CONTENTS

Selection Guide

\qquadSelection Guide2, 3
■Filters
Resistor Tunable Filter SV Series/ SR Series/ SRA Series 4 to 10
BCD Resistor
RD-404 11
Resistor Tunable FilterHR Series12 to 15
Resistor Tunable FilterRT Series16 to 17Voltage Tunable FilterProgrammable FilterProgrammable FilterProgrammable Filter
18 to 19
VT Series20 to 22
DT-408 Series 23 to 26
DT-208 Series 27
Programmable Filter
DT-5FL/6FL 28, 29
Programmable FilterDT-8FL30, 31
Fixed Frequency FilterDV Series32 to 35
Fixed Frequency FilterCF Series36 to 38
Band-elimination FilterSD-1BE39
200B/S Band Pass Filter40
Low Pass Filter for Wide Band Speech Signals SF-8FLC-1 41
Amplifiers
Low Noise FET AmplifierCA-251F442, 43
Low Noise FET Differential Amplifier CA-451F4 44, 45
Low Noise AmplifierLow Noise Differential AmplifierCA-261F246, 47
Differential AmplifierProgrammable Gain AmplifierBinary Latch Adapter
CA-461F2 48, 49
CA-406L2 50, 51
CA-206L2 52, 53
CA-903N 54
High Speed Inverting Amplifier CA-102R3 55
Low Noise Amplifier
SA Series 56, 57
Oscillators
Resistor Tunable Oscillator CG-402 58, 59
Resistor Tunable Oscillator CG-202 60, 61
CG-102/302 62 to 64
Oscillator Adapter
Random Binary Generator 65 to 68
CG-742N 69 to 71
CD-552R3/552R4 72 to 76
Phase Detector
CD-951V4 77 to 79
CD-505R2 80 to 84
Dimensions
Dimensional Outline Drawing 85 to 87

SELECTION GUIDE

Filters

LP: Low pass BW: Band width

HP: High pass BP: Band pass
SIP: Single-inline package

BE: Band elimination DIP: Dual-inline package

Model	Type	Order	Rolloff	Attenuation characteristic	Cut-off (center) frequency setting		Dimensions	Refer to
					Range* ${ }^{\text {1 }}$	Control type		
SR-4FL	LP	4	42dB/oct equivalent	Elliptic	40 Hz to 100 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SRA-4FL1	LP	4	$42 \mathrm{~dB} /$ oct equivalent	Elliptic	40 Hz to 1.6 kHz	Resistor tunable	20-pin SIP	p7 to 10
SV-4FL*	LP	4	$42 \mathrm{~dB} /$ oct equivalent	Elliptic	10 Hz to 100 kHz	Resistor tunable	15-pin SIP	p4 to 5
SR-4FH	HP	4	$42 \mathrm{~dB} /$ oct equivalent	Elliptic	40 Hz to 5 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SRA-4FH1	HP	4	$42 \mathrm{~dB} /$ oct equivalent	Elliptic	40 Hz to 1.6 kHz	Resistor tunable	20-pin SIP	p7 to 10
SR-4BL	LP	4	$24 \mathrm{~dB} /$ oct	Butterworth	40 Hz to 100 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SRA-4BL1	LP	4	$24 \mathrm{~dB} / \mathrm{cot}$	Butterworth	40 Hz to 1.6 kHz	Resistor tunable	20-pin SIP	p7 to 10
SV-4BL*	LP	4	$24 \mathrm{~dB} /$ oct	Butterworth	10 Hz to 100 kHz	Resistor tunable	15-pin SIP	p4 to 5
SR-4BH	HP	4	$24 \mathrm{~dB} /$ oct	Butterworth	40 Hz to 5 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SRA-4BH1	HP	4	$24 \mathrm{~dB} / \mathrm{oct}$	Butterworth	40 Hz to 1.6 kHz	Resistor tunable	20-pin SIP	p7 to p10
SR-1BP	BP	2(1-pole pair)	6dB/oct BW	Butterworth	40 Hz to 10kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SR-2BP	BP	4(2-pole pair)	$12 \mathrm{~dB} /$ oct BW	Butterworth	40 Hz to 10 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SRA-2BP1	BP	4(2-pole pair)	12dB/oct BW	Butterworth	40 Hz to 1.6 kHz	Resistor tunable	20-pin SIP	p7 to 10
SR-2BE	BE	4(2-pole pair)	Max. attenuation: 60 dB	Butterworth	40 Hz to 10 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10
SR-2BLH	LP, HP	2	12dB/oct	Butterworth	40 Hz to 100 kHz	Resistor tunable	20-pin SIP	p6, p8 to 10

* Supply voltage: $5 \mathrm{~V}, 3.3 \mathrm{~V}$ single power for SV Series

RD-404	Logic frequency setting is available with the combination use of SR and SRA filters. (Filter characteristics of SR and SRA filters applied)				10 Hz to 16.9 kHz	Digital tunable	20-pin SIP	p11
HR-4FL	LP	4	42dB/oct equivalent	Elliptic	10 Hz to 100 kHz	Resistor tunable	24-pin DIP	p12 to 15
HR-4FH	HP	4	$42 \mathrm{~dB} /$ oct equivalent	Elliptic	10 Hz to 50 kHz	Resistor tunable	24-pin DIP	p12 to 15
HR-4BL	LP	4	$24 \mathrm{~dB} /$ oct	Butterworth	10 Hz to 100 kHz	Resistor tunable	24-pin DIP	p12 to 15
HR-4BH	HP	4	$24 \mathrm{~dB} /$ oct	Butterworth	10 Hz to 50 kHz	Resistor tunable	24-pin DIP	p12 to 15
HR-2BP	BP	4(2-pole pair)	12dB/oct BW	Butterworth	10 Hz to 50 kHz	Resistor tunable	24-pin DIP	p12 to 15
RT-8FLA	LP	8	$135 \mathrm{~dB} /$ oct equivalent	Elliptic	10 Hz to 20 kHz	Resistor tunable	40-pin DIP	p16, p17
RT-8FLB	LP	8	$100 \mathrm{~dB} /$ oct equivalent	Elliptic	10 Hz to 20kHz	Resistor tunable	40-pin DIP	p16, p17
RT-3BP	BP	6 (3-pole pair)	1/3oct BW	Butterworth	10 Hz to 20kHz	Resistor tunable	40-pin DIP	p16, p17
VT-4BLA	LP	4	$24 \mathrm{~dB} / \mathrm{oct}$	Butterworth	100 Hz to 100 kHz	Voltage tunable	40-pin DIP	p18, p19
VT-4BHA	HP	4	$24 \mathrm{~dB} /$ oct	Butterworth	20 Hz to 20kHz	Voltage tunable	40-pin DIP	p18, p19
VT-2BP	BP	4(2-pole pair)	12dB/oct BW	Butterworth	20 Hz to 20kHz	Voltage tunable	40-pin DIP	p18, p19
DT-212D	$\begin{aligned} & \text { LP, HP, } \\ & \text { BP } \end{aligned}$	2(1-pole pair)	$\begin{aligned} & \hline 12 \mathrm{~dB} / \text { oct (HP/LP) } \\ & 6 \mathrm{~dB} / \text { oct (BP) } \end{aligned}$	Universal	1 Hz to 159.9 kHz	Digital tunable	40-pin DIP	p20 to 22
DT-408D	$\begin{aligned} & \text { LP, HP, } \\ & \text { BP } \end{aligned}$	2(1-pole pair)	$\begin{array}{\|l\|} \hline 12 \mathrm{~dB} / \text { oct } \times 2(\mathrm{HP} / \mathrm{LP}) \\ 6 \mathrm{~dB} / \text { oct } \times 2(\mathrm{BP}) \\ \hline \end{array}$	Universal	1 kHz to 159 kHz	Digital tunable	40-pin DIP	p23 to 26
DT-208D	$\begin{aligned} & \text { LP, HP, } \\ & \text { BP } \end{aligned}$	2(1-pole pair)	$\begin{aligned} & \text { 12dB/oct (HP/LP) } \\ & 6 \mathrm{~dB} / \text { oct (BP) } \\ & \hline \end{aligned}$	Universal	10 kHz to 1.59 MHz	Digital tunable	40-pin DIP	p27
DT-5FL	LP	5	60dB/oct equivalent	Elliptic	10 Hz to 20kHz	Digital tunable	40-pin DIP	p28, p29
DT-6FL	LP	6	80dB/oct equivalent	Elliptic	10 Hz to 20kHz	Digital tunable	40-pin DIP	p28, p29
DT-8FL	LP	8	$130 \mathrm{~dB} /$ oct equivalent	Elliptic	20 Hz to 100 kHz	Digital tunable	60-pin DIP	p30, p31
DV Series*2	LP, HP, BP, BE	2(1-pole pair) to 8 (4-pole pair)	$18 \mathrm{~dB} /$ oct to $200 \mathrm{~dB} /$ oct(LP) $18 \mathrm{~dB} /$ oct to $75 \mathrm{~dB} /$ oct(HP) 12dB/oct BW to 36dB/oct BW(BP) Max. attenuation: 26 to 72 dB (BE)	Butterworth, Chebyshev, Elliptic, Universal	0.01 Hz to 20 kHz	Frequency fixed		p32 to 35
CF Series*2	$\begin{aligned} & \text { LP, HP, } \\ & \text { BP, BE } \end{aligned}$	$\begin{aligned} & \text { 2(1-pole pair) } \\ & \text { to } 8 \\ & \text { (4-pole pair) } \end{aligned}$	$\begin{aligned} & \text { 18dB/oct to } 300 \mathrm{~dB} / \text { oct(LP/HP) } \\ & \text { 12dB/oct BW to } 36 \mathrm{~dB} / \text { /oct BW(BP) } \\ & \text { Max. attenuation: } 26 \text { to } 72 \mathrm{~dB}(\mathrm{BE}) \end{aligned}$	Butterworth, Chebyshev, Elliptic, Universal	1 Hz to 100 kHz	Frequency fixed	$\begin{aligned} & \text { 28-pin DIP, } \\ & \text { DIP 40-pin } \end{aligned}$	p36 to 38
SD-1BE	BE	2(1-pole pair)	Max. attenuation: 24 dB	Butterworth	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	Digital tunable	20-pin SIP	p39
CF-4FPA	BP	8(4-pole pair)	Min.: 15dB ($\pm 200 \mathrm{~Hz}$) Min.: 45dB (300Hz)	Elliptic	800 Hz to 2800 Hz	Frequency fixed	40-pin DIP	p40
SF-8FLC-1	LP	8	Max.: -25dB (8kHz), Max.: -50dB (9kHz), Max.: $-70 \mathrm{~dB}(14 \mathrm{kHz})$		7 kHz	Frequency fixed	20-pin SIP	p41

[^0]
Amplifiers

Model	Input configuration	Gain	Frequency	Impedance	Voltage noise (typ.)	Current noise (typ.)	Dimensions	Refer to
CA-251F4	Single-end FET	$\times 100$ fixed	DC to 10 MHz	$1 \mathrm{M} \Omega$	$1.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$150 f \mathrm{~A} / \sqrt{\mathrm{Hz}}$	20-pin shielded SIP	p42, p43
CA-261F2	Single-end bipolar	$\times 100$ fixed	DC to 200kHz	$100 \mathrm{k} \Omega$	$0.8 \mathrm{nV} / \mathrm{/Hz}$	$1.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$	20-pin shielded SIP	p46, p47
CA-206L2	Single-end FET	$\times 1$ to 100 (variable)	DC to 500 kHz	$1 \mathrm{M} \Omega$	$7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	-	20-pin SIP	p52, p53
CA-451F4	Differential FET	$\times 100$ fixed	DC to 10 MHz	2G Ω	$2.5 \mathrm{nV} / \mathrm{/Hz}$	$100 \mathrm{fA} / \sqrt{\mathrm{Hz}}$	20-pin shielded SIP	p44, p45
CA-461F2	Differential bipolar	$\times 100$ fixed	DC to 200kHz	$100 \mathrm{k} \Omega$	$1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$	20-pin shielded SIP	p48, p49
CA-406L2	Differential FET	$\times 1$ to 100 (variable)	DC to 200kHz	30G Ω	$27 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	-	20-pin SIP	p50, p51
CA-102R3	Inverting amplifier	Connected with 2 external resistors	DC to 10MHz	-	-	-	12-pin SIP	p55
CA-903N	Adapter to enable CA-206L2/406L2 setting in binary code (endowed with latching functions)							p54

- Low Noise Amplifier

SA-220F5	Single-end FET	46 dB	300 Hz to 100 MHz	$1 \mathrm{M} \Omega$	$0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$200 \mathrm{fA} / \sqrt{\mathrm{Hz}}$	$68 \times 43 \times 28 \mathrm{~mm}^{*}$	p 56
SA-230F5	Single-end	46 dB	400 Hz to 140 MHz	50Ω	$0.25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$5.0 \mathrm{pA} / \sqrt{\mathrm{Hz}}$	$68 \times 43 \times 17.6 \mathrm{~mm}^{*}$	p 56
SA-430F5	Differential	46 dB	400 Hz to 110 MHz	50Ω	$0.35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$7.0 \mathrm{pA} / \sqrt{\mathrm{Hz}}$	$68 \times 43 \times 28 \mathrm{~mm}^{*}$	p 56
SA-200F3	Single-end	40 dB	DC to 800 kHz	$1 \mathrm{k} / 10 \mathrm{k} /$	$0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$2.2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$	$68 \times 43 \times 17.6 \mathrm{~mm}{ }^{*}$	p 57
$100 \mathrm{k} \Omega$								

* Excluding protruding sections

Oscillators

Model	Output waveform	Frequency range	Output voltage	Frequency setting	Dimensions	Refer to
CG-102R1	Sinewave	20 Hz to 20kHz	2.5Vrms (variable)	2 external resistors connected	24-pin DIP	p62 to 64
CG-102R2	Sinewave	1 kHz to 100 kHz	2.5 Vrms (variable)	2 external resistors connected	24-pin DIP	p62 to 64
CG-202R3	Sinewave	100 kHz to 1 MHz	2.5Vrms (variable)	2 external resistors connected	24-pin DIP	p60, p61
CG-302R1	Sinewave	20 Hz to 20kHz	2.5Vrms (variable)	2 external resistors connected	20-pin SIP	p62 to 64
CG-302R2	Sinewave	1 kHz to 100kHz	2.5Vrms (variable)	2 external resistors connected	20-pin SIP	p62 to 64
CG-402R1	Sinewave	20 Hz to 20kHz	2.5 Vrms (variable)	2 external resistors connected	12-pin SIP	p58, p59
CG-402R2	Sinewave	1 kHz to 100kHz	2.5 Vrms (variable)	2 external resistors connected	12-pin SIP	p58, p59
OP-102 + DT-212	Sinewave	1 Hz to 159.9 kHz	2.5 Vrms (variable)	BCD: 3 digits	20-pin SIP	p65 to 67
CG-742N	Random binary	-	$\pm 5 \mathrm{~V}$	1 external resistor connected/ external clock	40-pin DIP	p69 to 71
CG-742N + LPF	White noise	-	-	1 external resistor connected/ external clock	40-pin DIP	p69 to 71

Phase Detectors

Model	Frequency range	Input amplifier	Detection system	LPF	Gain	Reference signal	Phase shifter	Dimensions	Others	Refer to
CD-552R3	$\begin{aligned} & 1 \mathrm{kHz} \text { to } 200 \mathrm{kHz}, \\ & \times 1 \end{aligned}$	Single-end	Square-wave multiplication	1-pole to 1kHz	$\times 1$ to 10	C-MOS(0/5V)	0/90 ${ }^{\circ}$	20-pin shielded SIP	$2 f$ detection available	p72 to 76
CD-552R4	$\begin{aligned} & 10 \mathrm{kHz} \text { to } 2 \mathrm{MkHz}, \\ & \times 1 \end{aligned}$	Single-end	Square-wave multiplication	1-pole to 10 kHz	$\times 1$ to 10	C-MOS(0/5V)	0/90 ${ }^{\circ}$	20-pin shielded SIP	2f detection available	p72 to 76
CD-505R2	10 Hz to 10 kHz	Differential, $\times 1$ (band pass embedded)	Square-wave multiplication	1/2-pole to 1 kHz	$\times 1$	C-MOS(0/5V)	$\begin{aligned} & 90^{\circ} \pm 45^{\circ} \\ & \text { continuous } \\ & \text { variable } \end{aligned}$	40-pin DIP	Post amplifier available as a phase shifter or signal amplifier	p80 to 84

Voltage Controlled Phase Shifter (for reference signal)

Model	Frequency range	Amount of phase shift	I/O voltage	Refer to
CD-951V4	1 kHz to 2 MHz	$0 \% / 180^{\circ}$ switchable, $\pm 90^{\circ}$ continuous variable	C-MOS $(0 / 5 \mathrm{~V})$	p77 to 79

SV-4BL1 SV-4BL2 SV-4FL1 SV-4FL2

SV series filters are resistor tunable low-pass filters that are powered by 5 V or 3.3 V of single supply voltage. The setting of cutoff frequency is facilitated with the external resistors (4 pcs.). Butterworth and Elliptic are incorporated into filter characteristics, and the filters fall into two types (Type 1 and Type 2) according to the frequency range. The downsizing of filters has been achieved to actualize a 15 -pin single-inline package (SIP).

SV4BL1/2 : 4-pole Butterworth slow pass
SV4FL1/2 : 4-pole elliptic low pass

Model	SV-4BL1	SV-4FL1	SV-4BL2	SV-4FL2
Filter characteristics	Butterworth low pass	Elliptic low pass	Butterworth low pass	Elliptic low pass
Order	4-pole			

- Absolute maximum ratings

Supply voltage	6 V
Input voltage	Supply voltage or less

$\boldsymbol{\nabla}$ Cut-off frequency (fc)

Range $^{* 1}$	10 Hz to 10 kHz	100 Hz to 100 kHz
Accuracy $^{* 2}$	$\pm 3 \%$	
Setting method	Connected with external resistors (4 pcs.)	

$\boldsymbol{\nabla}$ Pass-band characteristic

| Gain ${ }^{3}$ | $0 \pm 0.3 \mathrm{~dB}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ripple | - | $0.28 \mathrm{dBp}-\mathrm{p}$ typ. | - | $0.28 \mathrm{dBp}-\mathrm{p}$ typ. |

- Attenuation characteristics

Rolloff	$24 \mathrm{~dB} /$ oct	$42 \mathrm{~dB} / o c t$ equivalent	$24 \mathrm{~dB} / o c t$	$42 \mathrm{~dB} / o c t$ equivalent
Attenuation characteristics (2fc)	24 dB typ.	55 dB typ.	24 dB typ.	55 dB typ.
Minimum attenuation	-	46 dB typ.	-	46 dB typ.

High frequency attenuation (up to 1 MHz)

Min. 60dB

VInput characteristics

Input impedance	Min. $50 \mathrm{k} \Omega$
Maximum input voltage	5 V
Minimum input voltage	0 V
$\mathrm{VOutput} \mathrm{characteristics}^{\text {Output impedance }}$	
Maximum output voltage	Min. 4.9 V
Minimum output voltage	Max. 100 mV
Load resistance	Min. $10 \mathrm{k} \Omega$
Voltage noise	Max. $100 \mu \mathrm{Vrms}$
Distortion ${ }^{* 4}$	0.01% typ.
Offset voltage ${ }^{* 5}$	$\pm 30 \mathrm{mV}$ typ.
Offset drift	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ.
Mid-potential output accuracy ${ }^{*} 6$	$\pm 1 \%$

∇ Others

Supply voltage	$5 \mathrm{~V}(3 \mathrm{~V}$ to 5.5 V$)$
Quiescent current	10 mA typ.
Available temperature/ humidity range	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
Storage temperature/ humidity range	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions	$39 \times 15 \times 5.5 \mathrm{~mm}(15$ pin), Model S15
Note: The following specifications are applied unless otherwise specified:RF= $31.8 \mathrm{k} \Omega$, Power: 5 V, Mid-potential: 2.5 V, Load: $10 \mathrm{k} \Omega$, Ambient temp.: $23 \pm 55^{\circ} \mathrm{C}$ *1: As to SV series, expansion of the lower cut-off (center) frequency with the external capacitors is disabled. *2: -3 dB derived with reference to fc/10 *3: Gain in fc/10 *4: Distortion in fc/10 *5: Drift from mid-potential (adjustable with a trimming resistor) *6: Mid-potential output is a supply voltage $/ 2$.	

Characteristics

SV-4FL1/2

Connection diagram

* This circuit is used for normal connection. Pin 14 needs to be dis connected if no offset calibration is required.

Example 3 (when input and output are AC-coupled)

* This circuit is used to DC-interrupt the prior and subsequent circuits. Pin 14 needs to be disconnected if no offset calibration is required.

Example 2 (when the mid-potential is externally input)

* Noise superimposed in the mid-potential exerts effects on noise characteristics if the mid-potential is externally input.
* If the mid-potential is assigned to the prior and subsequent circuits, this circuit is used. Pin 14 needs to be disconnected if no offset calibration is required.

- Calculation of coupling capacitor

Input: $\quad \mathrm{C} 1[\mu \mathrm{~F}]=\frac{3.18}{\text { fch }[\mathrm{Hz}]}$
Output: $\quad \mathrm{C} 2[\mu \mathrm{~F}]=\frac{159}{\operatorname{Load}[\mathrm{k} \Omega] \cdot \text { fch }[\mathrm{Hz}]}$
fch: Coupling frequency (-3 dB)
-6 dB is gained in coupling frequency (fch) if the coupling frequencies for input and output are equal.
fch: Set at $1 / 10$ or less of cut-off frequency (fc)

Cut-off frequency setting

- Equation of external resistor RF

Type 1 $\quad \mathrm{R}_{\mathrm{F}}[\mathrm{k} \Omega]=\frac{15.9 \times 10^{3}}{\mathrm{fc}[\mathrm{Hz}]}$
Type $2 \quad \operatorname{RF}[\mathrm{k} \Omega]=\frac{159 \times 10^{3}}{\mathrm{fc}[\mathrm{Hz}]}$

Note: Resistance error results in cut-off frequency error and a deterioration of filter characteristics.
Be sure to use a resistor with tolerance of 1%.
RF: $1.6 \mathrm{k} \Omega$ to $1.6 \mathrm{M} \Omega$

Resistor Tunable Filter

SR-4BL/4FL SR-4BH/4FH SR-2BLH SR-1BP/2BP SR-2BE

SR series filters are ultrasmall resistor tunable filters in single-inline package (SIP). An easy setting of cutoff (center) frequency is assured with the external resistors. The abundance of filter types extends the range of choices.

SR-4BL1/2/3: 4-pole Butterworth low pass
SR-4FL1/2/3: 4-pole elliptic low pass
SR-4BH1/2: 4-pole Butterworth high pass
SR-4FH1/2: 4-pole elliptic high pass
SR-2BLH1/2/3: 2-pole Butterworth low/high pass
SR-1BP1/2: 1-pole pair band pass
SR-2BP1/2: 2-pole pair band pass
SR-2BE1/2: 2-pole pair band elimination

Model	SR-4BL	SR-4FL	SR-4BH	SR-4FH	SR-2BLH	SR-1BP	SR-2BP						
Filter characteristics	Butterworth low pass	Elliptic low pass	Butterworth high pass	Elliptic high pass	Butterworth low/high pass	Butterworth band pass	Butterworth band pass						
Butterworth band elimination													
Order	2-pole									2-pole	1-pole pair	2-pole pair	2-pole pair

∇ Absolute maximum ratings
Supply voltage $(\pm$ Vs $) \quad \pm 18 \mathrm{~V}$

Input voltage	$\pm \mathrm{Vs}$

$\boldsymbol{\nabla}$ Cut-off (fc, -3 dB)/center (fo) frequency characteristics

Range	40 Hz to $1.6 \mathrm{kHz*}$						
	400 Hz to 20kHz*1	400 Hz to 5kHz*1	400Hz to 20kHz*\|	400 Hz to $10 \mathrm{kHz}{ }^{* 1}$			
	5 kHz to 100kHz**	-	5 kHz to $100 \mathrm{kHz}^{*+1}$	-			
Accuracy* ${ }^{\text {2 }}$	Max. $\pm 3 \%$						
Setting method	Connected with external resistors (4 pcs.)		\|Connected with external resistors (2 pcs.)			Connected with external resistors (4 pcs.)	
VPass-band characteristic							
Gain ${ }^{\text {3 }}$	$0 \pm 0.3 \mathrm{~dB}$	$0 \pm 1 \mathrm{~dB}$	$0 \pm 0.3 \mathrm{~dB}$	$0 \pm 1 \mathrm{~dB}$		$0 \pm 0.3 \mathrm{~dB}$	
Ripple	- $\quad 0.28 \mathrm{dBp}-\mathrm{P}$ (typ)	- $\quad 0.28 \mathrm{dBp}-\mathrm{p}$ (typ)	-				
Upper limit frequency (small signal) ${ }^{*}$	-	$50 \mathrm{kHz}(\pm 1 \mathrm{~dB})$	$\begin{gathered} 100 \mathrm{kHz} \\ (\pm 1 \mathrm{~dB}, \mathrm{HPF})^{{ }^{5}} \end{gathered}$	-		$50 \mathrm{kHz}(\pm 1 \mathrm{~dB})$	

- Attenuation characteristics

FInput characteristics

Input impedance		Min. $50 \mathrm{k} \Omega$
Maximum input		$\leq 10 \mathrm{kHz}$
voltage (linear)	$\pm 10 \mathrm{~V}$	
	$\leq 50 \mathrm{kHz}$	$\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ for 4BL3/4FL3/2BLH3 filters

Output characteristics

Output imp	pedance	Max. 100						
Maximum output voltage		$\pm 10 \mathrm{~V}$ (Max.100kHz for 4BL3/4FL3/2BLH3 filters, Max.10kHz for other filters)						
Load resistance		Min. 10k .						
Voltage noise		Max. $140 \mu \mathrm{Vrms}$ (10 Hz to 500kHz)						
DC offset	Voltage	Max. $\pm 30 \mathrm{mV}$						
	Adjustment	Enabled						
	Drift	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ)	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ)					$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ)
Distortion ${ }^{\text {*3 }}$ (typ)		0.01\%	0.1\%		0.01\% (LPF)	0.01\%		
Slew rate (typ)		-	2V/ $/ \mathrm{s}^{* 6}$			-		2V/ $\mu \mathrm{s}$
∇ Others								
Supply voltage		$\pm 15 \mathrm{~V}$ (± 5 to $\pm 18 \mathrm{~V}$)						
Quiescent current (typ)		$\pm 12 \mathrm{~mA}$ (Types 1\&2) $\pm 16 \mathrm{~mA}$ (Types 1\&2) $\pm 27 \mathrm{~mA}$ (Type 3) $\pm 36 \mathrm{~mA}$ (Type 3)	$\pm 8 \mathrm{~mA}$	$\pm 16 \mathrm{~mA}$	$\begin{gathered} \pm 8 \mathrm{~mA} \text { (Types 1\&2) } \\ \pm 18 \mathrm{~mA}(\text { Type } 3) \\ \hline \end{gathered}$	$\pm 8 \mathrm{~mA}$	$\pm 12 \mathrm{~mA}$	$\pm 20 \mathrm{~mA}$

Temperature/ Operation
 humidity range Storage
 Dimensions

$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to 95% RH
$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to 80% RH
$51.5 \times 14 \mathrm{~mm}$, S20 type, 5.5 mm in thickness for Type 3 and 2BE filter, 4 mm in thickness for other filters
Note: The following specifications are applied unless otherwise specified: $\mathrm{Rf}=31.8 \mathrm{k} \Omega, 23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$
*1: As to SR series, expansion of the lower cut-off (center) frequency with the external capacitors (2 or 4 pcs.) is enabled. *2: Gain in frequency (*3): 0dB *3: 4FL, 4BL: fc/ $10,4 \mathrm{FH}: 10 \mathrm{fc}(\mathrm{fc} \leq 3 \mathrm{kHz}), 3.3 \mathrm{fc}(\mathrm{fc}>3 \mathrm{kHz}$), $4 \mathrm{BH}: 3.3 \mathrm{fc}, 2 \mathrm{BLH}: \mathrm{LPF} \rightarrow \mathrm{fc} / 10, \mathrm{HPF} \rightarrow 10 \mathrm{fc}(\mathrm{Types} 1 \& 2)$, 3.3 fc (Type 3) *4: As to 1 BP filter, $\mathrm{Q}=10,20,30,40$, or 50 is available if a designated pin is connected with GND. Range: $1.81 \leq \mathrm{Q} \leq 50$ if connected with the external resistors *5: Type 3 : $1 \mathrm{MHz}+0, \mathrm{Max}$. -3 dB (HPF) *6: SR-2BLH3 (only): $10 \mathrm{~V} / \mu \mathrm{s}$

Resistor Tunable Filter

SRA-4BL1 SRA-4BH1 SRA-4FL1 SRA-4FH1 SRA-2BP1

SRA series filters are power-thrifty resistor tunable filters actualizing the reduction in quiescent current to 1 to 2 mA that is $1 / 10$ of the current SR series filters. SRA series filters maintain pin-compatible with SR series filters (see P8) and become capable of operation at $\mathrm{min} . \pm 2.5 \mathrm{~V}$ of supply voltage that allows low power consumption as necessary.
Butterworth and elliptic low pass and high pass, and Butterworth band pass are incorporated into filter characteristics. An easy setting of cutoff (center) frequency is assured with the external resistors as with SR series filters, which enables a low-pass expansion with the external capacitors.

Model	SRA-4BL1	SRA-4FL1	SRA-4BH1	SRA-4FH1	SRA-2BP1
Filter characteristics	Butterworth low pass	Elliptic low pass	Butterworth high pass	Elliptic high pass	Butterworth band pass
Order	4-pole	4-pole	4-pole	4-pole	2-pole pair

$\boldsymbol{\nabla}$ Absolute maximum ratings

Supply voltage ($\pm \mathbf{V s}$)	$\pm 18 \mathrm{~V}$
Input voltage	$\pm \mathrm{Vs}$

$\boldsymbol{\nabla}$ Cut-off (fc, -3dB)/center frequency characteristics

Range $^{* 1}$	40 Hz to 1.6 kHz
Accuracy $^{* 2}$	$\pm 3 \%$
Setting method	Connected with external resistors (4 pcs.)

$\boldsymbol{\nabla}$ Pass-band characteristic

Gain $^{* 3}$	$0 \pm 0.3 \mathrm{~dB}$	$0 \pm 1 \mathrm{~dB}$	$0 \pm 0.3 \mathrm{~dB}$	0	
Ripple	-	$0.28 \mathrm{dBp}-\mathrm{p}$	-	$0.28 \mathrm{dBp}-\mathrm{p}(\mathrm{typ})$	-
Upper limit frequency (small signal) ${ }^{2}$	-		$50 \mathrm{kHz}(\pm 1 \mathrm{~dB})$	-	

$\boldsymbol{\nabla}$ Attenuation characteristics

Rolloff (typ)	24dB/oct	42dB/oct equivalent	24dB/oct	42dB/oct equivalent	12dB/octBW
Q (typ)	-	5			
Attenuation characteristics (1/2fc or 2fc) (typ)	24 dB	55dB	24 dB	55dB	35dB
Minimum attenuation (typ)	-	46dB	-	46dB	-
High frequency attenuation (up to 1 MHz)	70dB		-		70dB

∇ Input characteristics

Input impedance	$\operatorname{Min} .50 \mathrm{k} \Omega$
Maximum input voltage	$\pm 10 \mathrm{~V}$

VOutput characteristics

Output impedance	Max. 100			
Maximum output voltage	$\pm 10 \mathrm{~V}$			
Load resistance	Min. 10k Ω			
Voltage noise	Max. 140 HVrms	Max. $200 \mu \mathrm{Vrms}$	Max. $240 \mu \mathrm{Vrms}$	Max. $140 \mu \mathrm{Vrms}$
DC offset \quad Voltage	Max. $\pm 30 \mathrm{mV}$			
Adjustment	Enabled			
Drift	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		
Distortion ${ }^{\text {+3 }}$ (typ)	0.01\%	0.1\%		0.01\%
Slew rate (typ)	-	10V/us		-

∇ Others

Supply voltage		$\pm 2.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$				
Quiescent current (typ)		$\pm 1.5 \mathrm{~mA}$	$\pm 2 \mathrm{~mA}$	$\pm 1 \mathrm{~mA}$	$\pm 2 \mathrm{~mA}$	$\pm 1.5 \mathrm{~mA}$
Temperature/	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$				
humidity range	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$				
Dimensions		$51.5 \times 14 \times 4 \mathrm{~mm}$, S20 type				

Note: The following specifications are applied unless otherwise specified: $\mathrm{RF}=31.8 \mathrm{k} \Omega, 23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$ (some items may fail to meet specifications if used at other supply voltage) *1: Expansion of the lower cut-off (center) frequency with the external capacitors is enabled. *2: Gain in frequency (*3): 0dB *3: 4FL, 4BL: fc/10 4FH: 10fc 4 BH : 3.3fc

Basic connection diagram

Offset voltage adjustment

C : $0.1 \mu \mathrm{~F}$ (cer)
C : $0.1 \mu \mathrm{~F}$ (cer)

Block diagram

SR/SRA-4BH

Cut-off (center) frequency setting

- Equation of external resistor RF

Type $1 \quad \mathrm{R}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\mathrm{fc} \text { or fo }}[\mathrm{k} \Omega]$
Types $2 \& 3 \mathrm{R}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\text { fc or fo }}[k \Omega]$

- Equation of external resistor RF for expansion of lower cut-off (center) frequency
An external capacitor (CF^{\prime}) is used.
Type $1 \quad \mathrm{RF}_{\mathrm{F}}=\frac{159}{\left(\mathrm{C}^{\prime}+0.01\right) \times(\mathrm{fc} \text { or fo) })}[\mathrm{k} \Omega]$
Types 2\&3 $\mathrm{RF}_{\mathrm{F}}=\frac{159}{\left(\mathrm{C}_{\mathrm{F}}{ }^{\prime}+0.001\right) \times(\mathrm{fc} \text { or fo })}[\mathrm{k} \Omega]$
Note: Units: fc or fo in $\mathrm{Hz}, \mathrm{CF}^{\prime}$ in $\mu \mathrm{F}$
RF: 8 k to $400 \mathrm{k} \Omega$ (10 k to $400 \mathrm{k} \Omega$ for SRA series), 1.5 k to
$40 \mathrm{k} \Omega$ for Type 3 filters
Be sure to use a resistor and capacitor with tolerance of 1%.

Characteristics

4FL

4FH

1BP/2BP

1BP/2BP(Magnified view)

2BE

■Multichannel Filter 3315

This 3315 is capable of storing up to 8 SR/SRA filters that is utilized as a fixed frequency-allocated multichannel filter.
Filter characteristics vary with type of filters to be stored.

Available filters	: All SR filters and SRA filters
Number of channels	: Max. 8
fc/fo setting	: Fixed resistors (2 or 4 pcs.) are soldered to the discrete platform (accessory) and connected to the socket.
Supply voltage	: AC100V, $\pm 10 \%, 48 \mathrm{~Hz}$ to 62 Hz
Dimensions	$\text { : } 215(\mathrm{~W}) \times 88(\mathrm{H}) \times 300(\mathrm{D}) \mathrm{mm}$

Application

8-pole low pass/ elliptic

Rv: 10 to $50 \mathrm{k} \Omega$
C : $0.1 \mu \mathrm{~F}$ (cer)

- Cut-off frequency setting (ripple: 0.53 dB)

External resistor (RF1 to RF8) is derived from the following equation.

$$
\begin{array}{ll}
R_{F 1}=R_{F 2}=R_{F 3}=R_{F 4}=R_{F} \\
R_{F 5}=1.801 R_{F} & R_{F 6}=1.221 R_{F} \\
R_{F 7}=1.797 R_{F} & R_{F 8}=0.4788 R_{F}
\end{array}
$$

Type $1 \mathrm{R}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\mathrm{fc}}(\mathrm{k} \Omega)$
Type $2 \mathrm{R}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\mathrm{fc}}(\mathrm{k} \Omega)$

- Equation of external resistor for expansion of lower cut-off frequency
Type $1 \quad \mathrm{R}_{\mathrm{F}}=\frac{159}{(\mathrm{CF}+0.01) \times \mathrm{fc}}(\mathrm{k} \Omega)$
Type $2 \mathrm{R}_{\mathrm{F}}=\frac{159}{(\mathrm{CF}+0.001) \times \mathrm{fc}}(\mathrm{k} \Omega)$

Note: Units: fc in Hz, CF in $\mu \mathrm{F}$
*SRA series carry Type 1 filters only.

Normalized frequency [ffic]

4-pole low pass/ Bessel

Rv: 10 to $50 \mathrm{k} \Omega$
C $: 0.1 \mu \mathrm{~F}$ (cer)

Phase characteristics

- Cut-off frequency setting

External resistor (RF1 to RF4) is derived from the following equation.

$$
\begin{array}{ll}
R_{F 1}=0.673 \times R_{F} & R_{F 2}=0.712 \times R_{F} \\
R_{F 3}=0.384 \times R_{F} & R_{F 4}=1.014 \times R_{F}
\end{array}
$$

Type $1 \quad \mathrm{R}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\mathrm{fc}}(\mathrm{k} \Omega)$
Types 2\&3 $\quad \mathrm{R}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\mathrm{fc}}(\mathrm{k} \Omega)$

- Equation of external resistor for expansion of lower cut-off frequency

Type 1

$$
\mathrm{R}_{\mathrm{F}}=\frac{159}{(\mathrm{CF}+0.01) \times \mathrm{fc}}(\mathrm{k} \Omega)
$$

Types 2\&3 $\quad \mathrm{R}_{\mathrm{F}}=\frac{159}{(\mathrm{CF}+0.001) \times \mathrm{fc}}(\mathrm{k} \Omega)$
Note : Units: fc in Hz, CF in $\mu \mathrm{F}$
*SRA series carry Type 1 filters only.

BCD Resistor

- Absolute maximum ratings

Supply voltage $(\pm \mathrm{Vs})$	$\pm 18 \mathrm{~V}$
Input voltage	$\pm \mathrm{Vs}$
Control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$

$\boldsymbol{\nabla}$ Frequency setting mode

Mode	BCD 1 digit (0 to 15)
	BCD 1 digit + 1 (1 to 16, specified pin short
	(6)-(8), (10)-(11), (13)-(15), (17)-(18) $)$

FFrequency setting range
RD-404D1 (or RD-404D2) resistor + SR/SRA filters

SR/SRA type		Type 1		Type 2	
RD mode		BCD	BCD+1	BCD	BCD+1
RD-404D1	Min.	$0 \mathrm{~Hz}^{*}$	10 Hz	OHz*	100 Hz
	Max.	150 Hz	160 Hz	1.5 kHz	1.6 kHz
	Resolution	10 Hz	10 Hz	100 Hz	100 Hz
RD-404D2	Min.	$0 \mathrm{~Hz}^{*}$	100 Hz	$0 \mathrm{~Hz}^{*}$	1 kHz
	Max.	1.5 kHz	1.6 kHz	15kHz	16kHz
	Resolution	100 Hz	100 Hz	1 kHz	1 kHz

*A voltage of 13 V DC is present in filter output if OHz is selected.
Parallel connection of RD-404D1/2 resistors + SR/SRA filters

SR/SRA type		Type 1		Type 2	
RD mode	404D2	$B C D$	$B C D+1$	$B C D$	$B C D+1$
	404D1	$B C D$	$B C D$	$B C D$	$B C D$
Min.	0 Hz	100 Hz	0 Hz	1 kHz	
Max.	1.59 kHz	1.69 kHz	15.9 kHz	16.9 kHz	
Resolution	10 Hz	10 Hz	100 Hz	100 Hz	

∇ Frequency setting accuracy
Accuracy
$\pm 1 \%$ (for RD-404D only)
$\boldsymbol{\nabla}$ Control characteristics

Code	BCD: 1 digit $(8,4,2,1)$
Logic and level	$0 \mathrm{~V}: \mathrm{ON}$ +5 V or open: OFF
Level input process (internal)	Pulled up to +5 V at $100 \mathrm{k} \Omega$

∇ Others

Supply voltage		$\pm 15 \mathrm{~V}(\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V})$
Quiescent current (typ)		+6.2mA, -1.2 mA (typ)
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to 80% RH
Dimensions		$51.5 \times 14 \times 4.0 \mathrm{~mm}$, S20 type

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$
SRA series carry Type 1 filters only.

* Potential effects on characteristics including gain and rolloff may be concerned depending on the type of SR/SRA filters to be combined with. (especially if connected in parallel)

RD-404D1/2

RD-404D is a logic control resistor designed for SR/SRA series resistor tunable filters. The setting of cutoff (center) frequency under digital signals is enabled if RD-404D resistor is used in combination with SR/SRA series.

HR-4BL HR-4FL HR-4BH HR-4FH HR-2BP

HR series filters are resistor tunable filters that not only realize a wide operating temperature range but ensure high reliability through the adoption of the hermetic seal method and ceramic packaging. An easy setting of cutoff (center) frequency is assured with four external resistors of the same resistance.
4-pole Butterworth and elliptic low pass and high pass, and 2-pole Butterworth band pass are incorporated into filter characteristics.
The setting range of cutoff (center) frequency falls into two types: Type $1(10 \mathrm{~Hz}$ to 1.6 kHz) and Type $2(100 \mathrm{~Hz}$ to $100 \mathrm{kHz}(50 \mathrm{kHz})$).

The operating temperature range is selectable, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (most of industrial request) or $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (MIL-STD).
Screening meets MIL-STD and special reliable tests are available on request.

(1) Filter characteristics

4BL: 4-pole Butterworth low pass filter 4FL: 4-pole Elliptic low pass filter 4BH: 4-pole Butterworth high pass filter 4FH: 4-pole Elliptic high pass filter 2BP: 2-pole pair Butterworth band pass filter
(2)Cutoff (center) frequency setting range

1: 10 Hz to 1.6 kHz
2: 100 Hz to $100 \mathrm{kHz}(50 \mathrm{kHz})$
(3) Operating temperature range

E: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
M: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Screening

Item	Applicable standard	Product reliability level	
	MIL-STD-883	MG-B2*	MG, EG
Internal visual	2017	\bigcirc	\bigcirc
Stabilization bake	1008 Condition C	\bigcirc	-
Temperature cycling	1010 Condition C	\bigcirc	\bigcirc
Constant acceleration	2001 Condition A, in Y1 direction	\bigcirc	-
Pre burn-in	According to specifications $23^{\circ} \mathrm{C}$	\bigcirc	-
Burn-in	$101585^{\circ} \mathrm{C} 160 \mathrm{H}$	\bigcirc	(48 hrs)
Final electrical test	Tests at normal, maximum, and minimum operating temperatures according to specifications	\bigcirc	$\text { (} 23^{\circ} \mathrm{C} \text { only) }$
Seal	1014 Fine \& Gross	\bigcirc	\bigcirc
External visual	2009	\bigcirc	\bigcirc

* Screened if an order for 10 or more filters is received.

Basic connection diagram

\boldsymbol{F} Absolute maximum ratings

Supply voltage $(\pm \mathbf{V s})$		$\pm 18 \mathrm{~V}$
Input voltage		$\pm \mathrm{Vs}$
Load	$2 \mathrm{k} \Omega$	
Temperature $/$ range	Operation	$\mathrm{HR}-\mathrm{XXXX}-\mathrm{EG}:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{HR}-\mathrm{XXXX}-\mathrm{MG}:-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Model	HR-4BL1/2	HR-4FL1/2	HR-4BH1/2	HR-4FH1/2	HR-2BP1/2
Filter characteristics	4-pole Butterworth low pass	4-pole Elliptic low pass	4-pole Butterworth high pass	4-pole Elliptic high pass	2-pole pair Butterworth band pass

Cut-off (fc, -3dB)/center (fo) frequency characteristics

- Attenuation characteristics

Rolloff	$24 \mathrm{~dB} / \mathrm{oct}$	$42 \mathrm{~dB} /$ oct equivalent	$24 \mathrm{~dB} / o c t$	$42 \mathrm{~dB} / \mathrm{oct}$ equivalent	$12 \mathrm{~dB} / \mathrm{oct} \mathrm{BW}$
\mathbf{Q}	$-\quad-$	-	-	$5 \pm 5 \%$	
Attenuation characteristics*2	24 dB typ	55 dB typ	24 dB typ	55 dB typ	35 dB typ
Minimum attenuation	-	46 dB typ	-	46 dB typ	
High frequency attenuation (up to 1MHz)	Min. 70 dB	Min. 60 dB	-	-	Min. 60 dB

FInput characteristics

Input voltage range	$\pm 10 \mathrm{~V}$
Input impedance	Min. $50 \mathrm{k} \Omega$

VOutput characteristics

Output voltage range $\pm 10 \mathrm{~V}$

Output impedance		Max. 100Ω				
Load resistance Offset voltage ${ }^{* 3}$		Min. 10k Ω				
		Max. $\pm 30 \mathrm{mV}$				
Offset drift		$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ	$16 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typ
Noise	Type 1	40 $\mu \mathrm{Vrms} \mathrm{typ}$	$90 \mu \mathrm{Vrms} \mathrm{typ}$	$120 \mu \mathrm{Vrms}$ typ	$190 \mu \mathrm{Vrms}$ typ	$50 \mu \mathrm{Vrms}$ typ
	Type 2	$35 \mu \mathrm{Vrms} \mathrm{typ}$	$60 \mu \mathrm{Vrms} \mathrm{typ}$	$100 \mu \mathrm{Vrms}$ typ	140 $\mu \mathrm{V}$ rms typ	$45 \mu \mathrm{Vrms}$ typ
Distortion	Type 1	0.004\% typ	0.01\% typ	0.02\% typ	0.02\% typ	0.004\% typ
	Type 2	0.003\% typ	0.005\% typ	0.02\% typ	0.02\% typ	0.002\% typ
Slew rate	Type 1	-	-	10V/ μ s typ	10V/us typ	-
	Type 2	-	-	25V/us typ	25V/us typ	-

VOthers

Supply voltage		$\pm 15 \mathrm{~V}$
Supply voltage range	Type 1	$\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
	Type 2	$\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Quiescent	Type 1	$\pm 1.5 \mathrm{~mA}$ typ	$\pm 2 \mathrm{~mA}$ typ	$\pm 1 \mathrm{~mA}$ typ	$\pm 2 \mathrm{~mA}$ typ
current	Type 2	$\pm 15 \mathrm{~mA}$ typ	$\pm 20 \mathrm{~mA}$ typ	$\pm 10 \mathrm{~mA}$ typ	$\pm 1.5 \mathrm{~mA}$ typ
Dimensions	$20 \times 33 \times 7 \mathrm{~mm}$ (lead excluded) (24-pin DIP), KC type	$\pm 20 \mathrm{~mA}$ typ	$\pm 15 \mathrm{~mA} \mathrm{typ}$		

*1: Expansion of the lower cut-off (center) frequency with the external capacitors (4 pcs .) is enabled. *2: Attenuation for low pass and band pass: 2 fc , for high pass: $1 / 2 \mathrm{fc}$
*3: Zero adjustment available

Multichannel Filter 3314

Rear panel

This 3314 is capable of storing up to 4 HR filters that is utilized as a desktoptype fixed frequency filter.

Available filters	All HR filters
Number of channels	Max. 4
	Continuous connection of $\mathrm{CH} 1 / 2$ with $\mathrm{CH} 3 / 4$ avail- able
fc/fo setting	Fixed resistors (2 or 4 pcs.) are soldered to the discrete platform (accessory) and connected to the socket.
Supply voltage	AC100V $\pm 10 \%, 48 \mathrm{~Hz}$ to 62 Hz Dimensions
	$225(\mathrm{~W}) \times 67(\mathrm{H}) \times 250(\mathrm{D}) \mathrm{mm}$ (protrusion not included)

Block diagram

HR-2BP

Cut-off (center) frequency setting

- Equation of external resistor RF

Type $1 \quad \mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F} 3}=\mathrm{R}_{\mathrm{F} 4}=\mathrm{R}_{\mathrm{F}}$

$$
\begin{aligned}
& \text { RF }=\frac{15.9 \times 10^{3}}{\mathrm{fc} \text { or fo }[\mathrm{Hz}]}[\mathrm{k} \Omega] \\
& \text { Type 2 } \quad \mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F} 3}=\mathrm{R}_{\mathrm{F} 4}=\mathrm{R}_{\mathrm{F}} \\
& \\
& \mathrm{R}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\mathrm{fc} \text { or fo }[\mathrm{Hz}]}[\mathrm{k} \Omega]
\end{aligned}
$$

- Equation of external resistor Rf for expansion of the lower frequency with the use of a capacitor (C_{F})

Type 1

$$
\mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F} 3}=\mathrm{R}_{\mathrm{F} 4}=\mathrm{R}_{\mathrm{F}}
$$

$$
\mathrm{R}_{\mathrm{F}}=\frac{159}{\left(\mathrm{C}_{\mathrm{F}}[\mu \mathrm{~F}]+0.01\right) \times \mathrm{fc} \text { or fo }[\mathrm{Hz}]}[\mathrm{k} \Omega]
$$

Type 2

$$
\begin{aligned}
& R_{F 1}=R_{F 2}=R_{F 3}=R_{F 4}=R_{F} \\
& R_{F}=\frac{159}{\left(\mathrm{C}_{F}[\mu \mathrm{~F}]+0.001\right) \times \text { fc or fo }[\mathrm{Hz}]}[\mathrm{k} \Omega
\end{aligned}
$$

Characteristics

Amplitude

4FH

4FL

2BP

4BH

Temperature

Cut-off frequency drift (Type 1: fc $=500 \mathrm{~Hz}$, Type 2: fc $=5 \mathrm{kHz}$)
4BL1

2BP2

FOffset voltage drift (Type 1: $\mathrm{fc}=500 \mathrm{~Hz}$, Type 2: $\mathrm{fc}=5 \mathrm{kHz}$)

4FL2

RT-8FLA1/2 RT-8FLB1/2 RT-3BP1/2

RT series filters are resistor tunable filters that allocate cutoff (center) frequencies with the external resistors (6 or 8 pcs.). RT-8FLA/8FLB low pass filters possess steep attenuation characteristics, which are suited to be used as anti-aliasing filters. RT-3BP 1/ 3 -octave-band pass filter is in conformity with IEC-225 standards.

135 dB /oct or equivalent: 8-pole Elliptic low pass RT-8FLA $100 \mathrm{~dB} /$ oct or equivalent: 8-pole Elliptic low pass RT-8FLB
$1 / 3$ oct bandwidth $(Q=4.32)$: 3-pole pair band pass RT-3BP
$\boldsymbol{\nabla}$ Absolute maximum ratings

Supply voltage (\pm Vs)		$\pm 18 \mathrm{~V}$		
Input voltage		$\pm \mathrm{Vs}$		
VFilter characteristics				
Filter characteristics		RT-8FLA/8FLB: 8-pole Elliptic LPF 3BP: 3-pole pair BPF		
$\nabla \mathrm{fc}, \mathrm{fo}$				
Setting		Connected with external resistors of the same resistance RT-8FLA/8FLB: 8 pcs. 3BP: 6 pcs		
Range	Type 1	10 Hz to 2kHz		
	Type 2	100 Hz to 20 kHz		
External resistors	Type 1	$R_{F}(k \Omega)=15.9 \times 10^{3} / \mathrm{fc}$ or fo (Hz)		
	Type 2	$\mathrm{R}_{\mathrm{F}}(\mathrm{k} \Omega)=159 \times 10^{3} / \mathrm{fc}$ or fo (Hz)		
Setting accuracy		Max. $\pm 2 \%$ (errors of external resistors excluded)		
VPass-band characteristics				
Model		RT-8FLA1/2	RT-8FLB1/2	RT-3BP1/2
Gain		$0 \mathrm{~dB} \pm 0.1 \mathrm{~dB}(\max)$		$0 \mathrm{~dB} \pm 1 \mathrm{~dB}$ (max)
Adjusted RF		-		$0 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$ (typ)
Ripple (p-p)		0.15 dB (typ)	0.15dB(typ)	-
($\leq 0.9 \mathrm{fc}$)		0.3dB(max)	0.3dB(max)	-
Adjusted RF		0.1 dB (typ)	0.1 dB (typ)	-
Distortion		0.005\%(typ)at 1kHz		

- Attenuation characteristics

Model	RT-8FLA1/2	RT-8FLB1/2	RT-3BP1/2
Rolloff	135dB/oct equiv.	100dB/oct equiv.	-
Q	-	-	$4.32(B W 1 / 30 c t)$
Attenuation characteristics	$86 \mathrm{~dB}($ typ $) 1.56 \mathrm{fc}$	92dB(typ)2.0fc	18dB/octBW
Minimum attenuation	86 dB (typ)	106 dB (typ)	-
High frequency attenuation 10fc (fo) to 1MHz	Min. 80dB	Min. 86dB	Min. 80dB
VInput characteristics			

Input impedance	$\operatorname{Min} .50 \mathrm{k} \Omega$
Maximum input voltage (linear)	$\pm 10 \mathrm{~V}$
VOutput characteristics	

Output impedance	Max. 100Ω	
Maximum output voltage	$\pm 10 \mathrm{~V}$	
Voltage noise (input shor)	Max. $140 \mu \mathrm{Vrms}$ (BW10Hz to 500kHz)	
Offset voltage	$\pm 10 \mathrm{mV}$ (typ) adjustable	
∇ Others		
Supply voltage		$\pm 15 \mathrm{~V}(\pm 5$ to $\pm 18 \mathrm{~V})$
Quiescent current		$\begin{aligned} & \text { 8FLA, 8FLB : } \pm 40 \mathrm{~mA} \text { (typ) } \\ & 3 \text { BP }: \pm 25 \mathrm{~mA} \text { (typ) } \end{aligned}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10 \%$ to $80 \% \mathrm{RH}$
Dimensions		$54.4 \times 33.7 \times 6.5 \mathrm{~mm}$, Type H

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$

Basic connection diagram

Equation of external resistor RF

$$
\begin{array}{rlr}
\text { Type 1 } & \mathrm{RF}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\mathrm{fc} \text { or fo }}(\mathrm{k} \Omega) & \text { Type } 2 \\
\mathrm{RF}=\frac{159 \times 10^{3}}{\mathrm{fc} \text { or fo }}(\mathrm{k} \Omega) \\
& \mathrm{RF}_{\mathrm{F}}=\frac{159}{(\mathrm{CEXT}+0.01) \times \mathrm{fc} \text { or } \mathrm{fo}}(\mathrm{k} \Omega) & \mathrm{RF}_{\mathrm{F}}=\frac{159}{\left(\mathrm{C}_{\mathrm{EXT}}+0.001\right) \times \mathrm{fc} \text { or fo }}(\mathrm{k} \Omega)
\end{array}
$$

Note: Units: fc or fo in Hz, Cext in $\mu \mathrm{F}$
Note: Cext is required only for expansion of the lower cut-off/center frequency (fc/fo).

Block diagram

Characteristics

■Multichannel filter 3316

This 3316 is capable of storing up to 8 RT filters that is utilized as a fixed frequency-allocated multichannel filter.
Filter characteristics vary with type of filters to be stored.

Available filters	All RT filters
Number of channels	Max. 8
fc/fo setting	Fixed resistors (6 or 8 pcs.) are soldered to the discrete platform (accessory) and
	connected to the socket.
Supply voltage	AC100V $, \pm 10 \%, 48 \mathrm{~Hz}$ to 62 Hz $215(\mathrm{~W}) \times 88(\mathrm{H}) \times 300(\mathrm{D}) \mathrm{mm}$ Dimensions (protrusion not included)

Voltage Tunable Filter

VT-4BLA, VT-4BHA, VT-2BPA

VT-A series filters are capable of controlling frequencies with external voltage and fall into the following three types: $24 \mathrm{~dB} /$ oct low pass filter (VT-4BLA), 24dB/oct high pass filter (VT-4BHA), and 2-pole pair band pass filter ($Q=5$; VT-2BPA).
Frequency rises to a maximum as the external control voltage is at the maximum of +10 V , which allows the low pass filters to obtain 100 kHz and high/band pass filters to obtain 20 kHz . The frequency control range has been increased by a factor of 1000 for low/high pass filters and of 100 for band pass filters. The addition of an external capacitor is to vary frequencies to lower.

The phase linear filter is completed with two additional resistors and four capacitors as shown below.

$$
\begin{aligned}
& \mathrm{C}_{1}=\frac{17.453}{\text { Max. set frequency }(\mathrm{Hz})}-0.00025(\mu \mathrm{~F}) \\
& \mathrm{C}_{2}=\frac{15.567}{\text { Max. set frequency }(\mathrm{Hz})}-0.00125(\mu \mathrm{~F})
\end{aligned}
$$

Note: Max. set frequency: 62.2 kHz

Note 1: Do not connect an unused pin with other pins. Note 2: A black circle (\boldsymbol{O}) on the case top denotes Pin 1.

Offset voltage adjustment

With the use of constants provided in the figure, $\pm 50 \mathrm{mV}$ of DC offset voltage can be regulated upon voltage output.

Control voltage (Vc)

Frequency characteristics of the frequency control circuit are expressed in a flat response between DC and 10 kHz . It enables cut-off frequency to vary at several tens $\mu \mathrm{s}$, which has beneficial effects on dynamic change in frequencies. If noise sources are superposed in control voltage, however, it triggers
potential fluctuations in set frequencies. Small control voltage is susceptible to noise, which may result in the instability of set cut-off frequency. Thorough elimination of noise sources from control voltage is required to regain stable frequency.

■Multichannel filter 3334

This 3334 is utilized as a 2 -channel desktop-type voltage control filter. Voltage control is performed through a 10 -rotating potentiometer or external voltage.

Available filters	All VT-A filters
Number of channels	Max. 2
$\mathrm{fc} /$ fo setting	Set with a 10-rotating potentiometer that is
	located on the panel or external control voltage. Simensions (protrusion not included)

Programmable Filter

DT-212D, DT-212DC1, DT-212DC2

DT-212 series filters are regarded as universal filters capable of controlling frequencies with digital signal. The following three types of outputs are to be obtained simultaneously: low pass filter with $12 \mathrm{~dB} /$ oct of rolloff, high pass filter with $12 \mathrm{~dB} /$ oct of rolloff, and band pass filter with $6 \mathrm{~dB} /$ oct of bandwidth. DT-212 series filters facilitate the settings of gain and Q through the adoption of the external resistors, besides the configuration of filters possessing various characteristics and high-order filters.
Frequency is controlled by BCD 3 digits (12 lines). The frequency range falls into three types: 1 Hz to 1.599 kHz (DT-212DC1), 100 Hz to 159.9 kHz (DT-212DC2), and a range to be designated with the external capacitors (DT-212D).
$\boldsymbol{\nabla}$ Filter characteristics

Type		Low pass, high pass, band pass
Order		2 (1-pole pair)
Rolloff		12dB/oct low pass, high pass 6dB/oct•BW band pass
Characteristics		Configuration of any high-order filters available. (with external resistors)
Frequency setting range (fc)		DT-212DC1: 1 Hz to 1.599 kHz DT-212DC2 : 100 Hz to 159.9 kHz DT-212D :Range specified with the external capacitors
Q	Range	$1 / 3$ to $1 \times 10^{6 / f c}$
	Setting	Set with external resistors.

Noise	Low pass : $35 \mu \mathrm{Vrms}(\mathrm{typ})$ High pass : $100 \mu \mathrm{Vrms}(t y p)$ Band pass: $30 \mu \mathrm{Vrms}(\mathrm{typ})$ (in the 10 Hz to 500 kHz bandwidth)
Offset voltage	$\pm 20 \mathrm{mV}$ (typ) Adjustable with an external trimmer potentiometer.
Offset voltage drift	$5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ)
FCut-off frequency control characteristics	
Code	BCD: 3 digits, positive logic (+5 V)
Input circuit	CMOS4000 series, pulled down to GND (internal) at $100 \mathrm{k} \Omega$
Accuracy	$\pm 0.1 \%$ (typ)(212D), $\pm 0.5 \%$ (typ)(212DC1/2)

Impedance	Specified with a gain external resistor. $(10 \mathrm{k} \Omega / \mathrm{gain})$
Maximum voltage	$\pm 10 \mathrm{~V} / \mathrm{gain}$
Maximum voltage	Same as supply voltage

-Built-in operational amplifier

Input bias current	$200 \mathrm{nA}(\mathrm{typ})$
f t	$10 \mathrm{MHz}(\mathrm{typ})$
Slew rate	$8 \mathrm{~V} / \mathrm{\mu s}(\mathrm{typ})$
VOthers	

Impedance	Max. 5Ω
Maximum voltage	$\pm 10 \mathrm{~V}(\leq 100 \mathrm{kHz})$
Load resistance	Min. $2 \mathrm{k} \Omega$
Pass-band gain ${ }^{+1}$	Gained with external resistors.
Distortion $^{+2}$	0.002% (typ)

Note: The following specifications are applied unless otherwise specified:
Supply voltage: $\pm 15 \mathrm{~V}$ and +5 V , Gain: $1, \mathrm{Q}=0.707$, Ambient temp.: $23 \pm 5^{\circ} \mathrm{C}$

Block diagram

Supply voltage		$\pm 15 \mathrm{~V} \pm 10 \%+5 \mathrm{~V} \pm 10 \%$
Quiescent current		typ $:+15 \mathrm{~mA} /-18 \mathrm{~mA},+2.2 \mathrm{~mA}$ max: $+23 \mathrm{~mA} /-27 \mathrm{~mA},+3.3 \mathrm{~mA}$
Temperature/	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
humidity range	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions	$54.4 \times 33.7 \times 9.4 \mathrm{~mm}$, Type HA	

*1: Low pass outputs are DC-coupled. High frequency characteristics of high pass outputs: Max. 500kHz
*2: Measurement point: fc/2 (low pass), 2fc (high pass), fo (band pass)

Pinout diagram

Note *1: Do not connect an unused pin with other pins.
*2: Only external capacitors (CEXT) are available.
*3: A black circle (\bigcirc) on the case top denotes Pin 1.

Basic connection diagram 2-pole low pass/high pass filters

Equation of gain $\mathrm{GLP}_{\mathrm{LP}}=\mathrm{GHP}=\frac{10}{\mathrm{R}_{\mathrm{G}}}(\mathrm{I} / \mathrm{O}$ phase inversion $)$
Equation of Q

$$
\begin{aligned}
& \mathrm{Q}=\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{Q}}} \frac{\mathrm{R}_{\mathrm{Q}}+10}{2 \mathrm{R}_{\mathrm{G}}+10} \\
& \mathrm{RQ}=\frac{10 \mathrm{R}_{\mathrm{G}}}{\left(2 \mathrm{R}_{\mathrm{G}}+10\right) \mathrm{Q}-\mathrm{R}_{\mathrm{G}}}(\mathrm{k} \Omega)
\end{aligned}
$$

Units: R_{G} and R_{Q} in $\mathrm{k} \Omega$
E.g.: Determine RG and Re of Butterworth and Bessel characteristics. (Gain $=2$, a $12 \mathrm{~dB} /$ oct low pass filter assigned)
$\mathrm{R}_{\mathrm{G}}=\frac{10}{\mathrm{GLP}}=5 \mathrm{k} \Omega$
$R \mathrm{Q}=\frac{50}{20 \mathrm{Q}-5}$
$=5.469 \mathrm{k} \Omega(\mathrm{Q}=0.70711$, Butterworth $)$
$=7.637 \mathrm{k} \Omega(\mathrm{Q}=0.57735$, Bessel $)$

Basic connection diagram 1-pole pair band pass filters

Equation of gain $\quad \mathrm{GBP}=\frac{10}{\mathrm{R}_{\mathrm{G}}}(\mathrm{I} / \mathrm{O}$ phase inversion $)$
Equation of Q

$$
\mathrm{Q}=0.5+\frac{5}{\mathrm{R}_{\mathrm{G}}}+\frac{5}{\mathrm{RQ}_{\mathrm{Q}}}
$$

$$
\mathrm{R} \mathrm{Q}=\frac{10}{2 \mathrm{Q}-1-\mathrm{GBP}}(\mathrm{k} \Omega)
$$

Units: R_{G} and R_{Q} in $\mathrm{k} \Omega$
E.g.: Determine Rg and Re when Q is set at 2,5 , and 10 .

$$
\text { (Gain }=5 \text {, a 1-pole pair band pass filter assigned })
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{G}}=\frac{10}{\mathrm{GBP}_{\mathrm{BP}}}=2 \mathrm{k} \Omega \\
& \begin{aligned}
\mathrm{R}_{\mathrm{G}} & =\frac{10}{2 \mathrm{Q}-1-5} \\
& =-5 \mathrm{k} \Omega(\mathrm{Q}=2)^{*} \\
& =2.5 \mathrm{k} \Omega(\mathrm{Q}=5) \\
& =0.71 \mathrm{k} \Omega(\mathrm{Q}=10)
\end{aligned}
\end{aligned}
$$

* The following specifications should be satisfied:
$Q \geq 3$ is obtained if a gain is " 5 ", and the maximum gain is " 3 " if Q is set at 2 .

PROGRAMMABLE FILTER

Frequency setting

DT-212 series filters allow frequency setting through external contacts or digital signal. The frequency setting (BCD: 3 digits) is completed by assigning weights to the relevant input pins, as shown below. Internal logic reaches "Hi" if +5 V is placed to the input pin (bit) and "Lo" if the input pin is set at 0 V or open. The sum of bit weights (Hi) denotes frequency, and the frequency (fc) - sum (N) relationship is represented in the following equations.

$$
\begin{array}{ll}
\text { DT-212DC1 } & \mathrm{fc}=\mathrm{N}(\mathrm{~Hz}) \\
\text { DT-212DC2 } & \mathrm{fc}=100 \mathrm{~N}(\mathrm{~Hz}) \\
\text { DT-212D } & \mathrm{fc}=\frac{\mathrm{N}}{20 \cdot \text { CEXT }}(\mathrm{Hz}) \\
& \quad(\mathrm{CEXT}: \mu \mathrm{F})
\end{array}
$$

DT-212DC1 built-in capacitor: 50000 pF
DT-212DC2 built-in capacitor: 500 pF

Operation in TTL level requires a voltage of +3.5 or more and a power of +5 or less when Hi level is placed. If the voltage does not attain +3.5 V , connect a proper pull-up resistor to TTL output.

Offset voltage adjustment

- When low pass or high pass output is used

- When band pass output is used

Supply power and GND connection

DT-212 series filters are powered by $\pm 15 \mathrm{~V}$ and +5 V , and also allow a power of +5 V to be diverted from +15 V .

- When only $\pm 15 \mathrm{~V}$ is supplied

A power of +5 V is derived from the connection shown in the following diagram. The Hi level of the logic input signal should be +5.3 V at the maximum due to fluctuations in Zener voltage.
The quiescent current for $\pm 15 \mathrm{~V}$ obtains 22 mA (typ) after an increase of 7 mA .

- When $\pm 15 \mathrm{~V}$ and +5 V are supplied

The connection of Pins (36) and (37) requires caution to prevent the return current from flowing into the analog circuit from +5 V of logic power. Pins (36) and (37) are to be connected on the power side as shown below.
Be sure to use a power of +5 V that is small in ripple and pulse noise as with $\pm 15 \mathrm{~V}$. The method with the use of only $\pm 15 \mathrm{~V}$ is adopted if a proper power of +5 V fails to be obtained.

DT-408D DT-408DC2

DT-408 series filters are universal filters embedded with 2-stage 2-pole state variable filters. These filters facilitate the settings of gain and Q through the adoption of the external resistors, besides the configuration of filters possessing various characteristics and high-order filters.
Frequency is controlled by BCD 2 digits (8 lines). The frequency range falls into the following two types: a range to be designated with the external capacitors (DT-408D) and 1 kHz to 159 kHz (DT-408DC2).
DT-408 series filters are Type HB $(54.4 \times 33.7 \times 8.0 \mathrm{~mm})$ with 40 -pin DIP.

FFilter characteristics

Type		Low pass, high pass, band pass
Order		2 (1-pole pair) $\times 2$
Rolloff		12dB/oct low pass, high pass 6dB/oct • BW band pass
Characteristics		Configuration of any high-order filters available. Max. 4-pole filters per unit
Frequency setting range (fc)		DT-408D: Range specified with the external capacitors DT-408DC2 : 1 kHz to 159 kHz
Q	Range	Range: $1 / 3$ to $1 \times 10^{6} / \mathrm{fc}$
	Setting	Set with external resistors.

Noise	Low pass $: 15 \mu \mathrm{Vrms}$ (typ) High pass $: 70 \mu \mathrm{Vrms}$ (typ) Band pass : $30 \mu \mathrm{Vrms}$ (typ) (fc $=80 \mathrm{kHz}$, in the 10 Hz to 500 kHz bandwidth)
Offset voltage	$\pm 20 \mathrm{mV}$ (typ) Zero adjustment available with an external trimmer potentiometer
Offset drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ)
$\boldsymbol{V C u t - o f f ~ f r e q u e n c y ~ c o n t r o l ~ c h a r a c t e r i s t i c s ~}$	

\boldsymbol{V} Input characteristics

Impedance	Specified with a gain external resistor. (10k $\Omega /$ gain)
Maximum voltage	$\pm 10 \mathrm{~V} /$ gain
Absolute maximum voltage	Same as supply voltage

FOutput characteristics

Impedance	Max. 5Ω
Maximum voltage	$\pm 10 \mathrm{~V}(\leq 100 \mathrm{kHz})$
Load resistance	Min. $2 \mathrm{k} \Omega$
Pass-band gain	Gained with external resistors.
Distortion	0.003% (typ)

[^1]Supply voltage: $\pm 15 \mathrm{~V}$, Gain: $1, Q=0.7071$, Ambient temp.: $23 \pm 5^{\circ} \mathrm{C}$

Code	BCD $: 2$ digits, negative logic
Input circuit	Pulled up to +5 V at $100 \mathrm{k} \Omega$
Accuracy	DT-408D $: \pm 0.1 \%$ (typ)
	DT-408DC2 $: \pm 0.5 \%$ (typ)

VBuilt-in operational amplifier

Bias current		200nA (typ)
ft		10MHz (typ)
Slew rate		8V/ $/$ s (typ)
∇ Others		
Supply voltage		$\pm 15 \mathrm{~V} \pm 10 \%$
Quiescent current		$\pm 50 \mathrm{~mA}$ (typ)
Temperature/	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
humidity range	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$54.4 \times 33.7 \times 8.0 \mathrm{~mm}$, Type HB

- Pinout diagram

Block diagram

Basic connection diagram 2-channel 2-pole low pass/high pass filters

Low-pass characteristics

Equation of gain $G_{L P}=G_{H P}=\frac{10}{R_{G}}$
Equation of $\mathrm{Q} \quad \mathrm{RQ}_{\mathrm{Q}}=\frac{10 \mathrm{R}_{\mathrm{C}}}{\left(2 \mathrm{R}_{\mathrm{G}}+10\right) \mathrm{Q}-\mathrm{R}_{\mathrm{G}}}$
Units: R_{G} and R_{Q} in $\mathrm{k} \Omega$

High-pass characteristics

Basic connection diagram 2-channel 1-pole pair band pass filters

Equation of gain $\quad \mathrm{GBP}_{\mathrm{BP}}=\frac{10}{\mathrm{R}_{\mathrm{G}}}$
Equation of Q
$\mathrm{R}_{\mathrm{Q}}=\frac{10}{2 \mathrm{Q}-1-\mathrm{GBP}_{\mathrm{BP}}}$
Units: R_{G} and R_{Q} in $\mathrm{k} \Omega$

Frequency setting

DT-408 series filters allow cut-off (center) frequency setting through external contacts or digital signal. The frequency setting (BCD: 2 digits) is completed by assigning weights to the relevant input pins. Internal logic reaches "Lo" if +0 V is placed to the input pin and "Hi" if the input pin is set at +5 V or open. The sum of bit weights (Lo) denotes frequency.

The frequency (fc) - sum (N) relationship is represented in the following equations.

$$
\text { DT-408DC2 } \quad \mathrm{fc}=\mathrm{N}[\mathrm{kHz}]
$$

DT-408D $\quad \mathrm{fc}=\frac{\mathrm{N}}{2 \cdot \mathrm{CEXT}}[\mathrm{Hz}]$
Units: CExt in $\mu \mathrm{F}$

Application 1-channel 4-pole Butterworth low pass filters

$\mathrm{fc}=1 \mathrm{kHz}$ to 159 kHz

Application 1-channel 4-pole Butterworth high pass filters

Programmable Filter

DT-208D DT-208DC3

DT-208 series filters are regarded as universal filters capable of controlling frequencies with digital signal (Max. set frequency: 1.59 MHz).
The following three types of outputs are to be obtained simultaneously: low pass filter with $12 \mathrm{~dB} /$ oct of rolloff, high pass filter with $12 \mathrm{~dB} /$ oct of rolloff, and band pass filter with $6 \mathrm{~dB} /$ oct of bandwidth. DT-208 series filters facilitate the settings of gain and Q through the adoption of the external resistors, besides the configuration of filters possessing various characteristics and high-order filters.
Frequency is controlled by BCD 2 digits (8 lines). The frequency range falls into the following two types: 10 kHz to 1.59 MHz (DT-208DC with a built-in capacitor) and a range to be designated with the external capacitors (DT-208D).

FFilter characteristics

Type	Low pass, high pass, band pass
Order	2 (1-pole pair)
Rolloff	$12 \mathrm{~dB} /$ oct low pass, high pass 6dB/oct \cdot BW band pass
Characteristics	Configuration of any high-order filters available. (Used with high-speed inverter CA-102R3.
Established with external resistors.)	

∇ Input characteristics

Impedance	Specified with a gain external resistor. (2k $\Omega /$ gain)

Maximum voltage $\pm 10 \mathrm{~V} /$ gain
Absolute maximum Same as supply voltage
voltage
VOutput characteristics

Impedance	Max. 5Ω
Maximum voltage	$\pm 10 \mathrm{~V}(\leq 1 \mathrm{MHz})$
Load resistance	Min. $2 \mathrm{k} \Omega$
Pass-band gain	Gained with external resistors.
Distortion	0.02% (typ)
Noise	$60 \mu \mathrm{Vrms}$ (typ) Low pass output (in the 10 Hz to 500 kHz bandwidth)
Offset voltage	$\pm 30 \mathrm{mV}$ (typ) Adjustable with an external trimmer potentiometer.

FCut-off frequency control characteristics

Code	BCD: 2 digits, negative logic	
Input circuit	CMOS input, pulled up to +5 V at $100 \mathrm{k} \Omega$ (internal)	
Accuracy	DT-208D : $\pm 0.25 \%$ (typ), DT-208DC3 : 0.5\% (typ)	
∇ Others		
Supply voltage		$\pm 15 \mathrm{~V}(\pm 14$ to $\pm 16)$
Quiescent current		$\pm 50 \mathrm{~mA}$ (typ)
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$54.4 \times 33.7 \times 9.4 \mathrm{~mm}$, Type HA

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$

Block diagram

Basic connection diagram

- DT-208 low pass/high pass filters

$$
\text { Gain }=\frac{2 \times 10^{3}}{\mathrm{R}_{\mathrm{G}}[\Omega]} \quad \mathrm{Re}_{\mathrm{Q}}[\mathrm{~W}]=\frac{\mathrm{R}_{\mathrm{BP}}[\Omega]}{3 \mathrm{Q}-1}(\mathrm{I} / \mathrm{O} \text { phase inversion })
$$

- DT-208 band pass filters

Gain $=\frac{\operatorname{R}_{\mathrm{BP}}[\Omega]}{\operatorname{R}_{\mathrm{G}}[\Omega]} \quad \operatorname{RQ}[\Omega]=\frac{\operatorname{R}_{\mathrm{BP}}[\Omega]}{2(\mathrm{Q}-1)}(\mathrm{I} / \mathrm{O}$ phase inversion $)$

Determination of C_{F} (DT-208D)

DT-208D filters possess no frequency-determining capacitor, which requires the installation of external CF.
The sum of bit weights when logic is controlled to "Lo" is expressed in "N".
$\mathrm{fc}[\mathrm{Hz}]=\frac{\mathrm{N}}{4 \times 10^{5} \times \mathrm{C}_{\mathrm{F}}[\mathrm{F}]}$
$\mathrm{C}_{\mathrm{F}}[\mathrm{F}]=2.5 \times 10^{-6} \times \frac{\mathrm{N}}{\mathrm{fc}[\mathrm{Hz}]}$
E.g.: When logic (N) is 100 :

To obtain 1 MHz in $\mathrm{fc}, 250 \mathrm{pF}\left(\mathrm{C}_{\mathrm{F}}\right)$ is pre-assigned to DT-208D
(DT-208DC3 has an internal CF of 250 pF).
The configuration of the Elliptic filters and band elimination filters with the use of DT-208 series filters requires the combination use of High-Speed Inverting Amplifier CA-102R3. See Page 55 for further information on CA-102R3.

Absolute maximum ratings

Supply voltage ($\pm \mathrm{Vs}$)	$\pm 16 \mathrm{~V}$
Input voltage	$\pm \mathrm{Vs}$
Control voltage	$\pm 5.5 \mathrm{~V}-0.5 \mathrm{~V}$

$\boldsymbol{\nabla}$ Filter characteristics

DT-5FL1/2	5-pole Elliptic LPF
DT-6FL1/2	6-pole Elliptic LPF

$\mathbf{\nabla}$ Cut-off frequency (fc)

-Pass-band characteristics

Gain	$0 \mathrm{~dB} \pm 0.3 \mathrm{~dB}(0.05 \mathrm{fc})$
Ripple	$0.13 \mathrm{dBp}-\mathrm{p}$ (design center value)
Distortion	0.05% (typ)

Basic connection diagram

* INH is set at " 0 " (open or +5 V) to allocate cut-off frequency according to 3-bit binary signal (A, B, C). All frequency-determining resistors become opened upon setting of " 1 " (0 V) at INH, which enables the setting of cut-off frequency with the external resistors. Contact us for the calculation and connection of the external resistors.

DT-5FL1/2 DT-6FL1/2

DT-5FL/6FL series filters are low pass filters possessing steep attenuation characteristics, which are intended for anti-aliasing at A/D conversion. These filters allow cut-off frequency to be shifted at 8 positions with digital signal, which are suitable for frequent shift in sampling frequency.

$$
\begin{array}{ll}
60 \mathrm{~dB} / \text { oct or equivalent: } 5 \text {-pole elliptic low pass } & \text { DT-5FL1/2 } \\
\text { 80dB/oct or equivalent: } 6 \text {-pole elliptic low pass } & \text { DT-6FL1/2 }
\end{array}
$$

Characteristics

DT-5FL

DT-6FL

Multichannel filter 3344

This case outfitted with the power supply is capable of storing up to 8 DT-5FL/ 6FL filters.

Number of channels	Max. 8
Fc control	8-channel batch control with a push switch on the front panel (remote control available)
Supply voltage	AC100V, $\pm 10 \%, 48 \mathrm{~Hz}$ to 62 Hz $215(\mathrm{~W}) \times 88(\mathrm{H}) \times 300$ Dimensions mm (protrusion not included)

PROGRAMMABLE LOWPASS FILTER

DT-8FL1/2

DT-8FL series filters are designed as anti-aliasing filters possessing 8-pole elliptic characteristics
These filters are allocated with cut-off frequencies of 20 Hz to 20 kHz and of 100 Hz to 100 kHz that can be shifted at 10 positions in accordance with 4-bit external signal (1-, 2-, 5-sequence).
DT-8FL series filters are in 60 -pin dual-inline package (DIP) and powered by $\pm 8 \mathrm{~V}$.
$\boldsymbol{\nabla}$ Absolute maximum ratings

Supply voltage $(\pm \mathrm{Vs})$	$\pm 10 \mathrm{~V}$
Input voltage	$\pm \mathrm{Vs}$
Control voltage	$+8.5 \mathrm{~V},-0.5 \mathrm{~V}$

$\boldsymbol{\nabla}$ Filter characteristics

Filter characteristics	8 -pole elliptic LPF

VCut-off frequency (fc)

Cut-off frequency range*	Type 1: 20 Hz to 20 kHz Type 2: 100 Hz to 100 kHz $1-, 2-, 5-$-sequence
Setting	4-bit binary code, negative logic

\boldsymbol{V} Pass-band characteristics

Gain	$0 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$ (at 0.05 fc$)$
Ripple	$0.1 \mathrm{dBp}-\mathrm{p}$ (typ) (at DC to fc)
Distortion	Max. 0.013% (at $0.5 \mathrm{fc}, 1 \mathrm{Vrms})$

- Attenuation characteristics

Rolloff	$130 \mathrm{~dB} /$ oct equivalent
Attenuation characteristics	82 dB (typ) (at 1.56 fc to 1 MHz)

VInput characteristics

Input impedance	Min. $10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega$ (typ)
Maximum input voltage (linear)	$\pm 5 \mathrm{~V}$

VOutput characteristics

Output impedance		Max. 100 ${ }^{\text {, }} 50 \Omega$ (typ)
Maximum output voltage		$\pm 5 \mathrm{~V}$
Voltage noise		Type 1: $60 \mu \mathrm{Vrms}$ (typ) Type 2: $80 \mu \mathrm{Vrms}$ (typ) (BW: 10Hz to 500 kHz)
Offset voltage		$\pm 10 \mathrm{mV}$ (typ) adjustable
Load resistance		Min. $2 \mathrm{k} \Omega$
∇ Others		
Supply voltage		$\pm 8 \mathrm{~V} \pm 10 \%$
Quiescent current		Type 1: $\pm 30 \mathrm{~mA}$ (typ) Type 2: $\pm 72 m A$ (typ)
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$76.7 \times 47.2 \times 8.0 \mathrm{~mm}$, Type ID

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$
${ }^{*} \mathrm{fc}=\mathrm{A}$ point passing 0 dB

Basic connection diagram

Control

Control				Cut-off frequency [Hz]	
$\overline{\mathrm{D}}$	$\overline{\mathrm{C}}$	$\overline{\mathrm{B}}$	$\overline{\mathrm{A}}$	DT-8FL1	DT-8FL2
0	1	0	0	20 k	100 k
0	1	0	1	10 k	50 k
0	1	1	0	5 k	20 k
0	1	1	1	2 k	10 k
1	0	0	0	1 k	5 k
1	0	0	1	500	2 k
1	0	1	0	200	1 k
1	0	1	1	100	500
1	1	0	0	50	200
1	1	0	1	20	100

1: 0 V or GND
$0:+8 \mathrm{~V}$ or open
The control terminal is pulled up to +8 V at $100 \mathrm{k} \Omega$ for internal processing.

Block diagram

Characteristics

Group delay

Phase

Phase matching of cut-off frequency

FIXED FREQUENCY FILTER

Fixed Frequency Filter

DV series

DV series filters are semi-custom-designed fixed frequency filters that allow customers to select desirable attenuation characteristics from our various existing characteristics. These filters can be customized to your specifications including the cut-off frequency (fc), center frequency (fo), and selectivity (Q).

DV series model and order specifications

E.g.: DV-3BL-DC denotes a 3-pole Butterworth DC-coupled low pass filter.

■Order specifications (Model and the following items are required for an order for customization.)

Filter type	Specifications	Remarks
High pass filter Low pass filter	- Cut-off frequency	$-3 \mathrm{~dB}$
Narrow band pass filter	- Center frequency - Q	$\mathrm{Q}=\frac{\text { Center frequency }}{3 \mathrm{~dB} \text { bandwidth }}$
Wide band pass filter	- Upper limit frequency (fch) - Lower limit frequency (fcl)	-3dB each Note that fcylfcllimits are imposed.
Band elimination filter	Center frequency	

-Partial modification to standard filters and customized filters
Partial modification to standard filters is available as listed below. Custom making on filters is also available by special order. Contact us for further information.

- Supply voltage of +24 V is modified to $\pm 15 \mathrm{~V}$.
- Wide-band pass filter is rendered with different attenuation characteristics between high pass and low pass.
- Q of band elimination filters is set at any number other than 5 .

- High pass filters

Model	DV-3BH	DV-4BH	DV-5BH	DV-6BH	DV-8FH
Order	3	4	5	6	8
Rolloff	18dB/oct	24dB/oct	$30 \mathrm{~dB} / \mathrm{cct}$	$36 \mathrm{~dB} / \mathrm{cot}$	$75 \mathrm{~dB} / \mathrm{oct}$
Attenuation characteristics	Butterworth				NF polar* ${ }^{1}$
Cut-off frequency range	5 Hz to 20kHz				
Cut-off frequency accuracy ($25^{\circ} \mathrm{C}$)	$\begin{aligned} & \pm 2 \%(100 \mathrm{~Hz} \leq \mathrm{fc}<10 \mathrm{kHz}), \pm 3 \%(20 \mathrm{~Hz} \leq \mathrm{fc}<100 \mathrm{~Hz}, 10 \mathrm{kHz}<\mathrm{fc}<20 \mathrm{kHz}) \\ & \pm 5 \%(5 \mathrm{~Hz} \leq \mathrm{fc}<20 \mathrm{~Hz}) \end{aligned}$				
Maximum input voltage (Vrms)	3.0				$\begin{aligned} & \hline 2.5 \text { (fc } \leq 3 \mathrm{kHz}) \\ & 2.0(3 \mathrm{kHz}<\mathrm{fc}) \\ & \hline \end{aligned}$
Input impedance	Min. 50k Ω				
Output impedance	Max. 100Ω				
Load impedance	Min. 10k Ω				
Pass-band gain	$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$				$0 \mathrm{~dB} \pm 1 \mathrm{~dB}{ }^{1}$
Distortion (2Vrms)	Max. 0.5\%				
Noise	Max. $140 \mu \mathrm{Vrms}$ (10 Hz to 500 kHz BW)				
Supply voltage	$\pm 24 \mathrm{~V}$				
Quiescent current (typ)	$10 \mathrm{~mA}(\mathrm{fc} \leq 5 \mathrm{kHz})$ $12 \mathrm{~mA}(5 \mathrm{kHz}<\mathrm{fc})$		$12 m A(f c \leq 3 k H z)$ $15 \mathrm{~mA}(3 \mathrm{kHz}<\mathrm{fc})$	$15 \mathrm{~mA}(\mathrm{fc} \leq 3 \mathrm{kHz})$ 25 mA ($3 \mathrm{kHz}<\mathrm{fc}$)	
Operating temperature	Range: 0 to $50^{\circ} \mathrm{C}$				

Note 1: Dimensions are determined with protrusions such as a connect pin excluded.
Note 2: Type B is applicable to US sockets, and all DV series filters are to be made with Type B.

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$
*1. Response hill rolloff: Min. 55dB Pass-band ripple: Max. $\pm 1 \mathrm{~dB}$

Characteristics

Low pass filters

VAC-coupled filters (DV-7FL excluded)

Model ${ }^{+1}$	$\begin{aligned} & \hline \text { 3BL-DC } \\ & \text { 3LL-DC } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 4BL-DC } \\ & \text { 4LL-DC } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 5BL-DC } \\ & \text { 5LL-DC } \end{aligned}$	6BL-DC 6LL-DC	8FL-DC	7FL
Cut-off frequency range	1 Hz to 20kHz				5 Hz to 20kHz	
Attenuation characteristics	BL: Butterworth LL: Bessel				NF polar	
Maximum input voltage (Vrms)	7.0 (fc $\leq 10 \mathrm{kHz}) \quad 3.0$ ($10 \mathrm{kHz}<\mathrm{fc} \leq 20 \mathrm{kHz}$)				2.5	See above
Supply voltage	$\pm 15 \mathrm{~V}$					
Quiescent current (typ)	$\pm 12 \mathrm{~mA}$				$\pm 18 \mathrm{~mA}$	
Offset voltage	$\pm 5 \mathrm{mV}\left(23 \pm 5^{\circ} \mathrm{C}\right), 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ)					

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$
*1: Be sure to assign "DV-" to the beginning of a model name for order. (E.g.: 3BL-DC \rightarrow DV-3BL-DC) Other specifications are in conformity with AC-coupled filters.

Characteristics

Type	Dimensions (mm)
L	$30.8 \times 53.7 \times 18.4$
ML	$40.8 \times 70.8 \times 20.2$
B	$53.0 \times 53.0 \times 100.0$

Note 1: Dimensions are determined with protrusions such as a connect pin excluded.
Note 2: Type B is applicable to US sockets, and all DV series filters are to be made with Type B.

FIXED FREQUENCY FILTER

Band pass filters

VNarrow band pass filters (Specifications of model, center frequency (fo), and selectivity (Q) are required for order.)

Model	DV-2BP	DV-3BP	DV-4BP	DV-5BP	DV-6BP
Order	4 (2-pole pair)	6 (3-pole pair)	8 (4-pole pair)	10 (5-pole pair)	12 (6-pole pair)
Rolloff	12dB/oct BW	18dB/oct BW	24dB/oct BW	30dB/oct BW	36dB/oct BW
Center frequency range	40 Hz to 20 kHz		40 Hz to 10 kHz		
Center frequency accuracy	$\pm 1 \%\left(25 \pm 5^{\circ} \mathrm{C}\right), \pm 2 \%\left(0\right.$ to $\left.50^{\circ} \mathrm{C}\right)$				
Q	1 to 10 (Error: $\pm 10 \%$)				
Maximum input voltage	7Vrms				
Input impedance	Min. 50k Ω				
Output impedance	Max. 100Ω				
Load impedance	Min. $10 \mathrm{k} \Omega$				
Pass-band gain	$0 \mathrm{~dB} \pm 1 \mathrm{~dB}$				
Distortion	Max. 0.1\% (1Vrms)				
Noise	Max. $140 \mu \mathrm{Vrms}$ (10 Hz to 500 kHz BW)				
Supply voltage	$\pm 15 \mathrm{~V}$				
Quiescent current (typ)	$\pm 12 \mathrm{~mA}$	$\pm 20 \mathrm{~mA}$	$\pm 24 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$	$\pm 40 \mathrm{~mA}$
Operating temperature	Range: 0 to $+50^{\circ} \mathrm{C}$				
Type	Type L	Type ML		Type NL	

IEC (IEC-225)-compliant $1 / 3 /$ oct, $1 / 2 /$ oct, and $1 /$ oct filters adhere to $4.3,2.9,1.4$ of selectivity (Q) each in 3BP type.
FWide band pass filters (Specifications of model, lower limit frequency (fcl), and upper limit frequency (fcн) are required for order.)

Model	DV-3BW	DV-4BW	DV-5BW	DV-6BW	DV-8FW
Order	6 (3-pole pair)	8 (4-pole pair)	10 (5-pole pair)	12 (6-pole pair)	16 (8-pole pair)
Rolloff	$18 \mathrm{~dB} / \mathrm{oct}$	$24 \mathrm{~dB} /$ oct	$30 \mathrm{~dB} / \mathrm{oct}$	36dB/oct	$75 \mathrm{~dB} / \mathrm{oct}$
Attenuation characteristics	Butterworth				NF polar ${ }^{2}$
Cut-off frequency range	5 Hz to 20 kHz				
Minimum bandwidth*1	4.0	3.0	2.5	2.0	2.0
Center frequency accuracy					
Maximum input voltage (Vrms)	3.0				$\begin{aligned} & 2.5\left(\mathrm{f}_{\mathrm{CH}} \leq 3 \mathrm{kHz}\right), \\ & 2.0\left(\mathrm{f}_{\mathrm{CH}}<3 \mathrm{kHz}\right) \end{aligned}$
Input impedance	Min. 50k Ω				
Output impedance	Max. 100Ω				
Load impedance	Min. 10k Ω				
Pass-band gain	Max. $0 \mathrm{~dB} \pm 1 \mathrm{~dB}$				0dB (+0dB, -4dB)
Distortion	Max. 0.5\% (2Vrms)				
Noise	Max. $140 \mu \mathrm{Vrms}(10 \mathrm{~Hz}$ to 500 kHz BW)				
Supply voltage	$\pm 24 \mathrm{~V}$				
Quiescent current (typ)	$15 \mathrm{~mA}(\mathrm{fch} \leq 5 \mathrm{kHz}), 20 \mathrm{~mA}(5 \mathrm{kHz}<\mathrm{fch})$		20 mA ($\mathrm{fch} \leq 3 \mathrm{kHz}$), $25 \mathrm{~mA}(3 \mathrm{kHz}<\mathrm{fch})$		30 mA ((cht $\leq 3 \mathrm{kHz}), 40 \mathrm{~mA}$ (3kHz<cch)
Operating temperature	Range: 0 to $+50^{\circ} \mathrm{C}$				

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$
*1: fch/fcl
*2: Response hill rolloff: Min. 55 dB Pass-band ripple: $\pm 1 \mathrm{~dB}$
-Dimensions

fc (Hz) 5	$\stackrel{100}{1}$		$\stackrel{300}{1}$	20k
6BW	B		ML	
8FW	B		ML	

Type	Dimensions (mm)
L	$30.8 \times 53.7 \times 18.4$
ML	$40.8 \times 70.8 \times 20.2$
B	$53.0 \times 53.0 \times 100.0$

Note 1: Dimensions are determined with protrusions such as a connect pin excluded.
Note 2: Type B is applicable to US sockets, and all DV series filters are to be made with Type B

Characteristics

Normalized frequency [f/cc]

Wide-band pass filters

Wide-band pass filters

Normalized frequency [f/fcl] Normalized frequency [f/ch]

Band elimination filters
(Specifications of model and center frequency (fo) are required for order.)

Model		DV-1BE-DC	DV-2BE-DC	DV-3BE-DC	DV-4BE-DC
Order		2 (1-pole pair)	4 (2-pole pair)	6 (3-pole pair)	8 (4-pole pair)
Rolloff	Specified fo	Min. 26dB	Min. 40dB	Min. 60dB	Min. 70dB
	Measured fo	Min. 40dB	Min. 60dB	Min.	2 dB
Center frequency range		40 Hz to 10 kHz			
Center frequency accuracy		$\pm 1 \%$ (0 to $50^{\circ} \mathrm{C}$)			
Q		5 ($\pm 10 \%$)			
Maximum input voltage		7Vrms			
Input impedance		Min. $50 \mathrm{k} \Omega$			
Output impedance		Max. 100 ${ }^{\text {a }}$			
Load impedance		Min. $10 \mathrm{k} \Omega$			
Pass-band gain		OdB $\pm 0.5 \mathrm{~dB}$, Max. -1 dB at 30 kHz for upper limit frequency			
Distortion		Max. 0.1\% (7Vrms)			
Noise		Max. $140 \mu \mathrm{Vrms}(10 \mathrm{~Hz}$ to 500 kHz)		Max. $240 \mu \mathrm{Vrms}(10 \mathrm{~Hz}$ to 500 kHz)	
Supply voltage		$\pm 15 \mathrm{~V}$			
Quiescent current (typ)		$\pm 12 \mathrm{~mA}$	$\pm 20 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$	$\pm 40 \mathrm{~mA}$
Operating temperature		Range: 0 to $+50^{\circ} \mathrm{C}$			
Dimensions		$40.8 \times 70.8 \times 20.2 \mathrm{~mm}$, Type ML		$53.0 \times 53.0 \times 100.0 \mathrm{~mm}$, Type B	

Characteristics

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$

Precautions for use

-DC voltage is applied to the input/output terminals in 24 -volt filters and ± 15-volt modified filters, which requires the interruption of DC voltage with a capacitor to use the relevant filters. The capacitor capacity is derived from the following equation with $\min .10 \mathrm{k} \Omega$ of load applied. The proper polarity of the capacitor (see the following figure) and withstand pressure should be assured.

A. Low pass filters

Note that the lower limit (fL) of the pass band is determined.

$$
\mathrm{C}_{\mathrm{IN}}=\frac{32}{\mathrm{f}_{\mathrm{L}}}(\mu \mathrm{~F}) \quad \text { Cout }=5 \times \operatorname{CiN}(\mu \mathrm{F})
$$

A reduction in fL_{L} level is limited to 0.1 dB if the above value is assigned, and $12 \mathrm{~dB} /$ oct is obtained for the reduced rolloff.

B. High pass filters

Cut-off frequency determined by the capacitor should be $1 / 20$ of f_{c} at the maximum. The following equation is used to obtain the value.

$$
\mathrm{C}_{\mathrm{IN}}=\frac{64}{\mathrm{f}_{\mathrm{L}}}(\mu \mathrm{~F}) \quad \text { Cout }=5 \times \operatorname{CiN}(\mu \mathrm{F})
$$

High pass frequency characteristics: Max. 1 MHz at output of 2 Vrms

C. Band pass filters

The equation at "B. High pass filters" is also applied to derive wide band pass filters (with f_{CL} and f_{CH} specified).

- Be sure to use a stable power that is small in ripple and noise. Potential degradation in filter characteristics and distortion and potential reduction in the maximum input level may be concerned if the voltage that is out of the specifications (Max. 2 mV p-p for $\pm 15 \mathrm{~V}$ filters, and Max. 0.5 mV p-p for +24 V filters and $\pm 15 \mathrm{~V}$ modified filters) is applied.

Multichannel filter DV-04/04B

This case, which is outfitted with DC power for DV filter drive, is designed to use DV filters on the desktop. It is capable of storing up to 4 DV filters*. DV-04 is designed for Types L/ML/NL, and DV-04B supports Type B ($\pm 15 \mathrm{~V}$, DC-coupled filters). CF series filters (see Page 36) can also be embedded in DV-04 with the use of the CF/DV conversion adapter.

* The maximum quiescent current may impose limits on the number of filters to be stored.

Available filters	Max. 4 DV filters*, Types L/ML/NL, CF series (CF/DV conversion adapter used): DV-04 for Type B: DV-04B
Max. quiescent current	$40 \mathrm{~mA} / 1$ channel: (DV-04)
	$140 \mathrm{~mA} / 4$ channels: (DV-04B)
I/O terminals	BNC-R
Supply voltage	AC100V $\pm 10 \% 50 / 60 \mathrm{~Hz}$
Dimensions	$225(\mathrm{~W}) \times 67(\mathrm{H}) \times 250(\mathrm{D}) \mathrm{mm}$
	(protrusion not included)

[^2] us for further information.

FIXED FREQUENCY FILTER

Fixed Frequency Filter

CF series

CF series filters are semi-custom-designed fixed frequency filters that allow customers to select desirable characteristics from our various existing standard filter characteristics. These filters can be customized to your specifications including the cut-off frequency, center frequency, and selectivity (Q), which requires no external components. Customization is also enabled in accordance with the relevant characteristics plot and transfer functions other than filter characteristics.
Not only the prominent downsizing but the weight reduction of filters has been actualized by capitalizing on surface mount technology, as compared with the current DV series filters.
CF series filters can also be embedded in DV-04 (see Page 35) with the use of the CF/ DV conversion adapter. Integration of CF series filters carrying 40 mA or more of quiescent current is disabled due to limits on the DV-04 current capacity.

CF series model and order specifications

■Model

*1 Not standard characteristics.

Absolute maximum rating	Supply voltage ($\pm \mathrm{Vs}$) $\pm 18 \mathrm{~V}$ Input voltage \pm Vs
Input characteristics	Input impedance: Min. $50 \mathrm{k} \Omega$
	Maximum input voltage: $\pm 10 \mathrm{~V}$ (linear)
Output characteristics	Output impedance: Max. 100Ω
	Maximum output voltage: $\pm 10 \mathrm{~V}$ (in the pass band)
	Load resistance: Min. 10k Ω
DC offset voltage	Max. $\pm 5 \mathrm{mV}$
DC offset adjustment	Enabled
Supply voltage	$\pm 15 \mathrm{~V}$ (± 5 to $\pm 18 \mathrm{~V}$)
Temperature/humidity range	$\text { Operation: } \begin{array}{r} -20^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}, \\ 10 \text { to } 95 \% \mathrm{RH} \end{array}$
	Storage: $\quad-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$,

-High pass filters
-Butterworth

Model	CF-3BH	CF-4BH	CF-5BH	CF-6BH	CF-7BH	CF-8BH
Order	3	4	5	6	7	8
Rolloff	18dB/oct	$24 \mathrm{~dB} /$ oct	30dB/oct	36dB/oct	42dB/oct	48dB/oct
Attenuation characteristics	Butterworth					
Cut-off frequency range	1 Hz to 50 kHz					
Cut-off frequency accuracy	$\pm 2 \%\left(23 \pm 5^{\circ} \mathrm{C}\right)$					
Pass-band gain	$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$					
Maximum input voltage	$\pm 10 \mathrm{~V}$					
Distortion (7Vrms)	0.01\% (typ)					
Noise	Max. $140 \mu \mathrm{Vrms}(10 \mathrm{~Hz}$ to 500 kHz BW$)$					
Quiescent $\mathrm{fc}<20 \mathrm{kHz}$	$\pm 8 \mathrm{~mA}$		$\pm 12 \mathrm{~mA}$		$\pm 16 \mathrm{~mA}$	
current (typ) $20 \mathrm{kHz} \geq \mathrm{fc}$	$\pm 16 \mathrm{~mA}$		$\pm 24 \mathrm{~mA}$		$\pm 32 \mathrm{~mA}$	
Type	Type EB: 10 Hz to 50 kHz , Type HB: 1 Hz to 50 kHz					

Characteristics

- Elliptic

Model	CF-6FH			CF-7FH			CF-8FH		
Amplitude characteristics	Type A	Type B	Type C	Type A	Type B	Type C	Type A	Type B	Type C
Order	6			7			8		
Rolloff (equivalent)	60dB/oct	80dB/oct	$100 \mathrm{~dB} /$ oct	84dB/oct	128dB/oct	260dB/oct	135dB/oct	$100 \mathrm{~dB} /$ oct	$274 \mathrm{~dB} /$ oct
Filter characteristic	Elliptic								
Cut-off frequency range ${ }^{41}$	10 Hz to 50 kHz								
Ripple 100 kHz to 1.1fc	$\pm 0.3 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$
1.1 fc to fc	$\pm 0.7 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$
Attenuation characteristics	80dB (typ) 0.38fc	60dB (typ) 0.58fc	60dB (typ) 0.66fc	82dB (typ) 0.51fc	62dB (typ) 0.71fc	50dB (typ) 0.87fc	86dB (typ) 0.64ic	100dB (typ) 0.50fc	64dB (typ) 0.85fc
Low frequency attenuation (DC to 0.1fc)	76dB	56dB	55 dB	77 dB	57dB	45 dB	80dB	95 dB	59 dB
Pass-band gain	$0 \pm 0.5 \mathrm{~dB}$								
Distortion (7Vrms)	0.01\% (typ)								
Noise	Max. $140 \mu \mathrm{Vrms}$ (fc<20kHz), Max. $240 \mu \mathrm{Vrms}$ (fc $\geq 20 \mathrm{kHz}$) in the 10 Hz to 500 kHz BW								
Quiescent current (typ)	$\pm 24 \mathrm{~mA}$			$\pm 32 \mathrm{~mA}$			$\pm 32 \mathrm{~mA}$		
	$\pm 40 \mathrm{~mA}$			$\pm 48 \mathrm{~mA}^{*}$			$\pm 48 \mathrm{~mA}^{*}$		
Type	Type HB or Type EB			Type HB					

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$
${ }^{*} 1$. $\mathrm{fc}=\mathrm{A}$ point passing 0 dB (applied to simultaneous Chebyshev filters only) *2. Integration into DV-04 is disabled due to excessive quiescent current

Characteristics

Low pass filters

-Butterworth

Elliptic					*fc: A point passing 0dB						
Model		CF-6FL			CF-7FL			CF-8FL			
Amplitude characteristics		Type A	Type B	Type C	Type A	Type B	Type C	Type A	Type B	Type C	
Order		6			7			8			
Rolloff (equivalent)		60dB/oct	80dB/oct	$100 \mathrm{~dB} / \mathrm{oct}$	84dB/oct	128dB/oct	260dB/oct	135dB/oct	$100 \mathrm{~dB} / \mathrm{oct}$	$274 \mathrm{~dB} /$ oct	
Filter characteristic		Elliptic									
Cut-off frequency range		10 Hz to 1MHz					10 Hz to 100kHz	10 Hz to 1MHz	10 Hz to 100 kHz		
Ripple	DC to 0.9fc	$\pm 0.3 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	
	0.9 fc to fc	$\pm 0.7 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 0.7 \mathrm{~dB}$	$\pm 1.2 \mathrm{~dB}$	
Attenuation characteristics		80dB (typ) 2.64fc	60dB (typ) 1.71fc	60dB (typ) 1.51fc	82dB (typ) 1.96fc	62dB (typ) 1.40fc	50dB (typ) 1.15fc	86dB (typ) 1.56fc	100dB (typ) 2.00fc	64 dB (typ) 1.175fc	
High frequency $\mathrm{fc} \leq 100 \mathrm{kHz}$ attenuation fc>100kHz		Min. $76 \mathrm{~dB}^{* 1}$	Min. 56dB*1	Min. 55dB ${ }^{+1}$	Min. $77 \mathrm{~dB}^{* 1}$	Min. $57 \mathrm{~dB}^{+1}$	Min. 45dB*1	Min. 80dB*1	Min. 86dB*1	Min. 59dB*1	
		Min. 64dB*2	Min. 56dB*2	Min. 55dB ${ }^{2}$	Min. 60dB*2	Min. $54 \mathrm{~dB}^{+2}$	-	Min. 60dB*2	-	-	
Pass-band gain		$0 \pm 0.5 \mathrm{~dB}$									
Distortion (7Vrms)		0.01\% (typ), fc $\leq 100 \mathrm{kHz}$									
Noise		Max. $100 \mu \mathrm{Vrms}(\mathrm{fc}<50 \mathrm{kHz})$, Max. $200 \mu \mathrm{Vrms}(50 \mathrm{kHz} \leq \mathrm{fc} \leq 100 \mathrm{kHz})(10 \mathrm{~Hz}$ to 500 kHz BW) Max. $700 \mu \mathrm{Vrms}(100 \mathrm{kHz}<\mathrm{fc} \leq 1 \mathrm{MHz})(10 \mathrm{~Hz}$ to 20 MHz BW)									
Quiescent current (typ)	fc<20kHz	$\pm 24 \mathrm{~mA}$	$\pm 24 \mathrm{~mA}$	$\pm 24 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$						
		$\pm 40 \mathrm{~mA}$	$\pm 40 \mathrm{~mA}$	$\pm 40 \mathrm{~mA}$	$\pm 48 \mathrm{~mA}^{*}$						
	100kHz¢ic 1 MHz	$\pm 45 \mathrm{~mA}^{*}$	$\pm 45 \mathrm{~mA}^{*}$	$\pm 45 \mathrm{~mA}^{*}$	$\pm 50 \mathrm{~mA}^{*}$	$\pm 50 \mathrm{~mA}^{*}$	-	$\pm 50 \mathrm{~mA}^{*}$	-	-	
Type		Type EB (fc 10 Hz to 100 kHz), Type HB (fc 10 Hz to 1 MHz)			Type HB						

*1. Frequency range: 10 fc to 1 MHz *2. Frequency range: 2 MHz to 10 MHz *3. Integration into DV-04 is disabled due to excessive quiescent current.

Characteristics

Normalized frequency [fffc]

CF-7FL

Normalized frequency [f/fc]

CF-8FL

Normalized frequency [f/fc]

Band pass filters

Model	CF-2BP	CF-3BP	CF-4BP	CF-5BP	CF-6BP
Order	4 (2-pole pair)	6 (3-pole pair)	8 (4-pole pair)	10 (5-pole pair)	12 (6-pole pair)
Attenuation characteristics	12dB/oct BW	18dB/oct BW	24dB/oct BW	30dB/oct BW	36dB/oct BW
Center frequency range	1 Hz to 100 kHz				
Center frequency accuracy	$\pm 1 \%$ (23 $\pm 5^{\circ} \mathrm{C}$)				
Q	1 to 10 (Accuracy: $\pm 5 \%$)				
Pass-band gain	$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$				
Maximum input voltage	$\pm 10 \mathrm{~V}$				
Distortion (7Vrms)	0.01\% (typ)				
Noise	Max. $100 \mu \mathrm{Vrms}$ (fc<50kHz), Max. $200 \mu \mathrm{Vrms}$ (fc $\geq 50 \mathrm{kHz}$) 10 Hz to 500 kHz BW				
Quiescent \quad fc $<20 \mathrm{kHz}$	$\pm 12 \mathrm{~mA}$	$\pm 16 \mathrm{~mA}$	$\pm 24 \mathrm{~mA}$	$\pm 28 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$
current (typ) 20kHz<fc	$\pm 24 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$	$\pm 48 \mathrm{~mA}^{* 3}$	$\pm 56 \mathrm{~mA}^{*}$	$\pm 64 \mathrm{~mA}^{*}$
Type	Type EB	Type HB			

■Band elimination filters

Model		CF-1BE	CF-2BE	CF-3BE	CF-4BE
Order		2 (1-pole pair)	4 (2-pole pair)	6 (3-pole pair)	8 (4-pole pair)
Rolloff	Specified fo	Min. 26dB	Min. 40dB	Min. 60dB	Min. 70dB
	Measured fo	Min. 40dB	Min. 60dB	Min. 72dB	
Center frequency range		1 Hz to 50 kHz			
Center frequency accuracy		$\pm 1 \%\left(23 \pm 5^{\circ} \mathrm{C}\right)$			
Q		5 (Accuracy: $\pm 5 \%$)			
Pass-band gain		$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$			
Maximum input voltage		$\pm 10 \mathrm{~V}$			
Distortion (7Vrms)		0.01\% (typ)			
Noise		Max. 140 $\mu \mathrm{Vrms}(10 \mathrm{~Hz}$ to 500 kHz BW$)$		Max. 240 ${ }^{\text {VVrms (}}$ (10Hz to 500kHz BW)	
Quiescent current (typ)	fc<20kHz	$\pm 8 \mathrm{~mA}$	$\pm 16 \mathrm{~mA}$	$\pm 24 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$
	20kHz $\leq f \mathrm{c}$	$\pm 16 \mathrm{~mA}$	$\pm 32 \mathrm{~mA}$	$\pm 48 \mathrm{~mA}^{*}$	$\pm 64 \mathrm{~mA}^{*}$
Type		Type EB		Type HB	

*3. Integration into DV-04 is disabled due to excessive quiescent current.

Characteristics

Characteristics

Customization is also enabled in accordance with the relevant characteristics plot and transfer functions if no intended characteristics are observed in standard filter characteristics or no specific model is provided.

Band Elimination Filter

- Absolute maximum ratings

Model	Band elimination filter
Order	1-pole pair
Mode	FILT mode, THRU mode
Setting	TTL or C-MOS, negative logic Pulled up to +5 V at $100 \mathrm{k} \Omega$

Transfer characteristics (FILT mode)

Center frequency (fo)	50 Hz or 60 Hz
Setting	TTL or $\mathrm{C}-\mathrm{MOS}$, negative logic Pulled up to +5 V at $100 \mathrm{k} \Omega$
Q	$2.0(\mathrm{fo}=50 \mathrm{~Hz}), 2.4(\mathrm{fo}=60 \mathrm{~Hz})$
Maximum attenuation	Min. $24 \mathrm{~dB}(\mathrm{fo} \pm 1 \%)$
VFILT/THRU mode common characteristics	

Pass-band gain	$0 \pm 0.3 \mathrm{~dB}(0.1 \mathrm{fo})$
Upper limit frequency	50 kHz, Max. $0 \pm 1 \mathrm{~dB}$ (small signal)

VI/O characteristics

Input impedance		Max. 60k $\Omega \pm 5 \%$	
Max. input voltage (linear)		$\pm 10 \mathrm{~V}$	
Output impedance		Max. $50 \Omega \pm 5 \%$	
Max. output voltage (linear)		$\pm 10 \mathrm{~V}$	
Offset voltage		Max. $\pm 10 \mathrm{mV}$ (Zero adjustment available)	
Noise		$140 \mu \mathrm{Vrms} \mathrm{typ} \mathrm{(BW:} 10 \mathrm{~Hz}$ to 500 kHz)	
Distortion		Max. 0.01\% (at 1kHz, $\pm 3 \mathrm{~V}$ applied)	
∇ Others			
Supply voltage (Vs), Quiescent current		± 5 to $\pm 16 \mathrm{~V}$ $\pm 0.7 \mathrm{~mA}$ (typ) -1.0 mA (typ) $\pm 5 \mathrm{~V}$ $+300 \mu \mathrm{~A}$ (typ)	
Temperature/ humidity range	Operation	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$	
	Storage	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$	
Dimensions		$51.5 \times 14.0 \times 4.0 \mathrm{~mm}$, Type S20	

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V},+5 \mathrm{~V}$ of power

SD-1BE

SD-1BE filter is a low-powered hybrid IC 1-pole pair band elimination filter. Mode selection is available under digital control, FILT mode or THRU mode. FILT mode can be placed at 50 Hz or 60 Hz of center frequency, and the rolloff is controlled to remain 24 dB or more even if $\pm 1 \%$ is shifted from center frequency.
The offset voltage is internally adjusted to 10 mV or lower in both THRU and FILT modes. The downsizing has been achieved to actualize a 20-pin single-inline package (SIP).

Characteristics

200B/S Band Pass Filter

CF-4FPA

CF-4FPA filter is a band pass filter designed for a 200B/S modem. This filter possesses frequencies falling into the following six types: 800, 1200, 1600, 2000, 2400, and 2800 Hz . The downsizing has been achieved to actualize a 40-pin dual-inline package in dimensions of $54.4 \times 33.7 \times 6.5 \mathrm{~mm}$.

- Absolute maximum ratings

Characteristics Frequency characteristics

CF-4FPA 1200 Hz

CF-4FPA 1600 Hz

CF-4FPA 2000 Hz

CF-4FPA 2400 Hz

Low Pass Filter for Wide Band Speech Signals

SF-8FLC-1 compliant with CCITT Rec.G. 722

SF-8FLC-1 filter is a low pass filter intended for anti-aliasing of terminal equipment in a $64 \mathrm{kbit} / \mathrm{sec}$ of wideband transmission network. This filter possesses steep attenuation characteristics such as -25 dB at $8 \mathrm{kHz},-50 \mathrm{~dB}$ at 9 kHz , and -70 dB at 14 kHz despite 7 kHz of cut-off frequency.
Not only the prominent downsizing but the weight reduction of the filter has been realized to achieve a 20 -pin single-inline package in dimensions of $51.5 \times 14.0 \times 5.5 \mathrm{~mm}$.

FFilter characteristics

Filter characteristics	Compliant with CCITT Rec.G.722.
Pass-band gain	$\pm 0.5 \mathrm{~dB}(1 \mathrm{kHz}, 10 \mathrm{k} \Omega$ of load)
Amplitude	$+0 /-1.5 \mathrm{~dB}(50 \mathrm{~Hz}), \pm 0.5 \mathrm{~dB}(100 \mathrm{~Hz})$,
characteristics	$+0.5 \mathrm{~dB}(6.4 \mathrm{kHz}),+0.5 /-1.5 \mathrm{~dB}(7 \mathrm{kHz})$,
$\mathbf{(1 \mathrm { kHz } = 0 \mathrm { dB })}$	Max. $-25 \mathrm{~dB}(8 \mathrm{kHz})$, Max. $-50 \mathrm{~dB}(9 \mathrm{kHz})$,
	Max. $-70 \mathrm{~dB}(14 \mathrm{kHz})$
Fixed delay	Max. $2 \mathrm{~ms}($ minimum pass band $)$
Group delay response	Max. $1 \mathrm{~ms}(50 \mathrm{~Hz})$, Max. $500 \mu \mathrm{~s}(100 \mathrm{~Hz})$,
	Max. $125 \mu \mathrm{~s}(200 \mathrm{~Hz})$, Max. $125 \mu \mathrm{~s}(4 \mathrm{kHz})$,
	Max. $500 \mu \mathrm{~s}(6.4 \mathrm{kHz})$, Max. $1 \mathrm{~ms}(7 \mathrm{kHz})$
	(Fixed delay =0s)

VInput characteristics

Input impedance	Min. $50 \mathrm{k} \Omega$
Maximum voltage	$\pm 10 \mathrm{~V}$

OOutput characteristics

Output impedance	Max. 100Ω
Max. output voltage	$\pm 10 \mathrm{~V}$
Load impedance	Max. $10 \mathrm{k} \Omega$
Noise	Max. $140 \mu \mathrm{Vrms}(\mathrm{BW}: 10 \mathrm{~Hz}$ to 500 kHz)
Offset voltage	$\pm 30 \mathrm{mV}$ (typ)
Others	

Supply voltage/current		$\pm 15 \mathrm{~V} \pm 10 \%, \pm 32 \mathrm{~mA}$ (typ)
Temperature/		Operation
humidity range	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$	
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions	$51.5 \times 14.0 \times 5.5 \mathrm{~mm}$, Type S20	

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$

Characteristics

Measured group delay response

Measured frequency response

Low Noise Amplifier

CA-251F4

CA-251F4 amplifier is a low noise amplifier allocated with bandwidth of DC to 10 MHz . With substantially low noise maintained, outstanding DC characteristics and frequency characteristics have been actualized through the adoption of the noise reduction circuit that is the application of the negative feedback technology. Our original 6-surfaceshielded single-inline package is a great contributor to the implementation of high precision signal processing and high density mounting. CA-251F4 is powered by $\pm 15 \mathrm{~V}$, and its gain is 40 dB .

- Absolute maximum ratings

Supply voltage (\pm Vs)		$\pm 16.5 \mathrm{~V}$
Signal input voltage		$\pm 1 \mathrm{~V}, \pm 0.5 \mathrm{~V}$ (with no power supplied)
Offset input voltage		$\pm \mathrm{Vs}$
∇ Input		
Input form		DC coupling, unbalanced single ended input
Input impedance		$1 \mathrm{M} \Omega \pm 5 \%$ (DC, Pins (1) and (2) connected, Shunt capacitance: 55pF (typ))
Linear maximum input voltage		$\pm 100 \mathrm{mV}$ (at 1kHz)
Input bias current		$\pm 30 \mathrm{pA}$ (typ)
Input voltage noise density		Max. $1.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (at 10 kHz , short-circuit in input terminal) $1.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ) (at 10 kHz , short-circuit in input terminal)
Input current noise density		$150 f \mathrm{~A} \sqrt{\mathrm{~Hz}}$ (typ) (at 1 kHz)
Input offset voltage		$\pm 50 \mu \mathrm{~V}$ (typ) (short-circuit in input terminal) Zero adjustment available with an external trimmer potentiometer.
Input DC drift		$\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ) (short-circuit input terminal) 0 to $40^{\circ} \mathrm{C}$
∇ Output		
Output form		DC coupling, unbalanced single ended output
Maximum output voltage		$\pm 10 \mathrm{~V}$ (at 1 kHz , load resistance $\geq 1 \mathrm{k} \Omega$)
Maximum output current		$\pm 10 \mathrm{~mA}$
Slew rate		110V/ $\mu \mathrm{s}$ (typ)
Output impedance		$50 \Omega \pm 5 \%$ (DC)
∇ Amplifier		
Voltage gain		40 $\pm 0.2 \mathrm{~dB}$ (at 1 kHz)
Voltage gain frequency characteristics		DC to $10 \mathrm{MHz}(+0.5 /-3 \mathrm{~dB})$
I/O phase		In-phase
Harmonics distortion		0.006\% (typ) (at $1 \mathrm{kHz}, \pm 10 \mathrm{~V}$ output)
∇ Power supply		
Recommended power supply voltage range		$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$
Quiescent current		$\pm 30 \mathrm{~mA}, \pm 25 \mathrm{~mA}$ (typ)
∇ Environment		
Specified temperature range		$23 \pm 5^{\circ} \mathrm{C}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
∇ Dimensions		
Type		Type SS20 (20-pin shielded SIP)
Dimensions		$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included)
Weight (NET)		Approx. 20g
Note: The following Supply voltag	specificatio ge: $\pm 15 \mathrm{~V}$,	s are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, resistance: $1 \mathrm{M} \Omega$

Basic connection diagram

Characteristics

Notes

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.
No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

- The maximum input voltage is $\pm 0.5 \mathrm{~V}$ when the module is not in action (no power being supplied). Potential damage to the module may be concerned if the maximum voltage is violated. If a voltage of $\pm 0.5 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The maximum input amplitude is $\pm 1 \mathrm{~V}$ when the module is in action. If signal amplitude of $\pm 1 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The series regulator type power supply is required to ensure low noise. Switching noise lies in the switching regulator type power supply such as a DC-DC converter, which impairs low noise in the module.

Pattern dimensions

Maximum outer dimensions

Evaluation board

A module-mounted evaluation board is available for easy evaluation of this module. Contact us for further information.

LOW NOISE DIFFERENTIAL AMPLIFIER

Low Noise FET Differential Amplifier

$\boldsymbol{\nabla}$ Absolute maximum ratings

Supply voltage (\pm Vs)	$\pm 16.5 \mathrm{~V}$	
Signal input voltage	Differential input	$\pm 1 \mathrm{~V}, \pm 0.7 \mathrm{~V}$ (with no power supplied)
	Common mode input	$\pm \mathrm{Vs}, \pm 0.7 \mathrm{~V}$ (with no power supplied)
Offset input voltage		$\pm \mathrm{Vs}$

∇ Input

Input form	DC coupling, differential input
Differential input impedance	2G Ω (typ) (DC, single ended)
	Shunt capacitance: 22 pF (typ)
Common mode input impedance	$1 \mathrm{G} \Omega$ (typ) (DC)
	Shunt capacitance: 44pF (typ)
Linear maximum differential input voltage	$\pm 100 \mathrm{mV}$ (at 1kHz)
Linear maximum common mode input voltage	$\pm 5 \mathrm{~V}$ (at 1kHz)
Input bias current	$\pm 50 \mathrm{pA}$ (typ)
Input offset current	$\pm 10 \mathrm{pA}$ (typ)
CMRR (RTI)	110 dB (at 60 Hz)
	70dB (typ) (at 1MHz)
Input voltage noise density	Max. $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (at 10kHz)
	$2.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ) (at 10kHz)
Input current noise density	$100 \mathrm{fA} / \sqrt{\mathrm{Hz}}$ (typ) (at 1kHz)
Input offset voltage	$\pm 50 \mu \mathrm{~V}$ (typ) (short-circuit in input terminal)
	Zero adjustment available with an external trimmer potentiometer.
Input DC drift	$\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ) (short-circuit in input terminal) 0 to $40^{\circ} \mathrm{C}$

∇ Output

Output form	DC coupling, single ended output
Maximum output voltage	$\pm 10 \mathrm{~V}$ (at 1kHz, load resistance $\geq 1 \mathrm{k} \Omega$)
Maximum output current	$\pm 10 \mathrm{~mA}$
Slew rate	110V/ $/$ s (typ)
Output impedance	$50 \Omega \pm 5 \%$ (DC)
VAmplifier	
Voltage gain	$40 \pm 0.2 \mathrm{~dB}$ (at 1 kHz)
Voltage gain frequency characteristics	DC to $10 \mathrm{MHz}(+0.5 /-3 \mathrm{~dB})$
Harmonics distortion	0.008\% (typ) (at 1kHz, $\pm 1 \mathrm{~V}$ output)

- Power supply

Recommended power supply voltage range	$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$
Quiescent current	$\pm 40 \mathrm{~mA}, \pm 32 \mathrm{~mA}$ (typ)

VEnvironment

Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$

∇ Dimensions

Type	Type SS20 (20-pin shielded SIP)
Dimensions	$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included)
Weight (NET)	Approx. 20 g

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$, Load resistance: $1 \mathrm{M} \Omega$

CA-451F4

CA-451F4 amplifier is a FET input low noise differential amplifier, which ensures not only $2.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of input voltage noise density but $\times 100$ voltage gain. With substantially low noise maintained, outstanding DC characteristics $\left(2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ and frequency characteristics (DC to 10 MHz) have been actualized through the adoption of the noise reduction circuit that is the application of the negative feedback technology. FET input is incorporated into CA-451F4 amplifier, which delivers low noise characteristics up to high signal source impedance ($100 \mathrm{k} \Omega$). Our original 6-surface-shielded 20 -pin singleinline package is a great contributor to the implementation of high precision signal processing and high density mounting.

Basic connection diagram

Block diagram

Characteristics

Notes

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.
No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

- The maximum input voltage is $\pm 0.5 \mathrm{~V}$ when the module is not in action (no power being supplied). Potential damage to the module may be concerned if the maximum voltage is violated. If a voltage of $\pm 0.5 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The maximum input amplitude is $\pm 1 \mathrm{~V}$ when the module is in action. If signal amplitude of $\pm 1 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The series regulator type power supply is required to ensure low noise. Switching noise lies in the switching regulator type power supply such as a DC-DC converter, which impairs low noise in the module.

Pattern dimensions

Maximum outer dimensions

Evaluation board

A module-mounted evaluation board is available for easy evaluation of this module. Contact us for further information.

Low Noise Amplifier

CA-261F2

CA-261F2 amplifier is a low noise amplifier allocated with bandwidth of DC to 10 MHz . With substantially low noise maintained, outstanding DC characteristics and frequency characteristics have been actualized through the adoption of the noise reduction circuit that is the application of the negative feedback technology. Our original 6-surfaceshielded single inline package is a great contributor to the implementation of high precision signal processing and high density mounting. CA-261F2 is powered by $\pm 15 \mathrm{~V}$, and its gain is 40 dB .

VAbsolute maximum ratings

Supply voltage (\pm Vs)		$\pm 16.5 \mathrm{~V}$
Signal input voltage		$\pm 1 \mathrm{~V}, \pm 0.5 \mathrm{~V}$ (with no power supplied)
Offset input voltage		$\pm \mathrm{Vs}$
VInput		
Input form		DC coupling, unbalanced single ended input
Input impedance		$100 \mathrm{k} \Omega \pm 5 \%$ (DC, Pins (1) and (2) connected, Shunt capacitance: 80pF (typ))
Linear maximum input voltage		$\pm 100 \mathrm{mV}$ (at 1kHz)
Input bias current		$\pm 20 \mathrm{nA}$ (typ)
Input voltage noise density		Max. $0.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (at 1 kHz , short-circuit in input terminal $0.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (at 1 kHz , short-circuit in input terminal)
Input current noise density		$1.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (typ) (at 10kHz)
Input offset voltage		$\pm 20 \mu \mathrm{~V}$ (typ) (short-circuit in input terminal) Zero adjustment available with an external trimmer potentiometer.
Input DC drift		$\pm 0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ) (short-circuit input terminal) 0 to $40^{\circ} \mathrm{C}$
∇ Output		
Output form		DC coupling, unbalanced single ended output
Maximum output voltage		$\pm 10 \mathrm{~V}$ (at 1 kHz , load resistance $\geq 1 \mathrm{k} \Omega$)
Maximum output current		Min. $\pm 10 \mathrm{~mA}$
Slew rate		10V/ $\mu \mathrm{s}$ (typ)
Output impedance		$50 \Omega \pm 5 \%$ (DC)
∇ Amplifier		
Voltage gain		$40 \pm 0.2 \mathrm{~dB}$ (at 1 kHz)
Voltage gain frequency characteristics		DC to $200 \mathrm{kHz}(+0.5 /-3 \mathrm{~dB})$
I/O phase		In-phase
Harmonics distortion		0.006\% (typ) (at $1 \mathrm{kHz}, \pm 10 \mathrm{~V}$ output)
∇ Power supply		
Recommended power supply voltage range		$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$
Quiescent current		Max. $\pm 30 \mathrm{~mA}, \pm 22 \mathrm{~mA}$ (typ)
∇ Environment		
Specified temperature range		$23 \pm 5^{\circ} \mathrm{C}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
∇ Dimensions		
Type		Type SS20 (20-pin shielded SIP)
Dimensions		$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included)
Weight (NET)		Approx. 20 g

Basic connection diagram

Block diagram

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$, Load resistance: $1 \mathrm{M} \Omega$

Characteristics

Frequency

Input voltage noise density

Noise figure

Offset drift

Gain drift

Notes

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.
No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

- The maximum input voltage is $\pm 0.5 \mathrm{~V}$ when the module is not in action (no power being supplied). Potential damage to the module may be concerned if the maximum voltage is violated. If a voltage of $\pm 0.5 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The maximum input amplitude is $\pm 1 \mathrm{~V}$ when the module is in action. If signal amplitude of $\pm 1 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The series regulator type power supply is required to ensure low noise. Switching noise lies in the switching regulator type power supply such as a DC-DC converter, which impairs low noise in the module.

Pattern dimensions

Maximum outer dimensions

Evaluation board

A module-mounted evaluation board is available for easy evaluation of this module. Contact us for further information.

LOW NOISE DIFFERENTIAL AMPLIFIER

Low Noise Differential Amplifier

$\operatorname{FAbsolute~maximum~ratings~}$

Supply voltage (\pm Vs)		$\pm 16.5 \mathrm{~V}$
Signal input voltage	Differential input	$\pm 1 \mathrm{~V}, \pm 0.7 \mathrm{~V}$ (with no power supplied)
	Common mode input	$\pm \mathrm{Vs}, \pm 0.7 \mathrm{~V}$ (with no power supplied)
Offset input voltage		\pm Vs
∇ Input		
Input form		DC coupling, balanced differential input
Differential input impedance		$100 \mathrm{k} \Omega$, Max. 5% (DC, single ended) Shunt capacitance: 80pF (typ)
Common mode input impedance		$\begin{aligned} & \text { 500k } \Omega \text { (typ) (DC) } \\ & \text { Shunt capacitance: } 130 \mathrm{pF} \text { (typ) } \end{aligned}$
Linear maximum differential input voltage		$\pm 100 \mathrm{mV}$ (at 1kHz)
Linear maximum common mode input voltage		$\pm 10 \mathrm{~V}$ (at 1kHz)
Input bias current		$\pm 30 \mathrm{nA}$ (typ)
Input offset current		$\pm 7 \mathrm{nA}$ (typ)
CMRR (RTI)		Min. 100dB, 120dB (typ) (at 60Hz)
Input voltage noise density		Max. $1.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (at 1 kHz , short circuit in input terminal) $1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ) (at 1 kHz , short circuit in input terminal)
Input current noise density		$2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (typ) (at 10kHz)
Input offset voltage		$\pm 40 \mu \mathrm{~V}$ (typ) (short-circuit in input terminal) Zero adjustment available with an external trimmer potentiometer.
Input DC drift		$\pm 0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ) (short-circuit in input terminal) 0 to $40^{\circ} \mathrm{C}$

VOutput

Output form	Unbalanced single ended output
Maximum output voltage	$\pm 10 \mathrm{~V}$ (at 1 kHz , load resistance $\geq 1 \mathrm{k} \Omega$)
Maximum output current	$\pm 10 \mathrm{~mA}$
Slew rate	$10 \mathrm{~V} / \mu \mathrm{s}$ (typ)
Output impedance	$50 \Omega \pm 5 \%$ (DC)
Amplifier	$40 \pm 0.2 \mathrm{~dB}$ (at 1 kHz$)$
Voltage gain DC to $200 \mathrm{kHz}(+0.5 /-3 \mathrm{~dB})$ Voltage gain frequency characteristics 0.006% (typ) (at $1 \mathrm{kHz}, \pm 10 \mathrm{~V}$ output)	
Harmonics distortion	

- Power supply

Recommended power supply voltage range	$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$
Quiescent current	$\pm 30 \mathrm{~mA}, \pm 22 \mathrm{~mA}$ (typ)

VEnvironment

Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$

∇ Dimensions

Type	Type SS20 (20-pin shielded SIP)
Dimensions	$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included)
Weight (NET)	Approx. 20 g

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$, Load resistance: $1 \mathrm{M} \Omega$

CA-461F2

CA-461F2 amplifier is a low noise differential amplifier, which ensures not only $1.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of input voltage noise density but $\times 100$ voltage gain.
With substantially low noise maintained, outstanding DC characteristics $\left(0.3 \mu /{ }^{\circ} \mathrm{C}\right)$ and frequency characteristics (DC to 200 kHz) have been actualized through the adoption of the noise reduction circuit that is the application of the negative feedback technology. Bipolar input is incorporated into CA-461F2 amplifier, which delivers low noise characteristics up to low signal source impedance (500Ω or less).
Our original 6-surface-shielded 20-pin single-inline package is a great contributor to the implementation of high precision signal processing and high density mounting.

Basic connection diagram

Characteristics

Notes

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.
No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

- The maximum input voltage is $\pm 0.5 \mathrm{~V}$ when the module is not in action (no power being supplied). Potential damage to the module may be concerned if the maximum voltage is violated. If a voltage of $\pm 0.5 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The maximum input amplitude is $\pm 1 \mathrm{~V}$ when the module is in action. If signal amplitude of $\pm 1 \mathrm{~V}$ or more is input, a protective circuit is inserted into the input terminal.
- The series regulator type power supply is required to ensure low noise. Switching noise lies in the switching regulator type power supply such as a DC-DC converter, which impairs low noise in the module.

DIFFERENTIAL AMPLIFIER

Differential Amplifier

VAbsolute maximum ratings

Supply voltage ($\pm \mathrm{Vs}$)	$\pm 18 \mathrm{~V}$
Signal input voltage	$\pm \mathrm{Vs}$
Control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$
\boldsymbol{V} Gain	$1,2,5,10,20,50, \times 100$
Gain	$\pm 0.1 \%$ (typ)
Accuracy	

VInput characteristics

Input form	Differential input
Impedance	$3 \times 10^{10} \Omega / / 8 \mathrm{pF}$ (typ) (for differential and common input)
Common mode voltage	$\pm 10 \mathrm{~V}$
Common mode rejection ratio	Min. 90 dB (DC to $60 \mathrm{~Hz}: \mathrm{G}=100$)
Offset voltage	$\pm 2 \mathrm{mV}$ (typ) (RTI, G = 100, input grounding)
Offset drift	$\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ) (RTI, G $=100$, input grounding)
Voltage noise density	$27 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ) (RTI, G $=100$, input grounding)

VFrequency characteristics

$\pm 3 \mathrm{~dB}$ flat (small signal)	Min. DC to 200 kHz
$\pm 1 \%$ flat (small signal)	DC to 50 kHz (typ)
Full power bandwidth	DC to 100 kHz (typ)
Slew rate	$20 \mathrm{~V} / \mu$ s (typ)

Basic connection diagram

VOutput characteristics

Maximum voltage	$\pm 10 \mathrm{~V}$
Maximum current	$\pm 5 \mathrm{~mA}$
Impedance	Max. $5 \mathrm{k} \Omega$
Load resistance	Min. $2 \mathrm{k} \Omega$

-Control characteristics

Control line		$1,2,5,10, \times 1, \times 10$
Level		TTL or CMOS negative logic
Level input process		Pulled up to +5 V (internal) at $100 \mathrm{k} \Omega$
∇ Others		
Supply voltage		$\pm 15 \mathrm{~V}$ (± 14 to 16 V)
Quiescent current		+15mA, -12mA (typ)
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$51.5 \times 14 \times 6.5 \mathrm{~mm}$, Type S20

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, $\mathrm{Vs}= \pm 15 \mathrm{~V}$

Block diagram

Characteristics

Characteristics

Harmonics distortion

Common mode rejection ratio (CMRR)

Input voltage noise density

Programmable Gain Amplifier

CA-206L2

CA-206L2 amplifier is a low noise DC amplifier capable of logical setting of gains ($\times 1$ to $\times 100$) in accordance with 1 -, 2-, or 5-sequence. Frequency characteristics are expressed in a flat response till 100 kHz . A gain error is limited to 0.1% (typ) that denotes high accuracy. Gain setting is completed by controlling the 6 control terminals ($1,2,5$, $10, \times 1, \times 10$) according to TTL or CMOS IC negative logic.
Easy gain setting with the use of 3-bit binary signal or binary code switch is assured if the amplifier is connected with the binary latch adapter CA-903N. The latch function enables direct connection to CPU. CA-206L2/CA-903N amplifiers are 20-pin single inline package, which enables high density mounting.

VAbsolute maximum ratings

Supply voltage ($\pm \mathrm{Vs}$)	$\pm 18 \mathrm{~V}$
Signal input voltage	$\pm \mathrm{Vs}$
Control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$
Gain	

Gain (G)	$\begin{aligned} & 1,2,5,10,20,50, \times 100 \\ & \text { Error: } \pm 0.1 \% \text { (typ), Max. } \pm 0.4 \%(1 \mathrm{kHz}) \end{aligned}$
Setting	6 control terminals ($1,2,5,10, \times 1, \times 10$) used
VInput characteristics	
Input form	Unbalanced
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%$ (1kHz)
Max. input voltage (linear)	$\pm 10 \mathrm{~V}(\mathrm{G}=1)$
Offset voltage	$\pm 1 \mathrm{mV}$ (typ) (RTI, G = 100, input grounding) Offset voltages of the input/output amplifiers: Adjustable with external trimmer potentiometer (2 pcs.).
Offset drift	$\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (typ) (RTI, G = 100, input grounding)
Voltage noise density	$7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (typ) (RTI, G = 100, input grounding)

- Frequency characteristics

$\pm 3 \mathrm{~dB}$ flat (small signal)	Min. DC to 500 kHz
$\pm 1 \%$ flat (small signal)	DC to 100 kHz (typ)
Full power bandwidth	DC to 100 kHz (typ)
Slew rate	$10 \mathrm{~V} / \mu \mathrm{s}$ (typ)

Output characteristics

Maximum output	Voltage: $\pm 10 \mathrm{~V}$, Current: $\pm 5 \mathrm{~mA}$
Load resistance	Min. $2 \mathrm{k} \Omega$
Output impedance	Max. $5 \mathrm{k} \Omega$

Control characteristics

Control line	$1,2,5,10, \times 1, \times 10$
Level	TTL or CMOS negative logic
Level input process	Pulled up to +5 V (internal) at $100 \mathrm{k} \Omega$

∇ Others

Supply voltage		$\pm 15 \mathrm{~V}(\pm 14$ to 16 V$)$
Quiescent current		+15 mA (typ), -20 mA (max)
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$51.5 \times 14 \times 6.5 \mathrm{~mm}$, Type S20

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, $\mathrm{Vs}= \pm 15 \mathrm{~V}$

Basic connection diagram

Establish a ground for INPUT, and obtain a gain of 100 . Adjust OFFSET1 to obtain 0V of AıOUT.
Adjust OFFSET2 to obtain 0V of OUTPUT.

Block diagram

OFFSET1 A1 OUT OFFSET2

Characteristics

Characteristics

Amplitude-Phase ($\times 50$ gain)

Distortion ($\times 1$ gain)

Distortion ($\times 100$ gain)

Amplitude-Phase ($\times 20$ gain)

Amplitude-Phase ($\times 100$ gain)

Distortion ($\times 10$ gain)

Input voltage noise density ($\times 100$ gain)

Binary Latch Adapter

CA-903N

CA-903N adapter is endowed with outstanding features including gain setting by binary code that is available if connected to CA-206L2 programmable gain amplifier or CA-406L2 differential amplifier. This adapter is also capable of actuating the latch function.
Gain setting binary code input becomes valid if the latch control input terminal is open or set at +5 V , which allows gain setting by the negative logic level signal. Latch control input needs to be set at OV to exert the latch function, which enables data on gain setting binary code input to be latched at the edge of 0 V .
Connection with CA-206L2 and CA-406L2 amplifiers is established with the samenumbered pins (8 pcs.), and the power is supplied.

- Absolute maximum ratings

Supply voltage ($\pm \mathrm{Vs}$)	+5.5 V
Control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$

VI/O characteristics (truth table)

Gain	Input				Output						Function
	G	C	B	A	1	2	5	10	$\times 1$	$\times 10$	-
1	H	H	H	H	L	H	H	H	L	H	-
2	H	H	H	L	H	L	H	H	L	H	-
5	H	H	L	H	H	H	L	H	L	H	-
10	H	H	L	L	H	H	H	L	L	H	-
20	H	L	H	H	H	L	H	H	H	L	-
50	H	L	H	L	H	H	L	H	H	L	-
100	H	L	L	H	H	H	H	L	H	L	-
100	H	L	L	L	H	H	H	L	H	L	-
	L	\times	\times	\times	Data is latched at the falling edge of G.	Latch					

Level	TTL or CMOS negative logic
Level input process	Pulled up to +5 V (internal) at $100 \mathrm{k} \Omega$
Latch function	A variation in control input make its presence at the output if Trigger terminal 17 is open or set at "Hi". If the terminal is set at "Lo", data on control input at the falling edge is latched.

Others

Supply voltage		$+5 \mathrm{~V} \pm 10 \%$
Quiescent current		$150 \mu \mathrm{~A}$ (typ), 1 mA (max)
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$51.5 \times 14 \times 4.0 \mathrm{~mm}$, Type S20

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}$

Basic connection diagram

Control signal timing chart

td: Setup delay time: Max. 850ns

High Speed Inverting Amplifier

- Amplification characteristics

Gain	Gained with external resistors (2 pcs.). (Rin, RNF) GAIN $=\frac{R_{N F}}{R_{\mathrm{IN}}}$
Frequency characteristics	Full power: DC to 1 MHz Small signal: DC to $10 \mathrm{MHz}(\pm 3 \mathrm{~dB})$
Slew rate	$200 \mathrm{~V} / \mu \mathrm{s}$ (typ)
Input characteristics	
Impedance	Rin
Max. input voltage	
VOutput characteristics	

Impedance	Max. 5Ω
Max. output voltage	$\pm 10 \mathrm{~V}$
Max. output current	$\pm 10 \mathrm{~mA}$
Offset voltage	$\pm 7 \mathrm{mV}$ (typ)
Others	

Supply voltage		$\pm 15 \mathrm{~V}$ (± 14 to 16V)
Quiescent current		$\pm 20 \mathrm{~mA}$ (typ)
Temperature/	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
humidity range	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$32 \times 13.3 \times 4.0 \mathrm{~mm}$, Type S12

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, $\mathrm{Vs}= \pm 15 \mathrm{~V}, \mathrm{RiN}_{\mathrm{IN}}=2 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{NF}}=2 \mathrm{k} \Omega$

Characteristics

Low Noise Amplifier

SA-220F5 SA-230F5 SA-430F5 SA-200F3 SA-400F3

SA series amplifiers are preamplifiers for submicro-signal detection, which have been developed to assure noise reduction never before accomplished. 5 types of SA series amplifiers, which vary by a frequency band, input form, and input impedance, are available. Not only the dedicated power supply but the sensor control power supply is offered for outstanding noise reduction.
SA series amplifiers have actualized low noise featuring the following items through the adoption of our original circuit that is the application of the negative feedback technology: 50Ω of input impedance, 0.6 dB of noise figure (SA-230F5), $0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of input voltage noise at $100 \mathrm{k} \Omega$ (SA-200F3), and $200 \mathrm{fA} / \sqrt{\mathrm{Hz}}$ of input voltage noise at $1 \mathrm{M} \Omega$ (SA220F5).

Model	SA-220F5 Low noise FET amplifier	SA-230F5 Low noise amplifier	SA-430F5 Low noise differential amplifier
Frequency band (typ)	300 Hz to 100 MHz	400 Hz to 140 MHz	400 Hz to 110 MHz

VInput

Input form	AC coupling, unbalanced single ended input (SMA connector)	AC coupling, unbalanced single ended input (SMA connector)	AC coupling, balanced differential input (2 SMA connectors)
Input impedance	$1 \mathrm{M} \Omega \pm 5 \%$ (5 kHz) Shunt capacitance: 57 pF (typ)	$50 \Omega \pm 5 \%$ (100kHz)	Differential input: $50 \Omega \pm 5 \%$ (100 kHz) Common mode input: 530Ω typ (100 kHz)
Maximum input voltage (burnout voltage)	$\pm 1.0 \mathrm{~V}$	$\pm 1.0 \mathrm{~V}$	$\pm 2.0 \mathrm{~V}$ (differential input/common input)
CMRR (RTI)	$\frac{-}{-}$	-	Min. 80dB (100kHz) 90 dB typ $(100 \mathrm{kHz}), 80 \mathrm{~dB}$ typ $(10 \mathrm{MHz})$
Input voltage noise density (short-circuit in input terminal)	Max. $0.7 \mathrm{nV} / \sqrt{\mathrm{Hz}}(100 \mathrm{kHz})$ $0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ (10 k to 1 MHz)	Max. 0.35nV// Hz (100kHz) $0.25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ (10 k to 1 MHz)	Max. 0.45 nV WHz (100 kHz) $0.35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ (10 k to 1 MHz)
Input noise current density	$200 f \mathrm{~A} / \sqrt{\mathrm{Hz}}$ typ (100kHz)	$5.0 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ typ (100kHz)	$7.0 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ typ (100kHz)
Noise figure (50 2)	-	Max. 0.7dB, 0.6dB typ (10MHz) Max. 1.0dB, 0.8 dB typ (100 MHz)	Max. 1.25dB, 1.10 dB typ (10MHz) Max. 1.75dB, 1.40dB typ (100MHz)

VOutput characteristics

Maximum output voltage	$2 \mathrm{Vp}-\mathrm{p}(1 \mathrm{kHz}$ to 20 MHz , load resistance: 50Ω)	$2 \mathrm{Vp}-\mathrm{p}(1 \mathrm{kHz}$ to 20 MHz , load resistance: 50Ω)	$2 \mathrm{Vp}-\mathrm{p}$ (1 kHz to 20 MHz , load resistance: 50Ω)

- Amplifier

Voltage gain	$46 \pm 0.5 \mathrm{~dB}$ (1 MHz , load resistance: 50Ω)	$46 \pm 0.5 \mathrm{~dB}$ (1MHz, load resistance: 50Ω)	$46 \pm 0.5 \mathrm{~dB}$ (1 MHz , load resistance: 50Ω)
Voltage gain frequency characteristics	1 kHz to $80 \mathrm{MHz}+0.5$, Max. -3 dB 300 Hz to $100 \mathrm{MHz}+0.5,-3 \mathrm{~dB}$ typ	1 kHz to $100 \mathrm{MHz}+0.5$, Max. -3 dB 400 Hz to $140 \mathrm{MHz}+0.5,-3 \mathrm{~dB}$ typ	1 kHz to $100 \mathrm{MHz}+0.5$, Max. -3 dB 400 Hz to $110 \mathrm{MHz}+0.5,-3 \mathrm{~dB}$ typ
Intercept point	-	+30dBm typ (68 MHz)	+28dBm typ (68MHz)
∇ Power supply			
Recommended power supply voltage range	$\pm 15 \mathrm{~V} \pm 5 \%$	+15V $\pm 5 \%$	$\pm 15 \mathrm{~V} \pm 5 \%$
Quiescent current (no signal)	Max. +65mA typ +75mA Max. -10 mA typ -15 mA	Max. +55mA	Max. +55mA typ +65mA Max. $-30 m A$ typ $-45 m A$

VEnvironment

Specified temperature range	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Storage temperature/	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80^{\circ} \% \mathrm{RH}$
humidity range	(no condensation)	(no condensation)	(no condensation)

VDimensions

Dimensions	$68 \times 43 \times 28 \mathrm{~mm}$ (protrusion not included)	$68 \times 43 \times 17.6 \mathrm{~mm}$ (protrusion not included)	$68 \times 43 \times 28 \mathrm{~mm}$ (protrusion not included)
Weight (NET)	Approx. 130 g	Approx. 90 g	Approx. 130 g

Note: Power supply: SA-915D1

SA-230F5: Noise figure

Main applications

SA series amplifiers are used to foster versatility as sensor head amplifiers or preamplifiers for sensitivity improvement and noise reduction in analyzers and measurement instruments.
-"MCT <Mercury Cadmium Tellurium> sensor" for infrared detection
-"Superconducting SQUID sensor" for micro-magnet detection
-"High-temperature superconducting Josephson device" for microwave detection
-"Electromagnetic sensor" for MRI systems
-Photodetector such as a photomultiplier and phototransistor

SA-200F3 Low noise amplifier	SA-400F3 Low noise differential amplifier
DC to 800 kHz	DC to 700 kHz
∇ Input	
DC coupling, unbalanced single wire grounded input (SMA connector)	DC coupling, balanced differential input (2 SMA connectors)
Selectable among $1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} \Omega \pm 5 \%$ (DC), Shunt capacitance: Max. 150pF	Selectable among 1k/ 10k/ 100k $\Omega \pm 5 \%$ (DC), Shunt capacitance: Max. 80pF
$\pm 0.5 \mathrm{~V}$	Differential input: $\pm 0.5 \mathrm{~V}$ Common input: $\pm 10 \mathrm{~V}$
$\frac{-}{}$	$\begin{gathered} \text { Min. 110dB (50Hz) } \\ 120 \mathrm{~dB} \text { typ }(50 \mathrm{~Hz}), 80 \mathrm{~dB} \operatorname{typ}(100 \mathrm{kHz}) \\ \hline \end{gathered}$
Max. 0.7nV/ $\sqrt{\mathrm{Hz}}(1 \mathrm{kHz}$)	Max. $0.9 \mathrm{nV} / \mathrm{h} / \mathrm{Hz}(1 \mathrm{kHz})$
Max. $0.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}(1 \mathrm{kHz})$	Max. $0.75 \mathrm{nV} / 2 / \mathrm{Hz}(1 \mathrm{kHz})$
$2.2 \mathrm{pA} / \sqrt{\mathrm{Hz}}(10 \mathrm{kHz})$	$3.0 \mathrm{pA} / \sqrt{\mathrm{Hz}}(10 \mathrm{kHz})$
-	-
VOutput characteristics	
$\pm 10 \mathrm{~V}$ (1kHz, load resistance $\geq 1 \mathrm{k} \Omega$)	$\pm 10 \mathrm{~V}$ (1 kHz , load resistance $\geq 1 \mathrm{k} \Omega$)
$50 \Omega \pm 5 \%$ (DC)	$50 \Omega \pm 5 \%$ (DC)

- Amplifier

$40 \pm 0.5 \mathrm{~dB}(1 \mathrm{kHz})$	$40 \pm 0.5 \mathrm{~dB}(1 \mathrm{kHz})$
DC to $800 \mathrm{kHz}+0.5,-3 \mathrm{~dB}$ typ	DC to $700 \mathrm{kHz}+0.5,-3 \mathrm{~dB}$ typ
-	-

PPower supply

$\pm 15 \mathrm{~V} \pm 5 \%$	$\pm 15 \mathrm{~V} \pm 5 \%$
$\pm 50 \mathrm{~mA}$	$\pm 92 \mathrm{~mA}$ typ $\pm 100 \mathrm{~mA}$

VEnvironment

$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$ (no condensation)	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$ (no condensation)

∇ Dimensions

$68 \times 43 \times 17.6 \mathrm{~mm}$ (protrusion not included)	$68 \times 67 \times 28 \mathrm{~mm}$ (protrusion not included)
Weight: Approx. 90 g	Approx. 180 g (heat sink included)

SA-230F5: Transient response (rise)

${ }^{[\mathrm{nv} \sqrt{\mathrm{Hz}}]} \mathrm{SA}$-200F3: Input voltage noise density

DC power supply: SA-915D1

SA-915D1 power supply is to supply DC power, which is intended for SA series amplifiers, for reductions in noise and ripple. The innovative way to fight the noise has been taken in this power supply. The combination use of a SA series amplifier and SA915D1 power supply is suggested to assure outstanding performance.

VOutput

Output form	Mini DIN, 4-pin connector
Output voltage	$\pm 15 \mathrm{~V} \pm 3 \%$
Maximum output current	$\pm 100 \mathrm{~mA}$
Output voltage noise/ripple	Max. $300 \mu \mathrm{Vrms}(\mathrm{BW}: 10 \mathrm{~Hz}$ to 20 MHz)
Output voltage temperature coefficient	$500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ

∇ Others

Power supply	$\mathrm{AC} 100 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 62 Hz Approx. 10VA
Dimensions	$120 \times 55 \times 200 \mathrm{~mm}$ (protrusion not included)
Weight (NET)	Approx. 1.4 kg
Operating temperature/ humidity range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$ (no condensation)
Storage temperature $/$ humidity range	$-0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$ (no condensation)

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \mathrm{AC} 100 \mathrm{~V}$, Load resistance: 150Ω

DC bias supply: SA-912S1

SA-912S1 power supply is a bias power supply for sensors that process micro-signals.
This power supply is composed of a dual-redundant regulator, special noise filter circuit, dual transformers, and dual shield chassis, which offers excellent noise reduction.

VOutput

Output form
Mini DIN, 4-pin connector
Output voltage $\pm 12 \mathrm{~V} \pm 3 \%$ (no load)
Maximum output current $\pm 100 \mathrm{~mA}$

Output voltage noise/ripple	Max. $3 \mu \mathrm{Vrms}$ (BW: 10 Hz to 1 MHz)

Output voltage
$300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ
temperature coefficient

∇ Others

Power supply	$\mathrm{AC} 100 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 62 Hz Approx. 5 VA
Dimensions	$120 \times 55 \times 200 \mathrm{~mm}$ (protrusion not included)
Weight (NET)	Approx. 1.4 kg
Operating temperature/	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$
humidity range	(no condensation)
Storage temperature $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$ humidity range: (no condensation)	

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, AC100V, Load resistance: 70Ω

RESISTOR TUNABLE OSCILLATOR

Resistor Tunable Oscillator

CG-402R1/2

CG-402R series oscillators have achieved reductions in price and size through the simplification of the circuit. Frequencies are allocated with the external resistors (2 pcs.), and CG-402R series oscillators are in 12-pin single-inline package that enhances mounting density.

Model		CG-402R1	CG-402R2
Frequency range ${ }^{41}$		20 Hz to 20kHz	1 kHz to 100 kHz
Frequency setting		Specified with external resistors (2 pcs.).	
Frequency accuracy ${ }^{\text {+2 }}$		$\pm 5 \%, \pm 2 \%$ (typ)	
Frequency stability		$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ)	
Output voltage		$2.5 \mathrm{Vrms} \pm 5 \%^{* 3}$	
Output voltage stability		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ)	
Output impedance		Max. 5Ω	
Load impedance		Min. 2k Ω	
Distortion		$\begin{aligned} & \text { Max. 0.1\% } \\ & (200 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}) \end{aligned}$	
Supply voltage		$\pm 15 \mathrm{~V} \pm 10 \%$	
Quiescent current (typ)		$\pm 8 \mathrm{~mA}$	12 mA
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$	
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$	
Dimensions			

Basic connection diagram

Output voltage
Pins (10) - (11) shorted: $\pm 10 \mathrm{~V}$
Pins (11) - (12) shorted: $\pm 2 \mathrm{~V}$

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}, \mathrm{RF}=15.9 \mathrm{k} \Omega$
*1. Expansion of the lower frequency is enabled.
*2. Errors of external resistors are excluded.
*3. Available at ± 2 to $\pm 10 \mathrm{~V}$. Max. output: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~mA}$
(402R1: 20 Hz to $10 \mathrm{kHz}, 402 \mathrm{R} 2: 1 \mathrm{kHz}$ to 50 kHz)

Frequency setting

Equation of external resistor

$$
\begin{array}{ll}
\text { CG-402R1 } & \mathrm{R}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\mathrm{fo}}(\mathrm{k} \Omega) \\
\text { CG-402R2 } & \mathrm{R}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\mathrm{fo}}(\mathrm{k} \Omega)
\end{array}
$$

Note: fo: Oscillation frequency
Units: fo in Hz

Frequency setting requires 2 external resistors of the same resistance.
Be sure to use resistors with relative tolerance of 1% to ensure optimal internal operation.

Block diagram

Expansion of the lower frequency range (10Hz to 20Hz)

Equation of external resistor

$$
\text { CG-402R1 } \quad \mathrm{RF}=\frac{15.9 \times 10^{3}}{\text { fo }}(\mathrm{k} \Omega)
$$

Note: fo: Oscillation frequency
Units: fo in Hz

Output voltage setting

2.5 Vrms of output voltage is obtained if Pins (10) and (11) are open, but output voltage varies as follows: $\pm 10 \mathrm{~V}$ (approx. 7 Vrms) when Pins (10-(11) are shorted and $\pm 2 \mathrm{~V}$ (approx. 1.4 Vrms) when Pins (11)-(12) are shorted. An external resistor is required for setting output voltage (1.4 to 7 Vrms) other than the above. The graph at the right expresses the standard values of external resistor and output voltage. Adjustment with a variable resistor is required to derive correct voltage.

When load capacity is large

Potential unstable and abnormal oscillation may be concerned if 100 pF or more of load capacity is observed. With a coaxial cable or shielding wire put under load, overload capacity is detected in some oscillators a load capacity if the cable or

wire reaches a length in excess of 50 cm . In the event of the above, a 50Ω-resistor or buffer amplifier needs to be inserted between the relevant oscillator and load.

Characteristics

Harmonics distortion - Oscillation frequency

Oscillation frequency accuracy (CG-402R2)

RESISTOR TUNABLE OSCILLATOR

Resistor Tunable Oscillator

CG-202R3

CG-202R3 oscillator is a sine-wave oscillator capable of allocating oscillation frequency in the range of 100 kHz to 1 MHz . This oscillator not only possesses superior frequency accuracy and output voltage accuracy but also assures stable sine-wave signals. CG202R3 oscillator is in 24-pin dual-inline package, which enables a low-pass expansion up to 10 Hz with the external capacitors and capacitor.

Frequency range**		100 kHz to 1 MHz
Frequency setting		Specified with external resistors (2 pcs.).
Frequency accuracy ${ }^{*}$		Max. $\pm 5 \%, \pm 2 \%$ (typ)
Frequency stability		$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ)
Output voltage ${ }^{* 3}$		$2.5 \mathrm{Vrms} \pm 3 \%$
Output voltage stability		50ppm/ ${ }^{\circ} \mathrm{C}$ (typ)
Output impedance		50תtyp
Load impedance		Min. 2k , Max. 100pF
Harmonics level		$\begin{aligned} & \hline-50 \mathrm{~dB}(\operatorname{typ})(1 \mathrm{MHz}) \\ & -60 \mathrm{~dB}(\operatorname{typ})(100 \mathrm{kHz}) \end{aligned}$
Supply voltage		$\pm 15 \mathrm{~V} \pm 10 \%$
Quiescent current (typ)		$+30 \mathrm{~mA} /-20 \mathrm{~mA}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$34.5 \times 18.7 \times 7.9 \mathrm{~mm}$, Type KB

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}, \mathrm{RF}=15.9 \mathrm{k} \Omega$
*1. Expansion of the lower frequency is enabled.
*2. Errors of external resistors are excluded.
Oscillators

Basic connection diagram

Block diagram

Output voltage setting

		Freque	ge (C1 (3)-20	$\mathrm{C} 2$	$\begin{gathered} \mathrm{C} 3 \\ (22-23 \end{gathered}$	Cf (13-(16) (18-21)	$\underset{(16-18)}{R_{F}}$
10	100	1k	10k	100k	1M					
										1.59×10^{6}
						-	-	-	-	fo (k ${ }^{\text {a }}$
										1.59×10^{6}
							$0.2 \mu \mathrm{~F}$	-	-	fo (k)
										1.59×10^{6}
						$0.47 \mu \mathrm{~F}$	$2 \mu \mathrm{~F}$	-	-	fo (k ${ }^{\text {f }}$
										$\underline{1.59 \times 10^{5}}$
						$4.7 \mu \mathrm{~F}$	$20 \mu \mathrm{~F}$	-	900pF	fo (k 2)
										$\underline{1.59 \times 10^{4}}$
						$20 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	1μ	9900pF	fo (k $)^{\text {) }}$

Characteristics

Output voltage - Frequency
100 kHz standard $\mathrm{RI}=1 \mathrm{k} \Omega$

Output voltage - Temperature $\mathrm{fo}=100 \mathrm{kHz}$

Output voltage - Temperature $\quad \mathrm{fo}=1 \mathrm{MHz}$

Oscillation frequency - Temperature

Harmonics leve

Oscillation frequency - Temperature

$$
\mathrm{fo}=1 \mathrm{MHz}
$$

Oscillation frequency accuracy 100 kHz standard: RF: Calculated value

CG-102R1/2 CG-302R1/2

Model		CG-102R1	CG-302R1	CG-102R2	CG-302R2
Frequency range*1		20 Hz to 20kHz		1 kHz to 100 kHz	
Frequency setting		Specified with external resistors (2 pcs.).			
Frequency accuracy* ${ }^{\text {2 }}$		Max. $\pm 2 \%, \pm 0.5 \%$ (typ)			
Frequency stability		$\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ)		$\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ)	
Output voltage		$2.5 \mathrm{Vrms} \pm 0.5 \%{ }^{* 3}$			
Output voltage stability		50ppm/ ${ }^{\circ} \mathrm{C}$ (typ)			
Output impedance		Max. 5Ω			
Load impedance		Min. 2ת, Max. 100pF			
Distortion		$\begin{aligned} & \text { Max. 0.005\% } \\ & (70 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}) \end{aligned}$		$\begin{gathered} \hline \text { Max. } 0.005 \% \\ (2 \mathrm{kHz} \text { to } 50 \mathrm{kHz}) \\ \text { Max. } 0.01 \% \\ (50 \mathrm{kHz} \text { to } 100 \mathrm{kHz}) \\ \hline \end{gathered}$	
Supply voltage		$\pm 15 \mathrm{~V} \pm 10 \%$			
Quiescent current (typ)		$\begin{aligned} & +13 \mathrm{~mA} / \\ & -23 \mathrm{~mA} \end{aligned}$	$\pm 13 \mathrm{~mA}$	$\begin{aligned} & +28 \mathrm{~mA} / \\ & -38 \mathrm{~mA} \end{aligned}$	$\pm 28 \mathrm{~mA}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$			
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$			
Dimensions		34.5x18.777.9mm	51.5×14.0x5.5mm	34.5x18.777.9mm	51.5x14.0x5.5mm
		Type KB	Type S20	Type KB	Type S20
		24pin DIP	20pin SIP	24pin DIP	20pin SIP

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}, \mathrm{RF}=15.9 \mathrm{k} \Omega$
*1. Expansion of the lower frequency is enabled.
*2. Errors of external resistors are excluded.
*3. Available at 0.5 to 20 Vp -p. Max. output: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~mA}$
(CG-102R1/302R1: 20 Hz to $10 \mathrm{kHz}, \mathrm{CG}-102 \mathrm{R} 2 / 302 \mathrm{R} 2: 1 \mathrm{kHz}$ to 50 kHz)

Basic connection diagram

Block diagram

Equation of external resistor

CG-102R1	$\mathrm{RF}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\text { fo }}(\mathrm{k} \Omega)$
CG-302R1	
CG-102R2	$\mathrm{RF}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\text { fo }}(\mathrm{k} \Omega)$
CG-302R2	Note: fo: Oscillation frequency Units: fo in Hz

$$
\mathrm{RF}_{\mathrm{F}}=\frac{15.9 \times 10^{3}}{\mathrm{fo}_{\mathrm{o}}}(\mathrm{k} \Omega)
$$

$$
\mathrm{RF}_{\mathrm{F}}=\frac{159 \times 10^{3}}{\mathrm{fo}}(\mathrm{k} \Omega)
$$

$$
\text { Units: fo in } \mathrm{Hz}
$$

Frequency setting requires 2 external resistors of the same resistance.
An accuracy between the external resistors causes fluctuations in output level.
E.g.: Max. $\pm 0.5 \%$ of difference between outputs 1 and 2 if a resistor with tolerance of 1% is used

Output voltage adjustment

CG-102 series oscillators are designed to obtain 20Vp-p of output voltage if Pins (12) and (14) are shorted, and CG-302 series oscillators are designed to obtain the same voltage if Pins (10) and (11) are shorted. 2.5 V rms of output voltage is obtained if CG-102/302 oscillators are open.

- To set the voltage at 1.5 Vrms or less

\square When load capacity is large

Potential unstable and abnormal oscillation may be concerned if 100 pF or more of load capacity is observed. With a coaxial cable or shielding wire put under load, overload capacity is detected in some oscillators a load capacity if the cable or

Note: Output voltage: Max. 2.5Vrms if 10kHz or more is allocated to CG-102R1/302R1 and 50 kHz or more is allocated to CG-102R2/302R2.

An external resistor is required for setting output voltage other than the above. The graphs as shown below express the standard values of external resistor and output voltage. Adjustment with a variable resistor is required to derive correct voltage.

- To set the voltage at 1.5 V rms or more

Characteristics
 Characteristics

wire reaches a length in excess of 50 cm . In the event of the above, a 50Ω-resistor or buffer amplifier needs to be inserted between the relevant oscillator and load.

Output voltage deviation - Oscillation frequency

RESISTOR TUNABLE OSCILLATOR

Expansion of the lower frequency range

Type $1 \quad \mathrm{R}_{\mathrm{F}}=\frac{159}{(\mathrm{CF}+0.01) \times \mathrm{fo}}[\mathrm{k} \Omega]$
Type $2 \quad \mathrm{RF}_{\mathrm{F}}=\frac{159}{\left(\mathrm{C}_{\mathrm{F}}+0.001\right) \times \mathrm{fo}}[\mathrm{k} \Omega]$
$\mathrm{C}_{\mathrm{F}}:[\mu \mathrm{F}]$, fo : $[\mathrm{Hz}]$
Note: $1 \mathrm{~Hz} \leq$ fo $\leq 1 \mathrm{kHz}$
$800 \Omega \leq \mathrm{RF} \leq 800 \mathrm{k} \Omega$

■Sync oscillation

CG-102/302 series oscillators are capable of bringing external synchronization signals into sync with oscillation output produced by the oscillators. The synchronization bandwidth is approx. 1.5\%/Vrms.
The frequency of external synchronization signals is to be determined with great accuracy in advance, and then the oscillation frequency is allocated to agree with the frequency of external synchronization signal. Synchronization between the output frequency and external signal frequency is developed if an external signal (1 V to 5 Vrms) is added to Pin 1.
The graph at the right represents the phase difference between the external signal and oscillation output, besides the external signal level and synchronization band.
Note that potential change in oscillator level and increase in distortion may be concerned depending on the conditions of synchronization.

Ratio between sync input signal frequency and oscillation frequency without sync input

Oscillator Adapter

OP-102

OP-102 adapter can be used as a sine-wave oscillator that is capable of setting the frequency by a 3-digit BCD input, in combination with DT-212D series filters.
Performance linked with oscillation frequency (setting method, setting accuracy, temperature coefficient) that DT-212D series filters offer is applied. Performance related to output voltage (accuracy, stability, temperature coefficient), however, is determined by OP-102 adapter. The output voltage has been trimmed to $2.5 \mathrm{Vrms} \pm 0.5 \%$ internally but can be set between 0.5 Vrms and 20 Vp -p with the use of an external resistor.
The oscillation frequency range is 1 Hz to 100 kHz . An external capacitor is required if 100 Hz or less of frequency is obtained.
OP-102 adapter is powered by $\pm 15 \mathrm{~V}$ and a 20 -pin single-inline package in dimensions of $51.5 \times 14.0 \times 4.0 \mathrm{~mm}$.

- Absolute maximum ratings

Supply voltage (\pm Vs)	$\pm 18 \mathrm{~V}$
Signal input (Pins $(13$ and (15)	$\pm \mathrm{Vs}$

FOutput characteristics

Output voltage	2.5 Vrms	$20 \mathrm{Vp}-\mathrm{p}$
Accuracy	Max. $\pm 0.5 \%$	
0.6% (typ)		
Output voltage range	500 mVrms to $2.5 \mathrm{Vrms} \leq 100 \mathrm{kHz}$	
	500 mVrms to $20 \mathrm{Vp}-\mathrm{p} \quad \leq 50 \mathrm{kHz}$ Short in a specified pin (20Vp-p) Set with an external resistor.	
Output resistance	Max. 5Ω (DT-212D)	
Distortion	0.01% (typ)	
90° output	Output with 90°-phase lag at frequency same as the main output	

VOscillation frequency characteristics (DT-212D)

Frequency range	1 Hz to 100 kHz An external capacitor required if frequency is 100 Hz or less
Frequency accuracy	$\pm 0.1 \%$ (typ)
Frequency setting	$\mathrm{BCD}: 3$ digits
Vthers $\pm 15 \mathrm{~V} \pm 10 \%$ Supply voltage $+15 \mathrm{~mA},-25 \mathrm{~mA}$ Quiescent current Operation $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$ Temperature/ humidity range	Storage
Dimensions	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}, \mathrm{Vs}= \pm 15 \mathrm{~V}, 1 \mathrm{kHz}, 2.5 \mathrm{Vrms}$

Basic connection diagram

The following diagram represents the basic connection of oscillation at 2.5 Vrms with this module connected to the DT-212DC2 filter.

The setting of oscillation frequency requires the utilization of digital signal input from the DT-212DC2 filter. Input: TTL/CMOS compatible

OSCILLATOR ADAPTER

■ Expansion of the lower oscillation frequency

Expansion of the lower oscillation frequency is enabled with the external capacitors СЕхт (2 pcs.) connected to the DT-212D filter as shown in Figure 3.
Cext is derived from the following equation.
Cext $=\frac{5 \times 10^{4}}{\text { fo }}[\mathrm{pF}]$
fo: Oscillation frequency [Hz] when set at 001

The oscillation frequency range and Сехт are listed below.

	Set resolution	Cext $^{* 1}$
100 to 100 kHz	100 Hz	500 pF
10 to 15.99 kHz	10 Hz	5000 pF
$1^{* 1}$ to 1.599 kHz	1 Hz	50000 pF

*1. Be sure to use an external loop filter to ensure 1 Hz to 10 Hz of oscillation if the adapter is used in the 1 Hz to 1.599 kHz range.
*2. The DT-212DC1 filter is pre-assigned with 50000pF, and the DT-212DC2 filter is pre-assigned with 500pF

Connected with Cext

Distortion improvement with external Cc

Distortion is improved by establishing the connection between the external capacitor Cc and OP-102 adapter as shown in Figure 4. No effects are considered if the external capacitors Сехт are switched to use.

Connected with Cc

Distortion - Frequency characteristics

■Distortion improvement with external loop filter

Deterioration in distortion is observed upon expansion of the lower oscillation frequency, but the connection with an external component contributes to improvement in distortion.
The oscillation frequency range and circuit example are provided below.

1. 10 Hz to 15.99 kHz

Connected with loop filter

2. 1 Hz to 1.599 kHz

Connected with loop filter

Distortion - Frequency characteristics

Expansion of the lower oscillation frequency

The upper limit of oscillation frequency for 2.5 Vrms of output is 100 kHz , and for $20 \mathrm{Vp}-\mathrm{p}$ is 50 kHz . Oscillation up to 159.9 kHz for 2.5 Vrms and 100 kHz for 20 Vp -p is enabled through the connection with the protective circuit embedded in the OP102 adapter.
The protective circuit goes into action when the connection between Pin (11) (DT-212D) and Pin (11) (OP-102) is established. The above, however, results in deterioration in distortion regardless of the range.

Output voltage setting

The setting of output voltage for the OP-102 adapter requires
Pins (17) to (20). The following procedure should be used to vary output voltage.

1. 20Vp-p

The OP-102 adapter is outfitted with a trimmed resistor. Connect Pins (16) to (19).

2. 20Vp-p to 500 mVrms

Connect an external resistor as shown below.
The output voltage is derived from the following equation: $R[k \Omega]=1111 / \mathrm{Vo}$ Vo: Output voltage [Vrms]

The standard values are provided above. Adjustment through the partial replacement of the resistor with a trimmer potentiometer is required to derive correct voltage.

Output voltage adjustment

Sync oscillation

Sync oscillation by external signals is to be ensured if Rsync is added as shown below.
The frequency range that allows synchronization varies with input voltages.
The most stable synchronization is maintained at 90° in the $0-$ to 180° - range of synchronization.
If a synchronization input voltage remains the same, the synchronization range can be changed by changing Rsync. Duplation of the input voltage is equivalent to a reduction of Rsync by half.
The following represents the standard input voltage of I/O phase difference to a frequency ratio, as parameter.

Connection of synchronization input

fin : Sync input signal frequency
fo: Oscillation frequency without sync input

Amplitude and phase difference of 2-phase output

The OP-102 adapter is rated to deliver 2 types of output as follows: main output (Pin (15) and -90° (Pin (13). These outputs are equal in oscillation frequency but have slight errors in the output voltage and phase difference.
Examples of errors in amplitude and phase difference at main output and -90° output are provided below.

Amplitude

Response for oscillation frequency setting

The output response to changes in the oscillation frequency setting is phase-continuous, which causes 300ns typ-delay.

VER : $500 \mathrm{mV} / \mathrm{div}$
HOR : $10 \mathrm{~ms} / \mathrm{div}$

RANDOM BINARY GENERATOR

Random Binary Generator

CG-742N

CG-742N generator is a noise generator that produces false random binary signals with high stability.
The original oscillation frequency setting is completed with the external resistor or external clock, and a frequency demultiplier is embedded in the generator to facilitate the noise bandwidth setting.
The generator is allocated with long periodic noise source through pseudo random M series with the use of a 42-stage shift resistor. The CG-742N generator assures the output falling into TTL level and $\pm 5 \mathrm{~V}$ for analog process. The initialization of pulse trains to be output is enabled with the use of the reset terminal, which can be applicable to reproducibility.
The filtering of outputs delivered by this generator contributes to the acquisition of power spectrum characteristics up to 100 kHz .

Noise source		Pseudo random M series with a 42stage shift resistor Cycle $=\frac{\text { Approx. } 4.398 \times 10^{12}}{\text { fo }}[\mathrm{S}]$ fo: Clock frequency [Hz] 10.18 day at 5 MHz of clock frequency Spectrum intervals $1.136 \mu \mathrm{~Hz}$ at 5 MHz of clock frequency
Original oscillation frequency		Allocated with the external resistor or TTL-level external clock.
Original oscillation frequency range		0.5 M to 5 MHz (with external resistor) Max. 5MHz (with external clock)
Frequency demultiplier (bypass enabled)		$1 / 1,1 / 10,1 / 100,1 / 1000$ Set with the logic signals (TTL level). Latch function assigned
Output		Random binary output TTL level LSTTL (1 pc.) actuated $\pm 5 \mathrm{~V}$ (no load) Output impedance: Approx. 100Ω Load resistance: Min. $5 \mathrm{k} \Omega$ (Max. 1mA) Rise/fall time: Max. 200ns
Power supply		$\pm 15 \mathrm{~V}$ (± 11 to $\pm 16 \mathrm{~V}$)
Maximum input voltage		(2)(12)(17)(1)22)23) $+5.5 \mathrm{~V},-0.5$
Dimensions		$54.4 \times 33.7 \times 9.4 \mathrm{~mm}$, Type HA
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$

Basic connection diagram 1 (Random binary)

Block diagram

RANDOM BINARY GENERATOR

Usage

1. Oscillator

Either the built-in oscillator or external clock is available for M
series drive.
a. When a built-in oscillator is used

$\mathrm{fg}_{\mathrm{gen}}=\frac{1}{\mathrm{R}_{\mathrm{F}} \times 2 \times 10^{-10}}$
$\mathrm{fgen}^{\text {: Oscillation frequency }[\mathrm{Hz}]}$
RF : Element resistance [Ω]

b. When an external clock is used

T : Min. 200ns
Twh: Min. 20ns
Twl : Min. 20ns
Duty Any (enabled if $1: 1$ is not ensured)
c. Reset

Initialization of M series
The initialization of M series takes effect through the addition of pulses to Pin (2) with an open collector or setting at OV by contact signals, as show below. Proper initialization upon supply of the power is assured only if a rise in the supply voltage is at or less 10 ms .

2. Frequency demultiplier

Clock derived from the built-in oscillator or external clock is to be divided with the frequency demultiplier into $1 / 10,1 / 100$, and $1 / 1000$. The frequency demultiplier is under control of Pins (21) and (22) and, the setting is latched by Pin (23) signal.
Direct clock input to Pin (17) is required if no built-in frequency demultiplier is necessary. Pin (12) for frequency demultiplier input is connected to GND.

Control signal timing chart

3. M series

Pin ${ }^{(17)}$ is designed for clock input.

T : 200ns (Max. 5MHz) Tw : Min. 20ns

4. White noise

Outputs delivered by the CF-742N generator is random binary outputs ($\pm 5 \mathrm{~V}$-square waves with random cycles), which prompts the CF-742N generator to adopt the amplitude distribution (application of normal analog noise) as Gaussian distribution (normal distribution). Filtering is required to obtain flat frequency characteristics (white noise).
There is a close connection among the following: clock frequency (frequency of Pin (17), low-pass filter cut-off frequency, equivalent noise bandwidth determined by filter order, peak factor of analog noise (filter output) and output voltage.
The filter cut-off frequency and clock frequency are derived from the equations shown at right.
a. Set the output voltage Eo [rms]. (Peak factor: Min. 4)

$$
\mathrm{E}_{0} \leq 1.25 \mathrm{~V} \quad \mathrm{E}_{\mathrm{o}}: \mathrm{RMS} \text { value of output voltage [} \mathrm{Vrms} \text {] }
$$

b. Designate an equivalent noise bandwidth (B) and filter order to obtain filter cut-off frequency (fc).

fc: Filter cut-off frequency [Hz]
B: Equivalent noise bandwidth [Hz]
K: Noise bandwidth coefficient (see table 1)

Table 1: Coefficient of noise	
bandwidth (Butterworth)	
Order	k
1	1.57
2	1.11
3	1.05
4	1.03

c. Derive a clock frequency (fo) from the cut-off frequency (fc) and output voltage (Eo).

$$
\mathrm{fo}=\frac{50 \mathrm{~B}}{\mathrm{Eo}^{2}} \quad \text { fo. Clock frequency }[\mathrm{Hz}]
$$

Characteristics

Voltage (V)

Random binary output power spectrum

Condition: Clock frequency: 10 kHz
Low-pass filter equivalent noise bandwidth: 200 Hz (2-pole Butterworth: $\mathrm{fc}=180 \mathrm{~Hz}$)

Technical data

Noise output characteristics after filtering

Power spectrum of random binary output is derived from the following equation:
$\operatorname{PE}(\mathrm{f})=\frac{25}{\mathrm{f}_{0}}\left[\mathrm{~V}^{2} / \mathrm{Hz}\right]$ \qquad
fo: Clock frequency of random binary generator
Power spectrum varies along with filtering as shown below.
$\operatorname{PEO}(\mathrm{f})=\frac{25}{\mathrm{f}_{0}}|\mathrm{H}(\mathrm{j} \omega)|^{2}$ \qquad
$\mathrm{H}(\mathrm{j}(\mathrm{t})$): Filter transfer function
RMS value is determined from the following equation:
$E O=\sqrt{\frac{2.25}{\mathrm{f}_{0}} \int_{0}^{\infty}|\mathrm{H}(\mathrm{j} \omega)|^{2} \mathrm{~d} \omega}[\mathrm{rms}]$
If it is simplified,
$\mathrm{E}=\sqrt{\frac{50}{\mathrm{f}_{0}}} \mathrm{~A}^{2} \mathrm{~B}[\mathrm{rms}]$ \qquad
B: Equivalent noise bandwidth
A: Filter pass-band gain

The equivalent noise bandwidth (B) is defined as follows:
$\mathrm{B}=\frac{1}{\mathrm{~A}^{2}} \int_{0}^{\infty}|\mathrm{H}(\mathrm{j} \omega)|^{2} \mathrm{~d} \omega$ \qquad
The filter order-equivalent noise bandwidth (B) relationship is provided in Table 1.
Flatness of not only noise bandwidth but noise frequency is of importance to use frequency as white noise
Random binary amplitude characteristics are expressed by the following equation:
$\mathrm{E}(\mathrm{f})=\frac{\sin (\pi \mathrm{f} / \mathrm{f} 0)}{\pi \mathrm{f} / \mathrm{f} 0}$
Amplitude characteristics are obtained as shown in Table 2.

Amplitude characteristics of Butterworth low-pass filters are assigned with " 1 " for a pass-band gain.
$\mathrm{E} 0(\mathrm{f})=\sqrt{\frac{1}{1+(\mathrm{f} / \mathrm{fc})^{2 \mathrm{n}}}}$
Amplitude characteristics are obtained as shown in Table 3.

Table 3: Butterworth filter amplitude characteristics

f/fc	Amplitude [dB]			
	1-pole	2-pole	3-pole	4-pole
0.001	-0.00	0.00	0.00	0.00
0.01	-0.00	-0.00	0.00	0.00
0.1	-0.04	-0.00	-0.00	-0.00
0.2	-0.17	-0.01	-0.00	-0.00
0.3	-0.37	-0.04	-0.00	-0.00
0.4	-0.64	-0.10	-0.02	-0.00
0.5	-0.97	-0.26	-0.07	-0.02
0.6	-1.34	-0.53	-0.20	-0.07
0.7	-1.73	-0.93	-0.48	-0.24
0.8	-2.14	-1.49	-1.01	-0.67
0.9	-2.57	-2.19	-1.85	-1.55

The peak factor (P.F.) is defined as follows:
P.F. $=\frac{E_{p}}{E_{0}}$

$$
\begin{equation*}
\frac{p}{i 0} \ldots \tag{8}
\end{equation*}
$$

\qquad
Assign 5 [Vo-p] to peak value (Ep) for the generator, and substitute Eo from Equation (4).
P.F. $=\frac{5}{\sqrt{\frac{50}{\mathrm{f}_{0}} \mathrm{~A}^{2} \mathrm{~B}}}$

To use it as Gaussian random noise, determine Eo to maintain 4 in peak factor.

Phase Detector

VAbsolute maximum ratings

Supply voltage ($\pm \mathrm{Vs}$)	$\pm 18 \mathrm{~V}$
Signal input voltage	$\pm \mathrm{Vs}$
Reference signal input voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$
Logic control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$

Phase Detectors

	Operating frequency range	1 kHz to 200 kHz	10 kHz to 2 MHz
Phase Detectors	Gain ($\phi=0$)	(sine-wave): Pins (12) and (13) open (sine-wave): Short in Pins (12) and (13) Selectable in the 1 to $10-\mathrm{Vdc} / \mathrm{Vo}-\mathrm{p}$ with the external resistor (Pins (12) and (13)	
	Gain accuracy	Max. $\pm 3 \%$	
	Phase difference (signal system and reference signal system)	$\begin{aligned} & -0.05^{\circ} \text { (typ) at } 1 \mathrm{kHz}, \\ & -8^{\circ}(\text { typ }) \text { at } 200 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & -0.5^{\circ} \text { (typ) at } 10 \mathrm{kHz}, \\ & +13^{\circ} \text { (typ) at } 2 \mathrm{MHz} \end{aligned}$
	∇ Low-pass filter		
	Order	1-pole (6dB/oct)	
	Cut-off frequency	Pins (9)-(10) shorted, Low-pass expansion is enabled with an external resistor or capacitor.	Pins (9)-(10) shorted, Low-pass expansion is enabled with an external resistor or capacitor.
	∇ Detection output		
	Output impedance	Max. $50 \Omega \pm 10 \%$ at 1 kHz	Max. $50 \Omega \pm 10 \%$ at 10 kHz
	Linear maximum input voltage	Min. $\pm 10 \mathrm{~V}$ (DC, Load resistance $\geq 2 \mathrm{k} \Omega$)	
	Linear maximum input current	Min. $\pm 5 \mathrm{~mA}$ (DC)	
	Offset voltage	Max. $\pm 15 \mathrm{mV}, \pm 5 \mathrm{mV}$ (typ) Short in input, Gain: 1Vdc/Vo-p	
	Offset voltage adjustment	Zero adjustment available with external pre-set resistors. (Pin (14)	

$\boldsymbol{\nabla}$ Signal system
∇ Signal input

Model	CD-552R3	CD-552R4
Input impedance	Max. $10 \mathrm{k} \Omega \pm 5 \%$ at 1 kHz	Max. 2.5k $\Omega+5 \%$ at 10 kHz
Linear maximum input voltage	Min. $\pm 10 \mathrm{~V}$	Max. $130 \mathrm{~V} / \mu \mathrm{s}$
Allowable slew rate	Max. $5 \mathrm{~V} / \mu \mathrm{s}$	

∇ Phase detector	
Detection method	Synchronous rectifying type by square-wave multiplication

Detection

 characteristics
CD-552R3 CD-552R4

CD-552R series detectors are an on-board phase detectors possessing frequencies falling within the range of 1 kHz to 200 kHz for CD-552R3 and frequencies falling within the range of 10 kHz to 2 MHz for CD-552R4.
The signal system is composed of the phase sensitive detector (PSD), low-pass filter (LPF), and output amplifier. A low-pass expansion of output low-pass filter cut-off frequency is available with the addition of one external resistor, and the gain setting ($\times 1$ to $\times 10$) is also enabled. The reference signal system consists of a $0^{\circ}-90^{\circ}$ phase shifter (PAT.P) and 50%-duty circuit (PAT.P), which enables the detection of $A \sin \phi$ or $A \cos \phi$ phase. The phase detection with double frequency is permitted if $2 f$ mode is placed through the connection with the specified pin.
CD-552R series detectors are in a static-shielded 20-pin single inline package.

∇ Reference signal system

∇ Reference signal input

Model	CD-552R3	CD-552R4
Input circuit	CMOS Schmitt trigger, pulled up at $100 \mathrm{k} \Omega$ Trip point: $+3.5 \mathrm{~V} /+1.5 \mathrm{~V}$ (typ)	
Input voltage	CMOS (0/+5V) level	
Unipolar (1f) mode	A rising or falling edge is regarded as a reference.	
Polarity switch	Pin (17) open or +5 V : Rising edge regarded as a reference 0 V : Falling edge regarded as a reference	
Pulse duration	Min. 50nsec	
Bipolar (2f) mode	Both rising and falling edge are regarded as a reference.	
Mode setting	Connected with the reference signal input (Pin (18) and polarity switch input (Pin (17).	
Input waveform	Duty: 50\%	
Input frequency range	1 kHz to 100 kHz	10 kHz to 1 MHz

$\nabla 0^{\circ}-90^{\circ}$ phase shifter

Function		This enables the detection of COS or SIN through a $0^{\circ}-90^{\circ}$ phase shift of reference signal input (Pin (18)			
$0^{\circ}-90^{\circ}$ phase d	ifference	$-90 \pm 0.5^{\circ},-90 \pm 0.1^{\circ}$ (typ)			
Control		Pin (16) open or	$\begin{aligned} \hline+5 \mathrm{~V} & : 0^{\circ} \\ 0 \mathrm{~V} & :-90^{\circ} \end{aligned}$		$\begin{aligned} & \text { (COS) } \\ & \text { (SIN) } \end{aligned}$
Control inpu	circuit	CMOS Schmitt trigger, pulled up at $100 \mathrm{k} \Omega$			
∇ Others					
Recommended supply voltage		$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$			
Quiescent current		$\begin{aligned} & \pm 25 \mathrm{~mA}(\max), \\ & \pm 20 \mathrm{~mA} \text { (typ) } \end{aligned}$		$\begin{aligned} & \pm 35 \mathrm{~mA}(\max), \\ & \pm 26 \mathrm{~mA} \text { (typ) } \end{aligned}$	
Specified temperature range		$23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$			
Temperature/ humidity range	Operation	$-20 \mathrm{C}^{\circ}$ to $70 \mathrm{C}^{\circ}, 10$ to $90 \% \mathrm{RH}$			
	Storage	$-30 \mathrm{C}^{\circ}$ to $80 \mathrm{C}^{\circ}, 10$ to $80 \% \mathrm{RH}$			
Dimensions		$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included) Type SS20 (20-pin shielded SIP)			
Weight (NET)		Approx. 20 g			

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$

Block diagram

	CD-552R3	CD-552R4
Rin	10 k	2.5 k
CBint	10000 p	1000 p

SIN/COS This is used to switch the internal phase shifter between 0° and 90°, which enables the switching of detector input/output between $A \sin \phi$ and $A \cos \phi$.
[A: Amplitude (o-p) of input signal, ϕ : Phase difference between input signal and reference signal]
HI: A $\cdot \cos \phi$
$\left(0^{\circ}\right)$ (specified when the pin is open)
LO: A•sin ϕ
(90 ${ }^{\circ}$)

REF POL This is used to switch the reference polarity of reference signals. An edge specified is a reference phase. With the REF POL terminal connected to the REF IN terminal, the phase detection with double frequency is enabled if 50% of duty is assigned to the reference signal.

HI :Rising edge regarded as a reference (specified when the pin is open)
LO: Falling edge regarded as a reference
Connected with REF IN terminal :
Both rising and falling edge regarded as a reference
OFFSET This is used to adjust output DC offset. $\pm 15 \mathrm{~V}$ is available for input, which allows both terminals of the pre-set resistor to be connected with $\pm 15 \mathrm{~V}$ input. The sliding terminal is connected to the OFFSET terminal. The signal is transmitted to the REF IN terminal with the SIG IN terminal connected to the ground, which brings the pre-set resistor into action to make offset adjustment.

Basic connection diagram

Gain setting

CD-552R3/4 detectors are outfitted with the variable-gain output amplifiers ($\times 1$ to $\times 10$). The maximum output voltage is set at $10 \mathrm{Vo}-\mathrm{p}$ that should not be surpassed when setting proper gain for post processor.

$$
\operatorname{Rg}=\frac{2.9873 \times 10^{4}}{\mathrm{~A}-1}-3.3 \times 10^{3}[\Omega]
$$

A: Gain [times (\times)]
Example: Set points

Gain	$\times 1$	$\times 2$	$\times 5$	$\times 10$
Resistance	∞	$26.7 \mathrm{k} \Omega$	$4.12 \mathrm{k} \Omega$	0

CD-552R4

Example: Set points

Cut-off frequency (Equivalent noise bandwidth)	10 Hz $(15.7 \mathrm{~Hz})$	100 Hz $(157 \mathrm{~Hz})$	1 kHz $(1.57 \mathrm{~Hz})$	10 kHz $(15.7 \mathrm{kHz})$
Resistance	$140 \mathrm{k} \Omega$	$1.58 \mathrm{M} \Omega$	$143 \mathrm{k} \Omega$	0
Capacitance	$0.1 \mu \mathrm{~F}$	-	-	-

$\mathrm{Rf}=\frac{1}{2 \pi \cdot\left(1 \times 10^{-9}+\mathrm{Cf}[\mathrm{F}]\right) \cdot \mathrm{fc}[\mathrm{Hz}]}-15.9 \times 10^{3}[\Omega]$
fc: Cut-off frequency
Cf: External capacitor

[^3]R should remain at $2 \mathrm{M} \Omega$ or less with the use of the eternal capacitor $\left(\mathrm{C}_{\mathrm{f}}\right)$. Theory holds that a larger value can be assigned, but potential (Cf). Theory holds that a larger value can be assigned, but potential
deterioration in offset, DC drift and noise may be concerned if assigned.

LPF setting
CD-552R3/4 detectors are outfitted with the primary LPF that is capable of setting frequencies of $1 \mathrm{kHz}(10 \mathrm{kHz})$ or less with the use of the external CR. Proper frequency is to be allocated, allowing for the bandwidth, responsibility, and fluctuation for output signals.

CD-552R3

$$
\mathrm{Rf}=\frac{1}{2 \pi \cdot\left(1 \times 10^{-8}+\mathrm{Cf}[\mathrm{~F}]\right) \cdot \mathrm{fc}[\mathrm{~Hz}]}-15.9 \times 10^{3}[\Omega]
$$

fc : Cut-off frequency
Cf: External capacitor
Example: Set points

Cut-off frequency (Equivalent noise bandwidth)	1 Hz $(1.57 \mathrm{~Hz})$	10 Hz $(15.7 \mathrm{~Hz})$	100 Hz $(157 \mathrm{~Hz})$	1 kHz $(1.57 \mathrm{kHz})$
Resistance	$1.43 \mathrm{M} \Omega$	$1.58 \mathrm{M} \Omega$	$143 \mathrm{k} \Omega$	0
Capacitance	$0.1 \mu \mathrm{~F}$	-	-	-

Characteristics CD-552R4

Gain fluctuations
Reference: 10 kHz , Gain: $\times 10$

Offset voltage fluctuations
Reference: 10 kHz , Gain: $\times 10$

90° phase shift fluctuations

Phase offset

Characteristics CD-552R3

Gain accuracy Temperature

Offset voltage Temperature

90° phase shift accuracy Temperature

Phase offset Temperature

Characteristics CD-552R4

Gain accuracy Temperature

Offset voltage Temperature

90° phase shift accuracy Temperature

Phase offset Temperature

Pattern design

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.
No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

Pattern dimensions

Maximum outer dimensions

To assure dynamic range and stability

Signal pre-processing

If a sufficient S / N ratio fails to be obtained by the optimization of detector input level or setting of the output amplifier, a filter needs to be inserted in front of the detector to enhance the S / N ratio of input signal.
The filter falls into the four types (low-pass, high-pass, band pass, and band elimination) and becomes a determinant of the following items: asynchronous signal frequency component, amplitude characteristics, filter characteristics, and cut-off frequency.
The band pass filter attenuates all signals other than synchronization signal, which maximizes the improvement of the S / N ratio. Relatively large variations in phase around the center frequency, which may lead to detection accuracy if a phase change is made in response to temperature drift. Phase drift is minimized if low-order (1-pole if possible) Q is assigned.
The low-/high-pass filters attenuate low-/high-pass signals, and offer the smaller improvement of the S / N ratio as compared with the band pass filter. A phase change at a pass band is curbed, which contributes to a smaller detection accuracy attributed to fluctuations in cut-off frequency.
The band elimination provides large attenuation to signals of specified frequencies. An efficient improvement of the S / N ratio is obtained if specified frequency is assigned to the asynchronous signal. The least phase change at a pass band is assured, which minimizes a detection accuracy attributed to fluctuations in cut-off frequency.

Input signal level

CD-552R3/4 detectors features 10 V 0 -p of the maximum input level. A dynamic range can be assured if a large level of synchronization signal is input by maintaining within $10 \mathrm{~V} o-\mathrm{p}$. The actual input signal contains both asynchronous and synchronization signals, which requires a decrease in the amplitude of 10Vo-p or less.
E.g.: 0.1Vo-p synchronization signal is present in $1 \mathrm{~V}_{0}-\mathrm{p}$ signal that is a total of asynchronous and synchronization signals. CD$552 R 3 / 4$ detectors performs the detection of the signals at 1 Vdc of output despite the $\times 10$-post-stage DC amplifier being designated. The allowable input level enables a $\times 10$-amplifier to be inserted in front of the CD-552R3/4 detectors to input the maximum input voltage of 10 V 0 -p. The detection output obtains 10 Vdc when the $\times 10$-post-stage DC amplifier is designated, which allows the obtainment of the maximum output signal.

■Output amplifier

The output amplifier is capitalized on to obtain a proper output level if a small detection output remains despite the optimization of input signals. CD-552R3/4 detectors are outfitted with the vari-able-gain output amplifiers ($\times 1$ to $\times 10$). The maximum output voltage is set at 10 V 0 -p that should not be surpassed when setting gain to assure proper voltage for post processor.
Note that an increase in DC drift, offset voltage and output noise is considered with an increase in gain.

Phase adjustment

Phase detection with the use of the CD-552R3/4 detectors may require phase adjustment for the optimization of detection sensibility and cancellation of processing phase.
Phase adjustment is conducted in combination with the voltage controlled phase detector CD-951V4. Continuous change in phase shift of the reference signal is enabled through DC voltage.

Evaluation board

A module-mounted evaluation board is available for easy evaluation of this module. Contact us for further information.

Phase Shifter

VAbsolute maximum ratings

Supply voltage (\pm Vs)	$\pm 18 \mathrm{~V}$
Phase control	$\pm \mathrm{Vs}$
DC input voltage	
Phase shifter input voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$
Logic control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$
『50\%-duty output/voltage control phase shifter ∇ Setting	
Setting	Pins (15)-(16) shorted, Pin (17) open
I/O characteristics	50%-duty square wave, which a phase is shifted by voltage control, is output with reference to the edge specified at polarity switch of phase shifter input signal waveform.
VFrequency range	
Frequency range	1 kHz to 2 MHz (2 ranges available: 1 kHz to $200 \mathrm{kHz}, 10 \mathrm{kHz}$ to 2 MHz)
Range switch	Pin (12) open or +5 V : 1 kHz to 200 kHz 0 V : 10 k to 2 MHz

$\boldsymbol{\nabla}$ Phase shifter input characteristics

Input circuit	CMOS Schmitt trigger, pulled up at $100 \mathrm{k} \Omega$
Trip point	+3.5V/+1.5V (typ)
Input voltage	CMOS (0/+5V) level
Unipolar (1f) mode	A rising or falling edge is regarded as a reference.
Polarity switch	Pin (13) open or +5 V : Rising edge regarded as a reference OV: Falling edge regarded as a reference
Pulse duration	Min. 50nsc
Bipolar(2f) mode	Both rising and falling edge are regarded as a reference.
Mode setting	Connected with the phase shifter input (Pin (14) and polarity switch input (Pin (13).
Input waveform	Duty : 50\%
Input frequency range	1 kHz to 1 MHz
∇ Voltage control characteristics	

Control method	Phase shift is specified in the proportion to phase control DC input voltage.
Input resistance	$100 \mathrm{k} \Omega \pm 3 \% \quad$ (DC)
Linear maximum input voltage	$\pm 5 \mathrm{~V} \leq 1 \mathrm{MHz}$
Linear control range	$\pm 90^{\circ}$
Voltage control sensitivity	$-20^{\circ} \mathrm{V}\left(-100^{\circ} /+5 \mathrm{~V}, 100^{\circ} /-5 \mathrm{~V}\right)$
Sensitivity accuracy	$\pm 1^{\circ} \mathrm{V}$

Output circuit		HCMOS output, series resistor at 100Ω
Output voltage		CMOS (0/+5V) level
Duty		$\begin{aligned} & 50 \% \pm 0.03 \% \text { (typ) } \quad \text { (at } 200 \mathrm{kHz} \text {) } \\ & 50 \% \pm 0.3 \% \text { (typ) } \quad \text { (at } 2 \mathrm{MHz} \text {) } \end{aligned}$
0/180 ${ }^{\circ}$ switch		Pin (20) open or $+5 \mathrm{~V}:-180^{\circ}, 0 \mathrm{~V}: 0^{\circ}$
-180 ${ }^{\circ}$ accuracy		$\begin{array}{ll} -180^{\circ} \pm 0.02^{\circ} \text { (typ) } & \text { (at } 200 \mathrm{kHz}) \\ -180^{\circ} \pm 0.2^{\circ} \text { (typ) } & \text { (at } 2 \mathrm{MHz} \text {) } \\ \hline \end{array}$
Phase offset		(1k to 200 kHz$)$ -0.6° (typ) (at 1 kHz) -4.5° (typ) (at 200 kHz) $(10 \mathrm{kHz}$ to 2 MHz$)$ -0.9° (typ) (at 10 kHz$)$ -42.0° (typ) (at 2 MHz)
Phase offset adjustment		Adjustment available with a 20k Ω-external potentiometer. (Pin (2))
Adjustment range		$\pm 5^{\circ}$ (typ)
VReference voltage		
Output voltage/accuracy		Max. $\pm 5 \mathrm{~V} \pm 2 \%$
Temperature stability		50ppm/ ${ }^{\circ} \mathrm{C}$ (typ)
Maximum output current		$\pm 1 \mathrm{~mA}$
∇ Others		
Recommended supply voltage		$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$
Quiescent current		$\begin{aligned} & +25 m A(\max),+18 m A(\text { typ }) \\ & -20 m A(m a x),-12 m A(t y p) \end{aligned}$
Temperature/ humidity range	Operation	$-20 \mathrm{C}^{\circ}$ to $70 \mathrm{C}^{\circ}, 10$ to $90 \% \mathrm{RH}$
	Storage	$-30 \mathrm{C}^{\circ}$ to $80 \mathrm{C}^{\circ}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included) Type SS20 (20-pin shielded SIP)
Weight (NET)		Approx. 20g
Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$		

Block diagram

SHIFTER IN This is used to switch the reference polarity of shifter POL input. The operation at double frequency, as compared with the reference signal, is actualized through the connection between the SHIFTER IN POL terminal and SHIFTER IN terminal if 50% of duty is assigned to the reference signal.

HI: Rising edge regarded as a reference (specified when the pin is open)
LO: Falling edge regarded as a reference
Connected with SHIFTER IN terminal: Both rising and falling edge regarded as a reference

PHASE OFFSET
$200 \mathrm{k} / \overline{2 \mathrm{M}}$

NOR/INV

DUTY50 IN POL

This is used to cancel phase offset. Zero adjustment of the phase offset for CD-951V4 phase shifter only is enabled in the range of 1 kHz to 200 kHz . Both terminals of a trimmer potentiometer of $20 \mathrm{k} \Omega$ min . are connected with $\pm 5 \mathrm{~V}$ input (Pins (6) and (7), and the center terminal is connected to the PHASE OFFSET terminal.

This is used to switch the operating frequency range between $1 \mathrm{kHz}-200 \mathrm{kHz}$ and $10 \mathrm{kHz}-2 \mathrm{MHz}$ in response to the used frequency.
$\mathrm{HI}: 1 \mathrm{kHz}$ to 200 kHz (The pin is open)
LO: 10 kHz to 200 MHz
This is used to switch the output phase between 0° and 180°. A 360°-phase shifter is configured in combination with a continuously variable phase shifter $\left(\pm 90^{\circ}\right)$.
$\mathrm{HI}: 0^{\circ}$ (The pin is open)
LO: 180°
This is used to switch the input polarity of the 50\%duty circuit. "HI" (open) should remain on for normal connection.
HI: Rising edge regarded as a reference
(The pin is open)
LO: Falling edge regarded as a reference

Timing chart

This timing chart presents the operation of the voltage controlled phase shifter CD-951V4.
E.g.: The CD-951V4 phase shifter is set to regard a rising edge of the input signal as a phase reference. This detector produces the signal "LO" (Pin (15)) for the time proportionate to the control voltage (td) if a rise is observed in the input signal (Pin (14)).
Waveform shaping (Pin (18) is performed to assure 50% in duty (t1 $=\mathrm{t} 2)$ with reference the rising edge in the obtained signal.
td adjustment allows continuous change in input/output rise time (tsft), which denotes phase change.
The same operating principles* are applied to the phase detector CD-552R3 that has realized 90°-phase shift with high accuracy.

* Patent pending

Usage example 2-phase detector

This example indicates the adoption of this detector to the 2-phase detector. The cos and sin detection outputs are obtained, which allows amplitude and phase of the synchronization signals to be derived from the relevant vector operation.
The settings of GAIN ($\times 1$ to $\times 10$) and LPFfc (max. 1 kHz) are available in this detector. Offset adjustment is required as necessary. Phase adjustment is available by 90°-continuous phase shift (CD951 V4 R1) or $0 / 180^{\circ}$-switch (S33), which enables 360°-phase change in total.

GAIN setting: Short: $\times 10$
Open: $\times 1$
LPFfc setting (same as R21):
Short: 1kHz

Note: See the CD-552R3/R4 in Page 72 for details in the GAIN setting and LPF setting.

Characteristics

Control voltage coefficient - Temperature

Phase Detector

CD-505R2

CD-505R2 detector is a hybrid phase detector composed of the following units: input differential amplifier, two post amplifiers, band-pass filter, phase shifter, phase detector, and low-pass filter. This detector possessing the frequency range of 10 Hz to 10 kHz enables the setting of center frequency with the use of the resistors (2 pcs.). Not only gain setting for the post amplifiers with the resistors (2 pcs.) but phase setting with the resistor and trimmer potentiometer is also available.
The reference signal is designed to apply square wave with $1: 1$ of a duty factor, and the phase shifter assures its phase adjustment in the range of $\pm 45^{\circ}$. The post amplifier can be utilized as a 90°-phase shifter and inverting amplifier that actualizes $\pm 360^{\circ}$-adjustment with the combined use of the switch.
The 2-pole low-pass filter $(Q=0.5)$ is allocated, which facilitates the setting of the equivalent noise bandwidth with the use of resistors and capacitors.

Supply voltage (\pm Vs)	$\pm 18 \mathrm{~V}$
Signal input voltage	$\pm \mathrm{Vs} \mathrm{(1)}, \mathrm{(3)}, \mathrm{(5)}, \mathrm{(11)}, \mathrm{(33)}, \mathrm{(39)}$
Reference signal input voltage	+5.5V (11)
FInput amplifier	
Input form	Differential input
Input impedance	Differential input $200 \mathrm{k} \Omega$ Inverting input $100 \mathrm{k} \Omega$ Non-inverting input $200 \mathrm{k} \Omega$
Gain	$\times 1$
Frequency characteristics	DC to 10 kHz
Maximum input voltage (linear)	$\pm 10 \mathrm{~V}$
VPost amplifier	
Gain	$\times 1$ to $\times 100$ (2 -stage amplifier, $\times 10 \times 2$) Setting : Specified with external resistors (2 pcs.).
I/O phase	In-phase
Frequency characteristics	DC to 10kHz
V Band pass filter	
Characteristics	1-pole pair band pass filter
Q	5
Center frequency (fo) Setting method	Range: 10 Hz to 10 kHz Setting: Specified with external resistors (2 pcs.). $\mathrm{RBP} \leq 1.59 \mathrm{M} \Omega$ Combined use of external capacitor is also available if 100 Hz or less is obtained.
Gain	$0 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$

Frequency range		10 Hz to 10 kHz
Phase shift		Range: $90^{\circ} \pm 45^{\circ}$ Setting: Specified with an external resistor and a trimmer potentiometer Combined use of an external capacitor is also available if 100 Hz or less is obtained.
Gain		$\times 1$
-Phase detector		
Frequency range		10 Hz to 10 kHz
Type		Synchronous detection (with reference signal)
Reference signal Input processing (internal)		TTL level, Duty factor: 1:1 Pulled down at $100 \mathrm{k} \Omega$
Offset		$\phi 1 / \phi 2$ balanced, Output offset adjustment available with an external trimmer potentiometer.
∇ Low-pass filter		
Characteristics		2-pole low-pass filter
Equivalent noise bandwidth		Range: 30 Hz to 1 kHz (with 2 external resistors) Any setting is available with 2 external resistors (RLP) and 2 capacitors (Clp).
∇ Others		
Supply voltage		$\pm 15 \mathrm{~V}(\pm 14$ to $\pm 16 \mathrm{~V})$
Quiescent current		$\pm 30 \mathrm{~mA}$ (typ)
Temperature/ humidity range	Operation	$-20 \mathrm{C}^{\circ}$ to $70 \mathrm{C}^{\circ}, 10$ to $95 \% \mathrm{RH}$
	Storage	$-30 \mathrm{C}^{\circ}$ to $80 \mathrm{C}^{\circ}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$54.4 \times 33.7 \times 6.5 \mathrm{~mm}$ Type H

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}, \pm 15 \mathrm{~V}$

Basic connection diagram

-Usage example of post amplifier

1. Signal system amplifier for the detection of micro-input signals
2. Instrumentation amplifier to obtain a large CMRR at high input impedance
3. Phase shifter to assure the 360°-range for phase adjustment

-Calculation of constant

1. To determine the center frequency
\Rightarrow Band pass filter: Rep1, 2 (Cbp1,2)
2. To determine the phase shift
\Rightarrow Phase shifter: $\mathrm{C} \phi, \mathrm{R} \phi, \mathrm{RV} \phi$
3. To determine the equivalent noise bandwidth
\Rightarrow Low-pass filter: RLp1, 2 (CLp1,2)

Block diagram

(1)-(4): Input amplifier

The input amplifier is a differential amplifier carrying Pin (1) for non-inverting input and Pin (2) for inverting input.
The basic usage of the input amplifier is shown below.

1. Differential amplifier

2. Inverting amplifier

3. Non-inverting amplifier

(11)-(14): Phase shifter

The phase shifter is used to adjust signal system phase in the 90°-range.
Phase adjustment exceeding the above range requires the 360°-phase shifter application.
Signal monitor terminal: Pins (29) and (30)

(5)-(10: Band pass filter

This band pass filter enables the measurement of fundamental waves with harmonics eliminated.
By using external components, it is possible to configure a 1-pole pair band pass filter ($\mathrm{Q}=5$).
This band pass filter is capable of providing an attenuation of 20 dB to 3 -order harmonics and of 26 dB to 5 -order harmonics. With RBP used, center frequency adjustment for the band pass filter is performed to keep a phase difference " 0 " or " 180° " through a comparison between the input signal and BpF OUT terminal 8 signal.

PSD

This is used for the phase detection in 2-phase signals by the reference signal.

(16)-(20: LPF

This is a low-pass filter capable of determining the equivalent noise bandwidth. The configuration of a 2-pole LPF is enabled with the use of the external resistors (2 pcs.) or the combined use of the external capacitor according to frequency. Some use applications may require the use of a 1-pole pair low-pass filter. See Page 83 for details.

PHASE DETECTOR

©Offset adjustment

Offset adjustment is required for 2 places.
Use the following procedures for offset adjustment.

1. BALANCE (RV1)

Establish a ground for +/- inputs. The PSD OUT terminal (16) is to be monitored at the maximum sensitivity of the oscilloscope. Input the reference signal at the used frequency, and adjust the BALANCE RV1 to minimize p-p of the square wave.

(Before adjustment)

(After adjustment)

Oscilloscope waveform

2. OFFSET (RV2)

Use the same steps to connect the DC OUT (20) to the DC voltmeter. Adjust the OFFSET volume to obtain "0" in output DC voltage.

Note: Offset voltage contains frequency characteristics, which requires re-adjustment if a change is made in the signal frequency.

Band pass filter setting

Table 1: RBP constants					
	No CBP used		CBP used		
fo	RBP	CBP	RBP	CBP	
10 kHz	$1.58 \mathrm{k} \Omega$	-		-	
1 kHz	$15.8 \mathrm{k} \Omega$	-		-	
100 Hz	$158 \mathrm{k} \Omega$	-	14.3 k	0.1μ	
10 Hz	$1.58 \mathrm{M} \Omega$	-	143 k	0.1μ	

fo fine adjustment

Fine adjustment of center frequency requires a trimmer potentiometer to be assigned to either of RBPS as series.

If a frequency is out of the constants listed in Table 1, RBP and CBP need to be derived from the following equations.

$$
\begin{aligned}
& \text { fo } \geq 100 \mathrm{~Hz} \\
& \text { RBP }=\frac{15915}{\text { fo }}[\mathrm{k} \Omega] \quad \text { fo: }[\mathrm{Hz}]
\end{aligned}
$$

fo $<100 \mathrm{~Hz}$

$$
\begin{gathered}
\mathrm{P}_{\mathrm{BP}}=\frac{1.5915 \times 10^{5}}{\left(0.01+\mathrm{C}_{\mathrm{BP}}\right) \cdot \mathrm{fo}}[\Omega] \quad \text { fo: }[\mathrm{Hz}], \mathrm{C}_{\mathrm{BP}}:[\mu \mathrm{F}] \\
1.59 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{BP}} \leq 1.59 \mathrm{M} \Omega
\end{gathered}
$$

■ Phase shifter setting

1) When any frequency is allocated: 1

Connection diagram 1
$1 k \Omega \leq R \phi \leq 100 k \Omega$
Determine $\mathrm{R} \phi$ and $\mathrm{C} \phi$ from the following equation to agree with the above values.

$$
\mathrm{R} \phi=\frac{1}{2 \pi \cdot\left(\mathrm{C} \phi+3.9 \times 10^{-9}\right) \cdot 2.72 \mathrm{f}}[\Omega]
$$

$$
\begin{aligned}
& \mathrm{f}:[\mathrm{Hz}] \\
& \mathrm{C} \phi:[\mathrm{F}]
\end{aligned}
$$

Derive RV ϕ in accordance with the conditions of the determined $R \phi$ and $R V \phi \geq 6.67 R \phi$.
E.g.: 400 Hz
$\mathrm{C} \phi=1700 \mathrm{pF}$
$216.1 \mathrm{k} \Omega$ is derived for $R \phi$ from the above equation.
$R V \phi>174 \mathrm{k} \Omega$ leads to $R V \phi=200 \mathrm{k} \Omega$.
2) When any frequency is allocated: 2

$R V \phi=100 k \Omega$

$$
\begin{aligned}
& \mathrm{C} \phi=\frac{1}{2 \pi \cdot \mathrm{f} \cdot 40.8 \times 10^{3}}[\mathrm{~F}] \\
& \mathrm{f}:[\mathrm{Hz}]
\end{aligned}
$$

Determine $\mathrm{C} \phi$ from the following equation.

Equivalent noise bandwidth setting

1) When 2-pole low-pass filter is used

Equivalent noise bandwidth	Time constant (TC) Connection diagram	RLP1, 2	CLP1, 2	
100 Hz	1.25 msec	1	$124 \mathrm{k} \Omega$	-
30 Hz	4.17 msec	1	$412 \mathrm{k} \Omega$	-
10 Hz	12.5 msec	1	$1.24 \mathrm{M} \Omega$	-
3 Hz	41.7 msec	2	$41.2 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$
1 Hz	125 msec	2	$124 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$
0.3 Hz	417 msec	2	$412 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$
0.1 Hz	1.25 sec	2	$1.24 \mathrm{M} \Omega$	$1 \mu \mathrm{~F}$
0.03 Hz	4.17 sec	2	$412 \mathrm{k} \Omega$	$10 \mu \mathrm{~F}$
0.01 Hz	12.5 sec	2	$1.24 \mathrm{M} \Omega$	$10 \mu \mathrm{~F}$

Time constant (TC)=RLP•CLP
Equivalent noise bandwidth=1/8TC
\{ Any RLp and Cடp available according to $10 \mathrm{k} \Omega \leq \operatorname{RLp} \leq 1.59 \mathrm{M} \Omega$.

(19)
<Figure 1> Equivalent noise bandwidth: 10 Hz to 100 Hz

<Figure $2>$ Equivalent noise bandwidth $<10 \mathrm{~Hz}$

A settling time for output voltage is 6 - to 7 -times time constant.
2) When 1-pole low-pass filter is used

Equivalent noise bandwidth	Time constant (TC) Connection diagram	RLp1, 2	CLP1, 2	
100 Hz	2.5 msec	1	$249 \mathrm{k} \Omega$	-
30 Hz	8.33 msec	1	$825 \mathrm{k} \Omega$	-
10 Hz	25 msec	2	$226 \mathrm{k} \Omega$	$0.1 \mu \mathrm{~F}$
3 Hz	83.3 msec	2	$750 \mathrm{k} \Omega$	$0.1 \mu \mathrm{~F}$
1 Hz	250 msec	2	$249 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$
0.3 Hz	833 msec	2	$825 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$
0.1 Hz	2.5 sec	2	$249 \mathrm{k} \Omega$	$10 \mu \mathrm{~F}$
0.03 Hz	8.33 sec	2	$825 \mathrm{k} \Omega$	$10 \mu \mathrm{~F}$
0.01 Hz	25.0 sec	2	$1.13 \mathrm{M} \Omega$	$22 \mu \mathrm{~F}$

Time constant (TC) $=$ RLP $\bullet C_{L P} \quad\{$ Any RLP and CLP available Equivalent noise bandwidth=1/4TC \quad according to $10 \mathrm{k} \leq \mathrm{R}_{\mathrm{L} P} \leq 1.59 \mathrm{M} \Omega$.

\leq Figure 2> Equivalent noise bandwidth $<30 \mathrm{~Hz}$

A settling time for output voltage is 4 - to 5 -times time constant.

Application of post amplifier

-360응 phase shifter

- Instrumentation amplifier

Gain between input and Pin (4)
 Gain $=\frac{R_{G} 3+20 \times 10^{3}}{R_{\mathrm{G}} 3} \mathrm{R}_{\mathrm{G}} 3:[\Omega]$

Determine C 2 2 [F].

$$
\begin{aligned}
& \mathrm{R} \phi 2=\frac{1}{2 \pi \cdot \mathrm{f} \cdot \mathrm{C} \phi 2}[\Omega] \\
& \mathrm{f}:[\mathrm{Hz}] \\
& * 1.59 \mathrm{k} \leq \mathrm{R} \phi 2 \leq 1.59 \mathrm{M}
\end{aligned}
$$

Characteristics

Output step response (1-pole low-pass filter)

I/O waveform (Phase difference: 0°)

I/O waveform (Phase difference: 180°)
Input signal

Ref signal $\rceil \square \square \square \square$
PSD output

+FS	
DC output	
	\square
-FS	\square

Output step response (2-pole low-pass filter)

I/O waveform (Phase difference: 90°)

PSD output $\sqrt[A]{ }$

I/O waveform (Phase difference: 270°)
Input signal

[Type S15]

[Type S12]

[Type SS20]

Dimensional Outline Drawing

-Dual-inline package (DIP)
[Type EB]

Cross section of pin $0.5 \times 0.25 \mathrm{~mm}$
[Type H] [Type HA] [Type HB]

Cross section of pin $0.5 \times 0.25^{\mathrm{mm}}$

[Type KB]

Cross section of pin $\quad 0.5 \times 0.25 \mathrm{~mm}$

[Type KC]

Material: Body: 90\% alumina ceramics (black) Cover:Kovar ($\mathrm{Fe}, \mathrm{Ni}, \mathrm{Co}$)

Surface treatment: Gold-plated Pin: Alloy 42 (Fe, Ni)
Surface treatment: Nickel-plated + Gold-plated

[Type ID]

Cross section of pin $\quad 0.5 \times 0.25 \mathrm{~mm}$

[Type B]

	$\pm 15 \mathrm{~V}$	-24 V
1	+B	+B
2	OUTPUT	OUTPUT
3	-B	GND
4	CASE GND	CASE GND
5	INPUT	INPUT
6	GND	NC
7	NC	NC
8	NC	NC

* US socket-compliant plug
[Type L]

[Type NL]

UOUU

	$\pm 15 \mathrm{~V}$	+24 V
1	INPUT	INPUT
2	GND	GND
3	+ B	+ B
4	OUTPUT	OUTPUT
5	$-B$	GND

FUNCTION MODULE DATA BOOK

- The description given in this data book is based on the information as of April 1, 2005 - Some appearance and specifications may change without notice.
- Please check the latest specifications before purchasing

NF Corporation

NF Corporation

- Head Office

OREPRESENTATIVE
6-3-20 Tsunashima Higashi, Kohoku-ku, Yokohama 223-8508, Japan
Phone : +81-45-545-8128 Fax : +81-45-545-8187

OShanghai Representative Office

Room5E, Modern Mansion, 218 Xiangyang South Road, Xuhui District
Shanghai 200031, China
Phone : +86-21-6473-5735 Fax : +86-21-6415-6576
OShenzhen Representative Office
Room1701, East, Aidi Building, No. 5003 Binhe Road, Futian District,
Shenzhen 518045, China
Phone : +86-755-8355-1866 Fax : +86-755-8355-1214

[^0]: *1 Types are determined by the frequency range. E.g.: SR-4FL2 (Type 2) $\rightarrow 400 \mathrm{~Hz}$ to 20 kHz
 Some models allow frequency expansion with the adoption of external components.
 *2 These filters can be customized to your specifications including the cut-off (center) frequency and filter characteristics that you select from our existing filter characteristics.

[^1]: Note: The following specifications are applied unless otherwise specified:

[^2]: A multichannel filter with DC power supply is also available by special order. Contact

[^3]: Capaciance

