
USB Engineering Change Notice

USB ECN : Interface Association Descriptor 1

USB ENGINEERING CHANGE NOTICE
Title: Interface Association Descriptors
Applies to: Universal Serial Bus Specification, Revision 2.0

Summary of ECN
This ECN defines a new standard descriptor and interface numbering rules that allow a device to
describe which interfaces are associated with the same device function. This allows the operating system
to bind all of the appropriate interfaces to the same driver instance.

Reasons for ECN
The base configuration model assumed by the core USB framework was that there was always a 1:1
association between an interface and a function on a device. System software was designed to the intent
of the core specification and assumes one driver per function (and one interface) (see figure below).

Configuration

Function

Device Driver
A

Interface 0

Device

Function 0

Function

Device Driver
B

Interface 1

Device

Function 1

System Software USB Device

Several device class specifications have exceeded the core USB specification framework and defined
device functions that utilize multiple interfaces (i.e. multiple interface descriptors). The model to support
this still requires only one function driver per function, but also requires multiple interfaces getting bound
to the same driver instance (see figure below). Unfortunately, there is no standard method to allow a
device, via the device framework, to describe which interfaces in a configuration should be associated
with the same function.

Configuration

Function

Device Driver
A

Interface 0

Device

Function 0
Interface 1

System Software USB Device

USB Engineering Change Notice

USB ECN : Interface Association Descriptor 2

This change notice defines the necessary extensions to the device framework that allow the device to
annotate which interfaces are associated with the same function. This device framework extension will be
eventually required for all devices that utilize multiple interfaces per device function.

Impact on Existing Peripherals and Systems:
No Impact.

Hardware Implications:
None.

Software Implications:
No impact to existing operating system versions and existing device classes. The new descriptors are
ignored by system software. The interfaces they describe don’t change.

This feature must be supported by future implementations of devices that use multiple interfaces to
manage a single device function.

There exists an impact to future/new device implementations for device classes that are not currently
supported by the OS. Specifically, if a device implementation includes multiple functional units (with
multiple interfaces per unit) then the device will only be correctly enumerated on an OS implementation
that supports this new descriptor.

In order to more easily enhance existing OS implementations with the capability to handle devices that
use this descriptor, a device class code will be allocated with the intent that all devices that use the
interface association descriptor will use this class code in their device descriptor. This will allow easy
installation of a new driver that knows how to parse and enumerate configurations that include the
interface association descriptor. The class code for the IAD will be documented on the usb.org website.

It is under the responsibility of the existing Device Class working groups to determine whether their
individual specifications need to be modified to work with or take advantage of this new framework
extension.

Compliance Testing Implications:
The standard compliance toolset (USBCV) must be eventually updated to check the format (and use) of
these new descriptors. In addition, some rules must be established for the compliance tools to determine
which device should be using these descriptors and fail them for not using them.

USB Engineering Change Notice

USB ECN : Interface Association Descriptor 3

Specification Changes
The following proposal is backward compatible with previous operating systems. It leaves current
interface definitions alone and adds a new descriptor type. For older operating systems versions, the new
descriptors will be ignored and the old mechanisms will prevail. For new operating system versions, the
new descriptors will be in effect.

Add the following to table 9-6 (note, the core specification currently defines values 1-8. Since publication,
values 9 & 10 have been allocated as noted below).

Descriptor Types Value

DEVICE 1

CONFIGURATION 2

STRING 3

INTERFACE 4

ENDPOINT 5

DEVICE_QUALIFIER 6

OTHER_SPEED_CONFIGURATION 7

INTERFACE_POWER 8

OTG 9

DEBUG 10

INTERFACE_ASSOCIATION 11

USB Engineering Change Notice

USB ECN : Interface Association Descriptor 4

The following is the definition of an Interface Association Descriptor. At the next spec revision update, it
should be included as a new section 9.6.6 (moving the current section 9.6.6 to 9.6.7, and so-on).

9.X.Y Interface Association
The Interface Association Descriptor is used to describe that two or more interfaces are associated to the same
function. An ‘association’ includes two or more interfaces and all of their alternate setting interfaces. A device must
use an Interface Association descriptor for each device function that requires more than one interface. An Interface
Association descriptor is always returned as part of the configuration information returned by a
GetDescriptor(Configuration) request. An interface association descriptor cannot be directly accessed with a
GetDescriptor() or SetDescriptor() request. An interface association descriptor must be located before the set of
interface descriptors (including all alternate settings) for the interfaces it associates. All of the interface numbers in
the set of associated interfaces must be contiguous. Table 9-Z shows the standard interface association descriptor.
The interface association descriptor includes function class, subclass and protocol fields. The values in these fields
can be the same as the interface class, subclass and protocol values from any one of the associated interfaces. The
preferred implementation, for existing device classes, is to use the interface class, subclass and protocol field values
from the first interface in the list of associated interfaces.

Table 9–Z. Standard Interface Association Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes.

1 bDescriptorType 1 Constant INTERFACE ASSOCIATION Descriptor.

2 bFirstInterface 1 Number Interface number of the first interface that is
associated with this function.

3 bInterfaceCount 1 Number Number of contiguous interfaces that are
associated with this function.

4 bFunctionClass 1 Class Class code (assigned by USB-IF).

A value of zero is not allowed in this descriptor.

If this field is FFH, the function class is vendor-
specific.

All other values are reserved for assignment by
the USB-IF.

5 bFunctionSubClass 1 SubClass Subclass code (assigned by USB-IF).

If the bFunctionClass field is not set to FFH all
values are reserved for assignment by the USB-
IF.

6 bFunctionProtocol 1 Protocol Protocol code (assigned by USB-IF). These
codes are qualified by the values of the
bFunctionClass and bFunctionSubClass fields.

7 iFunction 1 Index Index of string descriptor describing this
function.

Note: Since this particular feature was not included in earlier versions of the USB specification, there is issue
with how existing USB OS implementations will support devices that use this descriptor. It is strongly
recommended that device implementations utilizing the interface association descriptor use the Multi-interface

USB Engineering Change Notice

USB ECN : Interface Association Descriptor 5

Function Class codes in the device descriptor. This allows simple and easy identification of these devices and
allows on some operating systems, installation of an upgrade driver that can parse and enumerate
configurations that include the Interface Association Descriptor. The Multi-interface Function Class code is
documented on the http://www.usb.org/developers/docs website.

	9.X.YInterface Association

