 to any number instead of from 0 to 1 as in logsigmoid function. The network was trained for inputs with varying fault types, fault distances, and fault resistance values. After applying various improvement techniques, the method chosen for network training was backpropagation method with Levenberg-Marquardt optimisation. This technique requires more computing memory, but has faster learning rate compare to traditional gradient descent algorithm. The training resulted in average error in locating a fault of 0.12% to 0.7%. The average error could be reduced with longer training time.

ANN-Based Relay

1.8 Relay model

The ANN relay in this project is based on a distance relay with two identical three-phase power sources at both ends. The length of the transmission line (TL) is 100 km. The line model is shown in the following graph.
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Figure 3‑1: Distance Relay Model

The relay is intended to protect the protection zone along the 100 km line. The ANN relay was trained to see faults from one side (A) only, i.e. the impedance measured is the one facing the relay. The relay on the other side (B) can use similar relay.

The distance relay above is modelled using PSCAD to get the data for network training and testing. The PSCAD model and its parameters, including the TL parameters, can be seen in appendix B. The PSCAD model used to simulate faults is given in the graph below
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Figure 3‑2: PSCAD Distance Relay Model

The relay is modelled by two three-phase power sources connected by two pairs of TLs. In between the TL pairs, a timed fault is incepted using faults and timed fault logic module. The faults module can generate all types of faults and vary the fault impedance. The faults module has 4 variables phase A, phase B, phase C, and ground which can be toggled to yes or no to make fault and no fault condition e.g. toggle phase-a and ground to make phase a to ground fault. The fault impedance can be varied as well with minimum impedance value of 0.001 as specified by the PSCAD help document. The timed fault logic module controls the time the fault occurs and how long the fault stays, this enables the fault angle to be incepted by varying the fault start time. The TL has a variable TL length parameter. The location of fault can be varied by changing the length of the TL pairs, the sum of the length of the TL pairs should add up to 100 km.

1.9 Fault Detection Method 

The consideration taken in using ANN relay to detect faults is what measurable parameters can be taken as ANN inputs. The previous background chapter states that during a fault the change in current magnitude can be more easily observed compare to the voltage magnitude. However to detect the location of the fault, voltage measurement is needed. Using voltage and current in the ANN relay requires at least 6 input neurons. A research paper by Vásquez et. al. (see section 2.4) has concluded that using more data window will increase the noise resistance. If 10 data window is used then there are 60 inputs required by ANN relay. The size of input layer affects the size of hidden layer needed to map the inputs to output thus affects the size of network and the computing power needed. There is a trade off between the noise resistance and the network size.

The distance protection uses voltage and current variables to calculate the impedance of the line. 
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Figure 3‑3: Fault in Transmission Line

Looking from the relay A during a fault is like a Thévenin circuit with ZFA as the Thévenin impedance. When a fault occurs, the Thévenin impedance will decrease.  The magnitude of impedance varies as the location of the fault changes. Using impedance instead of currents and voltages, will halve the ANN relay inputs input neurons from 6 to 3 for impedance in each phase.

The ANN relay inputs can be further reduced to 1/3 by using positive sequence impedance (Z1). As explained in section 2.2.2, for every type of fault, there is a measurable Z1. Thus, Z1 can be used to detect fault in the TL for all fault types. The inputs to the ANN relay are further reduced from 3 to 1. 

The Z1 can be obtained from positive sequence voltage (V1) and current (I1). The derivation of positive sequence voltages and currents is shown in appendix A. 

Now Z1 is related to V1 and I1 in the following manner
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The absolute values or magnitudes of V1 and I1 correspond to their peak amplitude or their rms values.

The rms voltage and current is defined below
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The rms positive sequence current, voltage, and impedance is shown below

[image: image22.png]Rms positive sequence

Ky

ohm

Ims
i
s

Time (sec)





Figure 3‑4: Rms Value of The Positive Sequence Current, Voltage, and Impedance

To get the rms value of the positive sequence impedance the following circuits were added to the previously shown PSCAD schematic
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Figure 3‑5: Positive Sequence Voltage, Current and Impedance

The ANN relay uses rms positive sequence impedance waveform to detect faults. This is a pattern recognition problem which maps rms positive sequence impedance to trip/no-trip decision. The number of inputs applied to the ANN relay is further discussed in section 3.4.

1.10 Fault Data Simulated

The distance relay model was simulated to generate different fault types, different fault inception angles and different fault locations.

1.10.1 Fault Types

The fault types generated were

1. Single-phase to ground faults (1LGs)

a. Phase A to ground fault (AG)

b. Phase B to ground fault (BG)

c. Phase C to ground fault (CG)

2. Double-phase to ground faults (2LGs)

a. Phase A-B to ground fault (ABG)

b. Phase A-C to ground fault (ACG)

c. Phase B-C to ground fault (BCG)

3. Phase to phase faults (2Ls)

a. Phase A-B (AB)

b. Phase A-C (AC)

c. Phase B-C (BC)

4. Three-phase fault (3L) Phase A-B-C (ABC)

1.10.2 Fault Inception Angles

For each fault type, the fault inception angle was varied by varying the fault start time in the timed fault logic module. For 50 Hz power source, the waveform generated has a wavelength of 20 ms. The fault start-time t is related to the fault inception angle ( in the following manner:
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The fault inception angles simulated were 0(, 36(, 72(, 108(, 144(, 180(, 216(, 252(, 288(, and 324(.

1.10.3 Fault Locations

For each fault type and fault inception angle, the location of the fault was varied by varying the length of the TL pairs. Measured from the relay A, the fault distances (in km) simulated were 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99.

From varying fault types, fault inception angles, and fault locations, 1,100 fault cases were simulated. For network training purpose, a normal condition was simulated as well.

1.11 ANN Relay Model

1.11.1 Network Input Layer

As mentioned in chapter 3.2 the rms value of Z1, from now on referred as Z, will be the input for the neural network. A data window of 20 samples will be the network input. 

The voltage and current are sampled from VT and CT by frequency 1000 Hz or 20 samples per cycle. The data window consists of 20 samples or 1 waveform. However, it should be noted that after getting the Vrms and Irms the frequencies are doubled which double the frequency of Z waveform as well. Thus using 20-sample data window for Z waveform will cover 2 cycles of the waveform. However, this is of no concern from the point of view of pattern recognition.
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Figure 3‑6: Input Data Windowing

The input layer of the ANN relay is fed from the 20-sample data window, which forms a 2 cycles Z waveform pattern. The next input data pattern is obtained by shifting the data window by one sample. For each fault case, 40 data patterns covering 20 prefault and 20 fault data were generated for training and testing the network.

The output file from PSCAD contains Z values, which change with respect to time step of 1 ms. The windowing process is done using MATLAB program. The codes are given in appendix D.

1.11.2 Network Output Layer

The output layer is intended to output 1 (trip) or 0 (no-trip). The output layer only has one node with log-sigmoid transfer function, which is also used in every node in all the layers. To generate binary output, a hardlimit function with a 0.5 threshold is attached to the network output when the network is in use, i.e. hardlimit function is not used during training.
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Figure 3‑7: Network Output 

In network training, the (input, desired output) pair of data is fed to the input layer and output layer. The choice of transfer function determines the range of values the desired output can have. For example, using hardlimit transfer function where the output is either 0 or 1, the desired output cannot have value of 0 or 1 because this will make the error to be zero all the time. Using either 0.95 or 0.05 is a better choice of desired output, however it gives error value of either 0.05 or 0.95. The high degree of variety in error is necessary in backpropagation training.

The log-sigmoid transfer function is the most suitable to use in ANN relay application where the desired output can only have 0 or 1 value. As opposed to the hardlimit function, the log-sigmoid is a continuous function, which maps the input to a value ranged from 0+ to 1-. The error generated by the difference between the desired output and the output can vary between 0+ to 1-.

1.11.3 Network Architecture

As previously discussed, the ANN relay has 20 inputs and 1 output. The number of hidden layers and the number of nodes in the hidden layer will be discussed in chapter 5.

The ANN relay developed is a backpropagation network with scaled conjugate gradient learning rule. The conventional backpropagation uses gradient descent algorithm to adjust the weights. The gradient descent is slow to converge, its alternative fast algorithm, the conjugate gradient can perform faster convergence. 

Software simulation

This chapter discusses the faults generation using PSCAD and the network simulation using MATLAB. The reader can skip this chapter for later reading.

1.12 PSCAD Simulation

The fault cases were simulated using PSCAD Version 2.00 for Linux. The circuit diagram and its parameters are given in appendix B1 and B2. The fault cases simulated were discussed in chapter 3.3.

The fault types were simulated by changing the fault type parameter in the Faults module. The fault inception angle was varied by varying the time to apply fault parameter in the Timed Fault Logic module. The more convenience way of changing the value of this parameter is to put a variable name in the time to apply fault parameter and then attach a node label with the same variable name to a slider control, now the value can be altered by sliding the slider. The fault location was varied by changing the length parameter of the transmission line. Each time a TL parameter is changed, the TL constants have to be solved and the TL batch has to be saved. In simulating various fault locations, TL batches with length parameter of 1, 10, 20, 30, 50, 60, 70, 80, 90, and 99 km were saved with different TL names. To simulate a fault located at 20 km, TL batches with length parameter of 20 and 80 were loaded into the circuit diagram.

The result of each simulation was saved in a file with distinctive name reflecting its fault case. When a fault case is simulated, the waveform saved includes its transient state. To remove the transient state, the simulation was run from a snapshot file. More information on how to take snapshot can found in the PSCAD documentation.

The saved file contains data in columns. The first column is time, the rest of the columns are the data output. The order of data in the columns can be seen by reading the file with extension .inf. In this simulation three data types were saved: V1rms, I1rms, and Z1rms in one file.

After all the fault cases were collected, data were extracted and organized for training using MATLAB.

1.13 MATLAB Simulation

The MATLAB Version 6.00 Release 12 for windows was used for simulation. The MATLAB codes used are listed in appendix D.

1.13.1 Data Extraction

After all fault data has been gathered using PSCAD, the data needed for training, in this case data in Z column, needs to be extracted. The function described in zeditdata.m does this task. This function takes the data produced by PSCAD as input and produced a file containing the Z data in column or Rx1 Z data. The files then are organised into training data set and testing data set  as described in section 5.1.2 and 5.1.3.

1.13.2 Data Windowing

After files containing Z data were extracted, they need to be organised into data window of 20 samples. The file produced by function zeditdata.m becomes the input for the function getznn.m. The function reads the input file, extracts 40 data-windows from the input file and then appends them to the output file.

The 20-sample data windows were obtained as follows
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Figure 4‑1: Forming Window Data

The input file is read as a vector data (a row matrix) indexed by integer 1 to the length of the vector. The sample data window is formed by reading 20 data from the vector data starting at a certain index. The next data window is obtained by shifting the index.  The start and stop of the window can be adjusted by adjusting the start and stop function parameters (see codes in page 81 for details).

The output of getznn.m function is a file containing an Rx20 matrix data. This file is used as input to the network.

1.13.3 Network Simulation

The input file to the network needs its desired output pair to train the network. The function zoutp.m read each row in the input file and write 0/1 to the output file. The 0 is written if the minimum number in the row data is greater than the threshold value for fault (3,100 for this case), the 1 is written otherwise.

The network is trained using znntrain.m. This function calls ANN functions included in the MATLAB NN toolbox. The functions called are newff.m and train.m. The newff function creates feedforward network and return a network object. The train function trains the network created.

The syntax of newff function can be read from MATLAB help. The one used in here only use some of its parameters.

newff(input, [N1, N2, … Nj], {F1, F2, … Fj}, training algorithm)
The function above creates a feedforward network with j layers (input layer not included). The numbers of nodes in each layer are N1, N2, …, and Nj with each layer has activation function F1, F2, …, and Fj respectively. The number of nodes in input layer is implicitly given by input which is an Rx2 matrix containing the range of data in the R inputs. The training algorithm used by the network is indicated by training algorithm.

Before the training is initiated, the training parameters can be changed by changing the following parameters.

netobj.trainParam.lr


learning rate

netobj.trainParam.epochs

number of epochs

netobj.trainParam.goal


minimum MSE

netobj.trainParam.mc


momentum change

The network then is trained by calling train.m. The function requires network object, input matrix, and desired output matrix. The input matrix requires the input data to be in column. Since the input data in the input file created by getznn.m is in the row, inpfile.m function is used to transpose the input matrix.

Once the training is finished, the znntrain.m returns its trained network object. The network then is tested by calling zsimnver.m function, which simulate the network using data file given in the function parameter and then compare the output with the desired output data to get the performance error.

ANN-based Relay Simulation

This chapter discusses the network simulation process, which started by analysing the waveform pattern for each fault case and then choosing the data set for training and testing. The process continued by training varying network sizes and minimum cost function (mean squared error or MSE) values. The network was then tested using the training and testing data set to see the performance of the network. Upon unsatisfactory performance, the training process was repeated with different network size or different MSE.

The network simulation was done using MATLAB neural network toolbox. The simulation codes are given in the appendix D.

1.14 Simulation Data

After 1,100 fault cased were collected by running PSCAD. The data was formed into 20-sample data window for network input using MATLAB functions. The process of getting training data is explained in chapter 4. Each window data is a waveform pattern of Z. Some of the patterns that have different parameters might have a similar waveform pattern. This is an insight in choosing training and testing data.

1.14.1 Fault Cases Gathered

The number of fault cases gathered was 1,100 cases. The fault cases gathered is given here

1. Fault types (10 cases)

AG, BG, CG, ABG, ACG, BCG, AB, AC, BC, and ABC

2. Fault inception angles (10 cases)

0(, 36(, 72(, 108(, 144(, 180(, 216(, 252(, 288(, and 324(.

3. Fault location measured from relay (11 cases)

1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99 km

For each cases 40 data windows consisting of 20 prefault and 20 fault data were gathered.

1.14.2 Training Data

As discussed earlier, some fault types have a similar waveform pattern. Given below are the waveform patterns for various fault types with constant fault distance of 30 km and constant fault inception angle of 0(. The graph shows only the faulted section of the waveform.
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Figure 5‑1: Waveforms of Various Fault Types

From the above graph, the similarity of the waveforms between various fault types can be seen (note: ABCG was included for completeness). The waveforms that have similarities are grouped as follows: (BG and CG), (AB, BC, and AC), (ABG, ACG, and BCG), and (ABC and ABCG). Based on the above information, the fault types included in the training data were AG, BG, AB, AC, ABG, and ABC.

Apart from the fault cases, a normal case was included in the training data as well. Thus, the number of training data patterns is 26,620 consisting of 26,400 fault data patterns and 220 normal data patterns.

The network input layer requires (input, desired output) pair of input data. The desired output data set was generated by setting a pickup value below which a trip (1) signal is generated. The following is the Z waveforms for all types of fault and distance.

[image: image29.wmf]0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

Various Distance, Fault ABC

Z (Ohm)

Time (ms)


Figure 5‑2: Z Waveforms for Various Distance

From the above graph, the pick up value for Z was chosen to be 3100 ohm. Any impedance below this value will activate the relay.

1.14.3 Testing Data

The testing data set includes the trained data and the untrained data. The untrained data set consists of the fault types not included in the training set i.e. CG, ACG, BCG, and AC. The whole untrained data set contains 17,600 patterns.

1.15 Network Simulations

The training was done by arbitrarily choosing network architecture and then trained it using the proposed learning algorithm. As the size of input and output were specified already, only the size of hidden layer was concerned. The training started with a big network size and then gradually reduced to smaller size if network testing gave satisfactory result.

1.15.1 Network 1 [20 20 10 1]

The first network trained had two hidden layers of size 20 and 10. The learning rate and momentum were 0.7 and 0.8 respectively. The target MSE=0.001. The training algorithm used was gradient descent with momentum (GDM). 

The training converged very slowly, after reaching MSE of 0.07 at 401 epochs (30 minutes on PII 400 MHz with 128 M memory), the training was stopped because it appeared that it would not converge anymore. The learning curve is shown below
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Figure 5‑3: Learning Curve Using GDM

The graph above shows that gradient descent suffers from slow convergence. The next network was trained using scaled conjugate gradient algorithm, which offers faster convergence.

1.15.2 Network 2 [20 20 10 1]

The second network trained had two hidden layer of size 20 and 10. The learning rate and momentum were 0.7 and 0.8 respectively. The MSE=0.001. The learning method used was scaled conjugate gradient (SCG). This time the learning curve converged faster.
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Figure 5‑4: Learning Curve Using SCG

The learning curve descended at a fast rate for the first 300 epochs and then decreased at a slow rate. The goal of getting MSE (Mean Squared Error) of 0.001 was not achieved, however the MSE of 0.007 was achieved at 1000 epochs. 

Testing the network using trained data set resulted in 26 errors out of 26,620 patterns; testing using untrained data set resulted in 30 errors out of 17,600 testing patterns. 

At this stage, the result in term of performance measured by error rate was reasonably good. However, in term of training time it was quite slow. To get MSE of 0.007 in 1000 epochs took about 2 hours of training on Pentium II 400 MHz.

1.15.3 Network 3 [20 15 5 1]

Having found the fast learning algorithm to converge network 2, the network size was further reduced by reducing the network size in each hidden layer. The third network architecture trained had two hidden layers of size 15 and 5. The learning rate and momentum were 0.7 and 0.8 respectively. The learning method used was scaled conjugate gradient (SCG). The network were trained to reach goal of 0.01, the learning curve is shown below.
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Figure 5‑5: Learning Curve of Network [20 15 5 1] with goal=0.01

The last MSE obtained of 0.009 was reached in 15 epochs (2 minutes). The network then tested using trained data set and untrained data set to get 53 and 46 cases of wrong output respectively. 

Comparing the performance of this network with the previously trained network (network 2), there were more wrong outputs from simulation of both training and testing data in this network than in network 2. However, the network learning converged faster than network 2 with 15 epochs to reach 0.009 MSE compare to 1000 epochs to reach 0.007 MSE. The benefit of fast convergence of this network certainly outweighed its low performance because performance can still be improved by training longer to get reasonable minimum MSE.

To improve the performance this network was further trained to get MSE=0.001. The goal was reached after 169 epochs (17 minutes) with last MSE of 0.00099. The learning curve is shown below.
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Figure 5‑6: Learning Curve of Network [20 15 5 1] with goal=0.001

The number of wrong outputs of this network at MSE=0.001 was 6 when tested using trained data set and 22 when tested using untrained data set.

1.15.4 Network 4 [20 15 1]

The network size was further reduced by removing one hidden layer. The fourth network architecture trained had one hidden layer of size 15. The learning rate, momentum, MSE, and learning method used were the same as network 3.

The convergence curve is given below.
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Figure 5‑7: Learning Curve of Network [20 15 1] with goal=0.001

The goal was reached in 39 epochs. Even though the learning curve converged faster than the one in network 3, the performance suffered with 15 and 20 output errors when fed with the trained and untrained data set respectively.

1.15.5 Network 5 [20 5 1]

Further reducing the hidden layer size to five nodes did not improve the learning rate and the performance. The network of this size cannot map the input from the training data to desired output.
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Figure 5‑8: Learning Curve of Network [20 5 1] with goal=0.001

The training did not reach the given goal, the training was stopped at 200 epochs with MSE=0.088. At this stage, testing the network using the trained and untrained data sets gave 2,437 and 1,659 wrong outputs. Since the network cannot be reduced further without suffering the performance and the training rate, no more new network size was trained.

1.16 Simulation Result

All the results of the training and testing are given here for convenience. 

	Network Size
	Final MSE
	Epochs
	Time

(min)
	Testing Error

	
	
	
	
	Using Trained Data Set (26,620)
	Using Untrained Data Set

(17,600)

	
	
	
	
	No
	%
	No
	%

	[20 20 10 1]*
	0.07
	401
	29
	N/A
	N/A
	N/A
	N/A

	[20 20 10 1]
	0.007
	1000
	126
	26
	0.1
	30
	0.2

	[20 15 5 1]
	0.01
	15
	2
	53
	0.2
	46
	0.3

	[20 15 5 1]
	0.001
	169
	17
	6
	0.02
	22
	0.1

	[20 15 1]
	0.001
	39
	4
	15
	0.1
	20
	0.1

	[20 5 1]
	0.07
	200
	8
	2437
	9.2
	1659
	9.4


Table 5‑1: Network Simulation Summary 

(All network were trained using SCG except for * using GDM)

The network with sizes of [20 20 10 1] and [20 5 1] are either too big or too small. Both of them cannot map the training data to the intended output satisfactorily. It can be seen from the learning curves in figure 5-4 and 5-8 that they hardly converged anymore when the training was stopped i.e. the gradient value was close to zero. The smaller network hardly converged anymore when it reached 0.07 MSE, thus the performance of the network suffered greatly with about 9.3% output error when tested using simulation data set. The bigger network performed better with average of 0.15% error, however the training time was long.

The other two network architectures [20 15 5 1] and [20 15 1] had better performance and faster convergence. The performance of the networks when tested using testing data set is given below.
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Figure 5‑9: Networks Output Error

Both networks [20 15 5 1] and [20 15 1] are good choices for the ANN relay in term of training time and performance. The difference between the numbers of errors in both networks is insignificant. Disregarding the error performance, the [20 15 1] network has advantages of smaller network size and faster training time compared to [20 15 5 1] network. However, the network [20 15 5 1] seems to have better future in term of its trainability. From learning curves of both networks in figures 5-6 and 5-7, it can be seen how the gradient of the learning curve changes with respect to epoch. The learning curve of network [20 15 5 1] has a number of turns from low to high negative gradient that signifies its capability to escape from local minima. As for network [20 15 1], the gradient descended gradually. It does not show any evidence of its capability of escaping from local minima, but one cannot assume that it is not capable of doing that as well. The network [20 15 5 1] is chosen over the network [20 15 1] because of the evidence it has shown. 

1.16.1 ANN Relay Architecture

The network simulation resulted in the ANN relay architecture with an input layer of 20 nodes, 2 hidden layers of 15 and 5 nodes and an output layer of 1 node as shown below.
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Figure 5‑10: ANN Relay Architecture

The hardlimit function is connected to the network output to ensure 0/1 output.

The weights of the network are shown in the following graphs. The graphs show the weight distribution in each node in a layer. In the hidden layer graphs, x-axis represents the node in the layer. The weight distribution in of the first node in the layer is shown in node 1 of the x-axis.
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Figure 5‑11: Weights of Hidden Layer 1
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Figure 5‑12: Weights of Hidden Layer 2 
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Figure 5‑13: Output Layer Weights

1.16.2 Additional Testing

Additional testing was simulated on the network for a few different types of data with the following specifications.

1. Fault AG with 1 ( fault-on resistance 

2. Fault AG with 2 ( fault-on resistance

3. Fault AG with 5 ( fault-on resistance

4. Fault AG with 10 ( fault-on resistance

5. Normal condition with 10 K( fault-off resistance

6. Normal condition with 100 K( fault-off resistance

The number of waveform patterns simulated was 120 patterns altogether. Case 1 to 4, each had 40 patterns consist of 20 prefault and 20 fault patterns. Case 5 and 6, each had 20 patterns.

The significant of training different fault-on resistances and fault-off resistances is to see how well the network recognise slight change in the magnitude of waveform patterns. By varying the fault-on resistance, the waveform magnitude when a fault occur is greater than the ones trained and tested with 0.01 fault-on resistance. Similarly, when the fault-off resistance is reduced, the waveform magnitude of normal condition will decrease lower than the one in the training data set. The simulation on [20 15 5 1] network using this new data set resulted in 0 error output which signifies that the network is able to recognise a slight change in the magnitude of the waveforms.

Conclusions

1.17 Network Performance

The ANN relay developed in this project performed satisfactorily when tested using trained, untrained, and additional data. The network failed to classify 6 and 22 patterns in trained and untrained data sets respectively. The following graph shows the waveforms that are failed to classify. 
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Figure 6‑1: Unrecognisable Waveforms Patterns

The waveforms shown above consist of three distinctive patterns. This shows that the network cannot classify three patterns only instead of 28. The 28 error cases previously measured are actually a repetition of only three error cases. The waveforms above show waveform patterns when a fault is about to occur i.e. when the impedance drops below the threshold value. The desired output for this is 1 but the network produces 0, thus it is a performance error. However, this is quite harmless error because the relay does not trip unnecessarily while the fault is still at tolerable stage. From this founding, it can be concluded that the network actually performs even better than previously thought.

Performance error at the threshold of detection occurs quite frequently in network training. The research done by Coury, et. al. (1997) also suffered from the same error. In their work, they trained the network to trip the relay when a fault occurred within protection zone of 80 km and not to trip if the fault occurred outside the zone. The trained network gave an inaccurate answer when the trip/no-trip decision was made on region 78-82 km or the threshold region.

1.18 Network Architecture

There is no particular formula to choose suitable network architecture for an application. The suitable network size is found by trial and error. Small sized network may not be enough to map the function, but bigger sized network may not be a better choice as well.

By trial and error, it was found that the suitable network size for ANN relay with 20 inputs and 1 output was a network with two hidden layers of size 15 and 5. This network was chosen over a network with one hidden layer of 15 nodes. The number of hidden layers might play role in the convergence of the MSE based on the simulation result.

1.19 Recommendations for Future Development

1.19.1 Data Improvement

For future development, it is suggested to add more testing data with varying fault-on and fault-off resistances for each fault cases simulated in this project. If the network cannot classify those data then they need to be included in the training data set.

Data for a short duration fault needs to be included in the simulation as well. Whether the relay should trip on that fault or not, is up to the relay setting.

The simulated data needs to include faults located beyond the protection zone as well. The relay is overreaching when it detects fault beyond its protection zone. This is undesirable because it causes unnecessary trip of a relay. To avoid overreaching, network needs to treat the fault simulated beyond the protection zone as a non-faulty waveform patterns. 

1.19.2 Function Improvement

Additional functionalities such as classifying fault type or fault location can also be implemented using the same network or separate network.

Fault classification by neural network is possible. As seen in figure 5-1, there are distinctions between the waveform patterns of different faults.

As discussed in section 2.4, Mazon et. al. (2000) used a linear function as the output function. A similar output of this type can be added to the network developed in this project to act as a fault locator. The location of a fault plays important role in the trip decision when it comes to overreaching issue. When overreaching occurs, the relay ignores it altogether, operates a delayed tripping, or communicates to other relay to trip.
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Appendices

Appendix A: Symmetrical Components of Three-Phase Power Systems

Three-phase power systems analytical model is represented by phasors. The IEEE Dictionary (IEEE 100-1984) defines a phasor as a complex number applied to voltage, current, and impedance of steady state alternating linear systems. The absolute value (modulus) of a phasor corresponds to either a peak amplitude or root mean square (rms) value of the quantity, and the phase (argument) to the phase angle at zero time.

For three-phase power systems there are three symmetrical components: positive, negative, and zero sequence for both currents and voltages.

[image: image42.wmf]V

an1

I

a1

V

cn1

I

c1

V

bn1

I

b1

120

0

120

0

120

0

Rotation

Positive Sequence

V

an2

I

a2

V

bn2

I

b2

V

cn2

I

c2

120

0

120

0

120

0

Rotation

Negative Sequence

V

an0

=

V=V

bn0cn0

I

a0

=I=I

b0c0

Zero Sequence


Figure 8‑1: Symmetrical Components of Three-phase Power Systems

To help the analysis it is helpful to define the following
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The derivation of symmetrical components of currents and voltages are given here. The n subscripts in the voltages are dropped for convenience

For the positive sequence the followings apply

	Ia1 = I1 

Ib1 = a2 I1 

Ic1 = a I1 
	Va1 = V1 

Vb1 = a2 V1 

Vc1 = a V1


For the negative sequence the followings apply

	Ia2 = I2 

Ib2 = a I2 

Ic2 = a2 I2 
	Va2 = V2 

Vb2 = a V2 

Vc2 = a2 V2


For the zero sequence the followings apply

Ia0 = Ib0 = Ic0 = I0 

Va0 = Vb0 = Vc0 = V0 

Now the current symmetrical components are derived

Ia = Ia1 + Ia2 + Ia0 = I1 + I2 + I0 

Ib = a2I1 + aI2 + I0 

Ic = aI1 + a2I2 + I0 

Solving I1, I2, and I0 using matrix
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Using inverse matrix to solve for I1,I2, and I0 
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(A.1)

Now, in phasor systems

a4 = a







(A.2)

Substituting Eq. (A.2) into (A.1) gives
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(A.3)

Now, in phasor, the followings apply
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(A.4)
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(A.5)

Substituting Eq. (A.4) and (A.5) into (A.3) gives the symmetrical network components currents
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And similarly for the voltages
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Thus the positive sequence current and voltage are

I1 = 1/3 (Ia + a Ib + a2 Ic)

V1 = 1/3 (Va + a Vb + a2 Vc)

And the negative sequence current and voltage are

I2 = 1/3 (Ia + a2 Ib + a Ic)

V2 = 1/3 (Va + a2 Vb + a Vc)

And the zero sequence current and voltage are

I0 = 1/3 (Ia + Ib + Ic)

V0 = 1/3 (Va + Vb + Vc)

Appendix B1: PSCAD Model
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Figure 8‑2: PSCAD Simulation Model

The power source Parameters
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	Src1
	Src2

	Source impedance type
	R
	R

	Base MVA (3-phase)
	100 MVA
	100 MVA

	Base voltage L-L (rms)
	230 KV
	230 KV

	Base frequency
	50 Hz
	50 Hz

	Zero sequence included
	No
	No

	Impedance data format
	RRL Values
	RRL Values


Table 8‑1: Power Source Data

The delay function parameters
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	a (1(120()   
	a2 (1(240()

	Time Delay
	13.333 ms
	6.666 ms

	No of samples in delay T
	267
	133


Table 8‑2: Delay Parameter

The RMS function parameter
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RMS Smoothing Time Constant 0.02 sec

Appendix B2: PSCAD Transmission Line Parameters

The transmission lines used are frequency dependent, ideally transposed, and consist of three conductor cables and two ground cables. 
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Figure 8‑3: Conductor Orientation

	Ground Wire No
	1
	2

	Conductor Name
	7/16 Steel
	7/16 Steel

	Cond Radius(cm)
	0.55245
	0.55245

	Horiz. Dist. X(m)
	-5
	5

	Height at Tower Y(m)
	34.9999
	34.9999

	Sag at Midspan(m)
	10
	10

	DC Resistance(ohms/km)
	2.8645
	2.8645


Table 8‑3: TL Ground Wire Data

	Bundle No
	1
	2
	3

	Conductor Name
	Chukar
	Chukar
	Chukar

	Conductor Type (AC/DC)
	AC
	AC
	AC

	V(kV)(AC:L-L,rms/DC:L-G,pk)
	500
	500
	500

	V Phase (Deg)
	0
	-120
	120

	Line I (kA)(AC:rms/DC:pk)
	5
	5
	5

	Line I Phase (Deg)
	20
	-100
	140

	No of Sub-Conductors
	2
	2
	2

	Sub-Cond Radius (cm)
	2.03454
	2.03454
	2.03454

	Sub-Cond Spacing (cm)
	45.72
	45.72
	45.72

	Horiz. Dist. X(m)
	-10
	0
	10

	Height at Tower Y(m)
	30
	30
	30

	Sag at Midspan(m)
	10
	10
	10

	DC Resistance(ohms/km)
	0.03206
	0.03206
	0.03206


Table 8‑4: TL Conductor Data

Appendix C: Backpropagation Algorithm

The original backpropagation uses gradient descent algorithm to adjust the weights. Backpropagation weight update scheme is given below.

The following definitions are used

Output yk denotes an output at kth node in layer k

The subscript k ( [1, 2,3, … K].

The weight Wji is the weight at jth node in layer j connected to ith node in the layer i.

Consider the following BP network
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Figure 8‑4: Backpropagation Network

The show how BPN works, a feed forward network with three layers: i, j, and k is used as illustration. The input of the matrix has size of IxN where I is the number of inputs and N is the number of training patterns. The output for layer k is denoted by yk with 


Yk = fk(netk)






(C.1)

Where 


netk = 
[image: image57.wmf]å
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According to gradient descent algorithm, the weights are updated based on the negative gradient of the cost function MSE as to minimise it. The mean square error E is defined as
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(C.3)

where En is the square error of nth pattern



[image: image59.wmf]å

=

=

K

1

k

2

k

n

)

n

(

e

2

1

E




[image: image60.wmf]å

=

-

=

K

1

k

2

k

k

n

))

n

(

y

)

n

(

d

(

2

1

E






(C.4)

ek(n) is the error at pattern n, and dk is the desired output at pattern n. 

To estimate the gradient of E, the gradient of En can be used instead. Thus, the weights are adjusted pattern-by-pattern based on their respective square error for each pattern En. The weight adjustment derivation is given below. The notation (n) to indicate nth pattern is omitted for convenience.

At the output layer, the weight adjustment on W​kj is as follow
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(C.5)

where ( is the learning rate

Knowing Eq. C.4, C.1, and C.2 chain rule can be used on Eq. C.5
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defining local gradient (k as
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Eq. C.6 becomes
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The weight adjustment at output layer k
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Similarly for the hidden layer weight adjustment 
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from Eq. C.4 En is a function of yj 
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from Eq. C.2, y​j is a function of Wji thus
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(C.10)

(Wji depends on the sum of error ek of the output layer, i.e. the errors are propagated back.

Now defining (j as
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the weight update at hidden layer
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(C.11)

Appendix D: MATLAB Codes

The following codes are listed

1. zeditdata.m

2. getznn.m

3. zoutp.m

4. inpfile.m

5. znntrain.m

6. zsimnver.m

zeditdata.m

function zeditdata(fn1)

%change the following line according to the data
numline=100;

%fn1 column
%col1head='t';
col2head='V';

col3head='I';

col4head='Z';

%----------------------------------------------
% editing file 1
[FID,MSG]=fopen(fn1,'rt');

sgcol=fscanf(FID,'%f');

fclose(FID);

numcol=length(sgcol)/numline;

table=reshape(sgcol,numcol,numline);

col2=table(2,:);

[FID,MSG]=fopen(strcat(col2head,fn1),'wt');

fprintf(FID,'%f\n',col2);

fclose(FID);

col3=table(3,:);

[FID,MSG]=fopen(strcat(col3head,fn1),'wt');

fprintf(FID,'%f\n',col3);

fclose(FID);

col4=table(4,:);

[FID,MSG]=fopen(strcat(col4head,fn1),'wt');

fprintf(FID,'%f\n',col4);

fclose(FID);

getznn.m

% This function takes the input data set of each
% z data column and arrange it to get
% all the z fault data
% input file  : z file
% output file : output
% start parameter is to reduce the repetition of data
function getznn(ifn,ofn,start,stop)

% Appending input
[FID,MSG]=fopen(ifn,'rt');

input=fscanf(FID,'%f');

fclose(FID);

inpCol=20;

A=[];

for i=1:(length(input)-inpCol+1),

   B=input(i:i+inpCol-1);

   A=[A;B'];   

end
[RVB,MSG]=fopen(ofn,'at'); %open text file for appending

[RA,CA]=size(A);

if stop==0

    finish=RA;

else 

    finish=stop;

end
for j=start:finish

   fprintf(RVB,'%12.5f   ',A(j,:));

   fprintf(RVB,'\n');

end   

fclose(RVB);
zoutp.m

% This function takes the input data set which has been 
% arranged in Rx20 and arrange it to get a
% column matrix containing the trip value
% input file  : Rx20 matrix
% output file : Rx1 matrix
% Return value : Rx1 matrix
function A=zoutp(ifn)

inpCol=20;

tripThresh=3100;

trip=1;

notrip=0;

[FID,MSG]=fopen(ifn,'rt');

input=fscanf(FID,'%f');

fclose(FID);

A=[];

for i=1:inpCol:(length(input)-inpCol+1),

   B=input(i:i+inpCol-1);

   B=min(abs(B));

   if B < tripThresh 

       B=trip;

   else
       B=notrip;

   end;

   A=[A;B];   

end
[RVB,MSG]=fopen(strcat('o',ifn),'wt');

fprintf(RVB,'%d\n',A);

fclose(RVB);

inpfile.m

% This function reads from input file containing
% data set in a row. The returning value is the 
% data set in a column for NN input
function input=inpfile(filename,numdata)

inpnum=numdata;

[FID,MSG]=fopen(filename,'rt');

matrix=fscanf(FID,'%f');

fclose(FID);

passnum=length(matrix)/inpnum;

input=reshape(matrix,inpnum,passnum);

znntrain.m

% the input data to train is a Rx20 matrix data
function [net,tr]=znntrain(fn,goal,ep)

ins=inpfile(fn,20);

ots=inpfile(strcat('o',fn),1);

net=newff(minmax(ins),[10,5,1],{'logsig','logsig','logsig'},'trainscg');

net.trainParam.lr=0.7;          % learning rate
net.trainParam.show=25;        

net.trainParam.epochs=ep;

net.trainParam.goal=goal;

net.trainParam.mc=0.8;         % momentum
[net,tr]=train(net,ins,ots);

zsimnver.m

% net ==> the network name
% fntest ==> the test data file
% ofntest ==> desired output file
% output ===> desired output variable
% sfntest ==> simulation result
% hlfntest => simulation result in binary
% binout ===> simulation binary result variable
% vfntest ==> verification file
function zsimnver(net,fntest,thresh)

fdesout=strcat('o',fntest);

fsimresult=strcat('s',fntest);

fbinresult=strcat('hl',fntest);

fverification=strcat('v',fntest);

test=inpfile(fntest,20);

simout=sim(net,test);

simout=simout';

[FID,MSG]=fopen(fsimresult,'wt');

fprintf(FID,'%d \n',simout);

fclose(FID);

binout=hardlim(simout-thresh);

[FID,MSG]=fopen(fbinresult,'wt');

fprintf(FID,'%d \n',binout);

fclose(FID);

%============= verify ================
[FID,MSG]=fopen(fdesout,'rt');

output=fscanf(FID,'%f');

fclose(FID);

fail=(binout|output)&(~binout|~output); %XOR
A=sum(fail);

B=length(fail);

[FID,MSG]=fopen(fverification,'wt');

fprintf(FID,'%d \n',fail);

fprintf(FID,'\n\n Number of failure: %d out of %d ==> %3.1f %% error',A,B,A/B*100);

fclose(FID);
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