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Synopsis
A single-chip microcontroller has been programmed to on request, gather data via contacts indicating which parts of the hands are touching. This data is then transmitted back to a host computer where it is combined with data from the P5 Virtual Reality glove, which indicates hand position and orientation, and finger bend data.  An algorithm then filters the composite data, in real-time, to identify the structure and movement characteristic of Australian Sign Language (Auslan). As signs are recognised, the relevant word is output.
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NOMENCLATURE
Algorithm: A step-by-step problem-solving procedure, especially an established, recursive computational procedure for solving a problem in a finite number of steps.

Articulate: Anatomy. To unite by forming a joint or joints.
CCD: Charge-coupled device – a silicon chip whose surface is divided into light- sensitive pixels. When a photon (light particle) hits a pixel, it registers a tiny electric charge that can be counted. With large pixel arrays and high sensitivity, CCDs can create high- resolution images under a variety of light conditions.
DOF: Degrees of freedom – Any of the minimum number of coordinates required to specify completely the motion of a mechanical system.
Latency: Communications. The time it takes for a packet of data to cross
a network connection, from sender to receiver.
LED: Light emitting diode – A semiconductor diode that converts applied voltage to light. 
Midline: Anatomy. The median plane of the body (or some part of the body).
Proximal: Anatomy. Nearer to a point of reference such as an origin, a point of attachment, or the midline of the body: the proximal end of a bone.
UART: Universal asynchronous receiver/transmitter – An integrated circuit used
for serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

USB: Universal serial bus – An external peripheral interface standard for communication between a computer and external peripherals over an inexpensive cable using biserial transmission.
TABLE OF CONTENTS
11.0 INTRODUCTION


32.0 BACKGROUND


32.1 Communication Technology for the Deaf


42.2 Auslan


42.2.1 Introduction


62.2.2 The Mechanics of Auslan


72.3 Structure and Function of the Upper Limb


72.3.1 Introduction


72.3.2 Bones of the Upper Limb


82.3.3 Classification of Relevant Joints and Movements


92.3.4 Joints and Associated DOF of the Upper Limb


112.3.5 Summary


132.4 Gesture Recognition


132.4.1 Introduction


132.4.2 Device Based Techniques


132.4.3 Visual-Based Techniques


142.4.4 Device-Based versus Visual-Based Techniques


153.0 GOALS AND OBJECTIVES


153.1 Introduction


153.2 Goals


153.3 Objectives


174.0 ATTRIBUTES DEFINING INDIVIDUALITY OF A SIGN: AUSLAN     BROKEN DOWN


174.1 Introduction


174.2 Structure of Handshapes


214.2.1 Location of Handshapes


234.3 Orientation of Handshapes


254.4 Movement of Handshapes


264.5 Expression


264.6 Summary


285.0 ACQUISITION OF DATA DEFINING REQUIRED ATTRIBUTES


285.1 The P5 Glove and Receptor


285.1.1 Introduction


295.1.2 Attributes covered by the P5 glove


295.2 Acquisition of Remaining Attributes


295.2.1 Introduction


305.2.2 Limitations


305.2.3 Requirements of Sensors


326.0 HARDWARE AND SOFTWARE CHOICES


326.1 Introduction


326.2 The Contact Sensors


356.3 The Host System


377.0 DEVELOPMENT OF CONTACT SENSORS


377.1 Development as Contacts


387.2 Development as Sensors


428.0 DEVELOPMENT OF CONTACT SENSOR DATA ACQUISITION ALGORITHM


428.1 Detailed Requirements Specification


448.2 Important Concepts for Contact Sensor Data Acquisition Algorithm


458.3 Algorithm Development


458.3.1 Introduction


478.3.2 Function Definition: main


488.3.3 Function Definition: initProgramTimers


508.3.4 Function Definition: initPort


518.3.5 Function Definition: initUART1


528.3.6 Function Definition: getContactData


558.3.7 Function Definition: isItConnected


568.3.8 Function Definition: scanPorts


598.3.9 Function Definition: debounceDelay


598.3.10 Function Definition: compareLogs


628.3.11 Function Definition: updateConnections


668.3.12 Function Definition: eraseConnectLog


668.3.13 : Function Definition: transmitConnections


688.3.14 Function Definition: delay


698.4 Testing of Contact Sensor Data Acquisition Algorithm


698.4.1 Outline of Choices Made for Testing


708.4.2 Overview of Testing Algorithm


738.4.3 Function Definition: getConnections


768.4.4 Function Definition: notTimeOut


778.4.5 Function Definition: dataNotReady


798.4.6 Function Definition: connectionTranslator


808.4.7 Results of Testing and Amendments Made


849.0 DEVELOPMENT OF THE SIGN RECOGNITION ALGORITHM


849.1 Introduction


849.1.1 New Implications to the Scope of the Work


859.1.2 Overview of Sign Recognition Algorithm Project Workspace


879.2 Detailed Requirements Specification


909.3 Algorithm Development


909.3.1 Overview


939.3.2 Function Definition: main


969.3.3 Function Definition: position


979.3.4 Function Definition: stopped


999.3.5 Function Definition: IDhandshape


1009.3.6 Function Definition: connectLogic


1019.3.7 Function Definition: handshapeTranslator


1029.3.8 Function Definition: IDmovement


1059.3.9 Function Definition: fingerIncDecInc


1069.3.10 Function Definition: rollWrists


1089.3.11 Function Definition: leftToRight


1109.3.12 Function Definition: towardBody


1119.3.13 Function Definition: down


1129.3.14 Function Definition: awayRightUp


1139.3.15 Function Definition: awayRightDown


1149.3.16 Function Definition: movementTranslator


1159.3.17 Function Definition: detectSign


1189.4 Testing of the Sign Recognition Algorithm Milestones


1189.4.1 Retrieval of Contact Sensor Data


1189.4.2 Handshape Identification


1209.4.3 Movement Identification


1239.4.4 Sign Recognition


12410.0 FUTURE INTENTIONS AND FINAL CONCLUSIONS


12410.1 Overview


12410.2 Composite Glove Design


12510.3 Tracking of Primary Locations


12510.4 Learning Algorithms


12610.5 Expression Identification


12610.6 Translation of Signs into Speech


12710.7 Speech Recognition


12710.8 Conclusion


129A APPENDIX


131B APPENDIX


133C APPENDIX


146D APPENDIX


161E APPENDIX


165F APPENDIX





LIST OF FIGURES

8Figure 1: Bones of the Upper Limb. Taken from Martini & Timmons (1997 p. 184, 175 respectively)


18Figure 2: ‘two’ hand (left), ‘three’ hand (right). Adapted from Johnston (1998 p. 166, 216 respectively)


18Figure 3: ‘two’ hand (left), ‘kneel’ hand (right). Adapted from Johnston (1998, p. 166, 183 respectively).


19Figure 4: 'two', 'spoon', 'three' and 'mother' hand’s (from left to right). Adapted from Johnston (1998, p. 166, 193, 216 and 220 respectively)


19Figure 5: Two-handed fingerspelling vowels. Adapted from Johnston (1998, p. 593).


20Figure 6: 'spoon' hand (left) and 'wish' hand (right). Adapted from Johnston (1998, p.  193, 213 respectively).


21Figure 7: 'spoon', 'letter-n', 'mother' and 'letter-m' hand's (from left to right). Adapted from Johnston (1998, p. 193, 212, 220 and 223 respectively).


22Figure 8: Sign for number one. As included by Johnston (1998 p. 598)


22Figure 9: Primary locations for signs. As included by Johnston (1998 p. 572)


23Figure 10: Secondary locations for signs. As included by Johnston (1998 p. 572)


24Figure 11: yaw, pitch and roll components of orientation.


24Figure 12: 'weigh' sign (left) and 'balance' sign (right). Adapted from Johnston (1998, p. 340, 344 respectively).


25Figure 13: 'weigh' sign (left) and 'doubt' sign (right). Adapted from Johnston (1998, p. 340, 338 respectively).


28Figure 14: P5 glove and receptor. Taken from About the P5 (Essential Reality 2002a).


33Figure 15: Proposed  circuit connections for contacts


34Figure 16: The M16C/62 Single-chip microcontroller by Mitsubishi Electric


39Figure 17: Contact sensor gloves (front)


39Figure 18: Contact sensor gloves (back)


40Figure 19: M16C/62 programmable I/O circuit.


41Figure 20: Close-up of contacts illustrating construction


43Figure 21: Flow chart of proposed requirements for the acquisition and transmission of contact sensor data


48Figure 22: Flow chart for function: main


50Figure 23: Flow chart for function: initProgramTimers


51Figure 24: Flow chart for function: initPort


52Figure 25: Flow chart for function: initUART1


55Figure 26: Flow chart for function: getContactData


56Figure 27: Flow chart for function: isItConnected


58Figure 28: Flow chart for function: scanPorts


59Figure 29: Flow chart for function: debounceDelay


61Figure 30: Flow chart for function: compareLogs


65Figure 31: Flow chart for function: updateConnections


66Figure 32: Flow chart for function: eraseConnectLog


68Figure 33: Flow chart for function: transmitConnections


69Figure 34: Flow chart for function: delay


72Figure 35: Flow chart for testing algorithm


75Figure 36: Flow chart for function: getConnections


76Figure 37: Flow chart for function: notTimeOut


78Figure 38: Flow chart for function: dataNotReady


80Figure 39: Flow chart for function: connectionsTranslator


89Figure 40: Flow chart for proposed final milestone of sign recognition algorithm


95Figure 41: Flow chart for function: main


97Figure 42: Flow chart for function: position


98Figure 43: Flow chart for function: stopped


100Figure 44: Flow chart for function: IDhandshape


101Figure 45: Flow chart for function: connectLogic


102Figure 46: Flow chart for function: handshapeTranslator


104Figure 47: Flow chart for function: IDmovement


106Figure 48: Flow chart for function: fingersIncDecInc


108Figure 49: Flow chart for function: rollWrists


110Figure 50: Flow chart for function: leftToRight


111Figure 51: Flow chart for function: towardBody


112Figure 52: Flow chart for function: down


113Figure 53: Flow chart for function: awayRightUp


114Figure 54: Flow chart for function: awayRightDown


115Figure 55: Flow chart for function: movementTranslator


117Figure 56: Flow chart for function: detectSign


129Figure 57: Auslan handshapes


130Figure 58: Auslan handshapes continued


131Figure 59: Irish one-handed alphabet


132Figure 60: British two-handed alphabet




LIST OF TABLES

44Table 1: Interrupts and interrupt service routies for contact sensor algorithm


47Table 2: Functions and global variables used in contact sensor algorithm


71Table 3: WSC32 functions and defined constants used in test algorithm


92Table 4: Functions and global variables used in sign recognition algorithm




1.0 INTRODUCTION

Since the dawn of time humans have endeavoured to improve the means of exchange between each other, as efficient communication of information has increasingly become vital to our survival as a species. The spoken word is one of the oldest tools humans have employed for information exchange and is fundamental to our constitution. That is, for those of us who are not deaf. Short of lip reading coupled with poor pronunciation (due to restricted, or no experience with sound), a deaf person uses sign language, which again raises the language barrier. The obvious solution to this problem is the use of human translators. However this not only imposes a financial burden, but removes independence and elements of persona. A practical solution to these problems would be a portable, ergonomic, non intrusive electronic translator that converts hand symbols into speech.

This thesis initiates a method by which this electronic translator could be realised utilising cheap existing technologies. There are three main operations to be performed, these are: data acquisition, pattern recognition and speech synthesis. This project is concerned with the first two as the topic of speech synthesis is well researched and easily adapted to the output of the pattern recognition module. The data acquisition was performed by two independent sources. Firstly, the P5 gaming glove by Essential Reality was used to collect hand orientation (roll and pitch) and position (x, y, z coordinates relative to a receiver), and the degree to which individual fingers were bent. Secondly, a series of contacts attached to the fingers and palms were connected to the input/output (I/O) pins of the M16C/62 single-chip microcontroller by Mitsubishi Electric, which was programmed to determine which fingers where touching and return the data when polled for it. The pattern recognition was performed by periodically polling the data acquisition modules, and within a simplified mechanical structure of Auslan, the composite returned data was then filtered to reveal the handshapes, positions, orientations and movement conducted at that moment in time. The outputs of the filters were then compared to the combinations of condition required for a particular sign. As a result of the comparison, the relevant sign was output.

In chapter two, material is covered that sheds light on the problem at hand. The background tends to illustrate areas that need addressing when approaching the problem statement. In chapter three, the goals and objectives of this project are outlined, forming the framework and mood for the approach taken. Chapter four leads into the mechanics of Auslan and identifies the attributes required for its recognition.  In chapter five it is determined which attributes are accounted for, and which are to be attained. The hardware and software choices made for this project are outlined and reasoned in chapter six. Next, chapter seven follows the development of required sensors and chapter eight covers development of their associated algorithm for acquisition of their data. In chapter nine, development of the sign recognition algorithm is presented. Finally, in chapter ten the future intentions for this project are outlined and conclusions drawn.

2.0 BACKGROUND

2.1 Communication Technology for the Deaf   

In the early days when long distance communication was conducted via mail, followed later by Samuel Morses’ telegraph in 1844 (Leslie 1976, p. 38), the written message was easily conveyed from one remote place to another. Both services were user friendly to the deaf.  With the invention of the telephone by Alexander G. Bell in 1876 (Leslie 1976, p. 42), came real-time long distance voice communication, and the pace of life sped up as society become dependant on it. Unfortunately this now fundamental service discriminated against the deaf until Robert Weitbrecht invented the TTY (Telephone Typewriter) in the 1960’s (Berke 2003) enabling text based communications over the telephone line or via the National Relay Service. More recently the TTY service has become largely redundant with the innovation of text pagers (the first: Motorola’s Pageboy 1 in 1974 (History of Pagers 1996)), email (first global email by US Department of Defence on ARPANET in 1971 (A Brief History of Email 2003)) and now SMS (short messaging service: first message sent in 1992 (SMS Celebrates 10th Birthday 2003).

According to the Technological Advisory Committee (2003), currently there is much research going into text-to-speech and speech-to-text translation where the aim is to mimic the natural characteristics of speech. Morphing technology is also being researched with the aim of manipulating the face and body so as the lips and facial expressions reflect a person speaking that which is being communicated in the form of text or sign language. Research is also being conducted into gesture recognition, currently using electronic body suits or camera-based tracking of the human body. To complete the circle, language translation is not only inherent of sign language-to-speech, but is also being researched for automation between different spoken and written languages. The intention is for these technologies to combine into a holistic communications system providing video conferencing such that individuals would communicate to and receive from others, information in their chosen form of communication, be that text or speech in their native tongue, or their particular form of sign language.

To date though, deaf persons have communicated face to face via written text, sign language (amongst those who know it), or through a human translator. The next logical step is for the communication industry to revolutionise translation of sign language into speech, with an ergonomic, non invasive, portable device enabling a higher degree of independence for the deaf community.

2.2 Auslan

2.2.1 Introduction

The first form of language humans ever used was a composite of primitive signs and sounds. Although the spoken language developed more completely well before the current forms of sign language, sign language has existed as long as there have been deaf people. Like the spoken language, sign language has different forms with virtually each country having its own, moreover different regions within those countries have there own dialect. Although many sign languages seem to have a common general origin, the exact origin of sign language remains unknown, however it has been referred to in ancient Greek writings (Western Australian Deaf Society 2002). 

Auslan (Australian Sign Language) was developed by Australian deaf people. It has evolved primarily from British Sign Language (due to settlement of British penal colonies) and elements of Irish Sign Language (introduced by convicts and migrants). “Schools for the deaf were established in Australia in the mid-nineteenth century. In 1860 Thomas Pattison, a deaf man educated at the Edinburgh Deaf and Dumb Institute began the Sydney school. At the same time another deaf man, Frederick Rose – who was educated at Old Kent School, London – founded the Melbourne school.” (Johnston 1997). From these schools and as it passed down the generations, the sign language soon spread across Australia, however in the form of two dialects as a direct consequence of the two schools. These days due to the “increasing requirement of interpreter services in secondary and tertiary eduction, and governmental, legal and medical fields, the language is expanding rapidly by either creating new signs or borrowing almost exclusively from American Sign Language”.

Currently there are approximately ten thousand deaf Australians using Auslan. According to the Western Australian Deaf Society (2002), Auslan is recognised as a language on its’ own, specifically it is formally recognised by the Australian Federal policy statements as a “community language other than English”. It is quite distinct from English as signs are related directly to concepts not words, and the order in which words are signed is different to the order in which words would be spoken in the English language, which illustrates a requirement for sign context to English translation.
2.2.2 The Mechanics of Auslan

Much of the following information was gathered from Signs of Australia: A new dictionary of Auslan (Johnston 1998). Auslan involves the use of handshapes (shown in Appendix A), arms, eyes and facial expressions, head and body movement. There are thirty seven base hand shapes for which some have several variants (a total of sixty two handshapes). The position, orientation, speed and direction of movement of these handshapes along with head and body position constitute the language of more than four thousand words. 

The basic hand shapes or variants are applied either: one-handed (the dominant hand is used to sign), two-handed (both hands are used with differing handshapes, points of contact and movement), or double-handed (the handshape, points of contact and movement of the dominant hand is mirrored by the other hand). The movement of the hands can be in straight lines, arcs, circles, mimicking waves, rolling of the wrists and so on. Speed of movement generally indicates emphasis of the idea being conveyed. Facial expressions and body movement play a large role in determining the context of each sentence being presented, for example the opposite meaning of a sign is conveyed by shaking the head or a question posed by raising the eyebrows whilst signing.

The names of people, places and things that do not appear in the language are spelt out (known as fingerspelling) by use of either the Irish one-handed alphabet or British two-handed alphabet consisting of the letters A to Z. Both fingerspelling alphabets are shown in Appendix B.

2.3 Structure and Function of the Upper Limb 

2.3.1 Introduction

In order to understand the physical makeup of signing itself, we need to understand the function and structure of the upper limb that determines the direction and range of motion. The following information is a general overview of elements contained in the works of  Tortora & Anagnostakos (1990) and Williams & Warwick (1984) facilitated by Ms H. Locke during personal communication on 17 May 2003. The upper limb consists of physiological structures such as: bones, joints, muscles and tendons, ligaments, blood vessels and nerves. Although there are many other soft tissue structures that contribute, bones, ligaments, and most importantly joints determine the degrees of freedom (DOF) associated within the upper limb.

2.3.2 Bones of the Upper Limb

The upper limb consists of the shoulder girdle, upper arm, forearm and hand. The shoulder girdle consists of the clavicle and scapular which articulate (is joined) with the upper arm via the shoulder joint. The upper arm consists of the humerus which articulates with the forearm via the elbow joint. The forearm consists of the radius and ulnar which articulate with the hand via the wrist complex (eight carpal bones). The hand consists of metacarpals (bones comprising the palm) and phalanges (bones of the fingers and thumb). These bones are illustrated in Figure 1;
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Figure 1: Bones of the Upper Limb. Taken from Martini & Timmons (1997 p. 184, 175 respectively)

2.3.3 Classification of Relevant Joints and Movements 

According to Tortora & Anagnostakos (1990 p. 209, p. 215), “A joint in which there is a space between articulating bones is called a synovial joint”. “Variations exist in the shape of articulating surfaces. Accordingly, synovial joints are divided into six subtypes: gliding, hinge, pivot, ellipsoidal, saddle and ball-and-socket joints.” Joints are classified on the basis of movements and DOF.  “Movements permitted in joints are conventionally considered to be of four kinds: gliding and angular movements, circumduction and rotation.  Almost always these are combined to produce an infinite variety.” (Williams & Warwick 1984, p. 430) Variations of these movements that occur within the upper limb joints include flexion (bending), extension (straightening), abduction (movement away from midline), adduction (movement towards midline), circumduction (combination of above four movements), rotation (pivots on longitudinal axis) and translation (one surface sliding over another). “When the movement of a bone is substantially limited to rotation about a single axis, the joint is termed uni-axial and it possesses one degree of freedom. Similarly, if completely independent movements can occur around two axes, the joint is classed as bi-axial and it possesses two degrees of freedom. Since there are three axes about which independent rotations may occur, a joint may exhibit one, two or three degrees of freedom, but no more.” (Williams & Warwick 1984, p. 429)

2.3.4 Joints and Associated DOF of the Upper Limb

The sternoclavicular joint joins the upper limb to the axial skeleton (that which excludes limbs). It is a saddle joint and is bi-axial (2 DOF) permitting elevation/depression and protraction/retraction of the shoulder. The joint also allows for a degree of rotation. The sternoclavicular joint works in conjunction with the acromioclavicular joint (articulation of clavicle and scapular, gliding joint) to produce the movement of the shoulder girdle. Movement at these joints is limited primarily by short fibrous ligaments.

“The shoulder joint is a multi-axial spheroidal joint.” (Williams & Warwick 1984, p. 456). This is a ball-and-socket joint affording 3 DOF by flexion/extension (180o), abduction/adduction (120o) and circumduction/rotation.

The elbow joint consists of two articulations; between the humerus and ulnar, and the humerus and radius, together constituting a hinge joint with 1 DOF. Flexion/extension is the only movement occurring at this joint. Supination/pronation (rotation in opposite directions) also occurs at the elbow joint. The radius rotates around the ulnar (proximal radio-ulnar joint), rolling the palm face up or face down. This movement is uni-axial, 1 DOF.

The wrist complex also consists of a radio-ulnar joint (distal), this is a uni-axial (1 DOF) pivot joint where movement is restricted to rotation about a longitudinal axis. This is jointly responsible for rotation of the palm (with proximal radio-ulnar joint). The radius also articulates with the carpals and is a bi-axial ellipsoid joint. The 2 DOF are accounted for by flexion/extension (85o) and adduction/abduction and contributed to by the intercarpal joints. “The movements which occur at the radiocarpal and intercarpal joints are considered together, for the joints concerned form parts of the same mechanism and are acted on by the same muscle groups.” (Williams & Warwick 1984, p. 469)

The joints of the hand consist of carpometacarpal (articulation of carples and metacarpals), metacarpophalangeal (articulation of metacarpals and proximal phalanges), and interphalangeal (articulation between phalanges). The carpometacarpal joints are classified as saddle joints. The movement of the 4nd and 5th joints (associated with fingers) is limited to slight gliding of the articulated surfaces over each other (translation), 1 DOF (Note the 2nd and 3rd joints virtually do not move.). “They are partly accessory movements of the first type (translation) and only come into prominence when the palm of the hand becomes ‘cupped’ as a solid object is grasped.” (Williams & Warwick 1984, p. 471) The first carpometacarpal joint (associated with thumb) has 2 DOF; flexion/extension and adduction/abduction. Rotation/circumduction (opposition) occurs through a combination of these two movements. The metacarpophalangeal joints are classified as ellipsoid and are bi-axial, 2 DOF; flexion/extension (90o) and abduction/adduction (spreading/returning of fingers relative to the midline, range: 30o). Interphalangeal joints consist of proximal and distal joints of the fingers and one interphalangeal joint of the thumb. Interphalangeal joints are uni-axial (1 DOF; flexion/extension) hinge joints and form articulations between the proximal, middle and distal phalanges.

2.3.5 Summary

Impulses from the brain cause nerves to stimulate muscles which in turn move bones over the range afforded by articulation structure. The complexity of muscles and tendons in the upper limb, ensure maximal utilisation of the DOF associated with respective articulations. The 5 DOF associated with the shoulder and shoulder girdle allow for the upper arm to be directed toward any point in a hemisphere with axis extending transversely from the shoulder, and rotated through more than 90 degrees. The 2 DOF associated with the elbow allow for raising/lowering of the forearm through more than 90 degrees and contribute to rotation of the palm through 180 degrees. The 3 DOF associated with the wrist complete the contribution to palm rotation and allow for raising/lowering and yaw of the hand relative to the forearm. The 5 DOF in the thumb allow for movement implied by the expression: ‘opposable thumb’. The outer two fingers having 5 and inner 4 distinguishable degrees of freedom are able to spread from one another and bend such that they touch the palm. 

The combination of movement in the upper limb virtually enables the hand to be positioned with any orientation at any point within a range (dictated by length of upper arm and forearm) of the shoulder. Finally, if the hand was dexterous enough, such that both extreme positions associated with each of the hands 23 DOF (or axis about which a bone can rotate) could be recognised as individual elements of condition, the hand alone would facilitate 8.4 million handshapes. Although a language comprising 8.4 million words would be concise, it would take more than a lifetime to learn and therefore is not practical. Since sign language is a visual form of communication, it requires that the handshapes, position and movement of each sign are easily differentiated from one another. By trading complexity of the language (number of words / hand conditions), enough redundancy in the DOF would result in an increased intelligibility of the language, making it practical. This illustrates how a complex language based on gestures finds a working balance between capacity and realistic application.

2.4 Gesture Recognition

2.4.1 Introduction

Gesture recognition implies a technique by which data is collected from elements of the human body (usually the hand) and processed by computer in order to determine attributes such as hand shape, direction and speed of movement, and orientation that comprise the gesture being performed. There are currently two forms of solution to this problem: device-based techniques and vision-based techniques.

2.4.2 Device Based Techniques

Device-based techniques involve some form of template such as a glove or glove-like framework fitted with position trackers (optical, magnetic,…etc devices used to determine location: x, y, z coordinates relative to a receiver and roll, pitch and yaw data), flexion sensors (thin, finger length strips that change resistance depending on the degree of bending), styli and so on to measure the condition and position of the hand. 

2.4.3 Visual-Based Techniques

Visual-based techniques utilise camera tracking technologies, whereby generally the user wears a glove(s) with specific colours or markers indicating individual elements of the hands, specifically the fingers.  The cameras record the changing image and position of the hand as the user signs and the images are then processed to retrieve the hand shape, position and orientation.

2.4.4 Device-Based versus Visual-Based Techniques

Components of the device-based technique are quite compact, relatively cheap and measurements (calibration) are for the most part accurate, this makes the technique quite practical. There are two major drawbacks of the technique though. Firstly, the data retrieved is only as accurate as the individual devices used for measurement and is subject to various forms of noise (optical or magnetic for the tracking devices and so on). Secondly, the person must wear a glove(s) and is restricted by wires returning to a receiver. This situation could be improved by utilising wireless technology imposing only the glove(s) itself.

As opposed to the device-based technique, the visual-based technique does not acquire useful data immediately. This is a major drawback of the technique as a substantial amount on processing is required to transform the image data into that characterising the hand shape, position and orientation. Also, two cameras are required if 3-D information is desired, this compounds the processing exponentially.  With the degree of processing required comes the problems of storage and delay, hence this technique would not easily be realised as a portable, real-time system. The one major advantage of this technique is that the user is not restricted by the wires and measurement devices inherent of device-based techniques.

3.0 GOALS AND OBJECTIVES

3.1 Introduction

The purpose of this project is to initiate a means by which Australian Sign Language (Auslan) can be translated into speech utilising initially the P5 gaming glove augmented by a minimum set of sensors, whilst maintaining a minimal budget.

3.2 Goals

The goals of this project were as indicated below;

1. To investigate a technique by which a chosen subset of Auslan signs can be   recognised consistently.

2. To determine future areas of investigation and implementation.

3.3 Objectives

The objectives of the project were as indicated below;

1. Determine the minimum set of attributes that will enable differentiation between individual signs.

2. Identify the subset of attributes the P5 glove will acquire data on.

3. Determine the timing and format of the data acquired by the P5 glove.

4. Determine the sensors required for the attributes not serviced by the P5 glove.

5. Identify the hardware required for collecting the sensor data.

6. Write software to interface the sensors with the host algorithm. This software must maintain synchronisation of the sensor data with that of the P5 glove.

7. Determine guidelines for and perform testing of the sensors and interfacing software. 

8. Identify causes of and solutions to problems encountered in objective 7. Re-establish objectives 6, 7 and 8 in view of any new approach required.

9. Modify the P5 glove to include the sensors.

10. Determine criteria for and perform selection of the subset of Auslan signs to be recognised.

11. Determine and write algorithms required for filtering inherent noise from the collected data.

12. Determine guidelines for and perform testing of the filter algorithms. 

13. Identify causes of and solutions to problems encountered in objective 12. Re-establish objectives 11, 12 and 13 in view of any new approach required.

14. Determine and write algorithms required for identifying the structure characteristic of individual signs.

15. Determine guidelines for and perform testing of the completed system. 

16. Identify causes of and solutions to problems encountered in objective 15. Re-establish objectives relevant to any new approach required, including 15 and 16.

17. Identify future areas of investigation and implementation required to complete the translation.

4.0 ATTRIBUTES DEFINING INDIVIDUALITY OF A SIGN: AUSLAN     BROKEN DOWN

4.1 Introduction

In this section, an attempt was made to break down the physical execution of Auslan into a minimal set of attributes that constitute the building blocks of each sign. This attempt was focused on the condition, position and movement of the hands. It was hypothesised that these attributes in turn, would facilitate a unique ‘fingerprint’ for each sign. Again the information discussed and examples presented are from the dictionary by Johnston (1998 pp. 571-5). 

4.2 Structure of Handshapes

Each of the handshapes used can be differentiated from one another by three distinct attributes of the hand condition. 

The first attribute is the combination of fingers bent and the degree to which they are bent. Considering the combination of fingers bent, the ‘two’ hand has the index and middle fingers straight and the remaining fingers and thumb bent completely, whereas the ‘three’ hand has the index, middle and ring finger straight and the pinky finger and thumb bent as depicted in Figure 2;
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Figure 2: ‘two’ hand (left), ‘three’ hand (right). Adapted from Johnston (1998 p. 166, 216 respectively)

Alternatively, considering the degree to which the fingers are bent, the ‘kneel’ hand (described as ‘two-hooked’) is the same as the ‘two’ hand except that the index and middle fingers are both bent at the distal and proximal interphalangeal joints (forming hooks) as depicted in Figure 3;
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Figure 3: ‘two’ hand (left), ‘kneel’ hand (right). Adapted from Johnston (1998, p. 166, 183 respectively).

The second attribute is concerned with which fingers are touching. There are two levels to this, the first of which is whether the straight fingers are ‘spread’ or ‘unspread’. Examples of this are the ‘two’ or ‘three’ hands (all straight fingers are spread) as opposed to the ‘spoon’ (described as ‘two-unspead’) or ‘mother’ (described as ‘three unspread’) hands respectively as depicted in Figure 4;
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Figure 4: 'two', 'spoon', 'three' and 'mother' hand’s (from left to right). Adapted from Johnston (1998, p. 166, 193, 216 and 220 respectively)

The second level is most prominent in fingerspelling where nonadjacent fingers (including thumbs) are touching each other. Examples of this are the vowels of the two-handed fingerspelling alphabet, where each vowel in turn is represented by the tip of the dominant hands’ index finger touching the tip of a particular finger (or the thumb) on the other hand, as depicted in Figure 5;
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Figure 5: Two-handed fingerspelling vowels. Adapted from Johnston (1998, p. 593).
A problem with the classification of this attribute is that it does not differentiate between the ‘spoon’ and ‘wish’ hand. Both have the index and middle fingers straight (with remaining fingers bent) and touching, however the ‘wish’ hand has the index and middle fingers crossed (described as ‘two-crossed’) as depicted in Figure 6;
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Figure 6: 'spoon' hand (left) and 'wish' hand (right). Adapted from Johnston (1998, p.  193, 213 respectively). 

One solution to this problem is to let the middle finger bend around the index finger, enabling differentiation between the handshapes without complicating the attribute to which sides of which fingers (or thumbs) are touching. Alternatively, the ‘wish’ hand is seldom used in Auslan (as it is associated with a minimal set of signs) and therefore could be differentiated from the ‘spoon’ hand through the context of the idea being conveyed by the signer. This would require added complexity in the algorithms being used, however would complement word prediction techniques.

The final attribute, Pitch, a component of orientation (to be discussed later) completes those required for the recognition of handshapes. Pitch would determine whether the fingers were pointing up or down. This information would be required to differentiate between handshapes essentially identical except for the pitch of the straight fingers, such as the ‘spoon’ and ‘letter-n’ hands, or the ‘mother’ and ‘letter-m’ hands as depicted in Figure 7;
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Figure 7: 'spoon', 'letter-n', 'mother' and 'letter-m' hand's (from left to right). Adapted from Johnston (1998, p. 193, 212, 220 and 223 respectively).

The orientation attribute has more implications when differentiating signs from one another, and is covered further in section 4.3 below.
4.2.1 
Location of Handshapes

Different signs can originate, be maintained, or terminate at: a specific point of contact (or the proximity of that point) known as a ‘primary location’, or in ‘neutral space’. 

Neutral space is located in front of the signer, generally at chest height.  Two-handed and double-handed signs use neutral space only, as the points of contact are located on the hands themselves, known as ‘secondary locations’. This is also true when using some one-handed signs where the meaning is conveyed simply by the sign itself, for example the number one is conveyed by the ‘point’ hand in neutral space as illustrated in Figure 8;
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Figure 8: Sign for number one. As included by Johnston (1998 p. 598)

The primary locations are illustrated in Figure 9; 
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Figure 9: Primary locations for signs. As included by Johnston (1998 p. 572)

Primary locations usually reside on the right side of the head and left side of the body. This convention assumes the signer is right-hand dominant, hence to avoid crossing over the face, or the physical impossibility of touching the right arm with right hand, this convention has been adopted (note the converse is true for left-hand dominant signers). Examples utilising primary locations are the signs for Indian, German and I/ME given by the ‘point’ hand on the: top of head, forehead, and chest respectively.

Figure 10 indicates that there are several points for contact, or general proximity on the hand(s), these are the secondary locations. Now the second attribute of the previous section: which fingers were touching, can be augmented to include not only the fingertips, but also the knuckles, palm and back of the hand. 
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Figure 10: Secondary locations for signs. As included by Johnston (1998 p. 572)

4.3 Orientation of Handshapes

Orientation is important as it differentiates between signs with the same handshape, location, and movement. All three elements of orientation are required to uniquely recognise signs. These elements are roll, pitch and yaw as depicted in Figure 11; 
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Figure 11: yaw, pitch and roll components of orientation.

An example illustrating the need for roll data is the differentiation between the signs for weigh and balance. Both are double-handed signs using the ‘flat’ hand, the fingertips point away from the body, and the hands move alternately up and down, however weigh has palms up and balance palms down, as depicted in Figure 12; 
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Figure 12: 'weigh' sign (left) and 'balance' sign (right). Adapted from Johnston (1998, p. 340, 344 respectively).

Alternatively, an example requiring yaw data is in the differentiation between the signs for ‘weigh’ and ‘doubt’, these also are both double-handed signs using the ‘flat’ hand, moving alternatively up and down with the palms up, however the fingertips point away for ‘weigh’ and at each other for ‘doubt’ as depicted in Figure 13;
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Figure 13: 'weigh' sign (left) and 'doubt' sign (right). Adapted from Johnston (1998, p. 340, 338 respectively).

4.4 Movement of Handshapes

As discussed in section 4.2.1 above, signs can comprise of handshapes originating and terminating at either a primary location or in neutral space. This gives rise to movement from one location to another. There is also movement specifically associated with signs using a particular handshape. This movement is classified as either large scale or small scale. Large scale movement utilises a large portion of the signing space. It can be either in a straight line, a series of straight lines, arcs or circles. Small scale movement is localised and refers to a change in orientation of the hands or a change in the condition of the fingers generally resulting in a new handshape. 

In addition, the movement of handshapes needs to be treated as a vector quantity (velocity) as different speeds of execution imply different intensities or modifications of meaning. Examples of this are the signs for rain versus pour, or brain versus genius. The attribute associated with movement is essentially location, however evaluated dynamically.

4.5 Expression

Expression is used to shape a phrase by changing the mood or context of the signs being conveyed, however it carries little bearing on the formation of the sign itself. The elements of expression include movement of the head, eyebrows, eyes, mouth and cheeks. Repeating the previously mentioned examples for convenience here, a phrase is generally formed loosely as a statement and is then turned into a question by raising the eyebrows. Alternatively, the opposite meaning of a particular sign is conveyed by shaking the head.

4.6 Summary
In summary there are four major attributes to be accounted for: the degree to which individual fingers (and the thumb) are bent (no bend equates to straight), which parts of the hand(s) are touching (including the palm, back of hand, and fingers (tips, sides and knuckles), the location of hands in three dimensional space (x, y, and z coordinates relative to primary locations on the body, or defined neutral space), and the orientation of the hands (roll, pitch and yaw). 

The fingertips, sides of fingers, and knuckles could be classed as the same contact region, with fingertips and knuckles differentiated by the opposing orientation of the hand. Again, the palms and back of hands could also be classed as the same contact region, differentiated by the orientation of the hand. It was hypothesised that the large scale movement types could be recognised using algorithms that dynamically filtered streams of location data. If no large scale movement type could be evaluated, then the movement must have been small scale, in which case simply the final orientation of the hand or new handshape made would need to be evaluated.

5.0 ACQUISITION OF DATA DEFINING REQUIRED ATTRIBUTES

5.1 The P5 Glove and Receptor

5.1.1 Introduction

According to Essential Reality (2002), the P5 is a “…glove-like peripheral device, based upon proprietary bend sensor and remote tracking technologies, that provides users total intuitive interaction with 3D and virtual environments”, and is “…the first widely available virtual 3D controller…”. The receptor tracks the glove optically via infrared signals transmitted by LED’s on the glove. This makes the tracking susceptible to noise generated by reflective surfaces nearby, and would need to be taken into account when utilising the position and orientation data. Images of the P5 glove and receptor are shown in Figure 14.
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Figure 14: P5 glove and receptor. Taken from About the P5 (Essential Reality 2002a).

The P5 glove weighs 4.5 oz (128 g) and is connected to the receptor by cable, facilitating transmission of finger bend and button-press data. The receptor is connected to the computer also by cable and is “fully USB compliant”.  “The P5 is compatible with the PC (personal computer) operating system Microsoft Windows 98 or later, as well as Mac OS 9 and below”.

5.1.2 Attributes covered by the P5 glove

According to Essential Reality (Specifications 2002), there are five independent bend sensors (for each finger/thumb), each with 1.4 degree resolution over a 90 degree range. The system tracks roll, pitch, yaw, and position (x, y, and z) of the glove at 42 frames per second with a range of 3-4 foot (0.91-1.22 m) from the receptor and latency of 12 ms. Each coordinate of the position is measured with +/- 0.04 inch (10.2 mm) resolution and accuracy of +/- 0.25 inch (6.35 mm) at a 2 foot (0.61 m) range. Finally, the roll, pitch, and yaw each are measured with +/- 2 degree resolution and +/- 4 degree accuracy.

5.2 Acquisition of Remaining Attributes

5.2.1 Introduction

As seen in section 5.1.2 above, the P5 glove accounts for position (x, y and z coordinates) and orientation (roll and pitch) data. Sensors were now required that indicated which fingers/thumbs, palm(s) and back of hand(s) were touching each other. It was also required that the positions of primary locations were known relative to the P5 glove, in order to complete the acquisition of data defining any given sign. 

5.2.2 Limitations

At this point due to time requirements, it was decided that the scope of the project needed to be refined to recognising signs only. By this it is meant that recognition of the signers’ expression in order to clarify the context of signs for phrase structure would be outside the scope of the project. It is noted though that this could be implemented using a visual based gesture recognition technique, utilising CCD cameras to capture the changing image. Although expression would be instrumental in the comprehensive translation of Auslan, it was decided that since the signs are of fundamental importance, priority lied with recognising the elements of, and consequently, a given sign.

5.2.3 Requirements of Sensors

Intuition suggested that all secondary location (hands) sensors should work off a contact basis. Recognition of that contact should be modelled after devices such as the keyboard, where individual keys pressed are identified through a grid of connectivity, and debouncing (comparison of data separated by a small time interval) is performed to validate the integrity of the data prior to making it available. 

The sensors for fingertips, knuckles, and sides of fingers (determine ‘spread’ or ‘unspread’ condition) should be one unit in order to minimise complexity. It was hypothesised that knuckle contact could be distinguished from contact of the fingertips or sides of fingers since it occurs whilst that (or those) finger(s) are bent.

There are two distinct points to be made regarding interfacing the sensors with the human hand. Firstly, all sensors need to be large enough to cover a general region of contact, as reproduction of an exact contact point is not characteristic of human movement. Secondly, the sensors and framework retaining them cannot be rigid as they must flex with the hand during execution of signs.

In regard to point of contact, or local proximity to primary locations, it was hypothesised that under controlled conditions, initial calibrations of ‘primary location’ positions would facilitate recognition of a hand at that location. The controlled conditions would be required as a change of foot position, stance or posture could result in the primary locations references being translated from neutral space to a primary location (or vice versa), or from one primary location to another. This problem could be alleviated by the use of sensors on the head, chest and arms allowing for dynamic tracking of reference points from which the positions of primary locations could be interpolated. This solution is however beyond the scope of this project. 

Finally, the hardware and software used for acquisition of the hand(s) contact condition should at least meet (if not maintain) the refresh rate and latency of data from the P5 glove. This requirement will enable synchronisation of data from the independent sources.

6.0 HARDWARE AND SOFTWARE CHOICES

6.1 Introduction

Ideally the end product will be an electronic ‘black-box’ translator that takes as its input a remote signal (no cumbersome wires) from a pair of lightweight, ‘second skin’ gloves and outputs natural, expressive speech. This back-box would consist of a transmitter and receiver, speakers, and printed circuit boards with hardwired logic and lookup tables for data acquired by learning algorithms. However, in the early stages of design we adhere to that which offers ‘proof of concept’, and the criteria for hardware and software choice is determined largely by flexibility, reusability, availability, compatibility, and cost. These choices can invariably lead to hardware and software that are over engineered for the job (for example, redundant functionality), this is the case with some choices made in this project, however for the reasons of availability and reusability.

6.2 The Contact Sensors

It was decided that the contacts would be made from a sheet of cold-rolled brass with gauge: 6 thousandths of an inch. The reasons for this choice were its availability, conduction properties, flexibility, and the ease by which wire could be soldered to it. The contacts would be individually coupled to the I/O pins of the device used for data acquisition and transmission by ribbon cable, each loop completed by pull-down resistors to avoid floating inputs as illustrated in Figure 15;
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Figure 15: Proposed  circuit connections for contacts

A range of PICs (Peripheral Interface Controllers) could have been used to poll the sensors, then format and transmit the data back to the host system, however even though they are relatively cheap, PIC programmers would be necessary and software or technique upgrades might have required PIC upgrades, not to mention more parts, more problems. Instead, the M16C/62 single-chip microcontroller (pictured in Figure 16) was chosen for the reasons of: availability, functionality (16 MHz oscillator, 20KB RAM expandable to 1.2 or 4 Mb, multiple interrupts with 7 levels of priority, ten 8 bit I/O ports, timers, UARTs, and so on), reusability and  ease by which it is programmed and debugged. 
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Figure 16: The M16C/62 Single-chip microcontroller by Mitsubishi Electric

The controlling software was to be coded in C supplemented by Assembly language. The M16C/62 microcomputer can be programmed in either language, however with C being a high level language, program coding and debugging would be considerably quicker. Hardware-related processing not accessible to C would be easily negotiated by the ‘inline assemble’ function of the microcomputers’ compiler. This allows Assembly language to be written directly into C source language. 

The most recent M16C/62 related software was used, it was compatible with Microsoft Window 98, 2000, Me and XP and comprised of: TM version 3.20 (tool manager), NC30WA version 5.00 release 2 (compiler), and KD30 version 3.02 release 1a (debugger). Note that ncrt0.a30 (an include file used for start up configuration) required upgrading from that supplied with the M16C/62 software. All of the above software tools and the ncrt0.a30 file were retrieved: March 3, 2003 from http://www.m16canz.com.

6.3 The Host System

As this project was associated with ‘proof of concept’, a desktop computer was the obvious choice for collection of the P5 glove and contact sensor data, and subsequently as the platform for the host software. The type of operating system was restricted by compatibility of the P5 glove and its’ application programming interface (API) to a PC (Microsoft Windows 98 or later) or a Mac (OS9 or later). Furthermore, the API supported C and C++ languages only.  Due to accessibility and familiarity, a PC running Microsoft Windows 2000 (and XP) was used with Microsoft Visual C++ as the programming environment. Note the algorithms were initially required to be coded if possible in ANSI C for portability reasons,  however as this stage was more so a feasibility study than official prototyping, the algorithms would be developed at a more rapid pace when coded in C with extended libraries.  

A USB port was required for the P5 glove, and serial communications port (COM1) for data transmission between the PC and M16C/62 microcontroller (its’ primary form of external communication: program uploading and debugging). The P5 gloves’ API controlled the flow of data between the glove and host program. To avoid complications of using the Windows API to access the serial port in order to retrieve the contact sensor data, WSC4C (Windows Standard Serial Communications Library for C/C++ (MarshallSoft Computing 2002) was used. WSC4C is an asynchronous serial communications dynamic link library that uses the standard Windows API, and is fully compatible with Microsoft Visual C++.

7.0 DEVELOPMENT OF CONTACT SENSORS 

7.1 Development as Contacts

The fingers, thumbs and palms were chosen as the secondary locations for sensors enabling the recognition of handshapes, accordingly twelve sensors were required. A pair of cotton gloves were chosen as a trial framework for the sensors. Each finger sensor consisted of a cross shaped strip of brass sheet, each side approximately 6 mm wide and 30 mm. These were bent symmetrically over the fingertips (and tip of thumbs). Also a strip approximately 6 mm wide and 20 mm long was attached to either side of the middle phalanges on the index, middle and ring fingers, and distal phalanx of the pinky finger so that each finger could contact the adjacent one (for testing spread condition). The palm contacts were formed out of a 50 by 40 mm rectangular strip. Small holes were drilled through the strips of brass (contacts) and they were then sewn onto the gloves. On the fingers with several brass strips, all elements of the contacts were shorted together with insulated wire. 

The six contacts of the left hands’ pinky, ring, middle and index fingers, thumb and palm were individually soldered to a wire of six stand ribbon cable 1m long, this in tern was soldered to pins 0 to 5 respectively of the M16C/62s’ I/O port 0. The six contacts on the right hands’ palm and thumb, index, middle, ring and pinky fingers were again individually soldered to a wire of six stand ribbon cable 1m long, with this in turn soldered to pins 0 to 5 respectively of the M16C/62s’ I/O port 2. It is noted that ports 0 and 2 were chosen for their simplicity of control and consistency of architecture and electrical characteristics. Specifically, the purpose of the I/O ports 0 and 2 is for simple I/O, alternatively, other ports are used for memory expansion, external interrupts, UARTS and so on, correspondingly they all have added circuitry and relevant registers that require setting prior to correct use.

7.2 Development as Sensors

 Pull-down resistors needed to be connected to the contacts so that they would not appear as floating inputs when their values were read by the respective port latches of the M16C/62. Here it is noted that status of the contacts was to be determined by writing one pin high, reading the rest, then moving to the next pin and so on. Contacts not touching the one written high would be read low as they were pulled to ground through the pull-down resistors. Those contacts touching the high one would short their respective pins high, with correct resistor choice the path to ground would appear relatively as an open circuit, and hence the connected pin would be read high. This however assumes that resistances of the ribbon cable and touching contacts are negligible compared to the pull-down resistors. Images of the gloves are shown in Figure 17 and Figure 18;
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Figure 17: Contact sensor gloves (front)
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Figure 18: Contact sensor gloves (back)

 The chip circuitry connecting each pin (on both ports) to the data bus is shown below in Figure 19;
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Figure 19: M16C/62 programmable I/O circuit.

Note all transistors in the circuit of Figure 19 are PMOS and CMOS. With pull-up selection low, the associated PMOS transistor is in cut-off. Setting the direction register for input (its output low) causes the pull-up/pull-down network to be in cut-off also, leaving the active low buffer as the only current path. Considering the buffer ideal, the input resistance to the circuit would be very high, allowing only a very small current to flow (5[image: image22.wmf]m

A maximum according to data sheet). This serves two purposes; firstly, the output high current (10 mA maximum) is sufficient to drive all inputs (in the case where all contacts are touching), and secondly, only a negligible voltage drop will occur across the ribbon cable and contacts, ensuring virtually Vcc is present at the inputs that should be high (0.8Vcc minimum requirement for input high). It is important to note that the maximum current that can be sourced to an input low is 5[image: image23.wmf]m

A, hence the pull-down resistors needed to be large enough to prevent damaging the chip, 22 k[image: image24.wmf]W

 was chosen. These resistors were soldered to each contact and returned to ground with an insulated wire as illustrated in Figure 20;
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Figure 20: Close-up of contacts illustrating construction

8.0 DEVELOPMENT OF CONTACT SENSOR DATA ACQUISITION ALGORITHM

8.1 Detailed Requirements Specification

The following are the requirements that were considered logical and necessary for efficient acquisition and transmission (to the host program) of the contact sensor data;

1. A primary timer is to cause an interrupt at the frequency of 60 Hz. This interrupt will have the lowest priority level.

2. The primary interrupt service routine will be the contact sensor data acquisition routine.

3. The acquisition routine is to sequentially write high a pin not already logged as connected, then log all those pins also high. Process is to be repeated until all pins are accounted for. 

4. Debouncing is to be performed by initiating a secondary timer counting 5 ms, then the data acquisition is to be performed again and the two sets of data compared for consistency. Data is to be accepted only if it is consistent.

5. Data accepted is to be converted into an efficient form for transmission and a sumcheck added for verification purposes. This new data is then to be made available for transmission. 

6. When a control character is received by the UART, an interrupt is to be generated with the highest of used priory levels. This interrupt is to be disabled whilst transmission data is being updated.

7. The interrupt service routine for the UART interrupt is to transmit the current transmission data.

The proposed requirements are illustrated as a flow chart in Figure 21;
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Figure 21: Flow chart of proposed requirements for the acquisition and transmission of contact sensor data

8.2 Important Concepts for Contact Sensor Data Acquisition Algorithm

Firstly, an important mechanism used in this algorithm is the interrupt and its service routine. If you are interested in knowing when hardware has reached a certain condition, for example a timer timing out or a character being received in the buffer of a UART, then you need to look at the flags set in the registers relevant to hardware of interest. If you want to perform an action when a condition is reached, you need to set the relevant interrupt. During program execution, every time that condition occurs, its relevant flag will be set, the interrupt monitoring the flags will stop your program and is satisfied  by performing your interrupt service routine. Upon completion of the interrupt service routine, the flag and hence interrupt are cleared and your program recommences from the point it was halted. An important include file in the software project file is sect30.inc (listed in Appendix C), it is a user defined interrupt vector table. The name of the interrupt service routine contained in the C source file is entered in the table at the vector location designated by the mechanism that will cause the interrupt. The interrupts and respective interrupt service routines used in the contact sensor algorithm are tabulated in Table 1;

	Interrupt Mechanism
	Interrupt Priority Level
	Interrupt Service Routine

	UART1 receive buffer
	3
	transmitConnections

	Timer A0
	1
	getContactData

	Timer A1
	2
	debounceDelay


Table 1: Interrupts and interrupt service routies for contact sensor algorithm

The contact sensor algorithm uses UART1 for serial transmission of the data back to the PC’s serial port. The debugging software requires a ‘monitor program’ to be loaded onto the M16C/62 for it to simulate program execution via UART1, hence while the debugger was used to debug the algorithm, all code that manipulated the UART1 registers and the vector table reference required commenting out. This implies that the algorithm only worked fully when in standalone mode on the M16C/62.

Finally, an algorithm needs to be converted from the compiled .x30 file into a .mot file in order for it to be programmed onto the M16C/62. This is accomplished by using the program LMC30 in the DOS command line.

8.3 Algorithm Development

8.3.1 Introduction

The first step in the algorithm was to include standard I/O header file (stdio.h) and the M16C/62 header file (sfr62.h) enabling the linking of all references to I/O ports, timers, and so on for compiler purposes. Following this, the algorithms’ functions, global variables and interrupt service routines were declared. These are listed in Table 2;

	Name


	Type
	Purpose

	main
	Function 


	Required body of program

	initPort
	Function 


	Used to initialise ports 0 and 2 for use.



	initUART1


	Function 
	Used to initialise UART1 for transmission / reception.

	initProgramTimers
	Function 


	Used to initialise timers A0 and A1 for data acquisition and debouncing respectively.

	getContactData


	Function: interrupt service routine for timer A0
	Used to acquire the contact sensor data.

	isItConnected


	Function
	Used in getContactData to determine which pins should be tested.

	scanPorts


	Function
	Used in getContactData to test pins and update connectLog.

	connectLog


	Global variable: matrix
	Used to record all contacts touching, before and after the debouncing delay.

	debounceTimerFlag
	Global variable: integer


	Cleared to stop execution of getContactData while timer A1 is running. 

	debounceDelay
	Function: interrupt service routine for timer A1
	Used to set debounceTimerFlag enabling getContactData to continue execution.

	compareLogs


	Function 
	Used in getContactData to determine if the two sets of data is consistent.

	updateConnections
	Function 
	Used in getContactData to prepare data for transmission and update currentTxData and TxByteCount.

	currentTxData


	Global variable: character array.
	Used to record current data ready for transmission.

	TxByteCount


	Global variable: integer
	Used to record the number of characters to be transmitted.

	doNOTinterrupt
	Global variable: integer
	Used in updateConnections to disable transmitConnections whilst updating currentTxData and TxByteCount.

	eraseConnectLog
	Function 
	Used in getContactData to clear connectLog.

	transmitConnections
	Function: interrupt service routine for UART1 character received
	Used to transmit currentTxData back to the host PC.

	delay


	Function
	Used in scanPorts and transmitConnections as a short delay.


Table 2: Functions and global variables used in contact sensor algorithm

Finally, each of the function bodies were defined and algorithm testing commenced. The testing phase illustrated some oversights in the algorithm which needed addressing and further testing to validate the implemented solutions. The code for this algorithm is located in Appendix D. In the following sections, each of the function definitions are explained in detail, followed by the observations of testing and solutions implemented.

8.3.2 Function Definition: main

The purpose of main was to simply initiate all hardware to be used, start a timer and then do nothing permanently. In hardware initiation, firstly, initProgramTimers was called to set the data acquisition and debounce delay timers to their prescribed values, secondly, initPort was called to prepare ports 0 and 2 for use, and finally, initUART1 was called to set the relevant registers of UART1 such that serial communication according to a predetermined protocol was possible. The timer started was ‘timer A0’ the data acquisition timer, which caused an interrupt each time it timed out. The interrupt in turn would call its interrupt service routine getContactData, which would acquire the contact sensor data. Finally, since the hardware was setup and the timer started, main had no further purpose but could not end, so it then entered an infinite loop of checking if 1 = 1 whilst waiting to be interrupted. This process is illustrated in the flow chart of Figure 22;
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Figure 22: Flow chart for function: main

8.3.3 Function Definition: initProgramTimers

The purpose of initProgramTimers was firstly to set timer A0, the data acquisition timer, to operate at 60Hz for synchronisation of the contact sensor data with the refresh rate of the P5 glove. Secondly, timer A1, the debouncing delay timer, was set to 6.25ms (closest time to 5ms). Finally, since both timers caused interrupts to occur when they timed out, their respective interrupt priority levels need to be set also. The interrupt priority level for timer A0 was set to 1, this is the lowest priority level and used since to start acquiring the contact sensor data, it need only interrupt the main function from its endless loop. The debounce timer was to operate within the data acquisition function getContactData which is timer A0s’ interrupt service routine operating at priority 1, hence the interrupt for timer A1 needed to be set to the higher priority level of 2. This process is illustrated in the flow chart of Figure 23;
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Figure 23: Flow chart for function: initProgramTimers

8.3.4 Function Definition: initPort

The purpose of initPort was simply to turn off the pull-up resistors in both the lower and upper 4-bit nibbles of the 8-bit ports 0 and 2. This was necessary since the predetermined logic for the contact sensors was active high. This process is illustrated in the flow chart of Figure 24;
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Figure 24: Flow chart for function: initPort

8.3.5 Function Definition: initUART1

The purpose of initUART1 was to set the UART transmit/receive mode and control registers and baud rate. Specifically, the transmit / receive mode register was set such that 8 bit data, internal clock, one stop bit and no parity were used. The transmit / receive control registers were set such that they were in receive mode and the receive interrupt control register set with priority 3, the highest to be used, accounting for timely transmission of data when polled for it. Finally, the bit rate generator was set for a baud rate of 9600 bits per second as a starting point. This process is illustrated in the flow chart of Figure 25;
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Figure 25: Flow chart for function: initUART1

8.3.6 Function Definition: getContactData

The purpose of getContactData was literally to acquire the contact sensor data, then perform debouncing of the data and if consistent, the data was then put into an efficient form for transmission back to the host PC. 

As getContactData was an interrupt service routine, called every time timer A0 timed out, the first step was the enable interrupts so that the function would be performed. 

Next, in order to preform debouncing, getContactData was required to log two sets of the contact sensor data separated in time by a short delay, then compare the sets of data for consistency. 

Each set of data logged was acquired in the following manner; the pins were numbered 1 to 12, starting at the first and continuing until the last, the function isItConnected was called to determine if that particular pin was already recorded in connectLog as contacting another. If so, to avoid duplicating results, this pin was discarded and the next pin tested. If not recorded as connected to another, the function scanPorts was called to determine and record in connectLog those pins contacting the tested pin. From this point, the next pin to be tested was determined, and the procedure repeated time and again until all pins had been accounted for.

The delay between acquisitions of the data sets was achieved in the following manner; if it was the first time data had been logged, the debounceTimerFlag was cleared, timer A1 started, and getContactData put into a loop waiting for debounceTimerFlag to be set. When timer A0 timed out, it caused an interrupt serviced by the function debounceDelay, which in turn stopped timer A1 and set debounceTimerFlag, allowing getContactData to continue with the second acquisition of contact sensor data.

After both sets of contact sensor data had been logged, to complete debouncing of the data, the function compareLogs was called to literally compare the two copies of data stored in connectLog for consistency. If consistent, the function updateConnections was called to prepare the data for transmission. Finally, the function eraseConnectLog was called to literally erase all entries stored in ConnectLog, so as it was ready for the next time getContactData was called. This process is illustrated in the flow chart of Figure 26;
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Figure 26: Flow chart for function: getContactData

8.3.7 Function Definition: isItConnected

The purpose of isItConnected was simply to determine if the current pin to be tested was recorded in connectLog as contacting another pin. If so, it returned true, if not, it return false. To do so, isItConnected first set isConnectedFlag to false, then starting at the first pin, it checked connectLog to see if that pin was recorded as connected to the pin to be tested, if so, isConnectedFlag was set to true. This procedure was then repeated for the second pin and so on until all pins up to the pin to be tested had been accounted for. Finally, isItConnected returned isConnectedFlag to the function that called it: getContactData. This process is illustrated in the flow chart of Figure 27;
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Figure 27: Flow chart for function: isItConnected

8.3.8 Function Definition: scanPorts

The purpose of scanPorts was to determine which pins were connected to the one to be tested and log them. scanPorts accomplished this by firstly setting the port direction registers. Specifically, the pin to be tested was set as an output, and the remaining pins were set as inputs. Next, the pin to be tested was written high, the function delay executed (the reasoning for this will be covered in section 8.4.7, the algorithm testing phase), then the values of the remaining pins were read, and all port direction registers set as inputs for protection from grounding. Finally, each bit (representing a pin) of the two 8-bit words read from ports 0 and 2, was masked to reveal if it was set, if so, the relevant place for that pin in reference to the pin tested, was recorded in connectLog. This process is illustrated in the flow chart of Figure 28;
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Figure 28: Flow chart for function: scanPorts

8.3.9 Function Definition: debounceDelay

The purpose of debounceDelay was simply to stop timer A1 and set debounceTimerFlag.  As debounceDelay is the interrupt service routine called when timer A1 timed out, the first requirement of the function was to enable interrupts so that the function would execute. The next step was to stop timer A1 so that it would not continue to cause interrupts. Finally, the debounceTimerFlag needed to be set so that getContactData could move on to acquire the second set of contact sensor data. This process is illustrated in the flow chart of Figure 29;
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Figure 29: Flow chart for function: debounceDelay

8.3.10 Function Definition: compareLogs

The purpose of compareLogs was to verify that the two sets of contact sensor data recorded in connectLog were consistent. To do this, compareLogs initially set samplesAreSameFlag to true. Then starting at the first pin, both samples of data recorded in connectLog were tested to see if all pins recorded as connected to the first pin were consistent. If not, samplesAreSameFlag was set to false. This procedure was repeated for the second pin and so on until all pins had been accounted for. Finally, samplesAreSameFlag was returned to the function that called it: getContactData. This process is illustrated in the flow chart of Figure 30;
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Figure 30: Flow chart for function: compareLogs

8.3.11 Function Definition: updateConnections

The purpose of updateConnections was to convert the contact sensor data into an efficient form for transmission, this new data form then needed to be encapsulated in adherence with a transmission protocol, then finally stored ready for transmission. 

The concept behind converting the contact sensor data into an efficient form for transmission was as follows: since there were twelve contact sensors or twelve associated pins, and an integer comprises sixteen bits, then each set of pins connected could be adequately represented by setting the relevant bits of an integer. If all pins were connected to each other the twelve bits would be set in an integer. If all pins were connected in pairs, there would be the maximum of six sets of pins connected, hence requiring the maximum of six integers to represent them. For reasons to be discussed in section 8.4.5 on how the data was received, the bits one to six were chosen for the contacts on the left hand, and bits nine to fourteen were chosen for the contacts on the right hand.

In regard to encapsulation of the newly efficient contact sensor data, three more integers would be required. The first integer would represent the Start Of Transmission (STX), this would be required so that the PC receiving the transmission could discern between generated noise and the beginning of the intended data. The second integer would represent the End Of Transmission (ETX), this would be required since the number of sets of connections is variable, hence so then would be the data length. The third integer would be a sumcheck. The sumcheck would be the sum of all integers to be transmitted. Upon receipt of the data at the PC, the sum of all integers would then be checked against the value of the sumcheck, if consistent the data had not been corrupted during transmission, and therefore could be considered valid. Again for reasons outlined in section 8.4.5, representing the STX would be an integer with the seventh bit set, representing the ETX would be an integer with the fifteenth bit set, and the sumcheck would be the integer sum of all integers with bits eight and sixteen cleared.

Finally, since a UART at most transmits 8-bit characters (set to do this in the function initUART1), then all integers needed to be split in half and assigned to a character array, specifically, currentTxData.

To perform these tasks, firstly, updateConnections assigned the upper and lower bytes of the STX integer to the first two positions of a temporary character array called tempChar, and incremented twice a character tally called charCount. Then, starting at the first tested pin, connectLog was checked to determine if other pins were recorded as connected to it. If so a temporary integer called tempInt was bit masked such that the corresponding bits were set according to the above mentioned arrangement. The value of the sumcheck integer was then increamented by tempInt. Following this, tempInt was split in half and the upper and lower bytes assigned to the next two positions of tempChar, and charCount incremented accordingly. This process of bit masking tempInt with a set of connected pins, incrementing sumcheck, assigning tempInts’ upper and lower byte to tempChar and incrementing charCount accordingly, was repeated until all pins were accounted for. Finally, to complete the data, the upper and lower bytes of the ETX and sumcheck integers were added to tempChar and charCount incremented accordingly.

Now that the data was prepared for transmission, it needed to be made available. Firstly, a flag called doNOTinterrupt was set to true. From this point, if the polling character was transmitted from the PC to the microcontrollers UART1, an interrupt would be generated and its interrupt service routine transmitConnections would start to execute. Seeing that doNOTinterrupt was set to true, transmitConnections would clear it to false and end immediately, causing no harm. Continuing from doNOTinterrupt being set to true, tempChar and charCount were then copied into the global variables currentTxData and TxByteCount respectively, ready for transmission. Finally, if doNOTinterrupt was still set to true, it was then cleared to false. Alternatively, if doNOTinterrupt was already cleared to false, this meant that transmitConnections had been called, and purposely failed to transmit currentTxData due to it being updated. In this case, in order to ensure timely transmission of data, the final task of updateConnections was to request a character received interrupt, causing transmitConnections to execute again. The process of updateConnections is illustrated in the flow chart of Figure 31;
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Figure 31: Flow chart for function: updateConnections

8.3.12 Function Definition: eraseConnectLog

The purpose of eraseConnectLog was simply to erase all entries in connectLog prior to its use next time timer A0 timed out and getContactData was called again. To complete this process, starting at the first pin tested, eraseConnectLog set to zero all points of reference for a connected pin. This procedure was repeated for the second pin tested and so on until all pins were accounted for. This process is illustrated in the flow chart of Figure 32;
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Figure 32: Flow chart for function: eraseConnectLog

8.3.13 : Function Definition: transmitConnections

The purpose of transmitConnections was simply to determine if it was permitted, then transmit all current data to the host PC. To perform these tasks, firstly, since transmitConnections is the interrupt service routine for the interrupt generated by a character being receive in UART1, for the function to progress, interrupts needed to be enabled. 

Next, if doNOTinterrupt was set to true, this meant that updateConnections was copying transmission data into the global variables currentTxData and TxByteCount, preparing for a transmission. In this case, transmitConnections simply set doNOTinterrupt to false, as a sign to updateConnections that it needed to be called as soon as the data had been updated. Following this transmitConnections ended.

If doNOTinterrupt was set to false, transmitConnections changed the transmit/receive control register to transmit, then called the function delay, ensuring time passed so that the change could propagate. Next, for the count of TxByteCount, transmitConnections transmitted the characters in currentTxData intermittent with calls to delay for reasons to be discussed in section 8.4.7, on the results of testing the contact sensor data acquisition algorithm. Finally, transmitConnections changed the transmit/receive control register back to receive and ended. The process is illustrated in the flow chart of Figure 33;
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Figure 33: Flow chart for function: transmitConnections

8.3.14 Function Definition: delay

The purpose of delay is to affect a short delay at a certain point in a function. delay simply tested a maximum value to see if it had been reached, if not, the current count was incremented, if so, delay ended. The process is illustrated in the flow chart of Figure 34;
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Figure 34: Flow chart for function: delay

8.4 Testing of Contact Sensor Data Acquisition Algorithm

8.4.1 Outline of Choices Made for Testing

The purpose of the KD30 Debugger is to emulate program execution on the microcontroller. To do so, a ‘monitor program’ is programmed onto the microcontroller and it communicates serially with debugger via UART1 on the microcontroller. Since a fundamental aspect of the contact sensor data acquisition algorithm is that it uses UART1 to transmit the latest data back to the PC, it could not be tested fully by means of the debugger. 

In light of this, the only logical means by which to test would be through the proposed sign recognition algorithm running on the PC. This meant that the first function of the sign recognition algorithm needed to be developed in the proposed environment. As discussed, the software could only be developed in C or C++, and Microsoft Visual C++ was chosen as the environment, however for reasons of consistency and as an attempt to maintain portability, the algorithm was to be coded in C. In order to minimise complexity of the algorithm, learning curve and development time, a serial communications library was used that interacted directly with the Windows API.  Specifically, WSC32, the Windows Standard Serial Communications Library for C/C++ by MarshallSoft Computing (2002) was used. Its functionality allowed for quick and easy access to the serial communications ports for reading, writing and event reporting under certain constraints. 

8.4.2 Overview of Testing Algorithm

Four functions were developed for the purpose of testing. The first three where developed in conjunction. Firstly, getConnections, the fundamental tool used to poll the microcontroller for data, receive the characters transmitted and reconstitute the data body into the integers it represented. Secondly, notTimeOut was developed to function within getConnections to avoid crashing due to protocol breakdown. Thirdly, dataNotReady, also developed to function within getConnections, had the purpose of checking for a new character arrival. If a character had not arrived, it returned true. If a character had arrived, it copied the character into a global variable RxChar ready for use, then returned false indicating that the character was there.  Finally, connectionTranslator was developed as a tool to translate the integers into letters, formatted to logically represent the sets of contacts touching.

The WSC32 functions and defined constants used in the testing algorithm are tabulated in Table 3;

	Name
	Type
	Purpose

	SioReset
	Function
	Used to reset communications port, setting transmit and receive buffer size.



	SioBaud
	Function
	Used to set baud rate of communications port.



	SioParams
	Function
	Used to define communications protocol parameters.



	WSC_NoParity
	Defined constant
	Protocol parameter: no parity used.



	WSC_OneStopBit
	Defined constant
	Protocol parameter: one stop bit used.



	WSC_WordLength8
	Defined constant
	Protocol parameter: 8-bit data length used.



	SioPutc
	Function
	Used to transmit a character.



	SioGetc
	Function
	Used to recover a received character.




Table 3: WSC32 functions and defined constants used in test algorithm

The testing algorithm had two main elements. Firstly, the communications port was initiated by a call to SioReset with transmit and receive buffers sizes indicated, SioBaud set to 9600 and SioParams with protocol elements WSC_NoParity, WSC_OneStopBit and WSC_WordLength8. Secondly, repeated sequential calls to getConnections followed by connectionTranslator were made until a key on the keyboard was pressed. This process is illustrated in the flow chart of Figure 35;
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Figure 35: Flow chart for testing algorithm

The functions getConnections, notTimeOut, dataNotReady and connectionTranslator are defined in sections 8.4.3, 8.4.4, 8.4.5 and 8.4.6 respectively. The code for these functions is found in Appendix E as part of the sign recognition algorithm.

8.4.3 Function Definition: getConnections

In order to perform its function getConnections initially set a flag called dataReadyFlag to false. If this flag was false, it was an indication to getConnections that its task had not been completed and as such, to continued to perform the body of its function. A second flag, notTimedOut (not to be confused with the function notTimeOut which either set or cleared the flag) was set to true, this was an indication that the transmission had not yet failed and processing was to continue.

In the body of the function, firstly, a global integer maxTime was set to the current timer plus a threshold. The purpose of maxTime was as a reference to determine if the maximum expected transmission time had been exceeded, hence the transmission had failed and needed to be repeated. Following this, SioPutc was used to transmit the polling character to the microcontroller. Next, while the STX integer had not been received and the function notTimeOut returned true (indicating that the time threshold had not been reached) then two characters were received and reconstituted as integers. In receiving each character, a repeated call was made to the functions dataNotReady and notTimeOut until one returned false. When one returned false, if the notTimedOut flag was true, then a character had arrived and was now stored in RxChar. 

Next, after the STX integer had been received, firstly, numberOfConnections a tally of the data integers received, was set to zero. Following this, the same procedure defined above was repeated until the ETX integer was received. As the integers were compiled, they were stored in succession to connections, an integer array, and numberOfConnections was incremented.

Finally, the procedure was repeated for the last to characters and their integer set to sumcheck. If sumcheck was equal to the sum of the integers in connections, dataReadyFlag was set to true and getConnections ended. Alternatively, if the comparison was inconsistent, dataReadyFlag was left set to false and the entire procedure of getConnections was repeated. The process of getConnections is illustrated in the flow chart of Figure 36;
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Figure 36: Flow chart for function: getConnections

8.4.4 Function Definition: notTimeOut

The purpose of notTimeOut when called, was to simply inform getConnections as to whether or not the time threshold had been exceeded. If the threshold was exceeded, getConnections was able to immediately filter through its processes to the end and start a fresh, otherwise it would simply continue with data reception. To perform its task, notTimeOut took the current time and checked that it was less than maxTime, which was initially set in getConnections. If within the threshold, the flag notTimedOut was set to true, alternatively, if the threshold was exceeded, notTimedOut was set to false. Finally, the newly set flag notTimedOut was returned to getConnections. This process is illustrated in the flow chart of Figure 37;
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Figure 37: Flow chart for function: notTimeOut

8.4.5 Function Definition: dataNotReady

The purpose of dataNotReady was to check if a character had been received, assign a received character to RxChar, and then inform getConnections as to whether or not a character was ready. 

To check if a character had arrived in the receive buffer of a communications port, there are generally two methods used. The first is automated, by way off setting the first bit in the ports interrupt enable register, an interrupt is generated every time a character is received. The second is a manual approach where you check the first three bits of the ports interrupt identification register to determine if the receive buffer register is full. Since the WSC32 library was being used in order to circumvent the windows API, one of its functions needed to be employed for this purpose. SioRead was a function enabling the reading of registers, however not available to win32 applications, such as this one.  SioEvent was a function that returned true when an event occurred. Specifying SioEvent(EV_RXCHAR), would return true when a character was received. The problem with this is that SioEvent would not return until the event occurred, which meant that an error in transmission could lead to the protocol crashing. Since SioGetc was going to be used to retrieve a received character, it was decided that it would also be used to determine if a character had been received. When SioGetc is called, it returns either the value of a received character or a negative valued error code. Hence, whilst the value returned was positive a character had been read. Since the value of an 8-bit word is negative when the eighth bit is set, none of the characters transmitted could have the eighth bit set, or they would be rejected as an error code. This reasoning validates the use of bits 1 – 6 and 9 – 14 in the integers representing contacting pins, bits 7 and 15 in the integers representing STX and ETX respectively, and clearing bits 8 and 16 of the sumcheck integer, since when split into characters the eighth bit was never set. 

To perform its task, dataNotReady assigned the return value of SioGetc to RxChar. If RxChar was less than zero, dataNotReady returned true. Alternatively, if RxChar was greater than zero, dataNotReady returned false, indicating that a character was ready. This process is illustrated in the flow chart of Figure 38;
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Figure 38: Flow chart for function: dataNotReady

8.4.6 Function Definition: connectionTranslator

The purpose of connectionTranslator was to take the numberOfConnections received integers stored in connections, translate each into a string of letters logically defining the set of touching contact sensors they represented, and then print them to screen.  This was accomplished firstly by setting a string to null, then taking the first integer stored in connections, each bit was masked, and if found to be set the name of the contact sensor it represented was added to the string. When all bit positions corresponding to contact sensors hand been tested, the string was printed to screen. This procedure was repeated until all numberOfConnections integers had been displayed. This process is illustrated in the flow chart of Figure 39;
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Figure 39: Flow chart for function: connectionsTranslator

8.4.7 Results of Testing and Amendments Made

To initiate the testing, both algorithms were started and two adjacent fingers were touched together. This was repeated for every pair of adjacent contact sensors. Note all contact sensors that were adjacent physically, were referenced adjacently in the code. In all cases the correct names were written to screen. This confirmed that firstly, all ordering of and references to the contact sensors were correct. Secondly, the results illustrated that fundamentally the algorithms worked. 

In the next test a pair of adjacent contact sensors were touched together on the left hand. The correct names were written to screen. In addition, the corresponding pair of contact sensors were then touched together on the right hand. The result was that the first logical set (left hand due to code) were written to screen correctly, however the second logical set written to screen as a changing list of contact names, mostly those that were not touching. Since the algorithms had already proven that their underlying processes were correct, it was assumed that there was an error between transmission and reception of the characters. By performing a screen dump of received characters, it was noticed that their values were cycling. At this point it was obvious that the characters were being taken from the receive buffer as new characters were overwriting them. The solution proposed was to place a delay in the function transmitConnections between every character transmitted. Upon repeating the testing procedure, the correct names of contact sensors were written to screen. This illustrated that between the microcontroller and the PC, a baud rate of 9600 meant slightly different things.

The next case to test was that of non-adjacent contact sensors touching. Firstly, a finger from each hand was touched together, and with correct names written to screen, this was repeated for all combinations of a finger from each hand touching. In all cases the results were correct. The next combination of non-adjacent fingers to test, were those of the same hand. As a first step the left hands thumb and pinky finger were touched together and the most perplexing problem occurred, written to screen was that all fingers between them were also touching. To confirm the problem was not isolated, different combinations of non-adjacent contact sensors were touched. Both hands were tried, all cases had the same result. This appeared to be a logic error in one of the two algorithms. After a considerable amount of checking code to no avail, the answer came by way of the debugger. When the contact sensor data acquisition algorithm was executed line by line, the correct connections were logged, however when left to execute at full speed, the algorithm logged the connections as described above. It then become apparent that the contact sensor circuits on both hands consisted essentially of parallel wire loops. As a pin was written high, a changing current propagated down the wire to a contact. If that contact was touching a second, the changing current continued to propagate down the second wire until reaching the input circuitry of its particular pin. Due to the switching speeds being experience by these circuits,  the values of the ports were being read shortly after, whilst however a changing current was still present. A changing current in a wire gives rise to electromagnetic radiation, which in turn induces a current in parallel nearby wires, hence all wires (in the ribbon cable) between the two non-adjacent ones would also be read high. A common solution to this problem would involve forming the individual loops into twisted pairs. However as the processor onboard the M16C/62 operates at 16 MHz getting real-time data was not the issue, hence there was leeway to place a delay into the function scanPorts between writing a particular pin high and reading the remaining pins. By adding a delay the changing current had time to stabilise before the pin values were read, and hence alleviate the source of the problem. Future testing using the same initial approach proved the solution successful.

The final case to test was that of sets of non-adjacent contact sensors touching. Both hands were tested individually and simultaneously. In all cases the names written to screen were consistent with those expected. 

From this point, the contact sensor data acquisition algorithm was achieving correct output every time. From a testing point of view, from the time data was polled until the names of touching contact sensors were being written to screen, a refresh rate of approximately 30 ms. This figure was assumed to be quick enough for use in the sign recognition algorithm. If however, it was found not to be, the solution would be a simple case of increasing baud rate.

9.0 DEVELOPMENT OF THE SIGN RECOGNITION ALGORITHM

9.1 Introduction

9.1.1 New Implications to the Scope of the Work

The hand position and orientation, and the degree to which a finger was bent, were all to be determined by the P5 glove. Although in the future Essential Reality planned to release a left-handed glove, throughout this projects’ development, only the right-handed glove was available.  This immediately restricted the scope of the project to recognising one-handed signs, or in the case of double-handed signs, assuming the right hand was mirrored by the left. It also implied that the predominantly used two-handed fingerspelling alphabet could not be recognised either.

Since the language is not hand specific (signs can be applied with opposing hands depending on which hand dominant the person is), the same set of handshapes, locations, orientations and movement are applied to both hands. In the case of two-handed signs, there is simply a different combination applied to each hand. In consideration of the above points, and bearing in mind that this project was concerned with ‘proof of concept’, it was decided that applying the concept with just one hand would not result in an unacceptable loss of generality.

With the right-handed P5 glove, all thirty seven base handshapes could still be recognised, and this was intended to be done, so that individual issues concerning the amount, type and logical classification of data defining each handshape could be identified.

The position and orientation data from the P5 would then be used to determine location (primary or neutral space) and movement, and differentiation of similar signs respectively. The issue here was to prove that an algorithm could successfully filter the position data in a dynamic manner to facilitate recognition of movement types. To prove the concept, a limited number of signs employing different movement types would suffice. Orientation need not necessarily be a tested component as there were only nine easily identified states (Palm: down, in, up, out. Pitch: up, level, down. Yaw: in, out) that would differentiate at least a thousand signs, half of which were double-handed. In light of these points and compliance with the proof required, the following expressive phrase of signs was chosen for recognition: welcome to my presentation I hope this proves the concept. In finalising this section, it is to be noted that none of the signs comprising the phase require differentiation by orientation, and although not including this functionality is deviating from the identified requirements, it was justified firstly as a trivial task that at this stage would over complicate the task of sign recognition, and secondly by the lack of use in the minimal set of signs that could be potentially recognised with one glove.

9.1.2 Overview of Sign Recognition Algorithm Project Workspace

As the sign recognition algorithm was to be developed in Microsoft Visual C++, a project workspace needed to be created. Two requirements were that firstly, the algorithm could be developed using C source code, and secondly, that user feedback was provided, in this ‘proof of concept’ stage, by means of screen display. The most appropriate project type was that of a Win32 Console Application. To initiate the C source code environment, the ‘Hello World’ type of application was chosen. In doing so, a C++ source file formatted for C source code, and a header file StdAfx.h for referencing all further header files to be used, were created.

The next step was to include all source, header and library files required for correct operation of the C source code. Since WSC32 functions were to be used for interaction with the serial communications port, in the transmission and reception of the data to and from the microcontroller, both the wsc.h header file and wsc32.lib library file needed to be included. During reception of data from the microcontroller, a timeout procedure needed to be implemented to avoid possibly crashing the protocol, by means of errors in transmission and/or reception. In doing so, a millisecond accurate timer needed to be employed. The most accurate was found to be the multimedia timer, and accordingly its header file; mmsystem.h, and library file; winmm.lib, were also included. Next, so that data from the P5 glove could be accessed, its respective header file; p5dll.h, and library file; p5dll.lib, needed to be added to the project workspace. A problem now existed in acquiring the P5 data. Specifically, all functions were coded in C++, meaning that any call to a function would have to be made in an object-oriented environment, furthermore, the target data would be returned as elements of type a class. Function calls in C source code are made in a procedural environment, where target data would equivalently be returned as elements of a type structure. To convert the function call and returned data type to that which could be used in the C source code, a ‘wrapper’ was written in terms of a C++ source file; C_P5_Wrapper.cpp and associated header file; C_P5_Wrapper.h, these were then added to complete the fundamental project workspace. At this point it is noted that the function to be called in order to retrieve the P5 gloves data was named C_GetData. A call to ​C_GetData would populate the newly generated data structure with the position, orientation and finger bend data. Both the C++ source file and header file associated with the ‘wrapper’ are listed in Appendix D. Finally, the string header file was included for the generation of touching contact sensor names in regard to the data received from the microcontroller, and the standard input/output header included for fundamental I/O use.

9.2 Detailed Requirements Specification

The following are the requirements that were considered logical and necessary for efficient development of the sign recognition algorithm;

1. The algorithm needed functionality to discern between the states of hand moving and hand stationary, to facilitate the timing of decision making. 

2. At the initial point in time when the hand was stationary, the handshape and its location (as a ‘primary location’ or ‘neutral space’) were to be identified.

3. Second to receiving data from the microcontroller, it was considered that handshape identification was a fundamentally significant milestone, and as such, that specific testing of this functionality would be required.

4. Since some signs are complete without an element of movement, the combination of initial handshape and location were to be tested for consistency with a sign. If identified, the sign was to be output to screen and algorithm initialised, if not, the algorithm was to continue.

5. If the initial elements of the sign did not identify it, the algorithm was to wait until the hand was moving and then record the position data. Upon completion of the movement, it was to be identified.

6. It was considered that movement identification was the third fundamental milestone, and accordingly required individual testing.

7. Following identification of the movement performed, the final handshape and location were to be identified also, to account for signs in which they change.

8. Finally, the composite data combination of initial and final hand conditions, and movement type conducted, were to be tested against those of the remaining signs. The identified sign was to be output to screen, and then finally the algorithm initialised again. This completed algorithm would be the final milestone.

9. As a tool of testing and an aid in learning, the algorithm was to be made available to the user by way of a menu based system. Each milestone was to be available as a diagnostics element.  This would structure the testing requirements as the algorithm expanded to accommodate future functionality.

The proposed final milestone of the sign recognition algorithm is illustrated in the flow chart of Figure 40;
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Figure 40: Flow chart for proposed final milestone of sign recognition algorithm

9.3 Algorithm Development

9.3.1 Overview

Firstly, experimental display of the data returned by the P5 illustrated that it was inherently dynamic in nature. Even when sat on a surface, environmental noise caused assumed stable parameters to return changing data. Since the human hand will not be held in a precise location or condition for any length of time and that the effects of noise were present, at best a data element would on average be confined to a range. It was decided that instead of using the absolute level, the total range of each data element would need to be quantised into discrete levels. Imposing such a constraint would considerably simplify the combinations of possible levels available, and hence aid in the consistency of recognising a particular hand condition.

If the range of each discrete level was too large, data resolution would be lost, alternatively if the range of discrete levels was too small, the initial instability would return. Obviously a working compromise would have to be reached. To facilitate this,  resolution constants were first defined, allowing all references in the subsequent functions to be ‘soft coded’ facilitating efficient ‘tweaking’ of the code. 

Since the data received from the microcontroller would be released as a set of integers, to determine which contact sensor where touching, each integer would require repeated bit masking. Instead of repeating different numerical integer masks throughout the algorithm, the name of contact sensor that each mask represented was defined equal to the mask value. This enabled the use of ‘soft coded’ meaningful constants in the masking to extract information.

The next step was to declare all functions and global variables to be used, which are tabulated for convenience in Table 4;

	Name
	Type
	Purpose

	main
	Function
	Used as a menuing system



	getConnections
	Function
	See section 8.4.3


	notTimeOut
	Function
	See section 8.4.4


	dataNotReady
	Function
	See section 8.4.5


	maxTime
	Global variable: integer 
	See section 8.4.3

	notTimedOut
	Global variable: integer
	See section 8.4.4

	RxChar
	Global variable: character
	See section 8.4.5

	connections
	Global variable: matrix
	See section 8.4.3

	numberOfConnections
	Global variable: integer
	See section 8.4.3

	connectionTranslator
	Function
	See section 8.4.6


	position
	Function
	Used to initially record primary positions and secondly to verify current position

	location
	Global variable: matrix
	Used in position function to as the record of primary locations.

	locationName
	Global variable: character array
	Used in position function as the names of primary locations.

	stopped
	Function
	Used to determine if hand is stationary



	stopBuffer
	Global variable: matrix
	Used initially in stopped function to store current data.

	IDhandshape
	Function
	Used to identify and return a handshape number.



	connectLogic
	Function
	Used to determine if specified contact sensors were touching.

	handshapeTranslator
	Function
	Used to translate handshape numbers into names and output to screen.

	IDmovement
	Function
	Used to identify the type of movement performed.

	movementBuffer
	Global variable: matrix
	Used initially in IDmovement function to store the movement data.

	fingersIncDecInc
	Function
	Used in IDmovement function to filter a specific movement type.

	rollWrists
	Function
	Used in IDmovement function to filter a specific movement type.

	leftToRight
	Function
	Used in IDmovement function to filter a specific movement type.

	towardBody
	Function
	Used in IDmovement function to filter a specific movement type.

	down
	Function
	Used in IDmovement function to filter a specific movement type.

	awayRightUp
	Function
	Used in IDmovement function to filter a specific movement type.

	awayRightDown
	Function
	Used in IDmovement function to filter a specific movement type.

	movementTranslator
	Function
	Used in IDmovement function to filter a specific movement type.

	detectSign
	Function
	Final composite function used to determine and output a performed sign.


Table 4: Functions and global variables used in sign recognition algorithm

Following the function and global variable declarations, each function needed to be defined. Since the functions; getConnections, notTimeOut, dataNotReady and connectionTranslator, and the global variables; maxTime, notTimedOut, RxChar, connections and numberOfConnections were defined and implementation given in sections 8.4.3 to 8.4.6, the will not be included in this section of software development. The will however be reference made to the global variables; connections and numberOfConnections as they held target data.

The remaining functions declared and their use of associated global variables are defined and explored in the following sections.


9.3.2 Function Definition: main

The purpose of main was to initially prepare the serial communications port for polling the microcontroller and receiving the data returned. This was achieved with calls to SioReset, SioBaud and SioParams in the manner as discussed in section 8.4.2. Secondly, main called the function position in it first mode to facilitate calibration of the primary locations. 

The P5 glove has four buttons; A through D, however button D is reserved as an on/off function. Having performed the initialisation required, main then entered into a menu system controlled by the user via the buttons A, B and C. The menu options were directed toward simple testing environments for each of the four milestones identified. With the C button used to exit any loop, buttons A and B were used in a logical ‘family tree’ type arrangement to facilitate user navigation to and from milestones. In the case of contact sensor connections, the environment comprised an initial call to the function getConnections in order to return the connection data, followed then by a call to the function connectionsTranslator in order to output to screen the returned numerical data as names. In the cases of handshape and movement recognition, the environments comprised of firstly a repeated call to the function stopped to determine if the hand was stationary, the loop was exited if stopped returned true and false respectively. Following this, a call was made to the functions IDhandshape and IDmovement respectively, in order to acquire the data, followed finally by a call to the functions handshapeTranslator and movementTranslator respectively, in order to convert the numerical outputs into meaningful names outputted to screen. In the case of sign recognition, a call was made simply to the function detectSign, which output the sign to screen. In all cases of milestone testing, the function calls were placed in a loop, exited by pressing the C button. The menu system was exited by simultaneously pressing the B and C buttons. This process is illustrated in the flow chart of Figure 41;
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Figure 41: Flow chart for function: main

9.3.3 Function Definition: position

The purpose of position was two fold. Initially, position was called to calibrate the position of primary locations; mode 1. This was accomplished by the user placing the glove at each primary location, then pressing the A button. Each time the A button was pressed, the x, y and z coordinates were stored in the matrix location, at the same reference as its name, stored in locationName.

Mode 2 of position was to facilitate location identification. This was accomplished by taking the current position data of the glove from its storage point in stopBuffer, then comparing with each referenced primary location stored in location to see if it was with a designated range. If so, the primary location number was returned. The process of position is illustrated in the flow chart of Figure 42;
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Figure 42: Flow chart for function: position

9.3.4 Function Definition: stopped

The purpose of stopped was to determine if the hand was stationary and to store all current data in the stopBuffer to be used by several different functions depending on whether the hand was considered stopped or not. To do this the functions getConnections and C_GetData were called to return the current contact sensor, and P5 position, orientation and finger bend data respectively. The composite data was then stored in the stopBuffer as the first sample. This was repeated twice more to gain a total of three samples. Since the hand would not every be absolutely stationary, however if intended, it would be approximately so. In view of this, the approach taken was to check if the data elements of the second two samples were within a predetermined range of the corresponding data elements in the first. If so, the hand was considered stationary and stopped returned true, if there was a discrepancy with any data element, the hand was considered moving and stopped returned false. This process is illustrated in the flow chart of Figure 43;
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Figure 43: Flow chart for function: stopped

9.3.5 Function Definition: IDhandshape

The purpose of IDhandshape was to simply identify the handshape being made and return a number representing it. The function stopped was always called beforehand until it returned true. This indicated that the handshape was ready for identification. Since the hand was considered stationary, all samples in stopBuffer would be approximately consistent and only the first needed to be used. IDhandshape used an if/elseif structure to filter the contact sensor and finger bend data. For each handshape if the correct combination of contact sensors were touching and degree of finger bend, then the handshape was identified. 

To determine if a particular combination of contact sensors were touching, the function connectLogic was called with the corresponding masks ORed together. If that particular combination of contact sensors touching was found in the integers of connections then connectLogic would return true. In determining if the combination of finger bend was correct, the possible range of finger bend was quantised into three levels, and the finger bend data in stopBuffer was required to be in the designated level for each of the fingers. If any of these requirements were not met, the next handshape was tested until a match was found. If no match was found and all handshapes had been tested, IDhandshape returned zero. This process is illustrated in the flow chart of Figure 44;
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Figure 44: Flow chart for function: IDhandshape

9.3.6 Function Definition: connectLogic

The purpose of connectLogic was to determine if a particular combination of contact sensors were touching. To perform its task, connectLogic took the first integer in connections and required its value when masked to equal that of the mask. If so, that particular combination was present, and connections returned true. If not, connections repeated the process for the next integer in connections until numberOfConnections integers had been tested, at which point connectLogic returned false. This process is illustrated in the flow char of Figure 45;
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Figure 45: Flow chart for function: connectLogic

9.3.7 Function Definition: handshapeTranslator

The purpose of handshapeTranslator was to translate the numerical value returned from IDhandshape into a meaningful name, then output that name to screen. To complete this task, handshapeTranslator simply switched the returned number and output to screen the designated name. This process is illustrated in the flow chart of Figure 46;
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Figure 46: Flow chart for function: handshapeTranslator

9.3.8 Function Definition: IDmovement

The purpose of IDmovement was record all position data whilst the hand was moving, apply filters to the complete data and return a number representing the movement type identified. Prior to IDmovement being called, the function stopped was call until it returned false, indicating that the hand was now moving. To complete its task, IDmovement also called stopped however only while stopped returned false. Each time stopped returned false, The three sets of sample data stored in stopBuffer were copied into the next three consecutive places of movementBuffer. For reasons to be explained in the movement identification testing section 9.4.3, stopped was allowed to return true two consecutive times before the recording of position data ceased.

Finally, with the position data recorded in movementBuffer the filter functions; fingersIncDecInc, rollWrists, leftToRight, towardBody, down, awayRightUp and awayRightDown were called sequentially until one returned true. If a particular filter returned true, IDmovement simply returned a number associated with that movement type. If none of the filters returned true, IDmovement returned zero. The above mentioned filter functions are associated with movement made in numerous signs, however the movement types addressed were by requirement of the phrase chosen for recognition, they do not by any means represent the total spectrum of movement performed in Auslan, they are but a chosen subset. The process of IDmovement is illustrated in the flow chart of Figure 47;
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Figure 47: Flow chart for function: IDmovement

9.3.9 Function Definition: fingerIncDecInc

The purpose of fingerIncDecInc was as a filter of movement data, specifically structured to recognise the fingers all simultaneously bending into the palm, then straightening and finally bending back into the palm, as is done with a welcoming gesture. fingerIncDecInc accomplished this task by taking the finger bend data for each finger one at a time, requiring each to pass three logical stages noted by flags. The first and third stages were essentially equivalent as would be evident from the movement description. To enter the first stage, the second stage flag needed to be false, this was to ensure the correct order. To progress to the second stage, the first stage flag needed to be true. The final stage obviously required that the previous to flags were true. If at any point the data did not fit into a stage, fingersIncDecInc simply returned false. To complete the first stage, successive finger bend levels needed to be greater than the last. To complete the second stage, logic in reverse to that of the first was required. To establish the required pattern, the third stage only required the first bend level to be greater than the last of stage two. Upon every finger completing stage three, fingersIncDecInc returned true. This process is illustrated in the flow chart of Figure 48;
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Figure 48: Flow chart for function: fingersIncDecInc

9.3.10 Function Definition: rollWrists

The purpose of rollWrists was as a filter of movement data, specifically structured to recognise the rolling of the wrists. This movement was characterised by a substantial decrease in pitch of the hand followed by a substantial increase in roll of the hand It was found that these as requirements for its recognition were too general, as it became the only movement recognised, hence it was then further required that minimum thresholds of consecutive change in the orientation data were met. In practice, rollWrists used a count that reset after non-consecutive movement. Specifically, the count was started by a current pitch level being less than a previous one. The count was incremented as long as decrease was consecutive, otherwise it was reset to zero. If the count reached the first threshold, then the second stage was entered. Applying the same concept, the count could only increment when the level of pitch was greater than the last in consecutive samples, otherwise it was reset to the first threshold. If the second threshold was reached before the data points were used, rollWrists returned true. Alternatively, if the second threshold was not reached, rollWrists return false. This process is illustrated in the flow chart of Figure 49;
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Figure 49: Flow chart for function: rollWrists

9.3.11 Function Definition: leftToRight

The purpose of leftToRight was as a filter of movement data, specifically structured to recognise the hand moving in a linear motion from left to right (from signers perspective). 

To clarify the position data coordinate axes the following observations were made relative to the signers’ perspective; movement from left to right corresponded to an increase in the x coordinate, movement from down to up corresponded to an increase in the y coordinate and movement away from the body corresponded to a increase in the z coordinate.

Since the hand would not move in a precisely linear manner, a tolerance or error margin needed to be included in the coordinate plane perpendicular to the target axis of travel. If the successive position coordinates in that plane were within the assigned tolerance, then the movement would be considered linear. The issue would then be determining if the successive position coordinate of the target axis of travel, was consistently increasing or decreasing according to the target direction of travel.

To achieve its task, while there was position data, leftToRight took  each set of data checked if the following were true; current y and z coordinates were within a designated range of the first y and z coordinates respectively and current x coordinate was greater than previous x coordinate minus a threshold (reasoning for the threshold explained in testing section 9.4.3).  If any of these requirements were not met, leftToRight returned false. Finally, since the error margin in the perpendicular plane allowed for the y and z coordinates to perform localised movement, to justify linear movement it was then required that the x coordinate had not simply performed localised movement also. In doing so, leftToRight required that the final x coordinate was outside twice the designated range of the first, guaranteeing substantial linear movement. If this requirement was met also, letToRight return true, otherwise it returned false. This process is illustrated in the flow chart of Figure 50;
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Figure 50: Flow chart for function: leftToRight

9.3.12 Function Definition: towardBody

The purpose of towardBody was as a filter of movement data, specifically structured to recognise the hand moving in a linear motion from away to toward the body. towardBody used the identical reasoning and procedure as leftToRight did, however required the z coordinate to decrease and the x and y coordinates to stay localised. This process is illustrated in the flow chart of Figure 51;
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Figure 51: Flow chart for function: towardBody

9.3.13 Function Definition: down

The purpose of down was as a filter of movement data, specifically structured to recognise the hand moving in a linear motion from up to down. down used the identical reasoning and procedure as leftToRight did, however required the y coordinate to decrease and the x and z coordinates to stay localised. This process is illustrated in the flow chart of Figure 52;
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Figure 52: Flow chart for function: down

9.3.14 Function Definition: awayRightUp

The purpose of awayRightUp was as a filter of movement data, specifically structured to recognise the hand moving in a linear motion in the simultaneous directions away, right and up. To accomplish this, awayRightUp used a similar structure to lefToRight, however instead of requiring two coordinates to have only localised movement, all coordinates were required have substantial movement. Whilst position data was available, awayRightUp took each set and applied the following requirements; the current x coordinate needed to be greater than the previous minus a threshold, the current y coordinate needed to be greater than the previous minus the threshold and the z coordinate needed to be less than the previous one plus the threshold. This was repeated for all the data and at point if a requirement was not met, awayRightUp return false. Finally, after all position data had been tested, to test for substantial movement each final coordinate position was required to be more than twice a designated range from their first. Is so, awayRightUp return true, otherwise awayRightUp returned false. This process is illustrated in the flow chart of Figure 53;

[image: image58.png]Begin
awayRightUp

Are all final coordinates
greater than twice range of
first?

Yes

No No

End
awayRightUp
Return false

End
No awayRightUp
Return false

Accounting for thresholds are current x and y
coordinates greater than previous and current z
coordinate less than previous?

Yes

End
awayRightUp
Return true




Figure 53: Flow chart for function: awayRightUp

9.3.15 Function Definition: awayRightDown

The purpose of awayRightDown was as a filter of movement data, specifically structured to recognise the hand moving in a linear motion in the simultaneous directions away, right and down. awayRightDown used the identical reasoning and procedure as awayRightUp did, however the y coordinate was required to be decreasing. This process is illustrated in the flow chart of Figure 54;
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Figure 54: Flow chart for function: awayRightDown

9.3.16 Function Definition: movementTranslator

The purpose of movementTranslator was to translate the numerical value returned from IDmovement into a meaningful name, then output that name to screen. To complete this task, movementTranslator simply switched the returned number and output to screen the designated name. This process is illustrated in the flow chart of Figure 55;
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Figure 55: Flow chart for function: movementTranslator

9.3.17 Function Definition: detectSign

The purpose of detecSign was to make logical calls to the relevant functions in order to identify elements of a sign, then filter these elements until the correct combination was found and output the sign. 

To accomplish this task, detectSign firstly made repeated calls to stopped until it returned true, upon which a call was made to IDhandshape and position to determine the initial handshape and position respectively. Those signs without a movement component would now be recognised (Note that for completeness, the orientation would also need to be known, however as justified in section 9.1.1, the chosen phrase of signs did not require differentiation by hand orientation). The next step then was to filer the identified elements through an if/elseif structure to determine if that combination represented a sign. If so, detectSign output the sign to screen and ended. If not, then more elements needed to be identified and dectectSign continued with the process.

Next, a repeated call was made to stopped until it returned false, at which point a call was made to IDmovement in order to identify the movement type being performed. Following this, the hand would now be stationary again, so to account for any changes in the initial elements a call was then made to IDhandshape and position in order to determine the final handshape and its position respectively. Now the remaining set of signs would be completely specified (again taking into account orientation), so the final task was to filter the composite set of identified elements through another if/elseif structure. When the correct combination of elements was found, detectSign output the relevant sign to screen and ended. This process is illustrated in the flow chart of Figure 56;
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Figure 56: Flow chart for function: detectSign

9.4 Testing of the Sign Recognition Algorithm Milestones

9.4.1 Retrieval of Contact Sensor Data

Since the functions used for the retrieval of contact sensor data from the microcontroller, were initially developed for the purpose of testing the contact sensor data acquisition algorithm, they were duly verified through success of the testing environment. Due to their interdependence, this simultaneous testing could not be avoided. It did however pose complex problems with the isolation of error sources.  Due to the nature of this problem, initial logic errors in the protocol used between platforms, although when identified were trivial, surfaced as a cascaded array of errors. Since initial logic errors are an expected norm, aside from personal experience, there were no process related subtleties found that give an insight into the recognition of signs. Hence it was simply concluded that testing was performed to satisfaction.

9.4.2 Handshape Identification

Since the identification of handshapes was a fundamental yet crucial element of recognising a sign, all aspects needed to be explored in order to identify a minimal set of logical inputs that would completely specify any handshape, and facilitate its consistent recognition. Since handshapes comprise of a subset of secondary locations contacting, the degree of individual finger bend and the pitch of the hand, their sources of data and its resolution needed to be verified as the above minimal set. To do so, the defining requirements in IDhandshape were tested for each handshape, and in taking an iterative approach, each were ‘tweaked’ to maximise the consistency of their recognition.

The previous testing of contact sensors, although finally proving 100% accuracy, was conducted in a static nature. The implications of this are that not until testing the recognition of handshapes was their dynamic dysfunction identified. This problem was mechanical in nature, in that the crude structure and restricted placement of the contact sensors required the formation of handshapes to be mechanically exacting, otherwise the intended data was often not conveyed. A further contributing factor to the uncertainty of recognition was that the two right-handed gloves used for acquiring right hands’ condition, needed to be synchronised during formation of the handshape.  Although this project was concerned with ‘proof of concept’, these problems would need to be addressed in the future design of a final glove. In regard to the subset of secondary locations used, it was found that they were necessary and sufficient as an element of handshape recognition.

It was initially decided that the finger could be classed as straight, half or completely bent, and the range of bend degree returned was quantised into the levels accordingly. Two problems with this arose in the testing. The first problem was that the ‘letter-c’ hand and ‘small’ hand could not be differentiated. Both handshapes had the middle, ring and pinky fingers completely bent, with the ‘letter-c’ hand, the index finger is straight at the base and bent in the middle, where as the index finger of the ‘small’ hand is bent at the base and straight in the middle. In both cases the flexion sensors returned a mid-range reading.  The second problem was related to the first and characterised by the following; when a finger was required to be straight, and at least one adjacent finger was completely bent, the straight finger bent at the base. Again often the logic failed with a bend level outside the first being returned for straight finger. Although nothing could be done for the first problem, the second was patched by individually specifying bend levels appropriate to each finger for each sign. This did however pose the new problem of complicating the logical decision tree used to discern each handshape. Now that the finger bend requirements needed personalising to the signer, a learning algorithm would be required to customise finger bend requirements. The second future requirement would be increasing resolution of the finger bend data in order to account of the initial two problems. The most appropriate method of doing so would be to double the flexion sensors, such that one would report on the base of the finger and the other on the middle of the finger. Coupled with a learning algorithm, that would increase flexibility and accuracy of bend sensor data, facilitating functional consistency in the recognition of handshapes.

9.4.3 Movement Identification

Movement identification being the dynamic filtering of position data could only be as accurate as the combination of position precision limited by the P5 glove and time resolution of the data dictated by the sampling rate. Since the data was retrieved by stopped then copied from stopBuffer to movementBuffer, these would be the limiting factors in the sampling rate. Screen dumps of the streaming data illustrated approximately thirty millisecond resolution. Observation of people signing showed that individual movement duration could be as short as a two hundred milliseconds. With the observed resolution this would imply a minimum of only six samples. Since a complex movement would be performed over a much longer duration, more data points would be available for its analysis. Short movements tended to be linear in nature, implying that the six data points would suffice. In any event, it would be better to over-engineer than just scrape through, so that unforseen events do not underwrite the norm. It this regard it would be required that the baud rates for data transmission were increased accordingly. As it stood though, in all cases of testing IDmovement collected enough data to discern between movement types consistently.

The second observation was that movement over short distances did not generate any data. This implied that the localised movement allowed by stopped before the hand was considered moving was too broad. In reducing the thresholds by fifty percent, stopped became too sensitive almost never returning true. Although an iterative approach was then taken to find a working balance, it is noted that a rigid cut off as such may not be the most appropriate approach. In justification of it though; a fluent signer generally includes slight pauses at the conclusion of each sign, acquired test data illustrated that the shorter the pause, the more precisely the hand was stationary.

The third observation was that the data cut off at the beginning and / or end of considerably large movements. It was identified that the P5 glove was outside its range of reception during those portions of the movement. This would need to be considered in the final design of a composite glove.

The fourth observation from testing was that the data cut off at extremes of movement. This illustrated that some movements can be decomposed into a subset of movements, punctuated at the extremes by short pauses. To overcome this, in the data acquisition stage IDmovement was altered to allow stopped to return true two times consecutively prior to ceasing the recording of data.  This was successful, so the next step was to verify the filters.

Each of the filters were tested by performing the movements with different speeds and levels of accuracy. An initial problem was evident immediately. Even when the movements were performed precisely, in many cases they would not be recognised. Screen dumps of the position and orientation data to be used were performed for the individual movements. The screen dump illustrated that due to the inherent noise problem of optical tracking, the returned data was on average indicating movement in a particular direction, but intermittently indicating a change in direction. This problem was avoided by instead of requiring a strict increase or decrease in the current parameter when compared to the last, the last parameter had a threshold added to or subtracted from it respectively, allowing for slow movement in the opposite direction. Although strictly this violated the initial requirement, if the hand was moving that slowly it have been considered stopped. Subsequent tests proved this a viable solution, making the movement recognition more consistent. 

9.4.4 Sign Recognition 

Taking into account the factors identified for each previous milestone, as limiting to its achievable potential, and by further recognising that as suboptimal elements, their combined effectiveness would be even lower, testing of the final milestone was expected to reveal a conservative benchmark in terms of proficiency and practicality.

Testing of detectSign revealed that on average signs were recognised after the third or fourth attempt. At no point were they misrecognised. The important point to note is they were recognised. Taking into account that the signs needed to be performed by two independent right hands, both attempting to synchronise handshape formation and movement performed, and that each contributing element was proven suboptimal, this was regarded as ‘proof of concept’.

A final outcome from the testing needs to be addressed. After completion of a sign, if it was recognised, an average latency of one second was observed prior to the sign name being output to screen. On average when signers’ were observed, two signs would be completed per second. By way of the observed test results, the processing and subsequent recognition of a initial sign would by finalised at the conclusion of the third sign performed, limiting recognition to that of one in three signs. This however would not be a problem in the final design with hardwired logic localised data collection.

10.0 FUTURE INTENTIONS AND FINAL CONCLUSIONS

10.1 Overview

Due to time restrictions and practical hardware limitations, the scope of this project was progressively narrowed until conceptual ideas were only applied to a limited subset of Auslan. In view of this, although the steps taken could not be considered rigorous enough to constitute a working solution by authority, in doing so, fundamental concepts were identified, explored and verified. On this basis, a number of key issues arose in regard to limitations implied by the design of the contact sensors and P5 glove, and the rigidity of algorithms developed. For the issues at hand, a number of possible solutions were identified, each of which need investigation.  Broadening the scope, there are six main areas of development that need addressing, each an integral component of a final working system for the translation of Auslan into speech. A final area also needs addressing with the intent of extending the systems’ application to allow for truly independent communication. Each of these areas are addressed in the following sections.

10.2 Composite Glove Design

The P5 glove served as a valuable learning tool, however as this extent of application was not its intended purpose, it fell short of the functionality required. For the future of this project, a pair of gloves need to be designed that can track position and orientation in three dimensional space, employ flexion sensors at both the base and middle of the fingers and thumb in order to accurately identify the condition of each appendage, and contact sensors designed such that each contacting secondary location can be identified robustly in the presence of highly dynamic movement. The gloves are required to be light-weight and unobtrusive, ideally a second skin. The data collected by the gloves needs to be transmitted via wireless means back to a compact portable unit, the hub of the system. The gloves also need to be tracked over the full dynamic range of human movement in front and to the side of the body. With these latter requirements met, a user would be more likely to find the system as a practical tool and not a hindrance.

10.3 Tracking of Primary Locations

As was determined, the primary locations need to be tracked dynamically. As the primary locations comprise the head, torso and upper limbs, it would not be practical to require contact sensors in these locations. Instead, there are two means by which they could be tracked, the first by optical position trackers and the second by camera. In the first instance, a minimal set of optical position trackers could be placed on the head, torso and recessive arm. From each set, a reference position and orientation could be determined facilitating the extrapolation of all primary location coordinates. This approach could be coupled with design of the gloves. The second approach would require infrared LEDs being place on the head, torso and arm. These markers could then be tracked with CCD cameras in order to their dynamic position. This approach would be coupled with expression identification to be discussed soon.

10.4 Learning Algorithms

Addition of another flexion sensor to the fingers of the gloves employed, has been noted as a means by which handshape recognition would be improved. By increasing resolution of the data, complexity of its management is also increased. It was further noted that the individual bend levels required of finger in recognising a particular handshape would need to be customised, hence a dynamic management system would be required. Secondly, the recognition of movement was made with equally rigid routines filtering structure by geometrical merit. In both cases a more flexible structure needs to be adopted, one that since no human movement is alike, must to be able to adapt. Such a management system is afforded by learning algorithms like neural networking. 

10.5 Expression Identification

Recognition of the signs being conveyed gives the building blocks of the language, however the structuring of a phrase relies heavily on expression to shape it. To facilitate recognition of expression, the application of sensors to the face is not a practical option. A visual based technique would have to be adopted, using CCD cameras and feature extraction techniques. The camera would need to be located on the portable system, giving rise to a non-oblique angle from which to apply the technique, thus requiring further processing of the acquired data such that an oblique perspective could be generated.
10.6 Translation of Signs into Speech

Although the signs convey in most cases a literal meaning, they are not performed in the order in which English is articulated, thus a first requirement would be the translation of signs into English text. As mentioned, the expressions recognised would be instrumental in the shaping of signs into phrases. Once the signs have been translated into text, since speech synthesis has been developed quite completely, an off the shelf text to speech synthesiser would then be adopted to finally complete the translation.
10.7 Speech Recognition

At this point in time the focus is on translating sign language into speech. When this journey has come to an end resulting in a fully functional system, the signer will be able to start a conversation with whomever they choose, however any response to that communication will fall upon deaf ears. To facilitate a two way conversation, the signer needs feedback in a clear and concise manner. If a voice recognition module was included, then the signer could be informed through text scrolling on a liquid crystal display. This would truly extend the application of the system and complete bridging of the communication gap. This would ideally be coupled with the speech synthesis module as for trial purposes these two functions are already available off the shelf in single-chip configurations.
10.8 Conclusion

 As the body of this work has offered ‘proof of concept’, there is now a fundamental basis for evolution. With refinement of this basis, and the further development of the remaining elements identified, there is no doubt that a working solution for the translation of Australian Sign Language into speech, will be realised as an unobtrusive, portable system in the near future. 
A APPENDIX

The following figures are the Auslan handshapes as compiled by Johnston (1998, pp. 50-1);[image: image62.png]Number Name Description | Basic form | Variant forms Page N°
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Figure 57: Auslan handshapes
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Figure 58: Auslan handshapes continued

B APPENDIX 

The following figures are the Irish one-handed alphabet and the British two-handed alphabet used for fingerspelling in Australia as compiled by Johnston (1998, p. 593, p. 595);
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Figure 59: Irish one-handed alphabet
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Figure 60: British two-handed alphabet

C APPENDIX

The following is the interrupt vector table associated with contact sensor data acquisition algorithm;

;*******************************************************************************

;

; C Compiler for M16C/60,20

; Copyright 2001 MITSUBISHI ELECTRIC CORPORATION

; AND MITSUBISHI ELECTRIC SEMICONDUCTOR APPLICATION ENGINEERING CORPORATION

; All Rights Reserved.

;

; Written by T.Aoyama

;

; sect30.inc     : section definition

; This program is applicable when using the basic I/O library

;

; $Id: sect30.inc,v 1.11 2001/11/12 04:06:53 muranaka Exp $

;

;******************************************************************************

;---------------------------------------------------------------

;

; 
Arrangement of section

;

;---------------------------------------------------------------

; Near RAM data area

;---------------------------------------------------------------

; SBDATA area


.section
data_SE,DATA


.org
400H

data_SE_top:


.section
bss_SE,DATA,ALIGN

bss_SE_top:


.section
data_SO,DATA

data_SO_top:


.section
bss_SO,DATA

bss_SO_top:

; near RAM area


.section
data_NE,DATA,ALIGN

data_NE_top:


.section
bss_NE,DATA,ALIGN

bss_NE_top:


.section
data_NO,DATA

data_NO_top:


.section
bss_NO,DATA

bss_NO_top:

;---------------------------------------------------------------

; Stack area

;---------------------------------------------------------------


.section
stack,DATA


.blkb
STACKSIZE

stack_top:


.blkb
ISTACKSIZE

istack_top:

;---------------------------------------------------------------

;
heap section

;---------------------------------------------------------------


.section
heap,DATA

heap_top:


.blkb
HEAPSIZE

;---------------------------------------------------------------

; Near ROM data area

;---------------------------------------------------------------


.section
rom_NE,ROMDATA,ALIGN

rom_NE_top:


.section
rom_NO,ROMDATA

rom_NO_top:

;---------------------------------------------------------------

; Far RAM data area

;---------------------------------------------------------------


.section
data_FE,DATA


.org

10000H

data_FE_top:


.section
bss_FE,DATA,ALIGN

bss_FE_top:


.section
data_FO,DATA

data_FO_top:


.section
bss_FO,DATA

bss_FO_top:

;---------------------------------------------------------------

; Far ROM data area

;---------------------------------------------------------------


.section
rom_FE,ROMDATA


.org

0F0000H

rom_FE_top:


.section
rom_FO,ROMDATA

rom_FO_top:

;---------------------------------------------------------------

; Initial data of 'data' section

;---------------------------------------------------------------


.section
data_SEI,ROMDATA

data_SEI_top:


.section
data_SOI,ROMDATA

data_SOI_top:


.section
data_NEI,ROMDATA

data_NEI_top:


.section
data_NOI,ROMDATA

data_NOI_top:


.section
data_FEI,ROMDATA

data_FEI_top:


.section
data_FOI,ROMDATA

data_FOI_top:

;---------------------------------------------------------------

; Switch Table Section

;---------------------------------------------------------------


.section        switch_table,ROMDATA

switch_table_top:

;---------------------------------------------------------------

; code area

;---------------------------------------------------------------


.section
program


.section
interrupt


;.org
;must be set internal ROM area


.section
program_S

;---------------------------------------------------------------

; variable vector section

;---------------------------------------------------------------


.section
vector

; variable vector table


.org
VECTOR_ADR 

.if
M62TYPE==1


.lword
dummy_int

; BRK
(vector 0)


.lword
dummy_int

; 
(vector 1)


.lword
dummy_int

; 
(vector 2)


.lword
dummy_int

; 
(vector 3)


.lword
dummy_int

; int3(for user)(vector 4)


.lword
dummy_int

; timerB5(for user)(vector 5)


.lword
dummy_int

; timerB4(for user)(vector 6)


.lword
dummy_int

; timerB3(for user)(vector 7)


.lword
dummy_int

; si/o4 /int5(for user)(vector 8)


.lword
dummy_int

; si/o3 /int4(for user)(vector 9)


.lword
dummy_int

; Bus collision detection(for user)(v10)


.lword
dummy_int

; DMA0(for user)(vector 11)


.lword
dummy_int

; DMA1(for user)(vector 12)


.lword
dummy_int

; Key input interrupt(for user)(vect 13)

;
.glb
  _ADCint

;
.lword    _ADCint

; A-D(for user)(vector 14)


.lword
dummy_int

; A-D(for user)(vector 14)


.lword
dummy_int

; uart2 transmit(for user)(vector 15)


.lword
dummy_int

; uart2 receive(for user)(vector 16)


.lword
dummy_int

; uart0 transmit(for user)(vector 17)


.lword
dummy_int

; uart0 receive(for user)(vector 18)


.lword    0FF900H

; uart1 transmit - Monitor V2

;
.lword
dummy_int

; uart1 transmit(for user)(vector 19)

;
.lword    0FF900H

; uart1 receive  - Monitor V2


.glb    _transmitConnections


.lword
_transmitConnections    ; uart1 receive(for user)(vector 20)


.glb
  _getContactData


.lword    _getContactData
; timer A0(for user)(vector 21)

;
.lword
 dummy_int

; timer A0(for user)(vector 21)


.glb
  _debounceDelay


.lword    _debounceDelay
; timer A1(for user)(vector 22)

;
.lword
dummy_int

; timer A1(for user)(vector 22)


.lword
dummy_int

; timer A2(for user)(vector 23)


.lword
dummy_int

; timer A3(for user)(vector 24)


.lword
dummy_int

; timer A4(for user)(vector 25)


.lword
dummy_int

; timer B0(for user)(vector 26)


.lword
dummy_int

; timer B1(for user)(vector 27)


.lword
dummy_int

; timer B2(for user)(vector 28)


.lword
dummy_int

; int0 (for user)(vector 29)


.lword
dummy_int

; int1 (for user)(vector 30)


.lword
dummy_int

; int2 (for user)(vector 31)

.else


.lword
dummy_int

; vector 0 (BRK)



.lword
dummy_int

; vector 1


.lword
dummy_int

; vector 2


.lword
dummy_int

; vector 3


.lword
dummy_int

; vector 4


.lword
dummy_int

; vector 5


.lword
dummy_int

; vector 6


.lword
dummy_int

; vector 7


.lword
dummy_int

; vector 8


.lword
dummy_int

; vector 9


.lword
dummy_int

; vector 10


.lword
dummy_int

; DMA0 (for user) (vector 11)


.lword
dummy_int 

; DMA1 2 (for user) (vector 12)


.lword
dummy_int

; input key (for user) (vector 13)

;
.glb
  _ADCint

;
.lword    _ADCint

; A-D(for user)(vector 14)


.lword
dummy_int

; A-D(for user)(vector 14)


.lword
dummy_int

; vector 15


.lword
dummy_int

; vector 16


.lword
dummy_int

; uart0 trance (for user) (vector 17)


.lword
dummy_int

; uart0 receive (for user) (vector 18)


.lword    0FF900H

; uart1 transmit - Monitor V2 

;
.lword
dummy_int

; uart1 transmit(for user)(vector 19)

;
.lword    0FF900H

; uart1 receive  - Monitor V2


.glb    _transmitConnections


.lword
_transmitConnections
; uart1 receive(for user)(vector 20)


.glb
  _getContactData


.lword    _getContactData
; timer A0(for user)(vector 21)

;
.lword
 dummy_int

; timer A0(for user)(vector 21)


.glb
  _debounceDelay


.lword    _debounceDelay
; timer A1(for user)(vector 22)

;
.lword
dummy_int

; timer A1(for user)(vector 22)


.lword
dummy_int

; TIMER A2 (for user) (vector 23)


.lword
dummy_int

; TIMER A3 (for user) (vector 24)


.lword  dummy_int

; TIMER A4 (for user) (vector 25)


.lword
dummy_int

; TIMER B0 (for user) (vector 26)


.lword
dummy_int

; TIMER B1 (for user) (vector 27)


.lword
dummy_int

; TIMER B2 (for user) (vector 28)


.lword
dummy_int

; INT0 (for user) (vector 29)


.lword
dummy_int

; INT1 (for user) (vector 30)


.lword
dummy_int

; INT2 (for user) (vector 31)

.endif


.lword
dummy_int

; vector 32 (for user or MR30)


.lword
dummy_int

; vector 33 (for user or MR30)


.lword
dummy_int

; vector 34 (for user or MR30)


.lword
dummy_int

; vector 35 (for user or MR30)


.lword
dummy_int

; vector 36 (for user or MR30)


.lword
dummy_int

; vector 37 (for user or MR30)


.lword
dummy_int

; vector 38 (for user or MR30)


.lword
dummy_int

; vector 39 (for user or MR30)


.lword
dummy_int

; vector 40 (for user or MR30)


.lword
dummy_int

; vector 41 (for user or MR30)


.lword
dummy_int

; vector 42 (for user or MR30)


.lword
dummy_int

; vector 43 (for user or MR30)



.lword  dummy_int

; vector 44 (for user or MR30)


.lword
dummy_int

; vector 45 (for user or MR30)


.lword
dummy_int

; vector 46 (for user or MR30)


.lword
dummy_int 

; vector 47 (for user or MR30)


.lword
dummy_int 

; vector 48


.lword
dummy_int 

; vector 49


.lword
dummy_int 

; vector 50


.lword
dummy_int 

; vector 51


.lword
dummy_int 

; vector 52


.lword
dummy_int 

; vector 53


.lword
dummy_int 

; vector 54


.lword
dummy_int 

; vector 55


.lword
dummy_int 

; vector 56


.lword
dummy_int 

; vector 57


.lword
dummy_int 

; vector 58


.lword
dummy_int 

; vector 59


.lword
dummy_int 

; vector 60 


.lword
dummy_int 

; vector 61


.lword
dummy_int 

; vector 62


.lword
dummy_int 

; vector 63

;===============================================================

; fixed vector section

;---------------------------------------------------------------


.section
fvector


; fixed vector table

;===============================================================

; special page defination

;---------------------------------------------------------------

;
macro is defined in ncrt0.a30

;
Format: SPECIAL number

;

;---------------------------------------------------------------

;
SPECIAL 255

;
SPECIAL 254

;
SPECIAL 253

;
SPECIAL 252

;
SPECIAL 251

;
SPECIAL 250

;
SPECIAL 249

;
SPECIAL 248

;
SPECIAL 247

;
SPECIAL 246

;
SPECIAL 245

;
SPECIAL 244

;
SPECIAL 243

;
SPECIAL 242

;
SPECIAL 241

;
SPECIAL 240

;
SPECIAL 239

;
SPECIAL 238

;
SPECIAL 237

;
SPECIAL 236

;
SPECIAL 235

;
SPECIAL 234

;
SPECIAL 233

;
SPECIAL 232

;
SPECIAL 231

;
SPECIAL 230

;
SPECIAL 229

;
SPECIAL 228

;
SPECIAL 227

;
SPECIAL 226

;
SPECIAL 225

;
SPECIAL 224

;
SPECIAL 223

;
SPECIAL 222

;
SPECIAL 221

;
SPECIAL 220

;
SPECIAL 219

;
SPECIAL 218

;
SPECIAL 217

;
SPECIAL 216

;
SPECIAL 215

;
SPECIAL 214

;
SPECIAL 213

;
SPECIAL 212

;
SPECIAL 211

;
SPECIAL 210

;
SPECIAL 209

;
SPECIAL 208

;
SPECIAL 207

;
SPECIAL 206

;
SPECIAL 205

;
SPECIAL 204

;
SPECIAL 203

;
SPECIAL 202

;
SPECIAL 201

;
SPECIAL 200

;
SPECIAL 199

;
SPECIAL 198

;
SPECIAL 197

;
SPECIAL 196

;
SPECIAL 195

;
SPECIAL 194

;
SPECIAL 193

;
SPECIAL 192

;
SPECIAL 191

;
SPECIAL 190

;
SPECIAL 189

;
SPECIAL 188

;
SPECIAL 187

;
SPECIAL 186

;
SPECIAL 185

;
SPECIAL 184

;
SPECIAL 183

;
SPECIAL 182

;
SPECIAL 181

;
SPECIAL 180

;
SPECIAL 179

;
SPECIAL 178

;
SPECIAL 177

;
SPECIAL 176

;
SPECIAL 175

;
SPECIAL 174

;
SPECIAL 173

;
SPECIAL 172

;
SPECIAL 171

;
SPECIAL 170

;
SPECIAL 169

;
SPECIAL 168

;
SPECIAL 167

;
SPECIAL 166

;
SPECIAL 165

;
SPECIAL 164

;
SPECIAL 163

;
SPECIAL 162

;
SPECIAL 161

;
SPECIAL 160

;
SPECIAL 159

;
SPECIAL 158

;
SPECIAL 157

;
SPECIAL 156

;
SPECIAL 155

;
SPECIAL 154

;
SPECIAL 153

;
SPECIAL 152

;
SPECIAL 151

;
SPECIAL 150

;
SPECIAL 149

;
SPECIAL 148

;
SPECIAL 147

;
SPECIAL 146

;
SPECIAL 145

;
SPECIAL 144

;
SPECIAL 143

;
SPECIAL 142

;
SPECIAL 141

;
SPECIAL 140

;
SPECIAL 139

;
SPECIAL 138

;
SPECIAL 137

;
SPECIAL 136

;
SPECIAL 135

;
SPECIAL 134

;
SPECIAL 133

;
SPECIAL 132

;
SPECIAL 131

;
SPECIAL 130

;
SPECIAL 129

;
SPECIAL 128

;
SPECIAL 127

;
SPECIAL 126

;
SPECIAL 125

;
SPECIAL 124

;
SPECIAL 123

;
SPECIAL 122

;
SPECIAL 121

;
SPECIAL 120

;
SPECIAL 119

;
SPECIAL 118

;
SPECIAL 117

;
SPECIAL 116

;
SPECIAL 115

;
SPECIAL 114

;
SPECIAL 113

;
SPECIAL 112

;
SPECIAL 111

;
SPECIAL 110

;
SPECIAL 109

;
SPECIAL 108

;
SPECIAL 107

;
SPECIAL 106

;
SPECIAL 105

;
SPECIAL 104

;
SPECIAL 103

;
SPECIAL 102

;
SPECIAL 101

;
SPECIAL 100

;
SPECIAL 99

;
SPECIAL 98

;
SPECIAL 97

;
SPECIAL 96

;
SPECIAL 95

;
SPECIAL 94

;
SPECIAL 93

;
SPECIAL 92

;
SPECIAL 91

;
SPECIAL 90

;
SPECIAL 89

;
SPECIAL 88

;
SPECIAL 87

;
SPECIAL 86

;
SPECIAL 85

;
SPECIAL 84

;
SPECIAL 83

;
SPECIAL 82

;
SPECIAL 81

;
SPECIAL 80

;
SPECIAL 79

;
SPECIAL 78

;
SPECIAL 77

;
SPECIAL 76

;
SPECIAL 75

;
SPECIAL 74

;
SPECIAL 73

;
SPECIAL 72

;
SPECIAL 71

;
SPECIAL 70

;
SPECIAL 69

;
SPECIAL 68

;
SPECIAL 67

;
SPECIAL 66

;
SPECIAL 65

;
SPECIAL 64

;
SPECIAL 63

;
SPECIAL 62

;
SPECIAL 61

;
SPECIAL 60

;
SPECIAL 59

;
SPECIAL 58

;
SPECIAL 57

;
SPECIAL 56

;
SPECIAL 55

;
SPECIAL 54

;
SPECIAL 53

;
SPECIAL 52

;
SPECIAL 51

;
SPECIAL 50

;
SPECIAL 49

;
SPECIAL 48

;
SPECIAL 47

;
SPECIAL 46

;
SPECIAL 45

;
SPECIAL 44

;
SPECIAL 43

;
SPECIAL 42

;
SPECIAL 41

;
SPECIAL 40

;
SPECIAL 39

;
SPECIAL 38

;
SPECIAL 37

;
SPECIAL 36

;
SPECIAL 35

;
SPECIAL 34

;
SPECIAL 33

;
SPECIAL 32

;
SPECIAL 31

;
SPECIAL 30

;
SPECIAL 29

;
SPECIAL 28

;
SPECIAL 27

;
SPECIAL 26

;
SPECIAL 25

;
SPECIAL 24

;
SPECIAL 23

;
SPECIAL 22

;
SPECIAL 21

;
SPECIAL 20

;
SPECIAL 19

;
SPECIAL 18

;

;===============================================================

; fixed vector section

;---------------------------------------------------------------


.org
0fffdch

UDI:


.lword
dummy_int

OVER_FLOW:


.lword
dummy_int

BRKI:


.lword
dummy_int

ADDRESS_MATCH:


.lword
dummy_int

SINGLE_STEP:


.lword
dummy_int

WDT:


.lword
dummy_int

DBC:


.lword
dummy_int

NMI:


.lword
dummy_int

RESET:


.lword
start

;

;*******************************************************************************

;

;
C Compiler for M16C/60,20

;       Copyright 2001 MITSUBISHI ELECTRIC CORPORATION

;       AND MITSUBISHI ELECTRIC SEMICONDUCTOR SYSTEMS CORPORATION

;       All Rights Reserved.

;

;*******************************************************************************

D APPENDIX

The following code is the listing of the contact sensor data acquisition algorithm.

/****************************************************/

/*       Program written by Craig Newman                                     */

/*
                            






         */

/*       CONTACT SENSOR DATA ACQUISITION                   */

/*                                 ALGORITHM                                           */

/*









         */

/*
This program will only run in



         */

/*
stand-alone mode, ie will not run in

                   */

/*
KD30 debug mode
since KD30 & monitor program
*/

/*
also uses UART1.



                             */

/*****************************************************/


#include <stdio.h>

#include "sfr62.h"

void main(void);

void initUART1(void);

void initPort(void);

void initProgramTimers(void);

void getContactData(void);

// interupt processing function for timing program

void debounceDelay(void);

// interupt processing function for debouncing samples

int compareLogs(void);


// check that both connection samples are equivalent

void updateConnections(void);
// buffer the current connections in 3 bytes

void transmitConnections(void);
// receive interrupt routine -> Tx data 

void eraseConnectLog(void);

// clear connections ready for next reading

int isItConnected(int,int);

// Return 1 if current pin is connected already, else 0

void scanPorts(int,int);

// Find and log connections to current pin

void delay(void);

int connectLog[11][12][2];      // [pin tested] [pin connected] [logNumber]

int debounceTimerFlag;


// enable (1)/disable (0) program execution

int TxByteCount=0;



// number of bytes to be Tx

unsigned char currentTxData[18];// holds the current connection data for Tx

int doNOTinterrupt=0;


// used when updating Tx string

#pragma INTERRUPT getContactData

#pragma INTERRUPT debounceDelay

#pragma INTERRUPT transmitConnections

void main(void)

{


initProgramTimers();


initPort();


// Turn off pull-up resistors for ports 0 and 2


initUART1();

// Setup serial communications


ta0s = 1;

// start program timer : timerA0


while (1);

// endless loop

}

void getContactData(void)

{


int currentPin;

// current pin being tested

    int logNumber;

// Identifies the connectLog being used


asm("fset I");

// enable interrupts


for (logNumber=0;logNumber < 2; logNumber++)

// Determines which connectLog is being used


{


    for (currentPin = 0; currentPin < 11; currentPin++)
// For all but the last pin


    {



    if (isItConnected(currentPin, logNumber) == 0)

// If current pin not logged as already connected



    {




    scanPorts(currentPin, logNumber);


// Find and log connections to current pin



    }


    }



if (logNumber == 0)



// If this is the first test



{




debounceTimerFlag = 0;




ta1s = 1;




// Start debounce timer : timerA1




while (debounceTimerFlag == 0);   // wait until timer finishes



}


}
// end logNumber loop


if (compareLogs() == 1)

// If samples are the same


{



updateConnections();


// update the data


}


eraseConnectLog();



// erase data so connectLog is ready for next sampling period

}

void initPort(void)

{


pu00 = 0;

// no pull-up for P0_0 to P0_3


pu01 = 0;

// no pull-up for P0_4 to P0_7


pu04 = 0;

// no pull-up for P2_0 to P2_3


pu05 = 0;

// no pull-up for P2_4 to P2_7

}

void debounceDelay(void)

{


asm("fset I");

// enable interrupts


ta1s = 0;


// stop timerA1


debounceTimerFlag = 1;

// Let program continue execution

}

int isItConnected(int currentPin, int logNumber)

{


int isConnectedFlag = 0;


int pinNumber;


for (pinNumber = 0; pinNumber < currentPin; pinNumber++)   // cycle through all pins tested


{



if (connectLog[pinNumber][currentPin][logNumber] == 1)

// if pin is already connected



{




isConnectedFlag = 1;


//  set isConnected



}


}


return isConnectedFlag;

}


void scanPorts (int currentPin, int logNumber)

// writes current pin high and logs connected pins

{


unsigned char port0, port2;


switch (currentPin)


{


case 0:
pd0 = 0x01;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x00;

// Set port 2 direction, 1 output, 0 input




p0 = 0x01;

// write L Pinky HIGH




delay();

// inhibit induced voltage due to switching




port0 = p0 & 0x3E;
// masking to read p0_1 to p0_5




port2 = p2 & 0x3F;
// masking to read p2_0 to p2_5




break;


case 1: pd0 = 0x02;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x00;

// Set port 2 direction, 1 output, 0 input




p0 = 0x02;

// write L Ring HIGH




delay();

// inhibit induced voltage due to switching




port0 = p0 & 0x3C;
// masking to read p0_2 to p0_5




port2 = p2 & 0x3F;
// masking to read p2_0 to p2_5 




break;


case 2: pd0 = 0x04;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x00;

// Set port 2 direction, 1 output, 0 input




p0 = 0x04;

// write L Middle HIGH




delay();

// inhibit induced voltage due to switching




port0 = p0 & 0x38;
// masking to read p0_3 to p0_5s




port2 = p2 & 0x3F;
// masking to read p2_0 to p2_5 




break;


case 3: pd0 = 0x08;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x00;

// Set port 2 direction, 1 output, 0 input




p0 = 0x08;

// write L Index HIGH




delay();

// inhibit induced voltage due to switching




port0 = p0 & 0x30; // masking to read p0_4 and p0_5




port2 = p2 & 0x3F;
// masking to read p2_0 to p2_5 




break;


case 4: pd0 = 0x10;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x00;

// Set port 2 direction, 1 output, 0 input




p0 = 0x10;

// write L Thumb HIGH




delay();

// inhibit induced voltage due to switching




port0 = p0 & 0x20;
// masking to read p0_5




port2 = p2 & 0x3F;
// masking to read p2_0 to p2_5 




break;


case 5: pd0 = 0x20;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x00;

// Set port 2 direction, 1 output, 0 input




p0 = 0x20;

// write L Palm HIGH




delay();

// inhibit induced voltage due to switching




port0 = 0x00;
// no data required




port2 = p2 & 0x3F;
// masking to read p2_0 to p2_5 




break;


case 6: pd0 = 0x00;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x01;

// Set port 2 direction, 1 output, 0 input




p2 = 0x01;

// write R Palm HIGH




delay();

// inhibit induced voltage due to switching




port0 = 0x00;
// no data required




port2 = p2 & 0x3E;
// masking to read p2_1 to p2_5




break;


case 7: pd0 = 0x00;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x02;

// Set port 2 direction, 1 output, 0 input




p2 = 0x02;

// write R Thunb HIGH




delay();

// inhibit induced voltage due to switching




port0 = 0x00;
// no data required




port2 = p2 & 0x3C;
// masking to read p2_2 to p2_5




break;


case 8: pd0 = 0x00;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x04;

// Set port 2 direction, 1 output, 0 input




p2 = 0x04;

// write R Index HIGH




delay();

// inhibit induced voltage due to switching




port0 = 0x00;
// no data required




port2 = p2 & 0x38;
// masking to read p2_3 to p2_5




break;


case 9: pd0 = 0x00;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x08;

// Set port 2 direction, 1 output, 0 input




p2 = 0x08;

// write R Middle HIGH




delay();

// inhibit induced voltage due to switching




port0 = 0x00;
// no data required




port2 = p2 & 0x30;
// masking to read p2_4 and p2_5




break;


case 10:pd0 = 0x00;

// Set port 0 direction, 1 output, 0 input




pd2 = 0x10;

// Set port 2 direction, 1 output, 0 input




p2 = 0x10;

// write R Ring HIGH




delay();

// inhibit induced voltage due to switching




port0 = 0x00;
// no data required




port2 = p2 & 0x20;
// masking to read p2_5




break;


// case 11 -> pin 12, if connected would already be logged


}


pd0 = 0;
// set port 0 to input for protection


pd2 = 0;
// set port 2 to input for protection


// pin p0_0 is first tested (L Pinky) and is not connected to it's self


if ((port0 & 0x02) == 0x02)

// if pin p0_1 was read HIGH, L Ring


{



connectLog[currentPin][1][logNumber] = 1;
// record pin 1 connected


}


if ((port0 & 0x04) == 0x04)

// if pin p0_2 was read HIGH, L Middle


{



connectLog[currentPin][2][logNumber] = 1;
// record pin 2 connected


}


if ((port0 & 0x08) == 0x08)

// if pin p0_3 was read HIGH, L Index


{



connectLog[currentPin][3][logNumber] = 1;
// record pin 3 connected


}


if ((port0 & 0x10) == 0x10)

// if pin p0_4 was read HIGH, L Thumb


{



connectLog[currentPin][4][logNumber] = 1;
// record pin 4 connected


}


if ((port0 & 0x20) == 0x20)

// if pin p0_5 was read HIGH, L Palm


{



connectLog[currentPin][5][logNumber] = 1;
// record pin 5 connected


}


if ((port2 & 0x01) == 0x01)

// if pin p2_0 was read HIGH, R Palm


{



connectLog[currentPin][6][logNumber] = 1;
// record pin 6 connected


}


if ((port2 & 0x02) == 0x02)

// if pin p2_1 was read HIGH, R Thumb


{



connectLog[currentPin][7][logNumber] = 1;
// record pin 7 connected


}


if ((port2 & 0x04) == 0x04)

// if pin p2_2 was read HIGH, R Index


{



connectLog[currentPin][8][logNumber] = 1;
// record pin 8 connected


}


if ((port2 & 0x08) == 0x08)

// if pin p2_3 was read HIGH, R Middle


{



connectLog[currentPin][9][logNumber] = 1;
// record pin 9 connected


}


if ((port2 & 0x10) == 0x10)

// if pin p2_4 was read HIGH, R Ring


{



connectLog[currentPin][10][logNumber] = 1;
// record pin 10 connected


}


if ((port2 & 0x20) == 0x20)

// if pin p2_5 was read HIGH, R Pinky


{



connectLog[currentPin][11][logNumber] = 1;
// record pin 11 connected


}

}

int compareLogs(void)

{


int testedPin, connectedTo, samplesAreSameFlag = 1;


for (testedPin = 0; testedPin < 11; testedPin++)
// for all pins 


{



for (connectedTo = 0; connectedTo < 12; connectedTo++)
// for all connections



{




if (connectLog[testedPin][connectedTo][0] != connectLog[testedPin][connectedTo][1])
// if logs are NOT the same




{





samplesAreSameFlag = 0;
// clear flag to note difference in samples




}



}


}
// end of equivalency check


return samplesAreSameFlag;
// returns 1 if samples are the same, else 0

}

void delay(void)

{


int count;


for (count = 0; count < 1500; count++);

}

void updateConnections(void)

{


unsigned char tempChar[18];


int testedPin, connectedTo, isConnectedFlag, tempInt, charCount, count, checkSum=0;


tempChar[0] = 0x00;

// upper byte of STX


tempChar[1] = 0x40;

// lower byte of STX


charCount = 2;


// charCount ready for next two bytes


for (testedPin = 0; testedPin < 11; testedPin++)


{



tempInt = 0x0000;



isConnectedFlag = 0;



switch (testedPin)



{



case 0:




tempInt |= 0x2000;
// set bit 14 high -> L pinky




break;



case 1:




tempInt |= 0x1000;
// set bit 13 high -> L ring




break;



case 2:




tempInt |= 0x0800;
// set bit 12 high -> L middle




break;



case 3:




tempInt |= 0x0400;
// set bit 11 high -> L index




break;



case 4:




tempInt |= 0x0200;
// set bit 10 high -> L thumb




break;



case 5:




tempInt |= 0x0100;
// set bit 9 high -> L palm




break;



case 6:




tempInt |= 0x0020;
// set bit 6 high -> R palm




break;



case 7:




tempInt |= 0x0010;
// set bit 5 high -> R thumb




break;



case 8: 




tempInt |= 0x0008;
// set bit 4 high -> R index




break;



case 9:




tempInt |= 0x0004;
// set bit 3 high -> R middle




break;



case 10:




tempInt |= 0x0002;
// set bit 2 high -> R ring




break;



// case 11: If R pinky connected, is already accounted for



}
// end testedPin switch



for (connectedTo = testedPin+1; connectedTo < 12; connectedTo++)



{




if (connectLog[testedPin][connectedTo][0]==1)




{





switch (connectedTo)





{





// case 0: L pinky, already set by tested pin





case 1:






tempInt |= 0x1000;
// set bit 14 high -> L ring






isConnectedFlag = 1;






break;





case 2:






tempInt |= 0x0800;
// set bit 13 high -> L middle






isConnectedFlag = 1;






break;





case 3:






tempInt |= 0x0400;
// set bit 12 high -> L index






isConnectedFlag = 1;






break;





case 4:






tempInt |= 0x0200;
// set bit 11 high -> L thumb






isConnectedFlag = 1;






break;





case 5:






tempInt |= 0x0100;
// set bit 10 high -> L palm






isConnectedFlag = 1;






break;





case 6:






tempInt |= 0x0020;
// set bit 9 high -> R palm






isConnectedFlag = 1;






break;





case 7:






tempInt |= 0x0010;
// set bit 8 high -> R thumb






isConnectedFlag = 1;






break;





case 8:






tempInt |= 0x0008;
// set bit 7 high -> R index






isConnectedFlag = 1;






break;





case 9:






tempInt |= 0x0004;
// set bit 6 high -> R middle






isConnectedFlag = 1;






break;





case 10:






tempInt |= 0x0002;
// set bit 5 high -> R ring






isConnectedFlag = 1;






break;





case 11:






tempInt |= 0x0001;
// set bit 4 high -> R pinky






isConnectedFlag = 1;






break;





}
// end connectedTo switch




}
// end if statement



}
// end connectedTo FOR loop



if (isConnectedFlag==1)
// if these is one or more connections



{




tempChar[charCount] = (tempInt & 0xFF00) >> 8;
// upper byte of tempInt




charCount++;




tempChar[charCount] = (tempInt & 0x00FF);
// lower byte of tempInt




charCount++;




checkSum = checkSum + tempInt;

// increment checkSum with tempInt




// note if there are no connections, checkSum = 0x0000



}


}
// end testedPin FOR loop


tempChar[charCount] = 0x40;

// upper byte of ETX


charCount++;


tempChar[charCount] = 0x00;

// lower byte of ETX


charCount++;


tempChar[charCount] = (checkSum & 0xFF00) >> 8; // upper byte of checkSum


charCount++;


tempChar[charCount] = (checkSum & 0x00FF);
// lower byte of checkSum


charCount++;


doNOTinterrupt=1;  // disable Tx interrupt while updating Tx data


for (count = 0; count < charCount; count++)


{



currentTxData[count] = tempChar[count];
// update currentTxData


}


TxByteCount = charCount;
// update number of bytes to Tx


if(doNOTinterrupt)



doNOTinterrupt=0;
// not interrupt occured, enable interrupt 


else



s1ric = 0x0B;

// interrupt occured -> request interrupt

}

void transmitConnections(void)

{


char Rx;


int count, byte;


asm("fset I");
// enable interrupts


s1ric = 0x03;
// clear interrupt request


if(doNOTinterrupt)



doNOTinterrupt=0;


else


{



while (u1c1 & 0x08 == 0x08)



{




Rx = u1rbl;
// read Rx data



}



u1c1 = 0x01;


// enable Tx



for (count = 0; count < 1500; count++);
// wait for Tx enable to propagate



for (byte=0; byte < TxByteCount; byte++)



{




while (!(u1c1 & 0x02));
// Wait while data is present in transmit buffer




for (count = 0; count < 7500; count++); // wait for PC recieve buffer to empty

    

u1tbl = currentTxData[byte];
// write data to UART1 transmit buffer



}



u1c1 = 0x04;

// enable Rx


}
// end else

}

void eraseConnectLog(void)

{


int testedPin, connectedTo;


for (testedPin = 0; testedPin < 11; testedPin++)
// for all pins 


{



for (connectedTo = 0; connectedTo < 12; connectedTo++)
// for all connections



{




connectLog[testedPin][connectedTo][0] = 0;
// erase log




connectLog[testedPin][connectedTo][1] = 0;
// erase log





}


}
// end of erasing

}

void initProgramTimers(void)

{

    
ta0mr = 0x80;       // XX0X XX00 

                            // |||| |||+- must always be 0 in timer mode

                            // |||| ||+-- must always be 0 in timer mode

                            // |||| |+--- 0: pulse is not output at pin TA0out

                            // |||| |     1: pulse is output at pin TA0out

                            // |||| |        TA0out is automatically  output

                            // |||| +---- 0: gate function: timer counts only 

                            // ||||          when TA0in is held "L"

                            // ||||       1: gate function: timer counts only

                            // ||||          when TA0in is held "H"

                            // |||+------ 0: gate function not available

                            // |||        1: gate function available

                            // ||+------- must always be 0 in timer mode

                            // |+-------- count source select bits:

                            // +--------- count source select bits:

                            //            00:  f1

                            //            01:  f8

                            //            10:  f32

                            //            11:  fc32



ta1mr = 0x80;

    
ta0 = 0x208D;

// Set program execution to 60Hz



ta1 = 0x0C35;

// Set debounce timer to 6.25ms



ta0ic = 0x01;           // ---- XXXX

                            //      ||||

                            //      |||+-- Interupt priority level select bit

                            //      ||+--- Interupt priority level select bit

                            //      |+---- Interupt priority level select bit

                            //      |      000: Level 0 (interrupt disabled)

                            //      |      001: Level 1

                            //      |      010: Level 2

                            //      |      011: Level 3

                            //      |      100: Level 4

                            //      |      101: Level 5

                            //      |      110: Level 6

                            //      |      111: Level 7

                            //      +----- Interupt request bit 

                            //             0: Interrupt not requested

                            //             1: Interrupt requested



ta1ic = 0x02;
// higher level than timerA0 because it occurs within timerA0 interupt function

}

void initUART1(void)

{

    // Setting UART1 transmit/receive mode register (UART mode)

    u1mr = 0x05;            // XXXX XXXX 

                            // |||| |||+- uart mode

                            // |||| ||+-- uart mode

                            // |||| |+--- uart mode

                            // |||| |     100: 7 bit data

                            // |||| |     101: 8 bit data 

                            // |||| |     110: 9 bit data

                            // |||| +---- Internal/external clock select bit 

                            // ||||       0: Internal clock 

                            // ||||       1: External clock

                            // |||+------ Stop bit length select bit

                            // |||        0: One stop bit 

                            // |||        1: Two stop bit

                            // ||+------- Odd/even parity select bit

                            // ||         Valid when bit 6 = 1

                            // ||         0: Odd parity 

                            // ||         1: Even parity

                            // |+-------- Parity enable bit

                            // |          0: Parity disabled

                            // |          1: Parity enabled

                            // +--------- Sleep select bit

                            //            0: Sleep mode deselected

                            //            1: Sleep mode selected

    // Setting UART1 transmit/receive control register 0 (UART mode)

    u1c0 = 0x10;            // 00XX XXXX 

                            // |||| |||+- BRG count source select bit

                            // |||| ||+-- BRG count source select bit

                            // |||| ||    00: f1 is selected    

                            // |||| ||    01: f8 is selected    

                            // |||| ||    10: f32 is selected    

                            // |||| ||    11: inhibited    

                            // |||| |+--- /CTS//RTS function select bit

                            // |||| |     (Valid when bit 4 ='0')

                            // |||| |     0: /CTS function is selected

                            // |||| |     1: /RTS function is selected

                            // |||| +---- Transmit register empty flag 

                            // ||||       0: Data present in transmit register 

                            // ||||          (during transmission)

                            // ||||       1: No Data present in transmit register

                            // ||||          (transmission completed)

                            // |||+------ /CTS//RTS disable bit

                            // |||        0: /CTS//RTS function enabled

                            // |||        1: /CTS//RTS function disabled

                            // ||+------- Data output select bit

                            // ||         0: TxD0 pin is CMOS output

                            // ||         1: TxD0 pin is N-channel open-drain 

                            // ||            output

                            // |+-------- Must be fixed to '0'

                            // +--------- Must be fixed to '0'

    // Setting UART1 transmit/receive control register 1 (UART mode)

    u1c1 = 0x04;            // ---- X1X1 

                            //      |||+- Transmit enable bit

                            //      |||   0: Transmission disabled

                            //      |||   1: Transmission enabled 




    //
    ||+-- Transmit buffer empty flag




    //
    ||
0: Data present in transmit buffer register




    //
    ||
1: No data present in transmit buffer register

                            //      |+--- Receive enable bit

                            //      |     0: Reception disabled

                            //      |     1: Reception enabled

                            //      +---- Receive complete flag

                            //            0: No data present in receive buffer

                            //            1: Data present in receive buffer

    // Setting UART1 transmit/receive control register 2 (UART mode)

    ucon |= 0x00;           // -X0- --XX 








//
||    |+- UART0 transmit interrupt cause select bit

                            //  ||    +-  UART1 transmit interrupt cause select bit

                            //  ||        0: Transmit buffer empty (TI=1)

                            //  ||        1: Transmission completed (TXEPT=1)

                            //  |+------- Must be fixed to '0'

                            //  +-------- Separate /CTS//RTS bit

                            //            0: /CTS//RTS shared pin

                            //            1: /CTS//RTS separate pin


// Setting UART1 receive interrupt control regiser. Note highest priority.


s1ric = 0x03;           // ---- XXXX

                            //      ||||

                            //      |||+-- Interupt priority level select bit

                            //      ||+--- Interupt priority level select bit

                            //      |+---- Interupt priority level select bit

                            //      |      000: Level 0 (interrupt disabled)

                            //      |      001: Level 1

                            //      |      010: Level 2

                            //      |      011: Level 3

                            //      |      100: Level 4

                            //      |      101: Level 5

                            //      |      110: Level 6

                            //      |      111: Level 7

                            //      +----- Interupt request bit 

                            //             0: Interrupt not requested

                            //             1: Interrupt requested

    // Setting UART1 bit rate generator for 9600 baud (UART mode)

    u1brg = 0x67;           // REMARKS: U1BRG=(Xin/(16*clock_select*Baud))-1

                            // For example:                

                            // Xin = 16MHz                 

                            // clock_select = 1 (source=f1)

                            // Baud = 9600 Baud rate




    // =>  u1brg = 103d = 0x67 (actual baud = 9615)

} 

E APPENDIX

In this Appendix, below is the listing of the two files associated with the ‘wrapper’, written for the sign recognition algorithm. The first listing is of the C++ source file; C_P5_Wrapper.cpp, and the second is the header file; C_P5_Wrapper.h.

#include "stdafx.h"

#include "c_p5Wrapper.h"

#include "P5dll.h"

/**********************************************/

// C extentions for c source implementation

/**********************************************/

CP5DLL p5;

p5Datatype p5Data;

P5BOOL C_P5_Init()

{


return p5.P5_Init();

}

P5BOOL C_P5_GetMouseState(int P5Id)

{


return p5.P5_GetMouseState(P5Id);

}

void C_P5_SetMouseState(int P5Id, P5BOOL state)

{


p5.P5_SetMouseState(P5Id, state);

}

void C_P5_SaveBendSensors(int P5Id)

{


p5.P5_SaveBendSensors(P5Id);

}

void C_P5_CalibrateBendSensors(int P5Id)

{


p5.P5_CalibrateBendSensors(P5Id);

}

void C_P5_CalibratePositionData(int P5Id)

{


p5.P5_CalibratePositionData(P5Id);

}

void C_P5_GetClickSensitivity(int P5Id, int *leftclick, int *rightclick, int *middleclick)

{


p5.P5_GetClickSensitivity(P5Id, leftclick, rightclick, middleclick);

}

void C_P5_SetClickSensitivity(int P5Id, unsigned char leftvalue, unsigned char rightvalue, unsigned char middlevalue)

{


p5.P5_SetClickSensitivity(P5Id, leftvalue, rightvalue, middlevalue);

}

P5BOOL C_P5_GetLastError(int *P5Id, int *ErrorCode)

{


return p5.P5_GetLastError(P5Id, ErrorCode);

}

void   C_P5_Close()

{


p5.P5_Close();

}

void C_GetData()

{


p5Data.x = p5.m_P5Devices->m_fx;


p5Data.y = p5.m_P5Devices->m_fy;


p5Data.z = p5.m_P5Devices->m_fz;


p5Data.roll = p5.m_P5Devices->m_froll;


p5Data.pitch = p5.m_P5Devices->m_fpitch;


p5Data.yaw = p5.m_P5Devices->m_fyaw;


p5Data.buttons[0] = p5.m_P5Devices->m_byButtons[0];   // A


p5Data.buttons[1] = p5.m_P5Devices->m_byButtons[1];   // B


p5Data.buttons[2] = p5.m_P5Devices->m_byButtons[2];   // C


p5Data.buttons[3] = p5.m_P5Devices->m_byButtons[3];   // ON/OFF


p5Data.bend[0] = p5.m_P5Devices->m_byBendSensor_Data[0];  // thumb


p5Data.bend[1] = p5.m_P5Devices->m_byBendSensor_Data[1];  // index


p5Data.bend[2] = p5.m_P5Devices->m_byBendSensor_Data[2];  // middle


p5Data.bend[3] = p5.m_P5Devices->m_byBendSensor_Data[3];  // ring


p5Data.bend[4] = p5.m_P5Devices->m_byBendSensor_Data[4];  // pinky

}

The following code is the listing of C_P5_Wrapper.h;

#ifndef _C_P5WRAPPER_H_

#define _C_P5WRAPPER_H_

typedef struct c_p5

{


float x ,y, z;



// x,y,z position data


float yaw, pitch, roll;

// other orientation data


unsigned char bend[5];
    // All the bend sensor data


unsigned char buttons[4];


    // P5 Button data

}p5Datatype;

extern p5Datatype p5Data;

#ifdef __cplusplus

#define P5BOOL
unsigned int

extern "C" P5BOOL  C_P5_Init();

extern "C" P5BOOL  C_P5_GetMouseState(int P5Id);

extern "C" void    C_P5_SetMouseState(int P5Id, P5BOOL state);

extern "C" void    C_P5_GetClickSensitivity(int P5Id, int  *leftclick, int *rightclick, int *middleclick);

extern "C" void    C_P5_SaveBendSensors(int P5Id);

extern "C" void    C_P5_CalibrateBendSensors(int P5Id);

extern "C" void    C_P5_CalibratePositionData(int P5Id);

extern "C" void    C_P5_SetClickSensitivity(int P5Id, unsigned char value);

extern "C" P5BOOL  C_P5_GetLastError(int P5Id, int *ErrorCode);

extern "C" void    C_P5_Close();

extern "C" void    C_GetData();

#else

BOOL C_P5_Init();

BOOL C_P5_GetMouseState(int P5Id);

void C_P5_SetMouseState(int P5Id, P5BOOL state);

void C_P5_GetClickSensitivity(int P5Id, int *leftclick, int *rightclick, int *middleclick);

void C_P5_SaveBendSensors(int P5Id);

void C_P5_CalibrateBendSensors(int P5Id);

void C_P5_CalibratePositionData(int P5Id);

void C_P5_SetClickSensitivity(int P5Id, unsigned char value);

BOOL  C_P5_GetLastError(int P5Id, int *ErrorCode);

void C_P5_Close();

void C_GetData();

#endif

#endif

F APPENDIX

The following code is the listing of the sign recognition algorithm;

// sign_recognition.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

#define lengthStopBuffer 3
// number of averaged comparisoms

#define lengthMoveBuffer 30 // integer multiple of lengthStopBuffer

#define xyzMargin 75

// variance allowed from first data point

#define rpyMargin 75

// variance allowed from first data point

#define bendMargin 4

// variance allowed from first data point

#define timeOut 500


// serial comms time out before repeat request

#define bodyLocations 2

// number of primary locations

#define Xratio 7


// factor xyzMargin multiplied by

#define Yratio 3

#define Zratio 3

#define moveRatio 3


// multiply xyzMargin -> error sphere

#define minTravel 150

// dist. away from origin after move

#define moveError 20

// allowance for softer rate of increase/decrease

#define zBias 0.6


// allows for smaller movement in z axis

#define STX 0x0040
// start of Tx

#define ETX 0x4000
// end of Tx

#define LP
0x2000
// left pinky finger

#define LR
0x1000
// left ring finger

#define LM 0x0800
// left middle finger

#define LI
0x0400
// left index finger

#define LT
0x0200
// left thumb

#define LPm 0x0100
// left palm

#define RPm 0x0020
// right palm

#define RT
0x0010
// right thumb

#define RI
0x0008
// right index finger

#define RM  0x0004
// right middle finger

#define RR
0x0002
// right ring finger

#define RP
0x0001
// right pinky finger

void getConnections(void);

int dataNotReady(void);

int connectLogic(int);

int IDhandshape(void);

void detectSign(void);

int stopped(void);

int notTimeOut(void);

int IDmovement(void);

int position(int);

void connectionTranslator(void);

void handshapeTranslator(int);

void movementTranslator(int);

void e(int);

// filters for the different types of movement

int fingersIncDecInc(void);

int leftToRight(void);

int towardBody(void);

int awayRightDown(void);

int down(void);

int awayRightUp(void);

int rollWrists(void);

int RxChar;

int connections[6], numberOfConnections, notTimedOut;

unsigned long int maxTime;
// serial comms timeout variable

float SB[17][lengthStopBuffer];
// Stop Buffer

float MB[17][lengthMoveBuffer]; // movement buffer

float location[bodyLocations][3]; // xyz coords of primary contact

char locationName[bodyLocations][20] = {"HEAD\0","CHEST\0"}; 

int main(int argc, char* argv[])

{


if((SioReset(COM1,1024,1024)<0) || (SioBaud(COM1,9600)<0) || (SioParms(COM1,WSC_NoParity,WSC_OneStopBit,WSC_WordLength8)<0))


{



printf("COM1 for Contact sensors NOT setup\n\n");



return 0;


}


if(C_P5_Init()!=1)


// true if P5 NOT found


{



printf("P5 NOT DETECTED\n\n");



return 0;


}


else

// BEGIN TESTING FOR SIGNS


{  



C_P5_SetMouseState(0, 0);      // 0 disables, 1 enables



position(1);
// identify primary positions



while((p5Data.buttons[1]==0) || (p5Data.buttons[2]==0))



{




system("CLS");




printf("Press: A button for diagnostics\n\n");




printf("       B button for SIGN RECOGNITION\n\n");




printf("NOTE: Press C button to EXIT subprograms\n\n");




printf("            B and C button to EXIT program\n\n");




while((p5Data.buttons[0]==0) && (p5Data.buttons[1]==0))





C_GetData();




if(p5Data.buttons[0])
// A pressed




{





while(p5Data.buttons[0])






C_GetData();





system("CLS");





printf("Press: A button for finger connections\n\n");





printf("       B button for handshapes and movement\n\n");





while((p5Data.buttons[0]==0) && (p5Data.buttons[1]==0))






C_GetData();





if(p5Data.buttons[0])
// A button was high





{






system("CLS");






printf("Finger connections diagnostic program\n\n");






while(p5Data.buttons[2]==0)

// until button A pressed






{







C_GetData();







getConnections();

// get contact sensor data







connectionTranslator();

// translate connections






}





}





else




// B button was high





{






while(p5Data.buttons[1])







C_GetData();






system("CLS");






printf("Press: A button for handshapes\n\n");






printf("       B button for movement\n\n");






while((p5Data.buttons[0]==0) && (p5Data.buttons[1]==0))







C_GetData();






if(p5Data.buttons[0]==1)






{







system("CLS");







printf("HANDSHAPE diagnostics program\n\n");







while(p5Data.buttons[2]==0)

// until button C pressed







{









handshapeTranslator(IDhandshape());








while(stopped());







}






}






else






{







system("CLS");







printf("MOVEMENT diagnostics program\n\n");







while(p5Data.buttons[2]==0)

// until button C pressed







{








while(stopped());








movementTranslator(IDmovement()); 







}






}





}




}




else





// B pressed




{





system("CLS");





printf("SIGN RECOGNITION program\n\n");





while(p5Data.buttons[2]==0)

// until button A pressed






detectSign();




}



}


}






// end testing for sign

    C_P5_Close();

// close P5 link


SioDone(COM1);

// close COM1


return (0);

}

int notTimeOut(void)

{


if(timeGetTime() < maxTime)



notTimedOut = 1;


else 



notTimedOut = 0;


return notTimedOut;

}

int dataNotReady(void)

{


RxChar = SioGetc(COM1);


if(RxChar < 0)



return 1;
// data not ready 


else



return 0;
// data ready

}

void getConnections(void)

{


int checkSum=0,temp=0, count, dataReadyFlag=0;


char blah;


while(dataReadyFlag==0)


{



maxTime = timeGetTime() + timeOut;



SioPutc(COM1,'S');
// poll M16C/62 for contact sensor data



while((temp!=STX) && notTimeOut())
// until STX is received



{




temp = 0;




while(dataNotReady() && notTimeOut()); // wait until char received




if(notTimedOut)





temp = RxChar << 8; //SioGetc(COM1) << 8;// upper byte




while(dataNotReady() && notTimeOut()); // wait until char received




if(notTimedOut)





temp |= RxChar; //SioGetc(COM1);
// lower byte ORed to upper



}



numberOfConnections = 0;



while((temp!=ETX) && notTimeOut())
// until ETX is recieved



{




temp = 0;




while(dataNotReady() && notTimeOut()); // wait until char received




if(notTimedOut)





temp = RxChar << 8;//SioGetc(COM1) << 8;

// upper byte




while(dataNotReady() && notTimeOut()); // wait until char received




if(notTimedOut)




{





temp |= RxChar;//SioGetc(COM1);
// lower byte ORed to upper





if(temp!=ETX)





{






connections[numberOfConnections] = temp;






numberOfConnections++;





}




}



}



while(dataNotReady() && notTimeOut()); // wait until char received



if(notTimedOut)




checkSum = RxChar << 8;//SioGetc(COM1) << 8;

// upper byte



while(dataNotReady() && notTimeOut()); // wait until char received



if(notTimedOut)



{




checkSum |= RxChar;//SioGetc(COM1);
// lower byte




temp = 0;




for(count = 0; count < numberOfConnections; count++)





temp = temp + connections[count];  // add all integer values of connections 




if(temp == checkSum)





dataReadyFlag = 1;



}



if(notTimedOut == 0)



{




printf("error in packet: routine TIMED OUT\n");




scanf("%c",&blah);



}


}

}

// Determines if hand approx. stopped. This doubles as debouncing.

int stopped(void)

{


int count, stoppedFlag = 1;


for(count=0; count<lengthStopBuffer; count++)


{



getConnections();

// get contact sensor data



C_GetData();


// get P5 glove data



SB[0][count]=p5Data.x;



SB[1][count]=p5Data.y;



SB[2][count]=p5Data.z;



SB[3][count]=p5Data.roll;



SB[4][count]=p5Data.pitch;



SB[5][count]=p5Data.yaw;

// all buffering for stop



SB[6][count]=(float)connections[0];



SB[7][count]=(float)connections[1];



SB[8][count]=(float)connections[2];



SB[9][count]=(float)connections[3];
  // (float): type casting



SB[10][count]=(float)connections[4];



SB[11][count]=(float)connections[5];



SB[12][count]=p5Data.bend[0];



SB[13][count]=p5Data.bend[1];



SB[14][count]=p5Data.bend[2];



SB[15][count]=p5Data.bend[3];



SB[16][count]=p5Data.bend[4];


}
// end count


for(count=1; count<lengthStopBuffer; count++)


{



if((SB[0][count]<SB[0][0]-xyzMargin) || (SB[0][count]>SB[0][0]+xyzMargin) || (SB[1][count]<SB[1][0]-xyzMargin) || (SB[1][count]>SB[1][0]+xyzMargin) || (SB[2][count]<SB[2][0]-xyzMargin) || (SB[2][count]>SB[2][0]+xyzMargin) || (SB[3][count]<SB[3][0]-rpyMargin) || (SB[3][count]>SB[3][0]+rpyMargin) || (SB[4][count]<SB[4][0]-rpyMargin) || (SB[4][count]>SB[4][0]+rpyMargin) || (SB[5][count]<SB[5][0]-rpyMargin) || (SB[5][count]>SB[5][0]+rpyMargin) || (SB[6][count]!=SB[6][0]) || (SB[7][count]!=SB[7][0]) || (SB[8][count]!=SB[8][0]) || (SB[9][count]!=SB[9][0]) || (SB[10][count]!=SB[10][0]) || (SB[11][count]!=SB[11][0]) || (SB[12][count]<SB[12][0]-bendMargin) || (SB[12][count]>SB[12][0]+bendMargin) || (SB[13][count]<SB[13][0]-bendMargin) || (SB[13][count]>SB[13][0]+bendMargin) || (SB[14][count]<SB[14][0]-bendMargin) || (SB[14][count]>SB[14][0]+bendMargin) || (SB[15][count]<SB[15][0]-bendMargin) || (SB[15][count]>SB[15][0]+bendMargin) || (SB[16][count]<SB[16][0]-bendMargin) || (SB[16][count]>SB[16][0]+bendMargin))




stoppedFlag = 0;
// hand(s) NOT approximately stopped


}


return stoppedFlag;

}

void detectSign(void)

{



int initPosition, finPosition, initHandshape=0, finHandshape, moveType;


while(stopped()==0);
// wait until stopped


initHandshape = IDhandshape();


// get handshape

//
handshapeTranslator(initHandshape);
//testing


if(initHandshape!=0)


{



initPosition = position(0);
// Primary position on body



if(0)
// signs for no movement



{}



else
// signs requiring mopvement



{




while(stopped());




moveType = IDmovement();



//
movementTranslator(moveType);
//testing




finHandshape = IDhandshape();




finPosition = position(0); // Primary position on body




// logic for signs with movement




if((initHandshape==17) && (moveType==1))





printf("welcome ");




else if((initHandshape==3) && (moveType==2))





printf("to ");




else if((initHandshape==28) && (moveType==3))





printf("my ");




else if((initHandshape==29) && (moveType==4))





printf("presentation ");




else if((initHandshape==3) && (moveType==3))





printf("I ");




else if((initHandshape==3) && (moveType==0) && (finHandshape==10))





printf("hope ");




else if((initHandshape==3) && (moveType==5))





printf("this/the ");




else if((initHandshape==28) && (moveType==6))





printf("proves ");




else if((initHandshape==23) && (moveType==7))





printf("concept ");



}
// end ELSE movement required


} // end IF handshape recognized

}
// end function

int IDmovement(void)

{


int count, element, position=0, stopCount, stopMax=3;


// note stopMax * 60 = X ms pause allowed in movement


do


{



for(count=0; count<=lengthStopBuffer; count++)



{




for(element=0; element<=17; element++)





MB[element][position+count]=SB[element][count];



}
// end FOR count



position = position + lengthStopBuffer;



stopCount=0;



while(stopped() && (stopCount<stopMax))
// omit slight pauses




stopCount++;


} while((stopCount<stopMax) && (position<lengthMoveBuffer));


while(position < lengthMoveBuffer)


{



for(element=0; element<=17; element++)




MB[element][position]=0;



position++;


}


// determine movement types


if(fingersIncDecInc())
// fingers bend, straighten, then bend



return 1;


else if(leftToRight()) // hand moves from left to right



return 2;


else if(towardBody())
// hand moves toward the body



return 3;


else if(rollWrists())
// wrists rolled from palms down to in



return 4;


else if(awayRightDown())  // hand moves away, to the right and down



return 5;


else if(down()) // hand moves down



return 6;


else if(awayRightUp())



return 7;


return 0;

}

int rollWrists(void)

{


int position=1, stage=0, stageMin=3, last=0, errorMargin=10, count=0;


while((position<=lengthMoveBuffer) && ((MB[3][position]!=0) || (MB[4][position]!=0)))


{



if((MB[3][position]<0) || (MB[3][position]<100)) // if palm up




count++;



if((stage<stageMin) && (MB[4][position]<MB[4][position-1]+errorMargin))



{




if(position==last+1)
// requires consecutive iteration





stage++;




else





stage=0;




last=position;




position++;



}



else if((stage>=stageMin) && (stage<2*stageMin) && (MB[3][position]>MB[3][position-1]-errorMargin))



{




if(position==last+1)
// requires consecutive iteration





stage++;




else





stage=stageMin;




last=position;




position++;



}



else if((stage==2*stageMin) && (count!=position))




return 1;
// passed stages and palm not alway up -> differentiate from fingersIncDecInc



else




position++;


}


return 0;

}

int awayRightUp(void)

{


int position=1;


while((position<=lengthMoveBuffer) && ((MB[0][position]!=0) || (MB[1][position]!=0) || (MB[2][position]!=0)))


{



if((MB[0][position]<MB[0][position-1]-moveError) || (MB[1][position]<MB[1][position-1]-moveError) || (MB[2][position]<MB[2][position-1]-moveError))




return 0;
// z not increasing or, x or y not approx stopped 



position++;


}


if((MB[0][position-1]-MB[0][0]>minTravel) && (MB[1][position-1]-MB[1][0]>minTravel) && (MB[2][position-1]-MB[2][0]>zBias*minTravel))



return 1;
// x, y and z moved outside the error sphere


else



return 0;

}

int down(void)

{


int position=1;


while((position<=lengthMoveBuffer) && ((MB[0][position]!=0) || (MB[1][position]!=0) || (MB[2][position]!=0)))


{



if((MB[0][position]<MB[0][0]-moveRatio*xyzMargin) || (MB[0][position]>MB[0][0]+moveRatio*xyzMargin) || (MB[2][position]<MB[2][0]-moveRatio*xyzMargin) || (MB[2][position]>MB[2][0]+moveRatio*xyzMargin) || (MB[1][position]>MB[1][position-1]+moveError))




return 0;
// z not increasing or, x or y not approx stopped 



position++;


}


if(MB[1][0]-MB[1][position-1]>minTravel)



return 1;
// y moved outside error sphere


else



return 0;

}

int awayRightDown(void)

{


int position=1;


while((position<=lengthMoveBuffer) && ((MB[0][position]!=0) || (MB[1][position]!=0) || (MB[2][position]!=0)))


{



if((MB[0][position]<MB[0][position-1]-moveError) || (MB[1][position]>MB[1][position-1]+moveError) || (MB[2][position]<MB[2][position-1]-moveError))




return 0;
// z not increasing or, x or y not approx stopped 



position++;


}


if((MB[0][position-1]-MB[0][0]>minTravel) && (MB[1][0]-MB[1][position-1]>minTravel) && (MB[2][position-1]-MB[2][0]>zBias*minTravel))



return 1;
// x, y and z moved outside error sphere


else



return 0;

}

int towardBody(void)

{


int position=1;


while((position<=lengthMoveBuffer) && ((MB[0][position]!=0) || (MB[1][position]!=0) || (MB[2][position]!=0)))


{



if((MB[0][position]<MB[0][0]-moveRatio*xyzMargin) || (MB[0][position]>MB[0][0]+moveRatio*xyzMargin) || (MB[1][position]<MB[1][0]-moveRatio*xyzMargin) || (MB[1][position]>MB[1][0]+moveRatio*xyzMargin) || (MB[2][position]>MB[2][position-1]+moveError))




return 0;
// z not increasing or, x or y not approx stopped 



position++;


}


if(MB[2][0]-MB[2][position-1]>zBias*minTravel)



return 1;
// z moved outside error sphere


else



return 0;

}

int leftToRight(void)

{


int position=1;


while((position<=lengthMoveBuffer) && ((MB[0][position]!=0) || (MB[1][position]!=0) || (MB[2][position]!=0)))


{



if((MB[1][position]<MB[1][0]-moveRatio*xyzMargin) || (MB[1][position]>MB[1][0]+moveRatio*xyzMargin) || (MB[2][position]<MB[2][0]-moveRatio*xyzMargin) || (MB[2][position]>MB[2][0]+moveRatio*xyzMargin) || (MB[0][position]<MB[0][position-1]-moveError))




return 0;
// x not increasing or, y or z not approx stopped 



position++;


}


if(MB[0][position-1]-MB[0][0]>minTravel)



return 1;
// x moved outside error sphere


else



return 0;

}

int fingersIncDecInc(void)

{


int element, count, stage1, stage2;


for(element=13; element<=16; element++) // for each finger


{



count=0, stage1=0, stage2=0;



while((count<lengthMoveBuffer) && ((MB[3][count]<0) || (MB[3][count]>100)))



{




if((stage2==0) && (MB[element][count+1]>MB[element][count]))




{





stage1 = 1;





count++;




}




else if((stage1==1) && (MB[element][count+1]<=MB[element][count]))




{





stage2 = 1;





count++;




}




else if((stage1==1) && (stage2==1) && (MB[element][count+1]>MB[element][count]))





return 1;




else





return 0;



}
// end WHILE count


} // end FOR element


return 0;

}

int position(int mode)

{


int count;


if(mode==1)

// record positions


{



for(count=0; count<bodyLocations; count++)



{




printf("Point to your %s and press A button\n\n", locationName[count]);




while(p5Data.buttons[0]==0)





C_GetData();




location[count][0] = p5Data.x;




location[count][1] = p5Data.y;

// location




location[count][2] = p5Data.z;




while(p5Data.buttons[0])
// wait till button depressed





C_GetData();



}


}


else


// identify positions


{



C_GetData();



for(count=0;count<bodyLocations; count++)



{




if((p5Data.x > location[count][0] - Xratio*xyzMargin) && (p5Data.x < location[count][0] + Xratio*xyzMargin) && (p5Data.y > location[count][1] - Yratio*xyzMargin) && (p5Data.y < location[count][1] + Yratio*xyzMargin) && (p5Data.z > location[count][2] - Zratio*xyzMargin) && (p5Data.z < location[count][2] + Zratio*xyzMargin))





return count;



}



return -1;
// neutral space


}


return 0;

}

int IDhandshape(void)

{


if(connectLogic(RT|RI|RM)) // T-I-M


{



if((SB[15][0] < 25) && (SB[16][0] < 25))




return 25; // old-seven



else if((SB[15][0] > 40) && (SB[16][0] > 40))



{




if((SB[13][0] > 40) && (SB[14][0] > 40))





return 1; // round




else if((SB[13][0] > 15) && (SB[13][0] < 40) && (SB[14][0] > 15) && (SB[14][0] < 40))





return 32; // salt



}


}



else if(connectLogic(RT|RI)) // T-I


{



if((SB[14][0] < 10) && (SB[15][0] < 10) && (SB[16][0] < 10))




return 2; // okay



else if((SB[14][0] > 40) && (SB[15][0] > 40) && (SB[16][0] > 40))




return 31; // write


}


else if((SB[14][0] > 40) && (SB[15][0] > 40)  && connectLogic(RT|RM|RR))


{



if(SB[16][0] > 40)



{




if(SB[13][0] < 10)





return 3; // point




else if((SB[13][0] > 10) && (SB[13][0] < 40))





return 4; // hook




else if(SB[13][0] > 40)





return 28; // fist



}



else if(SB[16][0] < 10)



{




if(SB[13][0] < 10)





return 37; // animal




else if(SB[13][0] > 40)





return 21; // bad



}


}


else if(connectLogic(RT|RM)) // T-M


{



if((SB[13][0] < 40) && (SB[15][0] < 40) && (SB[16][0] < 40) && (connectLogic(RM|RR)==0))




return 30; //flick



else if((SB[15][0] > 40) && (SB[16][0] > 40))



{




if(SB[13][0] < 10)





return 7; // perth




else if((SB[13][0] > 10) && (SB[13][0] < 40) && (SB[14][0] > 40))





return 23; // letter-c / small\n



}


}


else if(connectLogic(RT|RR|RP)) // T-R-P


{



if(connectLogic(RI|RM)) // I-M



{




if((SB[13][0] < 20) && (SB[14][0] < 20)) // I,M straight




{





if((SB[4][0] > -70) && (SB[4][0] < 0)) // pitch






return 9; //letter-n





else






return 8; // spoon




}




else if((SB[13][0] > 10) && (SB[13][0] < 30)) // I bent





return 10; // wish



}



else // I/M



{




if((SB[13][0] < 15) && (SB[14][0] < 25))





return 5; // two




else if((SB[13][0] > 15) && (SB[13][0] > 40) && (SB[14][0] > 15) && (SB[14][0] > 40))





return 6; // kneel




else if((SB[13][0] > 40) && (SB[15][0] > 40) && (SB[16][0] > 40))





return 34; // rude



}


}


else if((SB[13][0] < 20) && (SB[14][0] < 20) && (SB[15][0] < 20) && connectLogic(RT|RP)) // T-P


{



if(connectLogic(RI|RM|RR)) // I-M-R



{




if((SB[4][0] > -90) && (SB[4][0] < 0)) // pitch





return 13; // letter-m




else





return 12; // mother



}



else // I/M/R




return 11; // three


}


else if((SB[12][0] > 30) &&(SB[13][0] < 15) && (SB[14][0] < 15) && (SB[15][0] < 15) && (SB[16][0] < 15) && (connectLogic(RI|RM|RR|RP) == 0))



return 14; // four


else if(connectLogic(RI|RM|RR|RP)) // I-M-R-P


{



if((SB[12][0] < 40) && (SB[13][0] < 15) && (SB[14][0] < 15) && (SB[15][0] < 15) && (SB[16][0] < 15))




return 17; // flat



else if((SB[12][0] > 40) && (SB[13][0] > 40) && (SB[14][0] > 40) && (SB[15][0] > 40) && (SB[16][0] > 40))




return 18; // thick



else if((SB[13][0] > 15) && (SB[13][0] < 40) && (SB[14][0] > 15) && (SB[14][0] < 40) && (SB[15][0] > 15) && (SB[15][0] < 40) && (SB[16][0] > 15) && (SB[16][0] < 40))




return 19; // cup


}


else if((SB[12][0] < 5) && (SB[13][0] < 5) && (SB[14][0] < 5) && (SB[15][0] < 5) && (SB[16][0] < 5) && (connectLogic(RT|RI|RM|RR|RP) == 0))



return 15; // spread


else if((SB[13][0] > 10) && (SB[13][0] < 40) && (SB[14][0] > 10) && (SB[14][0] < 40) && (SB[15][0] > 10) && (SB[15][0] < 40) && (SB[16][0] > 10) && (SB[16][0] < 40) && (connectLogic(RT|RI|RM|RR|RP) == 0) && (connectLogic(RT|RP) == 0))



return 16; // ball


else if((SB[12][0] < 10) && (SB[13][0] > 40) && (SB[14][0] > 40) && (SB[15][0] > 40) && (SB[16][0] > 40))



return 20; // good


else if((SB[12][0] < 10) && (SB[13][0] < 10) && (SB[14][0] > 40) && (SB[15][0] > 40) && (SB[16][0] > 40))



return 22; // gun


else if((SB[12][0] < 10) && (SB[13][0] < 10) && (SB[14][0] < 10) && (SB[15][0] > 15) && (SB[16][0] > 15))



return 26; // eight


else if((SB[12][0] < 10) && (SB[13][0] < 10) && (SB[14][0] < 10) && (SB[15][0] < 10) && (SB[16][0] > 10))



return 27; // nine


else if((SB[12][0] < 10) && (SB[13][0] < 10) && (SB[14][0] > 10) && (SB[15][0] < 10) && (SB[16][0] < 10))



return 33; // middle


else if((SB[12][0] < 10) && (SB[13][0] > 40) && (SB[14][0] > 40) && (SB[15][0] > 40) && (SB[16][0] < 30))



return 35; // ambivalent


else if((SB[13][0] > 15) && (SB[13][0] < 40) && (SB[14][0] > 40) && (SB[15][0] > 40) && (SB[16][0] > 40) && (connectLogic(RT|RI) == 0))



return 29; // soon


else if((SB[12][0] < 10) && (SB[13][0] < 10) && (SB[14][0] > 40) &&(SB[15][0] > 40) && (SB[16][0] < 40) && (connectLogic(RT|RM|RR) == 0))



return 36; // love


return 0;

}

int connectLogic(int mask)

{


int current;


for(current = 0; current < numberOfConnections; current++)


{



if((connections[current] & mask) == mask)




return 1;


}


return 0;

}

void connectionTranslator(void)

{


int count, x;


char str[20]="";


for(count=0; count<numberOfConnections; count++)


{



strcpy(str, "");



x = connections[count];



if((x & LP)==LP)




strcat(str,"LP_");



if((x & LR)==LR)




strcat(str,"LR_");



if((x & LM)==LM)




strcat(str,"LM_");



if((x & LI)==LI)




strcat(str,"LI_");



if((x & LT)==LT)




strcat(str,"LT_");



if((x & LPm)==LPm)




strcat(str,"LPm_");



if((x & RPm)==RPm)




strcat(str,"RPm_");



if((x & RT)==RT)




strcat(str,"RT_");



if((x & RI)==RI)




strcat(str,"RI_");



if((x & RM)==RM)




strcat(str,"RM_");



if((x & RR)==RR)




strcat(str,"RR_");



if((x & RP)==RP)




strcat(str,"RP_");



printf("%s\n",str);


}

}

void handshapeTranslator(int ID)

{


switch(ID)


{


case 0:



printf("HANDSHAPE UNKNOWN\n\n");



break;


case 1:



printf("round\n\n");



break;


case 2:



printf("okay\n\n");



break;


case 3:



printf("point\n\n");



break;


case 4:



printf("hook\n\n");



break;


case 5:



printf("two\n\n");



break;


case 6:



printf("kneel\n\n");



break;


case 7:



printf("Perth\n\n");



break;


case 8:



printf("spoon\n\n");



break;


case 9:



printf("letter-n\n\n");



break;


case 10:



printf("wish\n\n");



break;


case 11:



printf("three\n\n");



break;


case 12:



printf("mother\n\n");



break;


case 13:



printf("letter-m\n\n");



break;


case 14:



printf("four\n\n");



break;


case 15:



printf("spread\n\n");



break;


case 16:



printf("ball\n\n");



break;


case 17:



printf("flat\n\n");



break;


case 18:



printf("thick\n\n");



break;


case 19:



printf("cup\n\n");



break;


case 20:



printf("good\n\n");



break;


case 21:



printf("bad\n\n");



break;


case 22:



printf("gun\n\n");



break;


case 23:



printf("letter-c\n\n");



break;


case 24:



printf("small\n\n");



break;


case 25:



printf("old-seven\n\n");



break;


case 26:



printf("eight\n\n");



break;


case 27:



printf("nine\n\n");



break;


case 28:



printf("fist\n\n");



break;


case 29:



printf("soon\n\n");



break;


case 30:



printf("flick\n\n");



break;


case 31:



printf("write\n\n");



break;


case 32:



printf("salt\n\n");



break;


case 33:



printf("middle\n\n");



break;


case 34:



printf("rude\n\n");



break;


case 35:



printf("ambivalent\n\n");



break;


case 36:



printf("love\n\n");



break;


case 37:



printf("animal\n\n");



break;


}

}

void movementTranslator(int ID)

{


switch(ID)


{


case 0:



printf("UNKNOWN MOVEMENT\n");



break;


case 1:



printf("fingersIncDecInc\n");



break;


case 2:



printf("leftToRight\n");



break;


case 3:



printf("towardBody\n");



break;


case 4:



printf("rollWrists\n");



break;


case 5:



printf("awayRightDown\n");



break;


case 6:



printf("down\n");



break;


case 7:



printf("awayRightUp\n");



break;


}

}

void e(int point)

{


printf("function passed point %X\n",point);

}
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