[image: image58.png]

Department Of Electrical And Computer Engineering

Hand tracking and facial feature extraction for the purpose of Australian sign language translation

by

Michael Abd-El-Malak

A thesis submitted in part for the degree of

Bachelor of Engineering in Electronic and Communications Engineering

[image: image59.png]

[image: image60.png]

 Department Of Electrical And Computer Engineering

[image: image61.png]

[image: image62.wmf]
[image: image63.png]Curtin

University of Technology

[image: image64.png]2A|projiplan.doc Microsoft Word

Ble ER Yew et Fomet Ioos Table Window Heb heb =X
—— SR . e
Changed to integrating
the development
environment
7 | Develop the 2weeks |1 No pre-processing code was developed
preprocessing module™ week | asit's not applicable to the algorithms
* Changed to creating used. Time was spent creating the face
the face database for the database instead
ANNs
8 | Develop the feature 3weeks |9 A task much harder than anticipated due
extraction module weeks | to the considerable amount of time it took
to train the neural network
9 | Testand "tune” the 3weeks |2 Once the neural networks were producing
feature extraction and weeks | good results only a few changes to make
preprocessing modules the detection faster were needed
10 | Develop the pattern Tweeks |11 Completed simultaneously with task 8,
matching system™ weeks | since the long training times meant work
in other areas of the project could be
& *changed to developing accomplished. Took longer to develop
5 the hand tracker since the i it
algorithms. ‘weaker than expected and so the
algorithms had to be made considerably
more robust.
11 | Test and tune the entire [3weeks |2 Exhaustive amounts of testing (due to the
system week | many development iterations) were done
during development which meant very
ittle was needed once the development
was complete.
12 | Thesis write-up Bweeks |3 Required a considerable amount of extra
Wweeks | effort to complete on time. o
°
N
>
Page 2 sect 22 M2 n9 Cl22 fiC e B0 O Engsh@s G

[image: image65.png]2A|projiplan.doc Microsoft Word

Ble ER Yew et Fomet Ioos Table Window Heb question for help [+ X
(o] 08 PR I : e S |
Task Task Estimated | Actual Comments
Time time
1 | Researchsign language |2weeks |1 ‘With the Auslan CD (Tohnston 1997), it was
to determine the exact week | quite easy to get a understanding of what the
requirements translation process needed
2 | Specify the operating 12 1 Choice between Matlab and C was more
environment for the week week | involved and required a
system into the debugging capal
option.
3 | Researchthe CCD 12 1 ‘Was a hard decision to make so early on
camera capabilities week week
taken was known, with hin
decision should have been made ata
later point
4 | Research different 3weeks |4 There was a lot of information on tracking
pattern matching* weeks | techniques however many were not
techniques suitable for the problem faced.
* Changed to tracking
techniques
5 | Specification and 4weeks |2 Ir.Optical trackers was the chosen
detailed study of the weeks | method which in principle is very simple
chosen pattern to understand.
matching® method
* Changed to tracking
techniques
6 | Create a detailed model | 1weeks |4 Getting the camera and micro controller
of all the system weeks | to work with Matlab took longer than
components* expected m_
°
N
= oms | >

Page 1 Sec 1 1”2 a Gl REC TRK B O Engsh(US QX

Abstract
Previous research at Curtin University has been conducted into the creation of an Australian sign language translator of which this project is a continuation. In order to produce the correct translation five inputs are required by the translator which are hand shape, orientation, location, movement and facial expressions. This thesis discusses the development of a real time system to track the hand position and roll through the use of optical trackers and the development of a system to extract the facial feature positions using neural networks with a resolution equivalent to half the feature size.
84 Seacrest Dr

Sorrento, 6020

WA, Australia

Professor Syed M. Islam, Head of department
Department of Electrical and Computer Engineering
Curtin university of Technology

GPO box U1987

Perth WA 6845
Dear Professor Islam,
This thesis is offered as partially satisfying the requirements for the Bachelor of Engineering (Electronics and Communications) offered by the school of Electrical and Computer Engineering at Curtin university of technology.
I hereby declare that this thesis is entirely of my own work except where acknowledgment is given.
Yours sincerely,

Michael Abd-El-Malak
Student number 12045132

Acknowledgements
Firstly I would like to thank my supervisor Mr. Iain Murray for his inspiration, motivation and guidance throughout the project. I would also like to thank Garry Rank for helping me with Auslan.
NOMENCLATURE

ANN: Artificial neural network

Auslan: AUStralian Sign Language

CCD: Charge coupled device

DOF: Degree(s) of freedom
ir-led: infra red light emitting diode
Table of contents
11.0
Project introduction

11.1
Introduction

21.2
The problem

31.3
Proposed Solution

31.4
Achievements

52.0
Australian sign language

52.1
Introduction to Auslan

62.2
Requirements of translation

62.2.1
Introduction

62.2.2
Hand shapes

72.2.3
Orientation

82.2.4
Location

92.2.5
Movement

92.2.6
Expression

102.2.7
Auslan to English Translation

113.0
Common methods of motion tracking

113.1
Types of human motion tracking system

123.2
Optical position trackers

133.3
Tracking through accelerometers and gyroscopes

133.4
Tracking using optical flow

133.5
Radio frequency trackers

154.0
Current methods in facial feature extraction

154.1
Introduction

154.2
Using histograms and estimated characteristics of the face

164.3
Neural networks

174.4
Template and model based approaches

195.0
Project Objectives

195.1
Introduction

195.2
Project goals and objectives

205.3
Problem model

205.3.1
Overview

205.3.2
Usage scenarios

215.4
Design criteria

236.0
Proposed solution

236.1
Overview

236.2
Assumed Environmental conditions

256.3
Input capture

256.4
Tracking the hand

256.4.1
Choice of tracking method

266.4.2
Development methodology

276.5
Facial feature tracking

276.5.1
Choice of feature extraction method

276.5.2
Development methodology

297.0
Implementation platform

297.1
Choice of development platform

307.2
Choice of CCD camera

328.0
Hand tracking system

328.1
Overview

358.2
IR-LED hardware

388.3
Glove layout

438.4
The trackHand function

438.4.1
Introduction

448.4.2
Design

448.4.3
Reference frame separation and the frame rate

498.4.4
Pseudo code

508.5
The gloveDetect component

508.5.1
Design

528.5.2
Pseudo code of gloveDetect

548.5.3
proximityFilter

558.5.4
Calculating the difference image using diffImg

588.5.5
Low pass filtering

608.6
ledDetect

608.6.1
Design issues

618.6.2
Pseudo code

638.6.3
groupFilter

648.7
Extension to tracking two hands

658.8
Hand tracking system results

709.0
Facial feature extraction

709.1
Overview

719.2
Features detected for expression recognition

729.3
Faces used for training and testing

749.4
Sampling function

749.4.1
Testing using a prototype neural network

759.4.2
Log-polar mapping

789.4.3
Choice of the log-polar exponential function

809.5
Neural network topology

829.6
Applying the neural networks

829.7
Feature extraction pseudo code

849.8
Feature extraction result

9410.0
Conclusion and future development considerations

9410.1
Hand tracking system

9510.2
Facial feature extraction

9610.3
Auslan translation device

97Bibliography

100Appendix A Project plan and amendments

101Appendix B Cost estimates

102Appendix C Preliminary results from the histogram based approach

104Appendix D code listings for the hand tracker

117Appendix E Code listings for feature extraction

List of figures
7Figure 2.1 An example where hand roll and yaw are necessary in order to understand the meaning (Johnston 1998, p. 340, 344, 338)

8Figure 2.2 An example where pitch is necessary in order to understand the meaning (Johnston 1998, p.193)

8Figure 2.3 Primary locations for Auslan meaning (Johnston 1998, p.572)

12Figure 3.1 Example of optical trackers in motion tracking (Lopatenok and Kudrjashov 2002)

23Figure 6.1 Block diagram of the system

30Figure 7.1 JVC GR-DVL 520A

33Figure 8.1 How two LED positions can provide hand roll and position

34Figure 8.2 Block diagram of hand tracking system

35Figure 8.3 The M16C/62 Single-chip microcontroller by Mitsubishi Electric

37Figure 8.4 ir-led circuit

41Figure 8.5 ir-led configuration used on the back of the hand

42Figure 8.6 ir-led configuration used on the palm side of the hand

43Figure 8.7 Alternate ir-led configuration

45Figure 8.8 Reference image in an ideal case

45Figure 8.9 Led image in an ideal case

46Figure 8.10 Resulting difference image in an ideal case

56Figure 8.11 Difference image for led 2

57Figure 8.12 Difference image for led 3

57Figure 8.13 Difference without subtracting other difference frames

57Figure 8.14 Difference with subtraction of the other difference frames

59Figure 8.15 Body outline in the difference image

60Figure 8.16 Difference image of Low pass filtered frames

65Figure 8.17 Testing with the palm facing upwards

66Figure 8.18 Testing the the palm facing the left

67Figure 8.19 Testing with the ‘you’ sign

67Figure 8.20 Testing by pointing to the wrist

68Figure 8.21Testing with the palm towards the face

69Figure 8.22 Testing with the 'push' sign

71Figure 9.1 Structure of facial feature extraction system

77Figure 9.2 Example of log-polar mapping applied to an image

77Figure 9.3 Example of the resulting sampled image

84Figure 9.4 Pupil detection on the grid

85Figure 9.5 Facial feature detection for a man with a moustache

86Figure 9.6 Facial feature detection for a smiling woman

86Figure 9.7 Facial feature detection in an out of focus image

87Figure 9.8 Facial feature detection for a bearded man

88Figure 9.9 Facial feature detection for an angled head

88Figure 9.10 Facial feature detection for a young man

89Figure 9.11 Facial feature detection for a face turned sideways

90Figure 9.12 Brow detection for a CCD captured image

91Figure 9.13 More complex brow detection

92Figure 9.14 Pupil detection for a CCD camera captured face

93Figure 9.15 Feature detection in low resolution image

1.0 Project introduction

1.1 Introduction
Due to the many advances in medicine over the past centaury, ever increasing numbers of handicapped people are being given the ability to have more fulfilling lives, allowing them to interact and contribute to society as a whole. Nonetheless, one group of handicapped people still find it difficult to interact with the general public, since their handicaps directly affect their communication ‘senses’ and these are the deaf, mute and blind people. Whilst deaf people still have the ability to speak, quite often they have speech impediments that make them hard to understand. This frequently results in them feeling uncomfortable and self conscious in conversations. Similarly, mute people still find it difficult to communicate with people that don’t know sign language. Take for example a mute person trying to order food at a drive through, or trying to communicate with someone on the phone during an emergency.

Within the deaf and mute community, communication is done through sign language, which is as effective as spoken English but nonetheless requires all parties evolved to have an understanding of sign language. One of the restrictions of sign language is that it is incapable of allowing a deaf or mute person to communicate with a blind person. Clearly a device that allows deaf and mute people to leverage their signing ability to talk with blind or non-signing people would make their lives much easier, safer and more productive.

Research towards the development of a device that can translate the Australian Sign language (Auslan) had been conducted at Curtin University of Technology during the previous years. The result of which was a proof of concept system. Naturally the next progression in the development is to create a working prototype.
This thesis outlines the development process of the hand tracking system and a facial feature extraction system. Chapter two is a brief introduction into Auslan and its translation requirements. Chapters three and four discuss the common methods currently being used to solve the problems faced in this thesis. Chapter five details the project objectives and chapter six discusses the methods used to meet those objectives. The next three chapters provide a detailed view of the development process of the hand tracking and feature extraction systems and highlight the problems faced and the solutions developed to solve them. In chapter ten the conclusions for the project are made and future development considerations are discussed.
1.2 The problem

A major hurdle for the translation system is that in Auslan, different meanings are given to the hand signs depending on the motion, the location (zone) in which they are conducted and on some of the facial expressions. For example, just like people normally raise their voice towards the end of a question, signers raise their eyebrows. Thus for the intended meaning of the signer to be determined, the location of the hand relative to the body, head movement and some facial expressions need to be determined. One of the solutions proposed was to use a CCD camera to obtain the required information. This thesis will concentrate on the use of a CCD camera to obtain information about the hand position and roll as well as the tracking of the relevant facial expressions. The future goal is to use this system along with the glove capable of discerning the hand shapes to obtain real time meaningful translations of the Auslan.

1.3 Proposed Solution

The stated problem is composed of two distinct and separate sub-problems, their only link being the use of a CCD camera as the data input source. The first involves the glove tracking system. Here the proposed solution is to use a set infra red led’s (ir-led’s) advantageously placed on the glove to allow the tracking of the hand’s position and roll. The second sub-problem is that of the facial feature tracking. Since the development timeframe for this project was limited the problem was simplified by assuming that the head position is roughly known. Due to the temporal performance requirements of the system, a system based on neural networks was chosen as the most effective solution to extract the facial features.
1.4 Achievements
Two systems were developed as part of this project. Firstly a system capable of tracking the position (x and y coordinates) and roll of the hand was developed and implemented using Matlab. In doing so solutions for ir-led position detection were developed from which further work was carried out to use a group of ir-led’s to track the hand as necessary.

The second system developed involves a facial feature position extractor which is currently capable of detecting the positions of the eye brows, pupils and left corner of the eyes. In doing so a system based on neural networks was developed which can be easily extended to determine the position of the other features on the face.

2.0 Australian sign language
2.1 Introduction to Auslan
There are numerous misconceptions about sign language amongst the general public. A common misconception is that sign language has only been around for a few decades, when in truth it was referred to in some ancient Greek writing. As such it has developed as an independent natural language with many variations and dialects across the world. Furthermore, recent research at a Nicaraguan school for the deaf where a rudimentary sign language developed naturally by young children provided a significant insight into how human’s develop spoken languages (New scientist 2004).

Within Australia the sign language used is called Auslan (AUStralian Sign LANgauage). Auslan originated when British signers that had settled in Australia during the early 1800’s began to modify the British sign language (BSL) to make it more suitable to their needs. Eventually the Australian dialect became distinct enough for it to become a separate language (Johnston 1998). In recent times when new words are required it is often the case that the new signs are obtained from the American Sign Language (ASL) but it should be stressed that Auslan is a completely separate language from the ASL and the BSL.
In Australia there are around 15000 people who use Auslan everyday (Hyde and Power 1991) and it is an officially recognised by the Australian government as a community language other than English (Dawkins 1991).

Another common misconception is that Auslan translation into English only requires the understanding of the signs. In fact Auslan is a complete natural language that is independent of English which means that besides correctly recognising the Auslan signs, the language still requires a translation process similar to what would be required to translate French into English. It should be noted that Auslan signers can spell out English words using finger spelling (using the signs for the alphabet) but such a method is impractical for general purpose communication and is generally only used for names.

2.2 Requirements of translation
2.2.1 Introduction
The very nature of sign language makes Auslan a visual and spatial language and given that it is capable of matching spoken English in terms of speed one would expect it to be a complex language that maximises the use of the hand signs. The acronym HOLME (Hand shape, Orientation, Location, Movement and Expression) is sometime used to describe the components required for correct understanding. The following sections are principally based on information from the book ‘Signs of Australia: A new dictionary of Auslan’ (Johnston 1998).
2.2.2 Hand shapes
There are 38 hand shapes used in Auslan (63 variations due to mirroring). Hand shapes can be signed in three different ways, the one handed signs use only one hand for the sign, two-handed signs use to both hands with different signs for each hand and the double sided signs where one hand mirrors the sign on the other. A list of all hand shapes can be found in the Auslan Dictionary (Johnston 1998).
2.2.3 Orientation

Orientation refers to the roll, pitch and yaw of the hand. These are important since they help differentiate between signs that look the same and have similar movement. Figure 2.1 shows the three signs for weigh, balance and doubt which all have the same movement and hand shape. It can be seen that to differentiate between weigh (palms facing upwards) and balance (palms facing downwards), hand roll is required. Similarly to differentiate between the signs for doubt (palms facing upwards and fingers pointing towards each other) and weigh (palms facing upwards and fingers pointing outwards) the yaw of the hand is needed.
[image: image1.png]E) e
S
e

[image: image2.png]

Figure 2.1 An example where hand roll and yaw are necessary in order to understand the meaning (Johnston 1998, p. 340, 344, 338)

Figure 2.2 shows the two signs for spoon and the letter ‘n’ and is an example where pitch would be an important attribute.
[image: image3.png]o I P

Figure 2.2 An example where pitch is necessary in order to understand the meaning (Johnston 1998, p.193)
2.2.4 Location

In sign language different parts of the upper body represent different ‘zones’ which are also used to differentiate between signs (Figure 2.3). The exception is the region in front of the signer’s chest which is considered to be a neutral region that dos not affect the meaning of the sign. An example of which are the signs for ‘camel’ and ‘Indonesia’ which are both created by a wavy motion of an open hand, but camel is done in a lower zone than Indonesia.
[image: image4.png]{
¢

Figure 2.3 Primary locations for Auslan meaning (Johnston 1998, p.572)
2.2.5 Movement

Motion plays a major role in Auslan without which translation would not be possible. An excellent example which highlights the need of motion capture is the two signs for ‘eye’ and ‘understand’. Both signs share the same hand shape and begin at roughly the same point. Whilst the sign for ‘eye’ simply requires pointing to the eye, the sign for ‘understand’ requires the hand to move forward and rotate the palm. This is the case with many signs, where the only way to differentiate between signs is to use motion. In most cases the motion for each sign is generally composed of one movement such as moving the hand upwards or in a circle, but there are signs which use a combination of movements.
2.2.6 Expression

Facial expressions are not directly related to the signs however they are important since they are used to convey the intention of the sentence. For example, it is common for people to raise the pitch of their vice when asking a question English, similarly in sign language the eye-brows are raised (or in some situations tilting the head) at the end of a question. In Auslan many words have the same sign which means that the context of the sentence is then the deciding factor of which meaning should be used. This ability to disambiguate meaning depending on context comes naturally to humans and is aided by the use of facial expressions. However, for a translation device this is a task of considerable difficulty since it requires higher level information about the conversation taking place and so facial expressions become a critically important input to the translation process.
2.2.7 Auslan to English Translation
Auslan to English translation by a device would require three stages. Naturally the first step required is the correct capture of the signs which requires the attributes discussed previously. Secondly, since the same signs can have different meanings the intention of the signs that represent more than one word needs to be decided upon using the other signs in the sentence and the facial expressions. At this point recognition of the intended sentence or phrase has been made. The next stage involves translating the meaning of the Auslan sentence or phrase into English.
3.0 Common methods of motion tracking

3.1 Types of human motion tracking system
The problems faced in this project with respect to motion tracking have received much research attention over the past few years. Motion tracking systems designed to track human motion are often categorized into three types based on whether or not the sensor and source are placed on the body (Mulder 1994). The first type is called ‘inside-in’ and is a system where both the sensor and source are on the body. An example of an inside-in system is a flex sensor worn on a finger and in this case the source is considered to be the finger itself. The second type of system is called ‘inside-out’ and differs from the first type in that the sources used are not attached to the body. A system that uses a special pattern on a wall to track the direction of head movement using a head mounted camera is an example of an inside-out system since the sensor (camera) is found on the body and the source (wall pattern) is found external to the body. Finally the last type of body motion tracking system is referred to as ‘outside-in’. In an outside-in system the source is on the body and the sensor is external to the body. Thus any system that tracks body motion using a video camera to record body motion is an outside-in system. Of these three types inside-in and outside-in are the most suitable for use in tracking the motion of the hand and some of their
3.2 Optical position trackers
Optical position trackers are an outside-in type of motion tracking system. The object to be tracked would have coloured markers attached to it whose colour does not appear elsewhere in the scene. Extraction of the points is then the simple task of filtering out all the other colours from the image and in the case where many points are used an algorithm that matches the marker points to a model is needed (Lopatenok and Kudrjashov 2002). This is arguably the fastest method for motion tracking whose performance is hard to beat. Hence this technique is often used in motion analysis of athletes since that with correctly chosen maker colours and well placed markers can yield excellent results (Figure 3.1). Due to the brightly coloured spots that this method utilises its usability on people in public is very limited.
A variation of this method uses infra-red leds (ir leds) instead of the brightly coloured spots. Infra-red light appears as white light to a CCD camera but is invisible to the human eye which makes this approach considerably less obtrusive. The drawback of optical position trackers is that the often suffer from occlusion problems, however with enough carefully placed tracking points the severity of this problem is greatly reduced.
[image: image5.png]Motion Motion : " | 1dentify
Capture Tracking | - + | Markers

I > - |

2D Data 3D Data Identified
Markers

Figure 3.1 Example of optical trackers in motion tracking (Lopatenok and Kudrjashov 2002)
3.3 Tracking through accelerometers and gyroscopes

A combination of accelerometers and gyroscopes can provide very accurate motion and orientation information. The accelerometer measures the acceleration (and through integration relative position) in a specific direction and the gyroscope measures the orientation. Whilst conceptually the system is capable of fulfilling most tracking the sensors used are often quite bulky which makes them uncomfortable and obtrusive (Welch and Foxlin 2002).
3.4 Tracking using optical flow
Optical flow is another outside-in method which utilises a video camera. In this method inter-frame differences are used to calculate motion vectors which represent the magnitude and direction of the change due to the motion of an object. It is a suitable method for tracking large features such as the hand however it would be incapable of extracting the roll of the hand.
3.5 Radio frequency trackers

Radio frequency trackers can be implemented as either outside-in or inside-out systems. They are composed of an RF transmitter and a number of receivers which form the source and sensor components respectively. By using the propagation delay as a measure of distance both position and orientation (assuming adequately spaced receivers) can be obtained at rates of up to 100Hz. Such systems however are very complicated in design and require significant amounts of signal processing for use in cluttered indoor areas (Welch and Foxlin 2002).
4.0 Current methods in facial feature extraction

4.1 Introduction

Unlike the hand tracking component of the project, there is no option of the user wearing any sort of sensor or marker on their face, so the signer’s expressions (movement of facial features) needs to be determined completely through the use of the video input from a CCD camera which indicates that only an outside-in type of tracking system is applicable. The proceedings of the “Automatic Face and Gesture Recognition” IEEE conferences over the past decade show that there are three dominant approaches that yield practical results. The first approach uses heuristics and estimated characteristics of the face to determine the location of the facial features. The second approach is to use neural networks which have made a return to the spotlight during the past few years. Finally the third approach is based on matching the image to a model or template which can be manipulated to fit the image.
4.2 Using histograms and estimated characteristics of the face
All human faces share common properties with respect to form and structure. This structure can sometimes lead to common properties in facial images that can be used to extract facial features. One of these characteristics is a distinct pattern in the histogram of a facial image. By using this information certain portions of the histogram can be filtered out which leaves only the outlines of the facial features. Whilst this method is computationally fast compared to other techniques, it is very dependant on lighting conditions and is not considered to be robust enough for general applications.
4.3 Neural networks

The concept of neurons as processing elements was first mentioned by neurophysiologist Warren McCulloch and mathematician Walter Pitt. It took another decade before neural network simulations on computers became feasible. Initially neural networks showed incredible amounts of potential which unfortunately led to many unrealistic expectations being placed on them. When neural networks inevitably failed to live up to the hype the field was abandoned by many researchers. This led to a long hibernation period in which very little research was done in the field. The past two decades however have seen a rebirth of the field that has rejuvenated much of the excitement, albeit at a realistic level, of the 1960s. The field of intelligent image processing using neural networks in particular has received much attention since the parallelism of neural networks enables significant performance gains to be made over conventional systems.

Currently facial expression extraction using purely an image based approach with a neural network is considered to be a difficult yet practically solvable problem. One of the biggest criticisms of neural networks is that it is still not yet possible to state what type of architecture would produce the optimal result. However what the past two decades of research have achieved is to provide a framework of accepted solution structures that can be easily adapted to solve the many variations of the problem. The advantages and disadvantages of neural networks within the scope of the project are:

Advantages

· Fastest robust solution currently available

· Easy to implement in code once training is complete

Disadvantages

· Training can be very time consuming and a significant amounts of training data are required.

· Optimal architecture is not known and it is difficult to analytically compare different architectures.

· Difficult to predict under what conditions they fail.

· To add extra features or to apply the network to a similar problem will often require retraining or possibly complete redesign.
· The solution provides no real insight into the problem, only that “it works”.

Quite often one word is used to describe neural networks, ‘ambiguous’. However even with all of the previously mentioned disadvantages neural networks are still the most widely used solution to the facial feature extraction problem where resources are limited and a real time response is required.

4.4 Template and model based approaches
For template based approaches a template is created which an algorithm then attempts to fit to the face using common signal processing techniques for error reduction. The templates are designed using a collection of simple modifiable components such as arcs, ovals and straight lines. Facial features are especially well suited to a template since they are easy to describe using basic shapes. For each facial image, an iterative approach is used to modify the template parameters so that they more closely match those of the given face. Attempt at using deformable models have produced excellent results that are superior to what is achievable with many of the other methods. Nonetheless the algorithms used are very computational intensive and real time operation is difficult to achieve. Model based approaches are very similar but use probability to move between states of detection. A common and currently very popular method is Hidden Markov models (Won and Gray 2004).
5.0 Project Objectives

5.1 Introduction

Previous research at Curtin university of Technology had yielded a proof of concept Auslan translation device (Newman 2003). Further development, in which this project is a part, is currently being conducted to create a working and fully integrated Auslan translation device. Ultimately the goal is to make it convenient for deaf people to use Auslan as a method of communication with non-signing people.
5.2 Project goals and objectives
In order for the Auslan translator to produce accurate translation three key abilities are required, recognition of the hand shapes, tracking the motion, orientation and relative position of the hand and extracting the facial expressions of the signer. Research is currently ongoing at Curtin University of Technology into the development of a glove capable of recognising the hand shapes used by Australian sign language. This project was to focus on the hand tracking and expression extraction aspects of the translation system.
The primary objective of this project was to develop a system that can simultaneously:
1. Track the hand with four degrees of freedom at a rate no less than twice per second.

2. Extract the positions of facial features every second.
5.3 Problem model
5.3.1 Overview
The following is a description of the usage model for which the solutions discussed in this thesis were developed for. The final result of the sign language translator projects will be a portable device similar in size to a large mobile phone with an integrated CCD camera and a pair of gloves. The gloves will detect the shape of the hands using flex sensors and if needed facilitate tracking their position and orientation and hence the device will be able to extract the necessary information required to translate the Auslan signs and movements into spoken English. To improve on the performance of such a system and to make it more natural to use, facial expressions would also be captured through the use of a CCD video camera and used as part of the translation process.

5.3.2 Usage scenarios
When a signer wishes to use the translation system, they would put on the gloves and place the camera in a suitable position. The signer would then proceed with using Auslan and the device will voice out the translation to the other party. One situation where this system would be of considerable use is when a mute person is trying to communicate with a blind person.

Another possible usage scenario is on TV since some TV programs show a sign translator in the corner of the screen for the benefit of deaf people. The translator could then use the translation system to provide an English translation in text, which could be used to create captions for use by blind people. Lastly the Auslan translation device could be used as a text input system for computers.
5.4 Design criteria

As is the case with the development of any system many compromises and choices are needed and in order to make an optimal choice the following design criteria, in order of importance, were used.
1. Portable

The intention is for the users to carry this system around with them in a small bag so that it can be used wherever it is required. A non-portable system would be considerably less useful and convenient which goes against the projects motivational aspect of convenience. It should also be noted that the portability requirement in this case implies that the system should be power efficient since it will almost certainly have to operate on batteries.

2. Real time
The motivation behind this project is based on the primary use case of human to human communication. Thus, it is of great importance that the translations be completed as fast as possible. Ideally for the system to be considered real time the translation should be as fast as the signer can sign the words. Practically this would be an extremely difficult criterion to meet without significantly sacrificing aspects of the other design criteria. A more relaxed real time criterion would be the recognition of a sign every 2 seconds. This is akin to someone speaking very slowly but is still fast enough for a normal conversation to be carried out.

3. Robust
 In the domain of this project, robustness is representative of the systems ability to produce accurate results in varying real life environmental conditions. This is important due to the portable nature of the device which implies varying lighting conditions. Accuracy in a translator is very important and under no circumstance would frequent mistakes be acceptable by the user.
4. As non obtrusive as possible
Deaf people tend not to use speech since they are often very self-conscious about the way they sound. Naturally, a system that requires them to wear brightly dotted clothes or a helmet with mounted cameras would be very inappropriate.

5. Cost efficient

As always cost is an important criterion that must be taken into account, since it is pointless developing a system no one can afford to use. The goal is to make the product as cheap a possible without sacrificing on the criteria mentioned above. A rough figure on an acceptable upper estimate for cost would be $500, however $200 would be a much more ideal target cost.

6.0 Proposed solution
6.1 Overview
Like most vision systems, this system is built around two primary blocks, the camera and the processing unit shown in Figure 6.1. In the fully developed system, both the ir-led controller and head locator will be integrated into the tracking system. Hand tracking was accomplished by using ir-led’s as optical trackers and the facial feature extraction was done by using a neural network.

[image: image6]
Figure 6.1 Block diagram of the system
6.2 Assumed Environmental conditions
Digital image processing is a field that has seen exponential growth in capability over the past 20 years and no doubt will continue to experience a similar trend in the future. Nonetheless, when portability and power efficiency are taken into account neither the image acquisition hardware nor computing power are up to the performance levels required to allow real time complex scene analysis that is robust in all lighting conditions. Thus it is necessary to place some limitations and assumptions on the conditions for which the development took place. The conditions/assumptions under which this project was developed are as follows:
Conditions for the hand tracking:
· The background behind the subject can be complex (with the exception given below) however movement or change in the background must be over a slow time scale such that it can be considered static over a period of 1 second.

· Neither the user nor background should contain a chequered pattern composed of two highly contrasting patterns.

· The user is not wearing reflective/shiny clothing.

· The user is not subject to strong direct lighting.
· There is no motion blur in the image.

· The signer is not less than 1m from the camera or more than 3m away.

Conditions for facial feature extraction:
· The signer’s face is well illuminated.

· There is no motion blur in the image.
· The signer’s face is not angled by more than 25 degrees.
6.3 Input capture

The input to the system is through a CCD video camera with a resolution of 720 x 540 pixels with a frame capture rate of at least 24 frames per second. A CCD camera was specifically chosen for this project due to its sensitivity to infra-red light. Currently only the greyscale intensity values are used so a colour camera isn’t recommended since it requires extra processing time to convert the frames to greyscale.
Ideally, the camera would be placed at around chest height 1-3 meters away from the signer. This allows the entire upper torso and head to be captured with adequate resolution. Furthermore, at this height the average region in which the each of the ir-led’s is visible would be maximised. This issue is expanded upon in section 8.3. This by no means that the only location the camera can be placed but only the optimal position.
6.4 Tracking the hand

6.4.1 Choice of tracking method
After consideration of the methods outlines in chapter three the decision was made to use ir-led’s in an optical tracker based approach. Optical flow was quickly dismissed as unsuitable since it would not have allowed robust tracking of the hand roll. The second approach examined was to use accelerometers and gyroscopes. This approach would have been suitable had it not been for the cumbersome size of the components. Even though the gyroscopes and accelerometers could have been setup on a small PCB (both gyroscopes and accelerometers exist in chip form) on the glove, taking into account the space taken by the flex sensors the glove would have been too bulky.
Traditional optical trackers were clearly not suitable, however by using ir-led’s which are not visible to the eye this method was a very viable solution. Occlusion is often considered to be the biggest drawback of this method however it was considered to be a controllable problem within the scope of the project. The larger concern at the time was this method’s dependence on fast image processing, nonetheless this too was deemed to be a manageable problem within the scope of the project. The last method examined involved the use of RF transmitters and receivers. The potential accuracy and speed for this method is considerably greater than what any of the other methods could offer. Unfortunately it required a considerably more complex and costly design and in terms of size would have been even bulkier than the use of accelerometers and gyroscopes. It was concluded at the time that the use of ir-led’s was not a perfect solution but the most viable considering the design criteria. Furthermore, as a CCD camera was necessary for the facial feature extraction this approach would also have been the cheapest to implement.
6.4.2 Development methodology

In order to insure that the project objectives were met and that the design criteria were adhered to significant amounts of unit and system testing were required. The major development steps required were quite intuitive and could be easily isolated in smaller more manageable and predictable problems which provided a good development framework. The major steps of the development process were:
1. Developing an algorithm to detect the position of one ir-led

2. Choice of the development platform to be used

3. Implementing the ir-led detection algorithm

4. Choosing an optimal layout for the ir-led’s on the glove that would minimise occlusions and allow the hand position and roll to be extracted

5. Design and implementation of the algorithm to extract the hand and roll positions
6. Testing and optimising the solution developed
6.5 Facial feature tracking

6.5.1 Choice of feature extraction method
The task of selecting a suitable method for the feature extraction problem was a considerably more difficult one. Initially a small amount of development was done using the histograms to filter out specific ranges of intensities. Whilst some good preliminary results were obtained (see appendix C) the method was deemed to be too unreliable. The choice at that point was between neural networks and a template/model based approach. The decision was made to develop the system using neural networks since they have been used in very similar applications before and because of their reputation for fast performance.
6.5.2 Development methodology

One of the largest problems with neural networks is their analytical ambiguity which makes it very hard to develop optimal solutions. Nonetheless as this was a problem very similar to what had previously been done before the general development structure was well known. The major steps of the development process for the neural network based facial feature extractor were:
1. Obtain and annotate a suitable training set of faces as well as a testing set.
2. Define how the inputs will be obtained from the face image.
3. Decide on the architecture of the neural network.

4. Implement the neural network through training.
5. Test the performance of the neural network and make improvements.
7.0 Implementation platform
7.1 Choice of development platform
The choice of development platform plays an important role in facilitating a flexible and practical development approach. The platform has to allow for maximum flexibility, debugging, and permit rapid development/test cycles. It would also be beneficial if the platform is commonly accessible or non-proprietary.
Direct development on a DSP board would have been very slow and inflexible. Secondly, integrating the CCD camera into the system for testing would have been a time consuming process and would have minimised hardware choice (e.g. choosing a camera with a different frame rate at a later time would be more difficult). Finally, verification of the system’s accuracy would have been considerably more time consuming. Hence the choice to develop the algorithms completely on a PC was made since it provided the maximum flexibility, least cost and fastest development. Furthermore, once the algorithms have been developed, an accurate choice of the hardware required could be made, and the algorithms could then be easily coded for the target platform. Within the PC environment, there were two primary development candidates MATLAB and C. Both platforms have considerable existing functionality the make the development process more efficient. Matlab had the benefit of ease of use, set up, debugging and simplicity as well as library standardisation, its one downside being its relatively poor execution performance. Programming in C would have been considerably slower, as the debugging environment is not as well suited to image processing as that offered by Matlab but programming in C would also have the added benefit of being much simpler to port into code compatible with the DSP board. Since no earlier development had gone into developing these algorithms, the flexibility in testing and development offered by Matlab were the critical deciding factors and so development and testing were carried out in Matlab.

7.2 Choice of CCD camera
The CCD video camera used in developing and testing the algorithms is the JVC GR-DVL 520A (Figure 7.1). It offers video input at a resolution of 576 × 740 (PAL) at a frame rate of 27fps with 32 bits of colour information (8 bits for each of the red, green and blue channels). To obtain the 8 bit greyscale image, the three colour channel values were averaged, this was done by the built in Matlab function rb2grey. The motivation behind choosing a fully featured digital video camera over standard webcams is based on two reasons. The first is that the low quality of the optical components used in webcams could introduce distortions that could have influenced the accuracy of the results. Secondly, webcams often lack both auto-focus and intensity adjustments that are required to produce good quality images. One notable exception is the iView webcam from Apple computers which unfortunately could not be used since it is only compatible with Apple computers.
[image: image7.jpg]

Figure 7.1 JVC GR-DVL 520A
The CCD camera was connected to the PC via an IEEE 1394 (firewire) link. Furthermore the image acquisition tool box in Matlab provided the ability to control the frame captures (via the function getsnapshot) from the camera to enable synchronisation with the ir-leds.
8.0 Hand tracking system
8.1 Overview
As explained in section 6.4.1 the method with which the hand would be tracked was based on the use of ir-led’s. More specifically six ir-led’s were positioned on a glove that was worn by the user and a CCD camera was used to captured a sequence of frames which facilitated the tracking algorithm to track the hand with three DOF (x,y and roll). The software process of tracking the hand was broken down into three primary functions. The first function called trackHand is responsible for controlling the ir-led’s and the capture of the necessary image frames and then calling the glove detection function gloveDetect. The second function produces a set of possible positions for each ir-led and is called ledDetect. Finally the third function called gloveDetect combines the six position lists (one for each led) to produce the hand’s position and roll and return their values to trackHand. Furthermore three other helper functions were developed in order to enhance the performance of the system which are shown in Figure 8.2. A brief overview of the process required to detect one ir-led under ideal conditions (zero movement) is as follows:

1. Capture a reference frame in which all the ir-led’s are turned off

2. Turn on one of the ir-led’s and capture a frame

3. Find the difference image by subtracting the first frame from the second frame

4. Search for a bright spot in the difference image which indicates the ir-led position
Given that the positions of each of the ir-led’s on the glove is known (e.g. index finger knuckle) then if the positions of at least two ir-led’s are detected, a vector can be calculated which is perpendicular to the direction the palm is facing (see Figure 8.1).
[image: image8.jpg]

Figure 8.1 How two LED positions can provide hand roll and position
In the example shown in Figure 8.1 two of the IR-LED positions were detected. If a vector is specified as the difference of the second LED position to the first (yellow arrow), then the vector representing the direction the palm is facing is perpendicular to this vector (red arrow). Figure 8.2 is a block diagram of the system components. The algorithmic and hardware details are explained in the following sections.

[image: image9]
Figure 8.2 Block diagram of hand tracking system

8.2 IR-LED hardware

The infra-red led’s are a critical component in this system, since the ability to control their lighting sequence allows the pitch to be determined. Usage of the parallel port on the PC would have been a possible solution. A microcontroller board was chosen instead since it provided more versatility with respect to the number of outputs that could have been supported since at that point in time the number of ir-led’s needed was still unknown. The board used was the M16C/62 (Figure 8.3) single-chip microcontroller manufactured by Mitsubishi electric.
[image: image10.jpg]

Figure 8.3 The M16C/62 Single-chip microcontroller by Mitsubishi Electric
Essentially any board with a serial interface and output pins could have been used, the M16 was chosen primarily because it was immediately available at the time.
Fortunately, Matlab has built in serial connection functionality so all that was required was the development of a serial interface for the microcontroller that would read the ir-led number from the serial port and then turn on the corresponding ir-led. The support web site for the M16 (http://www.m16canz.com) provided a set of tutorials for the M16 platform one of which included a serial port interface. This was modified to implement the following algorithm:

While (1)

Wait for input on serial port

Read serial port input and convert it into a numerical value (led number)

If the led number is zero

Turn off all ir-led’s

Else

Turn on the corresponding ir-led
End while
The c code implementing the above pseudo code is in appendix D.

The primary consideration in choosing the ir-led was that the higher the ir-led intensity observed the clearer the ir-led will appear in the difference image. Unfortunately unlike normal visible light led’s, ir-led’s are highly directional so careful attention to their specifications was required. The natural assumption would be that the ir-led with the largest viewing angle would be the most suitable. However it was discovered that a high powered ir-led with a stated viewing angle of 10 degrees would appear brighter from a large viewing angle (tested at 60 degrees) than a lower powered ir-led with a 30 degree viewing angle. Since ir-led radiation patterns are highly non-linear a comparison of their performance based purely on their specification was not possible, consequently testing the ir-led’s was required. In the testing conducted each ir-led was mounted directly in front of the CCD camera at an angle of 60 degrees. An image was captured and the intensity of the ir-led in the image was recorded. The ir-led’s tested were the Z3235 (available from Dick smith electronics) and the ZD1945 (available from Jaycar electronics) of which the Z3235 produced the stronger light at an angle of 60 degrees and so it was chosen.
[image: image11.png]=iogioWorks4 [Desientl]
8 Fie Edt Vew Sthematic Smulstion Window Help

Dle(ui|@| [l ele[x[s |al+ [+ =[)=l=] 2w
[% 2|#| 2% 6| %] o[x|=| &[] ——)]

=l
[ALLUBRARES

Filer: [

(Aneiog Ground
Chassi Ground
Digital Ground
Ground
Ground
Ground

e Crond

%v
2

Ri

infra-red led

N

ED a0 a0 0

Lbe

Ready Crr—

Figure 8.4 ir-led circuit
Once the Z3235 ir-led was chosen, a simple circuit was required to connect the ir-led’s to the board (Figure 8.4) to insure that optimal power was used by them. The output from the m16 board consisted of three rows of 32 pins which included two pins connected to ground, and two pins at 5 volts. Each output pin was pulled up to 5 volts for a logical output of ‘1’ and pulled down to zero volts for a logical output of ‘0’. Combining this with the information obtained from the specification sheet the necessary value for R1 (Figure 8.4) was calculated.

8.3 Glove layout
In order to maximise the tracking accuracy as many ir-led’s on the glove should be visible, and thus detectable, as possible. However each added ir-led requires the capture of one extra frame and the corresponding extra processing time. Thus the fewer the ir-led’s used the faster the processing will be. A vector based analysis would have been too complicated and arguably not as accurate as testing the glove in different configurations. Thus testing was used to determine the optimum layout that used the least number of ir-led’s and which always had at least two ir-leds visible in as many hand positions as possible.
During testing eight of the ir-led’s were connected to the microcontroller which was programmed to keep all the ir-led’s switched on. The CCD video camera was mounted 1.5m away at chest height, and since it had an LCD viewfinder the visibility of each of the ir-led’s was easily verified visually. The ir-led’s were then attached to the glove in various layouts and their visibility in different positions was determined. Naturally the ir-led’s required placement on both sides of the hand, since when the hand was below the CCD camera with the palm facing upwards, only the palm side is visible, whereas the other side of the hand is completely hidden and vice versa. It was soon discovered that for the upper side of the hand the ir-led’s were most visible when placed in between the knuckles as is shown in

Figure 8.5
 below.

Testing also showed that using three ir-led’s on the back of the hand produced a very satisfactory result and in the general case at least two of the ir-led’s were visible for the majority of hand positions. Testing with two ir-led’s on the top of the hand however produced unacceptable results as generally only one of the ir-led’s was visible for the majority of the hand positions. If only hand position were of interest then two ir-led’s on each side of the hand would suffice for tracking. In order to cover all positions three more ir-led’s were attached on the palm side of the hand in the same relative positions as the ir-led’s on the back of the hand. Thus in total six ir-led’s were used, three on top (back of the hand) and three on the bottom (palm side of the hand). The final glove configuration is shown in Figure 8.5 and Figure 8.6.
The direction in which the ir-led’s are mounted also had an effect on the visibility of the ir-led’s. It was observed that when the ir-led’s on the back of the hand were most visible when they were placed parallel to the palm but were made to point upwards (away from the hand) by around 15 degrees. Similarly for the ir-led’s on the palm side except that they should point downwards (away from the palm).
[image: image12.jpg]

Figure 8.5 ir-led configuration used on the back of the hand
[image: image13.jpg]

Figure 8.6 ir-led configuration used on the palm side of the hand
Testing produced another possible six led layout that could be used which is shown in Figure 8.7 below. The first configuration was chosen since its geometry would have made it simpler to determine pitch and as a result improve the speed of the detection.

Figure 8.7 Alternate ir-led configuration

8.4 The trackHand function
8.4.1 Introduction

TrackHand performs the function of capturing the required video frames and passing the images to the gloveDetect function. It is also the interface point to the rest of the sign language translation system. Even though the pseudo code for this component is generally straight forward the compromises made in the design of this function which are discussed in section 8.4.3 have the most significant impact on the speed and reliability of the overall hand tracking system.
8.4.2 Design
This aim of this function is to perform the following tasks:
1. Connect with the microcontroller and CCD camera.

2. Turns the ir-led’s on and off as required.

3. Capture the required frames.

I. Reference frames which are taken when all the ir-led’s are off.
II. Led frames which are taken when only one ir-led is on.
4. Pass the captured frames to the glove detection function.

5. Return the results to the translation system

8.4.3 Reference frame separation and the frame rate
In the special case where there is no movement the only difference between the reference frame and the led frame would be the ir-led being turned on and thus the difference image between the two would appear all black except for the white spot corresponding to the ir-led position. This is shown in the three figures below.

[image: image14.emf]
Figure 8.8 Reference image in an ideal case

[image: image15.emf]
Figure 8.9 Led image in an ideal case
[image: image16.emf]
Figure 8.10 Resulting difference image in an ideal case
Such a scenario however is unpractical since the aim of this project is to track motion. A more practical approach would be to assume a limited amount of motion by the user. Clearly the more motion there is between the reference frame and the led frame the more unwanted differences will appear in the difference image, and consequently the probability of an error in detection increases. As such the time between capturing the reference frame and the led frame should be minimised. If one reference frame is captured before every led frame then a total of 12 frames are required for a single detection cycle (six led frames and six reference frames). To achieve three detections per second would require a video capture frame rate of 36 fps which was beyond what was achievable with the CCD camera chosen. At the other extreme only one single reference frame could be used in each detection cycle which corresponds to a frame rate of 21 fps. Initially a single reference frame was used but the completed system produced numerous false positions and was generally incapable of handling even slight motion. Adding an extra reference frame half way through the detection cycle resulted in a very significant improvement in detection which allowed the system to track a slow moving hand. Additionally the system was designed so that the top three ir-led’s were detected separately from the bottom three ir-led’s. Thus the reference frame was inserted before the capture of the three ir-led’s on top and before the capture of the three ir-led’s on the bottom. Accordingly the number of frames required for each detection cycle was eight, so in order to achieve three detections per second a frame rate of 24 fps is required, or 32fps if four detection cycles per second are needed.

As mentioned above the greater the time between the reference frame and the led frame the higher the chance of error however a more thorough analysis is required to understand the limitations of the method. Firstly the maximum temporal separation between the capture of a reference frame and a led frame would be three frames divided by the frame rate. With a frame rate of 24 fps, this equates to 125 ms. A simple and logical assumption in this analysis would be to assume that the chance of an error increases considerably if the amount of movement is roughly equal to the size of the ir-led in the image since this would cause a bright spot of roughly equal size to that of the ir-led in the difference image. It was found that the dome of the ir-led caused the light spot generated by an ir-led in the led image to generally appear at twice the size of the real ir-led. Thus the amount of movement that can be tolerated between the led frame and the reference frame is twice that of the physical size of the ir-led, which from the specifications sheet is 5mm. Dividing the result by the temporal separation gives a motion speed of 8 cm/second. Such a speed would make signing an extremely slow process to the point of it being impractical.
To improve the allowed motion speed two solutions were proposed. The fist is to use six reference frames as mentioned at the start of this section. With the increased frame rate the allowable motion speed would be 36 cm/second which is a substantial improvement. However the corresponding increase in frame rate would increase the required amount of processing and video RAM by 50% and may not be achievable in a low cost hardware implementation. The other possible solution is based on the fact that continuous tracking is not essential and to track the motion of the hand only the points of extremities are needed. For example, to track the hand moving from right to left only two hand positions are required, the first when the hand is on the right and the second when the hand is on the left. In order to use this fact the signer would be instructed to introduce a slight pause at the end of each motion. A motion sensor could then be used to detect when the hand is paused and trigger a detection cycle. Another possibility is to use a flashing red led to tell the signer when they can move their hand. When the red led is off, the signer could quickly move the hand to the next point, and when the red led turns on they pause the movement of the hand. For the purpose of this project this method was chosen. Both of the “pause” methods mentioned allow for a very large amount of motion between detection cycles since the signer can easily move the hand between any two extremities in less than a second. Such methods may appear unnatural and constraining but when testing it was discovered that it was quite easy to synchronise the hand movement with a flashing red led once a second and with some practice twice a second. In addition, during each pause a full detection cycle would take place, so the hand is still allowed to move by around 10 cm / second. In essence, the case where the red led flashes twice a second equates to two detections per second which is the minimum detection speed stated in section five. However the rate at which the hand moves is very fast and so no further improvements in speed would be necessary.

8.4.4 Pseudo code

Open a serial connection with the microcontroller

Open a connection with the camera

While hand tracking is still required

Turn on the red led and reset timer

Turn off all the leds (transmit 0 to the microcontroller)

Capture the first reference frame

Sequentially For each of the ir-leds (n = 1, 2, 3)

Turn on led n (transmit n to the microcontroller)

Capture a frame (nth led image)
Turn off all led n (transmit 0 to the microcontroller)

Turn off all the leds

Capture the second reference frame

Sequentially For each of the ir-leds (n = 4, 5, 6) on the bottom of the hand

Turn on the led (transmit n to the microcontroller)

Capture a frame (nth led image)
Turn off all the led (transmit 0 to the microcontroller)

Turn off the red led

Run the glove detection algorithm using the 8 captured frames

Output results

Wait until timer has reached 0.5 seconds

End while

Close all connections
The implementation of this code is in appendix D.

8.5 The gloveDetect component
8.5.1 Design
Whilst the purpose of the trackHand function is to start each detection cycle and capture the necessary frames, the purpose of the gloveDetect function is to determine the hand position and roll in each detection cycle. As input it takes in the eight frames captured by the trackHand function and produces the difference image (by calling the imgDiff function) for each led which is then passed on to the ledDetect component. LedDetect returns a position list of the six most likely positions for the specific ir-led. GloveDetect then combines these six lists using the proximityFilter function to produce the six positions of the ir-led of which some or all could be set to undetected. In the case where enough ir-led’s were detected the x and y position coordinates and the pitch angle are calculated. Unfortunately the z position (depth of the hand) could not be extracted with sufficient accuracy. As can be seen in Figure 8.5 and Figure 8.6the row’s of ir-led’s on the back of the hand and on the palm each form a line which can be recreated if the position of any two ir-led’s in a row is known.
8.5.2 Pseudo code of gloveDetect
Calculate the difference images (imgDiff)

Get the position list for each ir-led (ledDetect)

Apply the proximity filter to the led lists and choose the six most likely led positions (proximityFilter)
For the top three positions

If there is more than one led position detected

xAvgTop = average x position of the led positions

yAvgTop = average y position of the led positions

xDifTop = The horizontal difference between the 1st and last detected led

yDifTop = The veritcal difference between the 1st and last detected led

pitchTop = atan(yDifTop/xDifTop * width / height)

if xDifTop is negative

if yDifTop is not negative

add 180 degrees to pitchTop

else

subtract 180 degrees from pitchTop

For the bottom three positions

If there is more than one led position detected

xAvgBottom = average x position of the led positions

yAvgBottom = average y position of the led positions

 xDifBottom=The horizontal difference between the 1st and last detected led

yDifBottom = The veritcal difference between the 1st and last detected led

pitchBottom = atan(yDifTop/xDifTop * width/height)

if xDifBottom is negative

if yDifBottom is not negative

add 180 degrees to pitchBottom

else

subtract 180 degrees from pitchBottom

If the avg x and y positions are set for the top row and bottom row

xPos = mean of xAvgTop and xAvgBottom

yPos = mean of yAvgTop and yAvgBottom

Else if only the avg x and y positions are set for the top row
xPos = xAvgTop

yPos = yAvgTop

Else if the only avg x and y positions is set for the bottom row

xPos = xAvgBottom

yPos = yAvgBottom

Else set xPos and yPos to undetected

If the angle from the top and bottom rows was set
pitch = mean of angleTop and angleBottom

Else if the angle from only the top row was set

pitch = angleTop

Else if the angle from only the bottom row was set

pitch = angleBottom
Else set the pitch to undetected
The implementation of this pseudo code is in appendix D.

8.5.3 proximityFilter

The function ledDetect is called for each ir-led and it returns a maximum of six candidate positions for each ir-led. Since the maximum separation between the ir-led’s is known, the candidate positions could then be filtered to remove the points which were far away from all the others, furthermore a cluster of candidate positions that are near each other were more likely to be the true positions. The aim of this function was to calculate for each candidate position in the position list of each ir-led, the number of other candidate positions in other lists that are near it. The pseudo code for this function is as follows.
The input to the proximityFilter function is 6 position lists from gloveDetect

Set pThresh to 100^2

Set all proximity counts to zero

For m equal to 1 to 5

 For i = 1 to the number of points in list m
 x1 = ith x position in list m
 y1 = ith y position in list m
 for j = m+1 to 6
 for k =1 to number of positions in list j

x2 = kth x position in list j

y2 = kth y position in list j

dist = (x2 – x1) squared + (y1-y2) squared

if dist is less than pThreshold

Increment the proximity count for the ith positions in list m

Increment the proximity count for the jth positions in list k

Return the position lists with the added proximity counts

The full Matlab code for this function is listed in appendix D.
8.5.4 Calculating the difference image using diffImg
Initially the difference image for the nth ir-led was calculated by simply subtracting the reference image from the nth led image. Image subtraction is done by subtracting the corresponding pixel values of the second image from the first image. In the case where the result produces a negative number, which is the case when the intensity of the second pixel is greater than the intensity of the first pixel, the pixel value is set to zero. The image subtraction function was initially coded within the led detection algorithm however testing showed that the built in function imsubtract was considerably faster. This is attributable to the block processing nature of imsubtract, and since detection speed was a significant factor imsubtract was used.
When the difference images were observed during testing it was noticed that quite often an objects would appear in a few of difference images an example of which is seen in Figure 8.11 and Figure 8.12 where the outline of the hand appears clearly in both images.
[image: image17.emf]
Figure 8.11 Difference image for led 2

[image: image18.emf]
Figure 8.12 Difference image for led 3

Since the led position from each image is different, subtracting the difference images from each other would not affect the image of the ir-led but would decrease the intensity of some of the unwanted segments. This is seen when Figure 8.13 and Figure 8.14 are compared.

[image: image19.emf]
Figure 8.13 Difference without subtracting other difference frames

[image: image20.emf]
Figure 8.14 Difference with subtraction of the other difference frames
It was found that it was unnecessary to subtract all six difference images from each other and that it would suffice to subtract only the difference images that used a common reference frame. In this case the difference images for the top row of ir-led’s and the bottom row of ir-led’s were treated separately. The code listing for imgDiff is in appendix D.
8.5.5 Low pass filtering

Low pass filtering may initially appear as a counter intuitive step since it would decrease the clarity of the image however its effect on reducing the error outweighs its disadvantages. In the case where the scene lighting is strong, even the slightest movement by the signer between the reference image and the led image causes an outline of the signer and their features to appear in the difference image. Figure 8.15 is an example of this effect where the outline of the head, glasses, nostrils and even the pattern on the users t-shirt can be seen.

[image: image21.emf]
Figure 8.15 Body outline in the difference image
Occasionally this outline will appear with a stronger intensity then the ir-led which can result in a position error. It is a well known fact in the field of image processing that the edges in an image are generally at points where there is a large change in intensity. This explains why the outline appears since the slight movement results in a shift of the edge boundary and thus a lower intensity point in the reference image is compared with a point of much higher intensity in the led image. With this understanding one solution to the problem would be to decrease the amount of intensity change at the edge boundaries. This task can be easily achieved by averaging the intensity of each pixel with that of its neighbouring pixels. Clearly the larger the number of neighbouring pixels used the less detectable the edges will be. The averaging technique is in effect a low pass filter since it removes the high frequency components required to represent the sharp edges in the image. Figure 8.16 shows the difference image made using the same reference and led frames as those used in Figure 8.15 except that the frames were low pass filtered (averaging using points within a range of 10 pixels) before producing the difference image.

[image: image22.emf]
Figure 8.16 Difference image of Low pass filtered frames

By comparing Figure 8.15 and Figure 8.16 it can be seen that the majority of the outlines have been removed. The comparison also highlights the drawback of this method which is the blurring of the ir-led spot in the difference image, however this rarely resulted in an error and so a five point low pass filter was used.
8.6 ledDetect
8.6.1 Design issues
The led detection function receives as input the difference image generated by the diffImg function. The output generated is six candidate positions for the ir-led in the difference image. Initially this function was designed to return only the point with the highest intensity value however in some situations there were multiple points with the same intensity. Furthermore, on occasions the ir-led position would not appear as the brightest point in the image. These issues were solved by using an intensity threshold, whereby any points exceeding this threshold would be recorded as candidate positions.

The choice of a suitable intensity threshold was a considerably difficult one. If it were set too low then the algorithm would have been very susceptible to noise, and if it were set too high it would fail to notice the ir-led position. A value based on the average image intensity or the histogram would have been suitable however those methods require considerable amounts of processing. A suitable compromise that yielded an excellent result was to start off with a low threshold value and then increase it to match the value of the largest observed pixel intensity greater than or equal to an upper limit after which the threshold dos not change. The upper and lower limits for the threshold were decided upon through testing. Since regions of high intensity will return numerous candidate positions which should be combined and counted as one. To accomplish this the function groupFilter was developed.
8.6.2 Pseudo code

In the following code the notation img(i,j) refers to the intensiy of the i,j pixel

Set the intensity threshold 30

For i = 1 to the width

For j = 1 to the height

If img(i,j) > threshold
If img(i,j) > 80

Set the threshold to 80

Else

Threshold = img(i,j)

 Set pxlCount to 0

If img(i,j) is greater than the threshold

increment pxlCount

If img(i-1,j) is greater than or equal to threshold - 5

increment pxlCount

If img(i,j-1) is greater than or equal to threshold - 5

increment pxlCount

If img(i-1, j - 1) is greater than or equal to threshold - 5

increment pxlCount

If pxlCount is greater than 3 add i and j to the position list

Combine all points that are next to each other (groupFilter)

If there are still more than 6 positions

Order the position list in decreasing order of the threshold value

Keep only the top three positions

Return the list of positions

The Matlab implementation of this function is in appendix D.

8.6.3 groupFilter

Due to the use of a threshold value in ledDetect bright regions in the difference image would result in numerous neighbouring pixels being recorded as candidate positions. This issue was resolved by using the groupFilter function which combines all points that are within a distance threshold of each other, which in essence results all continuous regions to be recorded as a single point position. The number of points combined to create each new point position was also counted. This allowed regions that were too large to be an ir-led to be easily excluded from the position list.
set distThresh to 20 squared
 for i = 1 to the size of the position list

x1 = ith x position in the list

y1 = ith y position in the list

thresh1 = ith threshold in the list

pxlCount1 = ith pixel count in the list

for j = i+1 to the size of the position list

x2 = jth x position in the list

y2 = jth y position in the list

thresh2 = jth threshold in the list

pxlCount2 = jth pixel count in the list

distSqrd = (x1 - x2) squared + (y2-y1) squared

if distSqrd is less than the distance threshold

combine the ith and jth positions

add the new combination to the end of the position list

remove the ith and jth entries from the position list

for k = 1 to the size of the position list

if the kth pixel count is greater than the pixel count threshold

remove the kth entry (too big to be a led)

return the position list

The Matlab implementation of this function is in appendix D.

8.7 Extension to tracking two hands
Currently the algorithms developed were designed for the task of tracking a single hand. Extension of the system to track two hands simultaneously is possible but would require some modifications. The solution envisaged would be to let both gloves operate the irled’s at the same time. The function ledDetect would then be modified to return more possible position candidates. Finally the function proximity filter would produce two sets of separate candidate positions (since each hand will have its own group of candidate positions that are near each other). Using information from the hand positions in the previous frame should allow the two sets of candidate positions to be matched to the correct hand.
8.8 Hand tracking system results
After many iterations and corrections in the design of the system the final results show that the hand tracker is capable of recognising the position and roll of the hand with a considerable level of accuracy. The following are typical results of the hand tracking system. In each image two perpendicular lines were drawn. The detected hand position is the point of intersection between the two lines. The direction in which the palm is facing is given by the direction in which the green line points away from the hand position.
Figure 8.17 and Figure 8.18 show the hand position and roll determined for the case of an open hand with the fingers pointing at the CCD camera. This is the ideal case since the ir-led’s would appear brightest in these positions. In both cases the hand position and roll are shown to be detected correctly.
[image: image23.jpg]

Figure 8.17 Testing with the palm facing upwards

[image: image24.jpg]

Figure 8.18 Testing the the palm facing the left

The next two test cases show a pointing hand, in Figure 8.19 the finger index finger is pointing at the CCD camera and in Figure 8.20 the index finger is pointing at the wrist. Again in both cases the position and roll are detected correctly.

[image: image25.jpg]

Figure 8.19 Testing with the ‘you’ sign

[image: image26.jpg]

Figure 8.20 Testing by pointing to the wrist
The next pair of test cases were chosen since they highlight a scenario in which the hand tracking system alone can not provide the necessary information. Figure 8.21 and Figure 8.22 show the detection result of when the palm is facing the face and facing away respectively. Visually the direction in which the palm is facing appears correct however the result returned would be the same as that of the hand with the palm pointing upwards. Nevertheless, the required result can still be obtained by using the detected roll value with the value of the hand pitch returned by the flex sensors on the glove to disambiguate between whether the palm is pointing upwards or towards the face. The correct result for the roll in Figure 8.22 can be obtained in the same way.
[image: image27.jpg]

Figure 8.21Testing with the palm towards the face
[image: image28.jpg]

Figure 8.22 Testing with the 'push' sign

All the above results took approximately a 2 second period to complete which includes roughly 1.5 seconds for the capture of the 8 frames. The time taken for the capture of the 8 frames is considerably larger than what was considered in the discussion previous sections. However, this value is excessively large due to the implementation in Matlab. Nevertheless it shows that the 0.5 second detection time criterion could be met.
9.0 Facial feature extraction
9.1 Overview
The facial feature extraction component of the project was implemented through the use of neural networks. Using a neural network that takes in the entire image as input and outputs the points where the features are located would have been an extremely difficult and inflexible solution to the problem. The approach taken was to use a small neural network for each feature. Due to the limited development time only the pupils, eye brows and the left corners of the eye were extracted.
A hypothetical grid was applied to the face and at each grid intersection a sampling function was used to produce the inputs to the neural networks (Figure 9.1). The outputs of the neural networks would then produce a classification for that grid point. The inputs were obtained by using a log-polar mapping around the grid intersection points which produced 256 sampling points. Within each neural network a two layer feed forward perceptron structure was used. The resulting system performs very well on the test data used but still requires further development.

[image: image29]
Figure 9.1 Structure of facial feature extraction system
9.2 Features detected for expression recognition
Expression recognition by tracking the movement of the facial features is less subjective then direct recognition of the expression. Since the face movement is not as rapid as that of hand movement and expression are generally held for two or three seconds determining the position of the features once every second is all that is required to approximate the movement of the features. Initially the features selected for tracking were:
1. Pupils
2. Eyebrows

3. Corners of the mouth

4. Top and bottom lips

5. Left corner of the eye

Whilst the first four features are quite obvious for expression recognition the left corner of the eye plays an important role since it provides a reference point through which the head movement could be recognised otherwise it would not be possible to accurately disambiguate between the eyebrows moving up or the head moving up. Furthermore head movement in itself is a useful motion to recognise as it aides in the translation process. The bridge of the nose was a candidate position for tracking the head movement but was not used since the single position it provides could not be used to determine the tilt of the head. Due to the long training periods required only neural networks for the pupils, eye brows and left corner of the eye were fully developed.
9.3 Faces used for training and testing
The performance of a non adaptive neural network depends very heavily on the selection of an appropriate training set. Two steps are required to create the training data from an image file, firstly a training point is selected and the sampling function is applied, the output of which is used as input to the neural network. Secondly for each set of inputs to the neural network the required output needs to be recorded. The most obvious source for the training faces would have been to create them using the CCD camera that would be used by the final system. This would have required the selection of a group of volunteers that were willing to have their faces used in the development. Including the time required to setup the camera and lighting each volunteer would have required approximately 20 minutes to capture all the necessary images of the different facial expressions and face angles. For a set of 40 volunteers this would have equated to a time commitment of at least 13 hours which does not include the time spent searching and waiting for volunteers to respond. Such an approach was deemed to be impractical at the time compared to other sources due to the limited development time available. However had there been time this would have been the method of choice.
Fortunately there are many sources of freely available face databases that have been created specifically for the purpose of feature extraction. A free database available online of 40 faces created by the school of Informatics and Mathematical Modelling at the Technical University of Denmark (Stegmann, Ersbǿll and Larsen 2003), was selected for use in training and testing the neural network. For each of the 40 faces available in the database there were six images:
1. Full frontal face, neutral expression, diffuse light.

2. Full frontal face, "happy" expression, diffuse light.

3. Face rotated approx. 30 degrees to the person's right, neutral expression, diffuse light.

4. Face rotated approx. 30 degrees to the person's left, neutral expression, diffuse light.

5. Full frontal face, neutral expression, spot light added at the person's left side.

6. Full frontal face, "joker image" (arbitrary expression), diffuse light.

Another added benefit was that the database images were supplied with a text file containing the locations of the outline of the facial features. Unfortunately the points did not exactly match the locations required by this project. Thus the points of interest had to be manually recorded in a text file. For each of the first 25 images in the database eight specific positions were recorded in a text file. These were:
· Center of the pupil
· Center of the eyebrow

· Left corner of the eye

· Right corner of the eye

· Left corner of the mouth

· Right corner of the mouth

· Center of the top lip
· Center of the bottom lip
The first four feature positions were recorded for only one side of the face, but a few images had the locations from both sides recorded. On top of the points of interest, it was also necessary to record as many random points around the images which were used as negative examples. One point worth mentioning is that some of the images had a small reflection at the center of the pupil. In those cases a point on the pupil edge was recorded as the pupil centre. The total size of the training set created was 500 input and output pairs. The remaining 15 images were not added to the training set since they would be used in the testing set.
9.4 Sampling function
9.4.1 Testing using a prototype neural network
One of the disadvantages of neural networks is the difficulty faced in knowing the architecture that would produce the best results which made it important to test during intermediate stages of development so that an unsuitable approach could be ruled out quickly.

In order to facilitate correct development a prototype neural network was initially developed that was used in testing the effects of the sampling function. The assumption was made that the most favourable sampling function found by testing with the prototype neural network would also be the most favourable sampling function in general. The prototype consisted of a neural network created to detect only the eyes and was composed of two layers. The first layer initially had 10 neurons and used a sigmoid transfer function. As the second layer was the output layer and was composed of a single neuron with a linear ramp transfer function. The initial choice of using perceptrons was motivated by their common use in pattern matching problems (Principe 1993). The eyes were chosen since they are the most distinct part of the face and were thus the easiest to detect.
9.4.2 Log-polar mapping

The purpose of the sampling function is to sample around a given point in such a way that would maximise the performance of the neural network. What is required is a sampling function that provides many sampling points around the point of interest so that accuracy is improved whilst still sampling some points that are further away so that false positives are reduced. This reduction is due to the added use of information about the relative position of the feature. This is especially effective in facial feature extraction since the relative feature positions convey a lot of information about each other. For example, if the locations of the left eye and mouth are known then position of the right eye can be estimated quite well. This type of “scaled detail” vision is found in the human eye and is referred to as foveal vision. A simple, common and highly effective method of implementing foveal vision is to use log-polar maps. In essence points are sampled on equal angular intervals across a series of concentric circles that have exponentially increasing radiuses. Figure 9.2 is an example of log-polar sampling being applied to an image the result of which is Figure 9.3.

[image: image30.wmf]:

by

given

)are

,

(

points

sampling

 the

),

,

(

point

 the

around

mapping

polar

-

log

For

0

0

i

i

y

x

y

x

[image: image31.wmf](

)

÷

ø

ö

ç

è

æ

+

=

k

n

r

x

x

i

p

2

cos

0

………………………………………………………………….(1)

[image: image32.wmf](

)

÷

ø

ö

ç

è

æ

+

=

k

n

r

y

y

i

p

2

sin

0

………………………………………………………………….(2)

[image: image33.wmf]n

of

function

g

increasein

lly

exponentia

 valued

real

a

is

r(n)

and

circle

each

in

points

sampling

of

number

maximum

....

,3

1,2

k

for

circles

of

number

maximum

nMax which

....

,3

1,2

n

for

=

=

[image: image34.emf]
Figure 9.2 Example of log-polar mapping applied to an image
[image: image35.emf]
Figure 9.3 Example of the resulting sampled image

Initially it was decided that 16 sampling circles would be used and 16 points on each circle would be sampled which results in a total of 256 samples. During the testing phase, the number of samples used was reduced to 128, however this resulted in complete failure in classification and so 256 was the final value used for the number of samples. Anther minor enhancement was to low pass filter the original image. This was done in a so that each sampled pixel would be more representative of the region around it. Nonetheless the low pass filter effect was very minor since only a five pixel wide moving average function (implemented using the built in Matlab function medfilt2) was used to implement the filter.
9.4.3 Choice of the log-polar exponential function

Initially it was incorrectly assumed that the choice of r(n) would not significantly impact the accuracy of the neural networks. It was discovered that the choice of r(n) had a very significant impact on the accuracy and validity of the results. Specifically two characteristics of r(n) had a considerable effect on the results. The first was the maximum radius covered by the sampling function, which in this case is the value of r(nMax). This was the easier parameter to optimise since the results could be explained easily. It was found that when the radius of the sampling function was roughly equal to the radius of the eye socket in pixels, the positive results obtained would be very specific and accurate. However the resulting pupil detection network almost always mistook the nostril for a pupil. The pupil network would also often incorrectly categorise dark hair, and moustaches as pupils. Such results are what would have been expected if a simple cross correlation method had been used since a moustache would appear to be highly correlated to an eyebrow. At the other extreme, if the value r(nMax) corresponded to the size of the face in pixels then the neural network produced results that categorised the entire region surrounding a feature as the feature itself. For the pupils, this meant that the entire eye socket region was classified as a pupil. Thus for this case the neural network to detect the eye was putting more emphasis on the relative position of the eye than on the pupil itself.
Clearly the required result could have been obtained by multiplying the output of the two cases mentioned though this would have been an inefficient approach since it would require the use of two separate sampling functions thereby doubling the number of memory access that would have been required to sample the image. Another conclusion was that there should exist a value for r(nMax) that would be a suitable compromise that would result in an accurate and valid categorization of the features. After a number of testing iterations the value for r(nMax) that was found to produce the best results was when r(nMax) corresponded to the average horizontal eye separation distance in pixels of the faces. For the faces used in this project this corresponded to the value of 85 pixels or 0.133 normalised with respect to the width of the image.
The second characteristic of r(n) considered was that of the function itself, more specifically the rate at which the radius increased. The effects of this characteristic on the result were similar to the effects of having different values for r(nMax). The larger the rate of increase the more emphasis was placed on the relative location and conversely, the smaller the rate of increase the more emphasis was placed on the feature itself. Unlike the previous characteristic where a numerical choice within a given range was required, the only restriction applicable in this case was that the function had to have the given value for r(nMax). Two functions were examined, the first function consisted of a constant with an increasing power and the second function was an increasing number raised to the power of a constant. Testing using both functions produced varying results in which no pattern of improvement could be observed. The function of the form shown in equation 3 produced the best result, since it would almost always correctly detect the pupil. Nonetheless there were still a small number of points incorrectly labelled as pupils.

[image: image36.wmf](

)

16

 to

1

n

for

3

.

1

=

=

n

n

r

………………………………………………………..……….(3)

An interesting observation made concerned with the use of the golden ratio as part of the sampling function. The golden ratio (also known as the divine number and golden mean) was first proposed by Leonardo Da Vinci and it represents the ratio of facial feature positions on the average human face. The value of the golden ratio is
[image: image37.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

2

5

1

. When used as part of the sampling function where it was raised to the power of n divided by a constant, the resulting trained neural network never misclassified a point. However this neural network failed to correctly detect the pupils on several occasions and so was not used. See appendix E for the code listing for the log polar sampling function (lpImgTrans).
9.5 Neural network topology
The choice of neural network topology was an important decision, as the wrong choice would not have led to satisfactory results. Currently in common use for feature extraction are three types of topology, multilayer perceptron’s (Kung 1993), competitive (Haykin 1994), and Kohenen (Haykin 1994), topologies. The oldest of which is the multilayer perceptron. The first choice that was required was whether to use one large neural network to classify all the features, or use a separate smaller neural network for each feature. Using a single neural network would have most likely used fewer neurons in total and so would have been the theoretical topology of choice. Nonetheless from a practical perspective development using the large neural network would have been an incredibly slow process due to the large amount of training time required. Thus the smaller single output neural networks were used. Consequently this meant that the competitive and Kohenen topologies would not be suitable since they were designed for use when there are multiple output neurons, which left multilayer perceptrons as the topology of choice.

With multilayer are defined by three topological characteristics, the number of layers, and the number of neurons in each layer and finally the transfer function of the neurons in each layer. The number of neurons required for the output layer corresponds to the number of outputs, which was one. Furthermore it is often the case that only one or two hidden layers are needed to produce the necessary results (Principe 1993). Initially a two layer neural network to detect the pupil was created using the Matlab toolbox nntool. It used four input neurons with a hyperbolic tan transfer function and a single output neuron with a logistic transfer function. The results obtained were very promising and further testing led to the final configuration for the pupil detector which consisted of a two layer network with six input neurons and one output neuron all of which used a hyperbolic tan transfer function. The same network structure was used by the brow detector. To detect the left corner of the eye the same structure was used except that the first layer contained eight neurons instead of six. All networks were trained through the nntool toolbox feature in Matlab.
9.6 Applying the neural networks

Since only the position of each feature is required, the position resolution needed would be roughly the equivalent to half the feature size. The left corner of the eye is the smallest feature and in most of the face images is roughly 14 pixels wide. Thus only every 7th pixel in the image needs to be examined. At each point that is examined, the sampling function is applied to produce the inputs for the neural network. The outputs from the neural networks are then examined to see if any produced a positive result. If a positive result is obtained then that pixel position is added to the list of pixels for that feature. To separate between the features on the left and right hand sides of the face the half way point of the face was entered manually. Any features found on the left side of the halfway point were set as the positions for the feature on the left side and similarly for the feature point found on the right side of the face.
9.7 Feature extraction pseudo code
The pseudo code for the feature extraction system is:
Input is the head portion of the image

Low pass filter the image

Set all position lists to empty

for i = 1 to width of image incrementing by 7

for j = 1 to height of image incrementing by 7

 apply sample function at point (i,j) to get the inputs for the neural networks

pupil = simulate eye NN with nnInput

brow = simulate brow NN with nnInput

LeftECrnr = simulate left eye corner NN with nnInput

If pupil > 0.5

if i < halfPoint

Add point (i,j) to the position list for the left pupil

Else

Add point (i,j) to the position list for the right pupil

Else if brow> 0.5

if i < halfPoint

Add point (i,j) to the position list for the left eyebrow

Else

Add point (i,j) to the position list for the right eyebrow

Else if LeftECrnr > 0.5

if i < halfPoint

Add point (i,j) to the position list for the left Leye corner

Else

Add point (i,j) to the position list for the right Leye corner
Set the position of each feature to be the median point in the position list

The Matlab code implementing this algorithm is in appendix E.
9.8 Feature extraction result

Of the 40 images contained in the face database 15 faces were not used as part of the training data in order for them to be useful as test images. The first image (Figure 9.4) shows the output from only the eye detection neural network along the classification gird points. The image clearly shows the categorisation of the points on the pupil (white dots) was very accurate and that no other points were miscategorised.
[image: image38.jpg]

Figure 9.4 Pupil detection on the grid

In order the make the remaining results more clear, the pupil and left eye corner positions returned were marked with a red and blue cross respectively, and similarly for the eye brow position which was marked using a green line.

Figure 9.5 to Figure 9.8 show the feature detection results for a group of varied people. Generally the results are very accurate for the pupils and eyebrows. It can also be seen that in the out of focus image a significant position error for the left corner of the eye has occurred and that the left pupil was not detected at all.
[image: image39.jpg]

Figure 9.5 Facial feature detection for a man with a moustache

[image: image40.jpg]

Figure 9.6 Facial feature detection for a smiling woman

[image: image41.jpg]

Figure 9.7 Facial feature detection in an out of focus image

[image: image42.jpg]

Figure 9.8 Facial feature detection for a bearded man
The next two test results verify the systems applicability to slightly angled faces and heads. The first result shows two cases, one where the head is straight and the other where the head is angled. In both cases all three features positions were detected correctly. The second result is for a sideways facing face. In the case where the face is slightly facing the left the system fails to detect the left corner of the left eye. This is not the case for the other features or for the case where the face is facing the right hand side.
[image: image43.jpg]

[image: image44.jpg]

Figure 9.9 Facial feature detection for an angled head
[image: image45.jpg]

Figure 9.10 Facial feature detection for a young man

[image: image46.jpg]

[image: image47.jpg]

Figure 9.11 Facial feature detection for a face turned sideways
After confirming that the system works well for the test set, its performance under an uncontrolled environment was tested. The results were promising however they contain too many errors for them to be deemed acceptable. Figure 9.12 and Figure 9.13 are results from the testing with the eye brow neural network. The first suffers from many misclassifications in the hair but the eyebrows them selves are detected quite well and few points on the face are misclassified. The second example shows a very similar result and interestingly follows the shape of the eyebrow. Figure 9.14 shows the result from the pupil detection where it can be seen there is significantly more error.
[image: image48.jpg]

Figure 9.12 Brow detection for a CCD captured image

[image: image49.jpg]

[image: image50.jpg]

Figure 9.13 More complex brow detection

[image: image51.jpg]

Figure 9.14 Pupil detection for a CCD camera captured face
The final result is for the case where the resolution of the input image was significantly reduced. This was done by reducing the sampling function spacing by the same factor as the reduction in resolution. All the features on the right were accurately and left eyebrow detected to within two pixels. The left pupil and left corner of the left eye were undetected. Like most of the other results, this again highlights the potential for the method.
[image: image52.jpg]

Figure 9.15 Feature detection in low resolution image

All of the results obtained on average took 20 seconds to complete. Whilst this is considerably greater than the target detection period there is considerable room for improvement as the entire face was checked for the features. This is unnecessary since the head is not expected to move considerably between frames and so only a small portion of the face needs to be examined for the features. Another point that should be made is that no use was made of the parallelism offered by neural networks which can be used to produce extremely fast results.
10.0 Conclusion and future development considerations
10.1 Hand tracking system
A hand tracking system based on optical tracker technology was developed for the purpose of Auslan translation. Whilst the hand tracking system discussed is capable of tracking the hand position and roll, the depth of the hand was a parameter that could not be determined. Nevertheless with respect to accuracy the overall the system performed quite well in testing and does meet the spatial resolution requirements of the translation process. The speed of the tracking process on the PC also strongly indicates that the hardware implementation would be fast enough to track the hand twice every second. Appendix B shows a cost estimate for the system which is A$206 and thus the cost target was achieved.
There is still much room for refinement in the hand tracking system. At the top of the list is the modification of the algorithms so that two hands can be tracked simultaneously. A very beneficial improvement would be adding the ability of segmenting out the background from the foreground as this would allow the system to be adapted for use in situations where there is a dynamic background. Another important and necessary future development is to add the ability to track the depth of the hand at which point the tracking system would fulfil all the requirements needed by Auslan. This will most likely require the use of a second CCD camera which inturn would need modifications of the current algorithms so that better accuracy can be achieved with the extra inputs.
Finally it should be noted that whilst the motivation behind this system was for Auslan translation purposes, the end result represents a useful device that has numerous application potentials in many other situations. The most significant of these is to use the hand tracker to implement a mouse like input device for computers.
10.2 Facial feature extraction

A system to extract the positions of the facial features was developed in order to facilitate expression recognition. The resulting system was found to produce excellent results when applied to the testing set of faces from the same face database as the feature positions were detected with a spatial resolution of less than half of the feature size in a time period of about 20 seconds. Even though this is a considerably larger than the target operation speed, using a DSP chip and some optimisation of the extraction process will most likely allow the recognition period to be reduced to one second which is the requirement specified. When applied to inputs from the CCD camera the accuracy of the results is significantly worse, lower than what would be needed for a usable system. Fortunately the results do indicate that the approach was valid and does work but that more refinement is still necessary.

Further improvements in the facial feature extraction system are still required. Most importantly improvements in the performance of the system are needed so that the one second detection criterion is met and to improve on the accuracy of the results when using input from the CCD video camera. Also development of the algorithm to determine the position of the face in the image is necessary in order for this component of the Auslan translator to be complete.
Whilst the facial feature extraction system plays an important role in the transition of Auslan, like the hand tracking system it has significant application potential as an interface device to computers, a recent example of a similar device is the ‘nouse’ (http://www.cv.iit.nrc.ca/research/Nouse/index2.html) which uses the nose position to control the position of the mouse. Further work could be carried out to investigate and implement an computer interface system based on the system that was developed.
10.3 Auslan translation device
The Auslan translation system represents a very formidable design challenge in which significant progress has been made. Nevertheless there are still a number of significant problems still to be solved. Firstly, of the five inputs necessary for Auslan translation the recognition of the signing zones on the body is yet to be investigated. Once this is done the input capture development stage of the system would be complete. The next stage in the process is to develop the translation algorithms that would recognise the intended meaning of the signs and then translate them into English. Finally the last stage would be the integration of the entire system into a small form factor device.
Bibliography

Bishop, C. M., 1995, Neural networks for pattern recognition, OxClarendon Press, Oxford.

Childhood learning may determine linguistic rules, 2004, Retrieved: October 30,2004 from http://www.newscientist.com/news/news.jsp?id=ns99996411.

Dawkins, J., 1991, Australia's Language: The Australian Language and Literacy Policy, Australian Government Publishing Service, Canberra.

Haykin, S.,1994, Neural networks: a comprehensive foundation, Maxwell Macmillan International, New York.
Hyde, M., & Power, D., 1991, The Use of Australian Sign Language by Deaf People, Griffith University, Queensland.
Johnston, T.A. (ed), 1998, Signs of Australia: A new dictionary of Auslan (the sign language of the Australian deaf community), North Rocks Press, New South Wales.

Johnston, T.A. (ed), 1997, Signs of Australia on CD_ROM: A dictionary of Auslan (Australian Sign Language), Royal Institute for Deaf and Blind Children, New South Wales. CD_ROM.

 Kung, S.Y.,1993, Digital neural networks, Prentice Hall, Englewood Cliffs, N.J.

Motion Tracking Tutorial, 2004, Retrieved: October 29, 2004 from http://www.wave-report.com/tutorials/MoTrak.htm.
Mulder, P., 1994, Human movement tracking technology, Retrieved: October 29, 2004 from http://www.cs.sfu.ca/~amulder/personal/vmi/HMTT.pub.html.

Newman, C.J., 2003, Translating Australian Sign Language into Speech, Undergraduate thesis, Curtin University of Technology. Retrieved October 31st from 2004 from http://thesis.ece.curtin.edu.au/Thesis_2003/Craig%20Newmans%20-%2009655801/
Principe, J. C., 1993, Artificial neural networks, Dorf, R.C. (ed), 1993, in the electrical engineering handbook, CRC Press, Boca Raton.
Stegmann, M. B., Ersbǿll, B. K., Larsen, R., 2003, FAME - a flexible appearance modeling environment, IEEE Trans. on Medical Imaging, vol. 22, no.10, pp. 1319-1331.

Lopatenok, T., Kudrjashov, O., 2002, The model-based approach of markers identification and visualisation in motion capturing systems, Retrieved: October 31st from 2004 from http://www.simvis.org/simvis/tagung2002/abstract/lopatenok.pdf.
Welch, G., Foxlin, E., 2002, Motion Tracking: No Silver Bullet, but a Respectable Arsenal, IEEE Computer Graphics and Applications, special issue on Tracking, vol. 22, no. 6, pp. 24–38, Retrieved: October 31st from 2004 from http://www.cs.unc.edu/~tracker/media/pdf/cga02_welch_tracking.pdf
Won, C.S., Gray, R.M., 2004, Stochastic image processing, Kulwer Academic, New York, pp. 67 – 97.
Appendix A Project plan and amendments
The following is a modification of the table created in March 2004 of the predicted task distribution and required time. An extra column has been added to show the changes made.

[image: image53]

[image: image54]

Appendix B Cost estimates
With the assumption that the system will be composed of possibly two webcam grade CCD camera’s, a DSP processor, Ir-leds, PCB board and a battery pack, a rough cost estimate is given below.

	Item
	Cost estimate

	Two CCD camera chips
	$80

	DSP chip
	$5

	Six Ir-Led’s
	$6

	PCB board
	$10

	Battery pack
	$30

	Connectors and miscellaneous board components
	$10

	Glove
	$15

	Packaging
	$50

	Total
	$206

Appendix C Preliminary results from the histogram based approach

This section briefly shows an example of using the histogram to segment the face. For the input image shown below on the left the histogram is calculated (lower image). Filtering out all the intensities that are not in the middle of the two peaks produces the image shown below on the right. Given the resolution of the original image the result is an excellent segmentation of the features and can be used for images that have consistent lighting. Naturally this approach can not handle variations in lighting across the face.

[image: image55.emf][image: image56.emf]
Figure C.1 Input and output from the histogram approach

[image: image57.emf]0 50 100 150 200 250 300

0

50

100

150

200

250

Figure C.2 The histogram for the given input image

Appendix D code listings for the hand tracker
trackHand.m
function mv = trackHand(nPos)

%Function to track the hand nPos times

%Inputs:

%nPos: Number of times to track the hand

%outputs: movie object of the last 8 frames captured for debugging purposes

%Results are automatically displayed in a new figure and displayed on the command line

%Open up a connection to the serial port

serialConn = serial('COM1');

set(serialConn,'BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1);

fopen(serialConn);

fprintf(serialConn,'%u',0);

%Open up a connection to the DV cam

dvIn = videoinput('winvideo',1,'RGB24_720x576');

%while more postions are still required

for k =1:nPos,

 tic;

 % Capture required frames

 %mv(1) = im2frame(medfilt2(getsnapshot(dvIn)),[5 5]);

 for i = 0:3,

 %Turn on the led

 fprintf(serialConn,'%u',i);

 %Capture the frame

 mv(i+1) = im2frame(getsnapshot(dvIn));

 %Turn off the led

 fprintf(serialConn,'%u',0);

 end

 mv(5) = im2frame(getsnapshot(dvIn));

 for i = 4:6,

 %Turn on the led

 fprintf(serialConn,'%u',10 - i);

 %Capture the frame

 mv(i+2) = im2frame(getsnapshot(dvIn));

 %Turn off the led

 fprintf(serialConn,'%u',0);

 end

 %Run glove detect

 [handPosX, handPosY, pitch] = gloveDetect(mv);

 toc;

end

%close DV connection

delete(dvIn);

%Close Serial connection

fclose(serialConn);

delete(serialConn);

gloveDetect.m
function [handPosX, handPosY, pitch] = gloveDetect(movie)

% Returns the glove position and angle

% Inputs:

% movie: A movie object containing 8 frames

% Outputs:

% handPosX, HandposY: the hand position coordinates x and y respectivly

% pitch: The pitch of the hand

%Get the reference image and convert it to grayscale

%medilt 2 is a moving average function. Blurs the image which allows the

%"jitter" to be more easily removed.

refImg = medfilt2(rgb2gray(frame2im(movie(1))),[5 5]);

%Get the image from the movie object

img1 = medfilt2(rgb2gray(frame2im(movie(2))), [5 5]);

%Get the image from the movie object

img2 = medfilt2(rgb2gray(frame2im(movie(3))), [5 5]);

%Get the image from the movie object

img3 = medfilt2(rgb2gray(frame2im(movie(4))), [5 5]);

%Get the difference images between the reference frame and the led image

[id1 id2 id3] = imgDiff(refImg,img1,img2,img3);

%Detect the led positions from teh top row

res(1).pos = ledDetect(id1);

%Detect the led position

res(2).pos = ledDetect(id2);

%Detect the led position

res(3).pos = ledDetect(id3);

%Get the reference image and convert it to grayscale

%medilt 2 is a moving average function. Blurs the image which allows the

%"jitter" to be more easily removed.

refImg = medfilt2(rgb2gray(frame2im(movie(5))),[5 5]);

%Get the image from the movie object

img4 = medfilt2(rgb2gray(frame2im(movie(6))), [5 5]);

%Get the image from the movie object

img5 = medfilt2(rgb2gray(frame2im(movie(7))), [5 5]);

%Get the image from the movie object

img6 = medfilt2(rgb2gray(frame2im(movie(8))), [5 5]);

%Get the difference images between the reference frame and the led image

[id4 id5 id6] = imgDiff(refImg,img4,img5,img6);

%Detect the led position

res(4).pos = ledDetect(id4);

%Detect the led position

res(5).pos = ledDetect(id5);

%Detect the led position

res(6).pos = ledDetect(id6);

%Apply the proximity filter to all the potential LED positions to remove

%anamolies

led_points = proximityFilter(res);

[height width] = size(refImg);

%Extract the points on the top

points = [];

if(~isempty(led_points(1).pos)),

 points = [led_points(1).pos(1) led_points(1).pos(2)];

end

if(~isempty(led_points(2).pos)),

 points = [points; led_points(2).pos(1) led_points(2).pos(2)];

end

if(~isempty(led_points(3).pos)),

 points = [points; led_points(3).pos(1) led_points(3).pos(2)];

end

%Get the number of LED positions that were detected

[n_points tmp] = size(points);

%Intialize the variables to -1 so that modifications can be picked out

xAvgTop =-1;

yAvgTop = -1;

xDifTop = -1;

yDifTop = -1;

angleTop = 360;

if(n_points > 1)

 %Enough points obtained so calculate glove postion and angle using the

 %first three points which correspond to the top row of leds (back of

 %the hand)

 [s tmp] = size(points);

 xAvgTop = sum(points(1:1:s))/s;

 yAvgTop = sum(points(s+1:1:2*s))/s;

 xDifTop = points(s) - points(1);

 yDifTop = (points(2*s) - points(s+1)) * -1;

 %Calculate the angle

 angleTop = atan(yDifTop/xDifTop * width/height) * 180 / pi;

 if yDifTop >= 0

 if xDifTop < 0

 angleTop = angleTop + 180;

 end

 else

 if xDifTop < 0

 angleTop = angleTop - 180;

 end

 end

 angleTop

end

%Extract the points on the bottom

points = [];

if(~isempty(led_points(4).pos)),

 points = [led_points(4).pos(1) led_points(4).pos(2)];

end

if(~isempty(led_points(5).pos)),

 points = [points; led_points(5).pos(1) led_points(5).pos(2)];

end

if(~isempty(led_points(6).pos)),

 points = [points; led_points(6).pos(1) led_points(6).pos(2)];

end

[n_points tmp] = size(points);

%Intialize the variables to -1 so that modifications can be picked out

xAvgBottom = -1;

yAvgBottom = -1;

xDifBottom = -1;

yDifBottom = -1;

angleBottom = 360;

if(n_points <= 1)

 %Single point or failed to detect the LED, so can't deduce angle and

 %position is likely to be undependable

else

 %Enough points obtained so calculate glove postion and angle using the

 %last three points which corrspond to the bottom row of leds (palm side)

 [s tmp] = size(points);

 xAvgBottom = sum(points(1:1:s))/s;

 yAvgBottom = sum(points(s+1:1:2*s))/s;

 xDifBottom = points(s) - points(1);

 yDifBottom = (points(2*s) - points(s+1)) * -1;

 %Calculate the angle

 angleBottom = atan(yDifBottom/xDifBottom * width/height);

 if yDifBottom >= 0

 if xDifBottom < 0

 angleBottom = angleBottom + 180;

 end

 else

 if xDifBottom < 0

 angleBottom = angleBottom - 180;

 end

 end

 angleBottom

end

figure;

imshow(refImg);

%Combine the two sets of values

if((xAvgBottom > 0) & (xAvgTop > 0))

 handPosX = round((xAvgBottom + xAvgTop)/2);

elseif (xAvgBottom > 0)

 handPosX = xAvgBottom;

elseif (xAvgTop > 0)

 handPosX = xAvgTop;

else

 handPosX = -1;

end

if((yAvgBottom > 0) & (yAvgTop > 0))

 handPosY = round((yAvgBottom + yAvgTop)/2);

elseif (yAvgBottom > 0)

 handPosY = yAvgBottom;

elseif (yAvgTop > 0)

 handPosY = yAvgTop;

else

 handPosY = -1;

end

if((angleTop ~= 360) & (angleBottom ~= 360)),

 pitch = round((angleTop + angleBottom)/2);

elseif (angleTop ~= 360),

 pitch = angleTop;

elseif (angleBottom ~= 360),

 pitch = angleBottom;

else

 pitch = 360;

end

%add display lines to image

if (handPosX ~= -1) & (handPosY ~= -1) & (pitch ~= 360)

 l = line([(handPosX - 30 * cos(pitch * pi/180));(handPosX+ 30*cos(pitch * pi/180))],[(handPosY + 40 * sin(pitch * pi/180)) ;(handPosY - 30 * sin(pitch * pi/180))]);

 set(l,'color',[1 0 0],'lineWidth',[2]); %red and increase the width

 if pitch > 0

 l2 = line([handPosX;(handPosX + 30*cos((pitch - 90) * pi/180))],[handPosY;(handPosY + 30 * -sin((pitch - 90) * pi/180))]);

 else

 l2 = line([handPosX;(handPosX + 30*cos((360 + pitch -90) * pi/180))],[handPosY;(handPosY + 30 * -sin((360 + pitch - 90) * pi/180))]);

 end

 set(l2,'color',[0 1 0],'lineWidth',[2]);%green and increase the width

end

fprintf(1,'The hand is at position: %i,%i\n',handPosX,handPosY);

fprintf(1,'The hand is at an angle of: %i degrees\n',pitch);

imgDiff.m
function [id1 id2 id3] = imgDiff(refImg,img1,img2,img3)

% This function prodcues the "difference" images that are used to find the

% LED postion. Firstly the difference between each image and the reference

% frame is determined. However, this difference frame often contains a lot

% of extra difference data which can often lead to incorrect detection

% points. By removing the difference data off the other frames as well a

% much better result is obtained.

% Inputs:

% refImg: image to which the other images are compared

% img1,img2,img: the images that contain a lit LED

% Outputs:

% id1,id2,id3: The resulting difference images

refImg = medfilt2(refImg);

img1 = medfilt2(img1);

img2 = medfilt2(img2);

img3 = medfilt2(img3);

%get the difference between te reference image and the lit image

i1d = imsubtract(img1,refImg);

i2d = imsubtract(img2,refImg);

i3d = imsubtract(img3,refImg);

%Remove extra difference information found in the other difference images

id1 = imsubtract(imsubtract(i1d,i2d),i3d);

id2 = imsubtract(imsubtract(i2d,i1d),i3d);

id3 = imsubtract(imsubtract(i3d,i1d),i2d);
ledDetect.m
function resArray = ledDetect(img)

%Usage:

% resArray = ledDetect(img)

%The aim of this function is to detect potential LED locations in the

%difference image given as the input. This is done by using an intensity

%threshold to pick out the position. A grouping function is also used to

%group similar "difference" regions together and to remove too big to be

%the LEDs. The returned array contains a list of

%the possible led positions.

% Inputs

% img: Image in which the led is to be detected

%

% Outputs

% resArray: An array containing the possible led positions, each position is

% on a new row. Rows have the format:

% [Xposition Yposition position_intensity pixel_count proximity_count]

% Note that the proximity count is only intialised to zero in

% this function

%

[height width] = size(img); %Get the size of the reference image

%Starting threshold for intensity, anything below this point is not picked up

thresh = 30;

%Intialise the results array

resArray = [];

%Intialise xLoc and yLoc to -1 incase they no points exceed the threshold

xLoc = -1;

yLoc = -1;

%Go though all the pixels, moving horizontally first (left to right) and

%then verticaly (top to bottom)

for i = 1:height,

 for j = 1:width,

 %Test if the pixel intensity is larger than the threshold and lower

 %than the threshhold ceiling

 if (img(i,j) > 80)

 thresh = 80;

 elseif (img(i,j) > thresh) & (thresh <= 80),

 %Increase threshold to match current intensity

 thresh = double(img(i,j));

 end

 %Test out the data in blocks of four pixels to detect area's with

 %three or more high valued (i.e. nearly white) pixels.

 if (i>1) & (j>1)

 pxlCount = 0;

 if(img(i,j) >= thresh)

 pxlCount = pxlCount +1;

 end

 if (img(i-1,j) >= (thresh - 5))

 pxlCount = pxlCount +1;

 end

 if(img(i,j-1) >= (thresh -5))

 pxlCount = pxlCount +1;

 end

 if(img(i-1, j - 1) >= (thresh - 5))

 pxlCount = pxlCount +1;

 end

 %Try to detect a spot larger than 2 pixels, since such a spot

 %constitutes a possible led postion

 if pxlCount >= 3

 %Possible led position, so add it to the results

 xLoc = j;

 yLoc = i;

 resArray = [resArray; xLoc yLoc thresh pxlCount 0];

 end

 end

 end

end

%Number of detection points is limited to 6, so if there are more than 6

%points, they need to be cut down. Firstly similar points are combined,

%then the top six (by threshold then pixel count) remaining points are

%returned.

%Group similar points together

resArray = groupFilter(resArray);

%Get the number of detection points

[numRes temp] = size(resArray);

%If there are more than 6 points detected, only use the top 6

if (numRes > 6)

 %Sort results based on decreasing threshold followed by pixel count

 resArray = sortrows(resArray,[-3 -4]);

 %Only keep the top 6 results

 resArray = resArray(1:6,:);

end
groupFilter.m
function resArray = groupFilter(points)

%Usage:

%resArray = groupFilter(points)

%This function aims to combine similar points together so that the largest

%range of points can be used later on.

%Inputs

%points: A list of possible led locations in the following format

% [Xposition Yposition position_intensity pixel_count proximity_count]

%Outputs

% resArray: A list that's in the same format as the points list

% above which has had detection points within 4 pixels (locality)combined

% into one.

distThresh = 20^2; %Threshold for considering two points similar, squared so

 %that there's no need to square root when comparing

%Set intialise the output array to be the same as the input

resArray = points;

%Get the number of potential points

[numRes temp] = size(resArray);

%If there's more than one point then combination may be applicable

if numRes > 1

 i = 1;

 %Loop through the the results to combining them as necessary

 while (i <= numRes),

 %Get the curret result to which the other results will be compared

 row = resArray(i,:);

 %Set xLoc1,yLoc1,thresh1 & pxlCount1, not needed but imporves readability

 xLoc1 = row(1);

 yLoc1 = row(2);

 thresh1 =row(3);

 pxlCount1 = row(4);

 j = i+1;

 %Loop through the remaining results testing for locality

 while(j <= numRes),

 %Set xLoc2,yLoc2,thresh2 & pxlCount2, not needed but imporves

 %readability

 row = resArray(j,:);

 xLoc2 = row(1);

 yLoc2 = row(2);

 thresh2 = row(3);

 pxlCount2 = row(4);

 %Get the square of the differences

 distSqrd = (xLoc2-xLoc1)^2 + (yLoc2-yLoc1)^2;

 if(distSqrd < distThresh)

 %points are near each other so combine and add at the back

 %of resArray

 resArray = [resArray; round((xLoc1 + xLoc2)/2) round((yLoc1 + yLoc2)/2) max(thresh1,thresh2) (pxlCount2 + pxlCount1) 0];

 %points combined so they need to be removed from resArray

 %The current row will still combine with the rest of the

 %results

 resArray(i,:) = [];

 resArray(j,:) = [];

 %Since the current row was removed, the next row is at row

 %j

 else

 %No rows removed, so j needs to be incremented so that the

 %other rows are compared.

 j = j+1;

 end

 %Refresh the number of remaining results

 [numRes temp] = size(resArray);

 end

 %Increment i to test out the next set of results

 i = i+1;

 end

end

[numRes temp] = size(resArray);

i=1;

while (i <= numRes),

 row = resArray(i,:);

 %Test to see the number of detected pixels, if there are too many

 %then the object is too big to be a led

 xLoc = row(1);

 yLoc = row(2);

 thresh =row(3);

 pxlCount = row(4);

 if(pxlCount > 20000) %too big to be a led

 resArray(i,:) = [];

 end

 [numRes temp] = size(resArray);

 i = i+1;

end

proximityFilter.m
function filteredRes = proximityFilter(res)

%Usage:

%filteredRes = proximityFilter(res)

%To improve the systems detection abilities the results are filtered so

%that the largest set of postitions nearest each other are the ones used

%by the system.

%

%Inputs

%res: An array with 6 elements each of which is an array containing the

%possible detection points of each LED (returned by ledDetect)

%

%Outputs

%filteredRes: Same structure as the input, but each of the 6 arrays will

%only have one element chosen according the criteria outlined above

pThresh = 100^2; %The distance threshold used

for m =1:5, %For the first 5 sets of results

 %Get the number of points in the set

 [numRes,temp] = size(res(m).pos);

 for i = 1:numRes, %For each of the points in the set

 res1 = res(m).pos(i,:); %Read the point values

 if(~isempty(size(res1))),

 xLoc1 = res1(1); %Get the x and y coords

 yLoc1 = res1(2);

 for j = m+1:6,

 %For each of the remaining sets of points

 [numPos temp] = size(res(j).pos); %Get the number of points in the set

 for k =1:numPos,

 %Get the x and y coords

 res2 = res(j).pos(k,:);

 xLoc2 = res2(1);

 yLoc2 = res2(2);

 %Get the square of the differences

 dist = (xLoc2-xLoc1)^2 + (yLoc2-yLoc1)^2;

 if(dist < pThresh)

 %The distance is less than the threshold

 %Increment the proximity count in both records

 res(m).pos(i,5) = res(m).pos(i,5) + 1;

 res(j).pos(k,5) = res(j).pos(k,5) + 1;

 end

 end

 end

 end

 end

end

for m = 1:6, %For each points set

 resDet = res(m).pos;

 if isempty(resDet)

 filteredRes(m).pos = [];

 else

 %Sort the points in decereasing order of proximity count

 sorResDet = sortrows(resDet,-5);

 if sorResDet(5) >= 2

 %There is at least one other point nearby and this is the

 %point with the highest proximity count

 filteredRes(m).pos = sorResDet(1,:);

 else

 %Failed to detect the led

 filteredRes(m).pos = [];

 end

 end

end

Appendix E Code listings for feature extraction

trackFeatures.m
function detImg = trackFeatures(img,eyeDet,leyeDet,bDet,xStart,xEnd,yStart,yEnd,step_size, halfPoint)

%Function to extract the postion of the pupils, eye brows, and left corner of the eye

%Inputs:

%img

%image that would be searched for the features

%

%eyeDet,leyeDet,bDet

%The neural network for the pupils, left eye corner and eyebrow respectivly

%

%xStart,xEnd,yStart,yEnd

%The coordiates of the face in the image

%

%step_size

%Defines how far apart the grid points are.

%For step size of 1 it takes several minutes on a large image, a value between

%5 and 10 is suitable

%

%halfPoint

%The half way point of the face on the x axis

%

%Outputs:

%detImg

%resulting image with the dectection points

%intialise variables

testImg = rgb2gray(img);

[height width t] = size(testImg);

detImg = img;

LeyePos = [];

ReyePos = [];

LlePos = [];

RlePos = [];

RbrowPos = [];

LbrowPos = [];

%start timer

tic;

for i = xStart:step_size:xEnd,

 for j = yStart:step_size:yEnd,

%for each grid point apply the sampling function

 pimg = lpImgTrans(testImg,i,j,16,1);

 nd = transpose(double(pimg(1:256)));

%simulate neural inputs with the sampled data

 [Y1,Pf,Af,E,perf] = sim(eyeDet,nd);

 [Y2,Pf,Af,E,perf] = sim(bDet,nd);

 [Y3,Pf,Af,E,perf] = sim(leyeDet,nd);

 %Test to see if detection has occured

 if Y1 > 0.5,

 detImg(j,i,:) = [255 0 0];

 if i < halfPoint,

 LeyePos = [LeyePos; i j];

 else

 ReyePos = [ReyePos; i j];

 end

 elseif Y2 > 0.9,

 detImg(j,i,:) = [0 255 0];

 if i > halfPoint,

 RbrowPos = [RbrowPos; i j];

 else

 LbrowPos = [LbrowPos; i j];

 end

 elseif Y3 > 0.9,

 detImg(j,i,:) = [0 0 255];

 if i > halfPoint,

 RlePos = [RlePos; i j];

 else

 LlePos = [LlePos; i j];

 end

 else

 %detImg(j,i,:) = [0 0 0];

 end

 end

end

toc;

%Set the postion to the median value, gives much better results than the average

LeyePos = round(median(LeyePos,1));

ReyePos = round(median(ReyePos,1));

LlePos = round(median(LlePos,1));

RlePos = round(median(RlePos,1));

RbrowPos = round(median(RbrowPos,1));

LbrowPos = round(median(LbrowPos,1));

%Display results

figure;

imshow(detImg);

if (~isempty(RbrowPos))

 l = line([RbrowPos(1) - 20;RbrowPos(1)+20],[RbrowPos(2);RbrowPos(2)]);

 set(l,'Color',[0 1 0]);

end

if (~isempty(LbrowPos))

 l = line([LbrowPos(1) - 20;LbrowPos(1)+20],[LbrowPos(2);LbrowPos(2)]);

 set(l,'Color',[0 1 0]);

end

if(~isempty(LeyePos))

 l2 = line([(LeyePos(1)-8);(LeyePos(1)+8)],[LeyePos(2);LeyePos(2)]);

 set(l2,'Color',[1 0 0]);

 l2 = line([LeyePos(1);LeyePos(1)],[(LeyePos(2)-8);(LeyePos(2)+8)]);

 set(l2,'Color',[1 0 0]);

end

if (~isempty(ReyePos))

 l2 = line([(ReyePos(1)-8);(ReyePos(1)+8)],[ReyePos(2);ReyePos(2)]);

 set(l2,'Color',[1 0 0]);

 l2 = line([ReyePos(1);ReyePos(1)],[(ReyePos(2)-8);(ReyePos(2)+8)]);

 set(l2,'Color',[1 0 0]);

end

if (~isempty(LlePos))

 l3 = line([(LlePos(1)-4);(LlePos(1)+4)],[LlePos(2);LlePos(2)]);

 set(l3,'Color',[0 0 1]);

 l3 = line([LlePos(1);LlePos(1)],[(LlePos(2)-8);(LlePos(2)+8)]);

 set(l3,'Color',[0 0 1]);

end

if (~isempty(RlePos))

 l3 = line([(RlePos(1)-4);(RlePos(1)+4)],[RlePos(2);RlePos(2)]);

 set(l3,'Color',[0 0 1]);

 l3 = line([RlePos(1);RlePos(1)],[(RlePos(2)-8);(RlePos(2)+8)]);

 set(l3,'Color',[0 0 1]);

end

lpImgTrans.m
function polarImg = lpImgTrans(img,xo,yo,smpl_size,scaleFac)

%Function to apply the log polar sampling to an image

%Inputs:

%img: the image to be sampled

%xo,yo: the centre point for sampling

%smpl_size: the number of samples to create in each circle, actual number

%of samples is smpl_size^2

%Scale factor: a factor to scale the image down by

%low pass filter the image

img = medfilt2(rgb2gray(img),[5 5]);

%get height and width

[height width] = size(img);

x = xo * scaleFac;

y = yo * scaleFac;

phi = (1 + sqrt(5)) /2;

r = 20;

%Intialise result image

polarImg = uint8(zeros(smpl_size,smpl_size));

for i=1:smpl_size,

 for j = 1:smpl_size,

 %Convert polar coordinates into cartesian

 [xp,yp] = pol2cart(-j*2*pi/(smpl_size),i^1.6);

 % [xp,yp] = pol2cart(-j*2*pi/(smpl_size),i^1.85 +10);

 % [xp,yp] = pol2cart(-j*2*pi/(smpl_size),(1.4^i));

 % [xp,yp] = pol2cart(-j*2*pi/(smpl_size),(phi)^(i/1.55));

 polarImg(j,i) = img(j,i);

 if (y+yp > 1) & (x+xp > 1) & (y+yp < height) & (x+xp < width),

 polarImg(j,i) = img(round(y+yp),round(x+xp));

 else

 %sampling is outside the image so insert random points.

 polarImg(j,i) = round(rand() * 200);

 end

 end

end

%If an image of the sampling function applied to the original is required

%uncomment the following lines and comment the ones above

% polarImg = img;

%

% for i=1:smpl_size,

% for j = 1:smpl_size,

% [xp,yp] = pol2cart(-j*2*pi/(smpl_size),1.3^i);

% polarImg(round(y+yp),round(x+xp)) = 255;

% end

% r = (phi)^(i/1.55);

% end

imgDiff

Position list

Head locator

IR LED controller

ledDetect

gloveDetect

trackHand

Tracking System

Hand position & roll

Captured frames

led position list

for led n

Difference image

for led n

Captured frame

Difference images

Low pass filter

LPF frame

LPF frames

Position list

Threshold points

groupFilter

proximityFilter

led positions

Input image

Add grid to face

Face position

Log polar sampling function

Neural networks

Feature type

Pupil

Eye brow

Eye corner

‘weigh’ sign

‘balance’ sign

‘doubt’ sign

‘spoon’ sign letter ‘n’ sign

Auslan sign recogniser

Hand position & roll

Start tracking signal

�

 Back of the hand				 Palm side of the hand

INDEXING TERMS

Sign language translation, motion tracking, hand tracking, facial feature extraction, expression recognition, log polar mapping, neural networks, optical trackers, optical markers.

TECHNICAL WORK

REPORT PRESENTATION

REPORT PRESENTATION

CO-EXAMINER

EXAMINER

POOR

AVERAGE

GOOD

ABSTRACT:

Previous research at Curtin University has been conducted into the creation of an Australian sign language translator of which this project is a continuation. In order to produce the correct translation five inputs are required by the translator which are hand shape, orientation, location, movement and facial expressions. This thesis discusses the development of a real time system to track the hand position and roll through the use of optical trackers and the development of a system to extract the facial feature positions using neural networks with a resolution equivalent to half the feature size.

OPTION: Electronics and communications

DEGREE: Bachelor of Engineering

SUPERVISOR: Mr. Iain Murray

DATE: 5th of November 2004

AUTHOR

FAMILY NAME: Abd-El-Malak

Given Name: Michael

GIVEN NAME:

TITLE: Hand tracking and facial feature extraction for the purpose of Australian sign language translation

iii

_1161074494.unknown

_1161074509.unknown

_1161074518.unknown

_1161037738.unknown

_1161074129.unknown

_1161037336.unknown

