Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY

M16C/62 Group

User's manual

-Keep safety first in your circuit designs!-

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection
 of the Mitsubishi semiconductor product best suited to the customer's application;
 they do not convey any license under any intellectual property rights, or any other
 rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

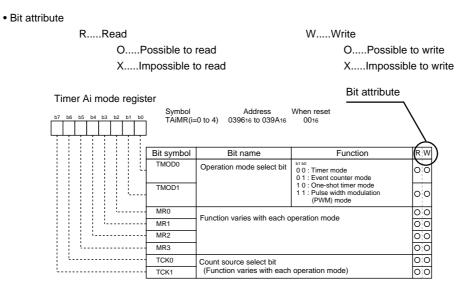
 Any diversion or reexport contrary to the export control laws and regulations of Japan
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon ductor product distributor for further details on these materials or the products con tained therein.

How to Use This Manual

This user's manual is written for the M16C/62 group.

The reader of this manual is expected to have the basic knowledge of electric and logic circuits and microcomputers.

This manual explains a function of the following kind.

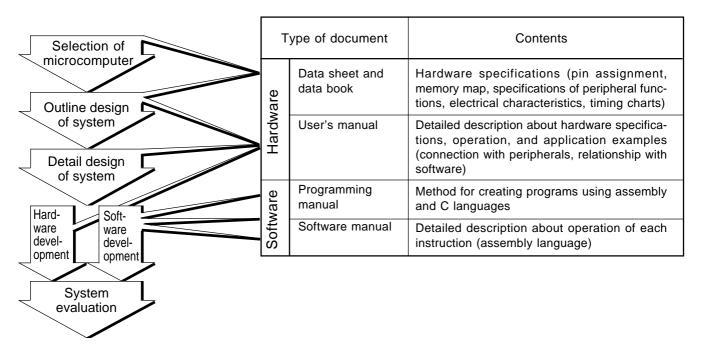

- M30620M8-XXXFP/GP
- M30620EC-XXXFP/GP
- M30622M4-XXXFP/GP
- M30622MC-XXXFP/GP
- M30624FGFP/GP

- M30620MA-XXXFP/GP
- M30620ECFS
- M30622M8-XXXFP/GP
- M30622SFP/GP
- M30624FGLFP/GP
- M30620MC-XXXFP/GP
- M30620SFP/GP
- M30622MA-XXXFP/GP
- M30624MG-XXXFP/GP

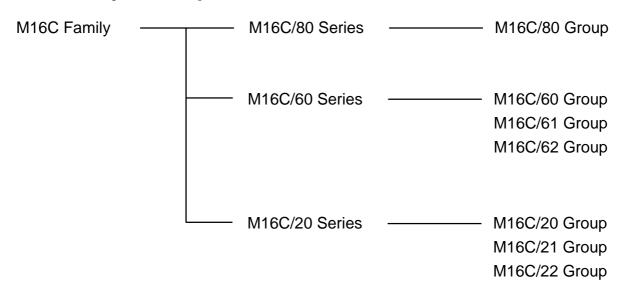
These products have similar features except for the memories, which differ from one product to another. This manual gives descriptions of M30622MC-XXXFP. An electric characteristic refer to data sheet responded to. Memories built-in are as shown below. Be careful when writing a program, as the memories have different capacities.

ROM Size (Byte)				
External ROM	 	 	7	M30620SFP/GP M30622SFP/GP
256K M30624MG-XXXFP/GP	 	 	M30624FGFP/GP M30624FGLFP/GP	
M30620MC-XXXFP/GP M30622MC-XXXFP/GP	M30620ECFP/GP	M30620ECFS	 	
96K M30620MA-XXXFP/GP M30622MA-XXXFP/GP		 	 	
M30620M8-XXXFP/GP M30622M8-XXXFP/GP	 		 	
M30622M4-XXXFP/GP		 	 	
Mask ROM version	One-time PROM version	EPROM version	Flash memory version	External ROM version

The figure of each register configuration describes its functions, contents at reset, and attributes as follows:



following topics:
* To understand hardware specifications Chapter 1 Hardware
* To understand the basic way of using peripheral features and the operation timing
* To observe applications of peripheral features
* To understand interrupt timing in detail
* To understand how to use external buses
* To know the difference between the mask ROM Version
* To understand standard data
This manual includes a quick reference immediately following the Table of Contents, indicate the page of the topic to be pursued.
* To find a page describing a specific register by the register address
Extra application note explains follows, and please refer to each application note in addition to above.
* I ² C BUSM16C/62 Group SIMPLE I ² C BUS
* Three-phase motor control timer function M16C/62 Group THREE-PHASE MOTOR CONTROL


This manual comprises of eight chapters. Use the suggested chapters as a reference for the

M16C Family-related document list

Usages (Microcomputer development flow)

M16C Family Line-up

Table of Contents

Chapter 1 Hardware	
Description	2
Memory	1 ²
Central Processing Unit (CPU)	12
Reset	15
Memory Space Expansion Features	22
Processor Mode	28
Bus Settings	32
Bus Control	34
Clock Generating Circuit	4
Protection	50
Overview of Interrupt	5^
NMI Interrupt	67
Watchdog Timer	7′
DMAC	73
Timer	83
Timer A	85
Timer B	95
Timers' function for three-phase motor control	10 ²
Serial I/O	113
Clock synchronous serial I/O mode	122
Clock asynchronous serial I/O mode	129
UART2 Special Mode Register	14
SI/O3,4	149
A-D Converter	153
D-A Converter	163
CRC Calculation Circuit	165
Programmable I/O Ports	167
Flash	235
Chapter 2 Peripheral Functions Usage	
2.4 Protect	27/

2.1.1 Overview	276
2.1.2 Protect Operation	278
2.2 Timer A	280
2.2.1 Overview	280
2.2.2 Operation of Timer A (timer mode)	286
2.2.3 Operation of Timer A (timer mode, gate function selected)	288
2.2.4 Operation of Timer A (timer mode, pulse output function selected)	290
2.2.5 Operation of Timer A (event counter mode, reload type selected)	292
2.2.6 Operation of Timer A (event counter mode, free run type selected)	294
2.2.7 Operation of timer A (2-phase pulse signal process in event counter mode, nomal mode)	296
2.2.8 Operation of timer A (2-phase pulse signal process in event counter mode, multiply by	/-4
mode selected	298
2.2.9 Operation of Timer A (one-shot timer mode)	300
2.2.10 Operation of Timer A (one-shot timer mode, external trigger selected)	302
2.2.11 Operation of Timer A (pulse width modulation mode, 16-bit PWM mode selected)	304
2.2.12 Operation of Timer A (pulse width modulation mode, 8-bit PWM mode selected)	306
2.2.13 Precautions for Timer A (timer mode)	308
2.2.14 Precautions for Timer A (event counter mode)	309
2.2.15 Precautions for Timer A (one-shot timer mode)	310
2.2.16 Precautions for Timer A (pulse width modulation mode)	311
2.3 Timer B	312
2.3.1 Overview	312
2.3.2 Operation of Timer B (timer mode)	316
2.3.3 Operation of Timer B (event counter mode)	318
2.3.4 Operation of Timer B (pulse period measurement mode)	320
2.3.5 Operation of Timer B (pulse width measurement mode)	322
2.3.6 Precautions for Timer B (timer mode, event counter mode)	324
2.3.7 Precautions for Timer B (pulse period/pulse width measurement mode)	325
2.4 Clock-Synchronous Serial I/O	326
2.4.1 Overview	326
2.4.2 Operation of Serial I/O (transmission in clock-synchronous serial I/O mode)	334
2.4.3 Operation of the Serial I/O (transmission in clock-synchronous serial I/O mode,	
transfer clock output from multiple pins function selected)	338
2.4.4 Operation of Serial I/O (reception in clock-synchronous serial I/O mode)	342
2.4.5 Precautions for Serial I/O (in clock-synchronous serial I/O)	346

2.5 Clock-Asynchronous Serial I/O (UART)	348
2.5.1 Overview	348
2.5.2 Operation of Serial I/O (transmission in UART mode)	358
2.5.3 Operation of Serial I/O (reception in UART mode)	362
2.5.4 Operation of Serial I/O (transmission compliant with SIM interface)	366
2.5.5 Operation of Serial I/O (reception compliant with SIM interface)	370
2.5.6 Clock Signals in compliance with the SIM Interface	374
2.6 SI/O3,4	378
2.6.1 Overview	378
2.6.2 Operationof SI/O3,4	380
2.7 A-D Converter	382
2.7.1 Overview	382
2.7.2 Operation of A-D converter (one-shot mode)	388
2.7.3 Operation of A-D Converter (in one-shot mode, an external trigger selected)	390
2.7.4 Operation of A-D Converter (in one-shot mode, expanded analog input pin selected)	392
2.7.5 Operation of A-D Converter (in one-shot mode,	
external op-amp connection mode selected)	394
2.7.6 Operation of A-D Converter (in repeat mode)	396
2.7.7 Operation of A-D Converter (in single sweep mode)	398
2.7.8 Operation of A-D Converter (in repeat sweep mode 0)	400
2.7.9 Operation of A-D Converter (in repeat sweep mode 1)	402
2.7.10 Precautions for A-D Converter	404
2.7.11 Method of A-D Conversion (10-bit mode)	405
2.7.12 Method of A-D Conversion (8-bit mode)	407
2.7.13 Absolute Accuracy and Differential Non-Linearity Error	409
2.7.14 Internal Equivalent Circuit of Analog Input	411
2.7.15 Sensor's Output Impedance under A-D Conversion	412
2.8 D-A Converter	414
2.8.1 Overview	414
2.8.2 D-A Converter Operation	415
2.9 DMAC	416
2.9.1 Overview	416
2.9.2 Operation of DMAC (one-shot transfer mode)	420
2.9.3 Operation of DMAC (repeated transfer mode)	422
2.10 CRC Calculation Circuit	424

2.10.1 Overview	424
2.10.2 Operation of CRC Calculation Circuit	425
2.11 Watchdog Timer	426
2.11.1 Overview	426
2.11.2 Operation of Watchdog Timer	428
2.12 Address Match Interrupt	430
2.12.1 Overview	430
2.12.2 Operation of Address Match Interrupt	432
2.13 Key-Input Interrupt	434
2.13.1 Overview	434
2.13.2 Operation of Key-Input Interrupt	436
2.14 Power Control	438
2.14.1 Overview	438
2.14.2 Stop Mode Set-Up	443
2.14.3 Wait Mode Set-Up	444
2.14.4 Precautions in Saving Power	445
2.15 Programmable I/O Ports	446
2.15.1 Overview	446
Chapter 3 Examples of Peripheral functions Ap	plications
3.1 Long-Period Timers	456
3.2 Variable-Period Variable-Duty PWM Output	460
3.3 Delayed One-Shot Output	464
3.4 Buzzer Output	
3.5 Solution for External Interrupt Pins Shortage	470
3.6 Memory to Memory DMA Transfer	472
3.7 Controlling Power Using Stop Mode	476
3.8 Controling Power Using Wait Mode	480
Chapter 4 Interrupt	
4.1 Overview of Interrupt	
4.1.1 Type of Interrupts	
4.1.2 Software Interrupts	
4.1.3 Hardware Interrupts	
4.1.4 Interrupts and Interrupt Vector Tables	
·	
4.2 Interrupt Control	491

4.2.1 Interrupt Enable Flag	493
4.2.2 Interrupt Request Bit	493
4.2.3 Changing the Interrupt Control Register	494
4.2.4 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)	495
4.3 Interrupt Sequence	496
4.3.1 Interrupt Response Time	496
4.3.2 Variation of IPL when Interrupt Request is Accepted	497
4.3.3 Saving Registers	498
4.4 Returning from an Interrupt Routine	500
4.5 Interrupt Priority	500
4.6 Multiple Interrupts	502
4.7 Precautions for Interrupts	504
Chapter 5 External Buses	
5.1 Overview of External Buses	508
5.2 Data Access	509
5.2.1 Data Bus Width	509
5.2.2 Chip Selects and Address Bus	510
5.2.3 Bus Types	511
5.2.4 R/W Modes	511
5.3 Memory Space Expansion Features	512
5.3.1 Normal Mode	513
5.3.2 Memory Space Expansion Mode 1	514
5.3.3 Memory Space Expansion Mode 2	515
5.4 Connection Examples	521
5.4.1 16-bit Memory to 16-bit Width Data Bus Connection Example	521
5.4.2 8-bit Memory to 16-bit Width Data Bus Connection Example	522
5.4.3 8-bit Memory to 8-bit Width Data Bus Connection Example	524
5.4.4 Two 8-bit and 16-Bit Memory to 16-Bit Width Data Bus Connection Example	525
5.4.5 16-bit Width Data Bus Connection Example in Memory Space Expansion Mode 1	526
5.4.6 8-bit Width Data Bus Connection Example in Memory Space Expansion Mode 1	527
5.4.7 8-bit Width Data Bus Connection Example in Memory Space Expansion Mode 2	528
5.4.8 Chip Selects and Address Bus	529
5.5 Connectable Memories	530
5.5.1 Operation Frequency and Access Time	530

5.5.2 Connecting Low-Speed Memory	534
5.5.3 Connectable Memories	538
5.6 Releasing an External Bus (HOLD input and HLDA output)	540
5.7 Precautions for External Bus	541
Chapter 6 External ROM Version	
6.1 Pin Configuration	545
6.2 Pin Description	547
6.3 Memory Map	549
6.4 Processor Mode	553
Chapter 7 Standard Characteristics	
7.1 Standard DC Characteristics	556
7.1.1 Standard Ports Characteristics	556
7.1.2 Standard Characteristics of Icc-f(XIN)	559
7.2 Standard Characteristics of A-D Converter	561
7.3 Standard Characteristics of D-A Converter	563
7.4 Standard Characteristics of Pull-Up Resistor	566

Quick Reference to Pages Classified by Address

000016	Addres	s Register	Page	Addres	ss Register	Page
Document	· · · · · · · · · · · · · · · · · · ·			- H		
Processor mode register (PMO) 29	· · · · · · · · · · · · · · · · · · ·			- t		
Processor mode register (TRM1)	ŀ	Drocopor modo register () (DMO)		- t	INIT2 interrupt control register (INIT2IC)	
System clock control register (CM1) 43 43 43 43 43 43 43 4	l l		29	- H	1 0 1	
System clock control register (TCM1) 43 35 504 16 17 17 16 17 17 17 17	l l					
Chip select control register (CSR) 35			43		,	
Address match interrupt capitare (PRCR) 49 25	ŀ		25			
Protect register (PRCR)	ŀ			004816	,	
Data bank register (DBR) 25 25 25 25 26 26 26 26	l l					
000Ata 0	l l			004916		
000016	l l	Data bank register (DBR)				
Watchdog timer start register (WDTS) 72 0x40-time 0x40-tim	h h			- H		
Watchdog timer control register (WDC) 72	i i	Motob do a timo a start register (MDTC)		- F	. ,	
Address match interrupt register 0 (RMADO) 68 004Fts 004Fts 005000 00150	l l		72	- t		
Address match interrupt register 0 (RMADO) 68 004Fis 0050fis 0050f	l l	watchdog timer control register (wbc)		- t	, 1 1 0 7	
Address match interrupt register 0 (RWADD)		A 11 (D144 D2)	68	- t		
Mart		Address match interrupt register 0 (RMAD0)		- H		57
Address match interrupt register 1 (RMAD1) 68 005216 00501	ŀ		 	- t		
Address match interrupt register 1 (RMAD1) 68 005316 00541	t t			- H		
Mart		Address match interrupt register 1 (PMAD1)	68	- t		
001716 001816 005516 005616 005616 005717 005717 005716 005717 0		Addiess materialitemapt register i (MINADI)		- t		
001816 001816	h			F	,	
001916 001916 001916 001916 001916 005916 0	ŀ			- t	1 0 1	
0013416 0013	t			- t	,	
Oil Bris Oil Bris Oil Cris	t t					
Original Color	t t			1		
001D16 001E16 005E16 0	ŀ			1	. , ,	
Other Oth	t			1		
ONE-16	t t			t t	. , ,	
DMA0 source pointer (SAR0) T7 DMA0 source pointer (SAR0) T7 DMA0 source pointer (DAR0) T7 DMA0 destination pointer (DAR0) T7 DMA0 transfer counter (TCR0) T7 DMA0 transfer counter (TCR0) T7 DMA0 source pointer (DMCON) T6 DMA0 source pointer (SAR1) T7 DMA1 source pointer (SAR1) T7 DMA1 source pointer (DMCON) T7 DMA1 destination pointer (DAR1) T7 DMA1 source pointer (DAR1) T7 DMA1 sour	t t			- t	. ,	
DMA0 source pointer (SAR0) T7 DMSF16 DMA0 source pointer (SAR0) T7 DMSF16 DMA0 destination pointer (DAR0) T7 DMA0 destination pointer (DAR0) T7 DMA0 destination pointer (DAR0) T7 DMA0 transfer counter (TCR0) T7 DMA0 transfer counter (TCR0) T7 DMA0 control register (DMCON) T6 DMA0 control register (DMCON) T6 DMA0 control register (DMCON) T6 DMA0 control register (DMCON) T7 DMA1 source pointer (SAR1) T7 DMA1 source pointer (SAR1) T7 DMA1 destination pointer (DAR1) T7 DMA1 transfer counter (TCR1) T7 DMA1 destination described by the property of t	i i			- H		
002216 002316 002416 002516 002616 002716 002816 002816 002916 0022016 002016 00216		DMA0 source pointer (SAR0)	77	- t	,	
002316 002416 002616 002616 002616 002716 002816 002916 0020416 002C16		Divirto courso pointer (Ortito)		- F	11412 Interrupt control register (1141210)	
002416 002516 002616 002616 002816 002916 002016 002016 002016 002016 002016 002016 002016 002016 003016 003016 003116 003116 003316 003316						
002516 002716 002716 002818 002918 002418 0022018 00202018 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 002D18 003118 003118 003118 00316 00318 003318 00331	T I			- L		
002616 002718 002818 002819 0020218 00220218 002C16 002D16 002D16 002E16 002F16 003016 003118 003318 003318 003318 003318 003318 003318 003318 003318 003318 003318 003318 003318 003318 003418 003518 003618 003718 003818 003818 003818 003818 003818 003818 003818 003818 003818 003818		DMA0 destination pointer (DAR0)	77	L		
002716 002816 002916 002016 002D16 002D16 002D16 002D16 002D16 003D16 003016 003116 003316		- · · · · · · · · · · · · · · · · · · ·		L		
DIMAO transfer counter (TCRO) 77	002716			006516		
002916 002A16 002B16 002C16 DMA0 control register (DM0CON) 76 032A16 032B16 032C16 032C16 032D16 032D16 032B16 032C16 032D16 032B16 033B16 033B16 033B16 033B16 033B16 033B16 033B16 03B16 0B16 0	002816	DMA0 transfer counter (TCR0)	77			
002816 002016 002016 002016 002016 0020216 0020216 0020216 003216 003116 003116 003116 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003316 003216 003216 003216 003216 003216 0032	002916	DIMAO transfer counter (TCRO)	' '			
DMA0 control register (DM0CON) 76 032A16 032B16 032C16 032C16 032C16 032D16 032D16 032D16 032D16 032D16 032D16 032D16 032D16 032E16 032C16 032D16 032E16 032C16 033C16 033C16 033C16 033C16 03CC16	002A16			<u> </u>	₹	<i>-</i>
002D16 032B16 002F16 032D16 003016 032D16 00316 032E16 003216 032E16 003216 032F16 003216 033D16 003316 033116 003416 033116 003516 033216 003616 033316 003716 033416 003816 033516 003916 033616 003916 033616 003916 033616 003916 033616 003916 033616 003916 033916	002B16					
002E16 032C16 002F16 032D16 003016 0316 003126 032F16 003316 033016 003316 033116 003516 033116 003516 033218 003716 033316 003716 033316 003716 033516 003716 033516 003716 033616 003816 033616 003916 033716 003A16 033716 003A16 033716 003B16 033916	002C16	DMA0 control register (DM0CON)	76	032A ₁₆		
002F16 032D16 003016 0316 003116 032F16 003216 032F16 003316 033016 003416 033116 003516 033216 003616 033316 003716 033316 003716 033516 003816 033616 003916 033616 003316 033716 033416 033716 033716 033716 033816 033816 033816 033816 033816 033916	002D16	-		032B ₁₆		
003016 003116 003216 0033216 003316 003416 003516 003616 003716 003716 003716 003816 003916 DMA1 source pointer (SAR1) 77 032F16 033016 033216 033216 033318 033418 033418 033516 033616 033616 033716 033716 033716 033716 033716 033818 033818 032F16 033216 033516 033516 033616 033716 033716 033816 033916	002E16			032C ₁₆	_	
003116 003216 003316 003416 003516 003616 003716 003816 003816 003816 003816 003816 003816 003816 DMA1 source pointer (SAR1) 77 032F16 033216 033216 033316 033418 033518 033518 033616 033616 033716 033716 033716 033818 033818 033518 033616 033716 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033818 033918	002F16			032D16		
003216 003316 003416 003516 003616 003716 003816 003916 DMA1 transfer counter (TCR1) 77 033316 03316	003016			032E ₁₆		
003316 033118 003416 03516 033216 003616 033416 033316 003716 033316 033416 003816 033516 033616 003916 033616 033716 003416 033716 033716 003416 033916 033816 003816 033916 033916	003116	DMA1 source pointer (SAR1)	77	032F ₁₆		
003416 003516 003616 003616 003716 003816 003916 DMA1 destination pointer (DAR1) 77 033216 033316 033416 033516 033616 033716 033716 033816 033816 033816 033916 033616 033716 033816 033816 033916	003216			033016		
003516 003616 003716 003816 003916 00303616 DMA1 destination pointer (DAR1) 77 033316 033416 033516 033616 033716 033716 033816 033816 033916 033616 033716 033816 033916	003316			033116		
003616 033416 003716 033516 003816 033616 003916 033716 003A16 033816 003B16 033916	003416			033216		
003616 033416 003716 033516 003816 033616 003916 033716 003A16 033816 003B16 033916	003516	DMA1 destination pointer (DAR1)	77	033316		
003816 003916 003A16 003B16 DMA1 transfer counter (TCR1) 77 033618 033716 033816 033916	003616			033416		
003916 DMA1 transfer counter (TCR1) 77 033716 003A16 033816 033916	003716			033516		
003416 033816 033916	003816	DMA1 transfer counter (TCD1)	77	033616		
003B16 033916	003916	DIVIA I Transfer counter (TCRT)	11	033716		
	003A16			033816		
003C16 DMA1 control register (DM1CON) 76 033A16	003B ₁₆			033916		
	003C ₁₆	DMA1 control register (DM1CON)	76	033A ₁₆		
003D16 033B16	003D16			033B ₁₆		
033C16	003E16			033C ₁₆		
003F16 033D16	003F16					
033E16						
033F16				033F16		

Note 1: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.

Quick Reference to Pages Classified by Address

Timer B3, 4, 5 count start flag (TBSR) 96	Addre	ss Register	Page
Timer A1-1 register (TA11) 103	034016	Timer B3, 4, 5 count start flag (TBSR)	
Timer A1-1 register (TA11)	034116		
Timer A2-1 register (TA21) 103	034216	Timer A1 1 register (TA11)	
Timer A2-1 register (TA21) 103	034316	Tiller AT-T Tegister (TATT)	
Timer A4-1 register (TA41) Three-phase PWM control register 0(INVC0) Three-phase PWM control register 1(INVC1) Three-phase output buffer register 0(IDB0) Three-phase output buffer register 1(IDB1) Timer B2 dart ime timer(DTT) Timer B2 interrupt occurrence frequency set counter(ICTB2) Timer B3 register (TB3) Timer B4 register (TB4) Timer B5 register (TB5) Timer B4 mode register (TB5MR) Timer B5 mode register (TB5MR) SI/O3 transmit/receive register (S3TRR) SI/O3 transmit/receive register (S3TRR) SI/O4 transmit/receive register (S4TRR) SI/O4 bit rate generator (S3BRG) SI/O4 transmit/receive register (S4TRR) SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) SI/O4 transmit/receive register (U2SMR) Timer S77te UART2 special mode register (U2SMR) Timer S77te UART2 special mode register (U2SMR) Timer S77te UART2 transmit/receive mode register (U2RMR) UART2 transmit/receive control register 0 (U2CO) Tiper UART2 transmit/receive control register 0 (U2CO) UART2 transmit/receive control register 0 (U2CO) UART2 transmit/receive control register 1 (U2C1) UART2 receive buffer register (U2RB) UART2 receive buffer register (U2RB) Timer S77te UART2 transmit/receive control register 0 (U2CO) Tiper S77te UART2 transmit/receive control register 0 (U2C		Timer A2-1 register (TA21)	103
Timer A4-1 register (TA41) 101		Timot /iz T Toglotor (T/Iz-1)	103
Three-phase PWM control register 0(INVC0)		Timer A4-1 register (TA41)	
Three-phase output buffer register (I(INVC1)		· , , ,	
Three-phase output buffer register O(IDB0) Three-phase output buffer register 1(IDB1) Dead time timer(DTT) Timer B2 interrupt occurrence frequency set counter(ICTB2) Timer B2 interrupt occurrence frequency set counter(ICTB2) Timer B3 register (TB3) Timer B3 register (TB3) Timer B4 register (TB4) 96 Timer B5 register (TB5) Timer B5 register (TB5) Timer B5 register (TB5) Timer B3 mode register (TB3MR) Timer B4 mode register (TB4MR) 95 Timer B5 mode register (TB5MR) Timer B5 mode register (TB5MR) Timer B5 mode register (TB5MR) SI/O3 transmit/receive register (S3TRR) SI/O3 trate generator (S3BRG) SI/O4 transmit/receive register (S4TRR) SI/O4 transmit/receive register (S4TRR) SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator			101
034B16 O34C16 O34C16 O34C16 O34C16 O34C16 O34C16 O34C16 O35C16 O			-
102			
1			102
034E+6 034F+6 035016 Timer B3 register (TB3) 035216 Timer B4 register (TB4) 035216 Timer B5 register (TB5) 035516 Timer B5 register (TB5) 035616 James B5 register (TB3MR) 035616 James B4 mode register (TB4MR) 035616 Jimer B4 mode register (TB5MR) 035616 Jimer B5 mode register (TB5MR) 035616 Jimer B5 mode register (TB5MR) 035616 Ji/O3 control register (S3C) 036016 Si/O3 control register (S3C) 036316 Si/O3 tir rate generator (S3BRG) 036616 Si/O4 transmit/receive register (S4C) 036716 Si/O4 bit rate generator (S4BRG) 036816 James B5 036816 James B6 036916 James B6 0361716 James B6 03618 James B6 03619 Jame			
034F16 035016 035116 035116 035216 035316 035516 035516 035616 035716 035816 035916 036916 037017 037017 037018 037018 037019		, , , , , , , , , , , , , , , , , , , ,	
O35116 O35216 O35216 O35216 O35216 O35316 O			
Signature Sign	035016	Ti Do i (TDo)	
O35316	035116	Timer B3 register (TB3)	
Sample S	035216	T: D4 : (TD4)	06
035516 Timer B5 register (TB5) 035616 035716 035816 035816 035916 035916 035916 Timer B3 mode register (TB3MR) 035D16 Timer B4 mode register (TB5MR) 035F16 Interrupt cause select register (IFSR) 65 035F16 Sl/O3 transmit/receive register (S3TRR) 65 035F16 Sl/O3 control register (S3C) Sl/O3 bit rate generator (S3BRG) 150 036116 Sl/O4 transmit/receive register (S4TRR) 150 036416 Sl/O4 control register (S4C) 150 036616 Sl/O4 bit rate generator (S4BRG) 150 036816 Sl/O4 bit rate generator (S4BRG) 141 037016 Sl/O4 bit rate generator (S4BRG) 141 037016	035316	Timer B4 register (TB4)	96
035316 035616 035716 035818 035816 035816 035816 Timer B3 mode register (TB3MR) 035B16 Timer B4 mode register (TB5MR) 035D16 Timer B5 mode register (TB5MR) 035D16 SI/O3 transmit/receive register (S3TRR) 036016 SI/O3 control register (S3C) 036116 SI/O3 bit rate generator (S3BRG) 03616 SI/O4 transmit/receive register (S4TRR) 036516 SI/O4 control register (S4C) 036616 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 037016 SI/O4 bit rate generator (S4BRG) 037016 SI/O4 bit rate generator (S4BRG) 037016 SI/O4 bit rate generator (S4BRG)	035416	Timer DE register (TDE)	
035716 035816 035916 035816 035916 035816 035816 035816 035816 035816 Timer B3 mode register (TB3MR) 95 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 036816	035516	Timer Bo register (TBo)	
035816 035916 035916 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 035816 036816<	035616		
035916 035A16 035A16 Timer B3 mode register (TB3MR) 95 035D16 Timer B4 mode register (TB5MR) 95 035D16 Timer B5 mode register (TB5MR) 65 035E16 Interrupt cause select register (IFSR) 65 036016 SI/O3 control register (S3C) SI/O3 bit rate generator (S3BRG) 5I/O4 transmit/receive register (S4TRR) 150 036516 SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 bit rate generator (S4BRG) 150 03616 SI/O4 bit rate generator (S4BRG) 150 03616 SI/O4 bit rate generator (S4BRG) 141 03616 SI/O4 bit rate generator (S4BRG) 141 037016 UART2 special mode register (U2SMR2) 141 037316 UART2 transmit/receive mode register (U2MR) 141 037416 UART2 transmit buff	035716		
035A16 Timer B3 mode register (TB3MR) 95 035D16 Timer B4 mode register (TB4MR) 95 035D16 Timer B5 mode register (TB5MR) 65 035F16 Interrupt cause select register (IFSR) 65 035F16 SI/O3 transmit/receive register (S3TRR) 65 036016 SI/O3 control register (S3C) SI/O3 bit rate generator (S3BRG) 5I/O4 transmit/receive register (S4TRR) 150 036616 SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 bit rate generator (S4BRG) 150 036616 SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG) 036616 SI/O4 control register (S4C) SI/O4 control register (S4C) 036616 SI/O4 control register (S4C) SI/O4 control register (S4C) 036616 SI/O4 control register (S4C) SI/O4 control register (S4C) 036616 SI/O4 control register (S4C) SI/O4 control register (U2SMR) SI/O4 control register (035816		
Timer B3 mode register (TB3MR) 95			
1035C16			
1			
035E16 Interrupt cause select register (IFSR) 65 036016 SI/O3 transmit/receive register (S3TRR) 5I/O3 transmit/receive register (S3TRR) 036116 SI/O3 control register (S3C) 5I/O3 bit rate generator (S3BRG) 036316 SI/O4 transmit/receive register (S4TRR) 150 036516 SI/O4 control register (S4C) 5I/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (S4BRG) 03716 SI/O4 bit rate generator (S4BRG) 5I/O4 bit rate generator (U2SMR) 121 037516 UART2 transmit/receive mode register (U2RM) 118 0377616 UART2 transmit/receive control regi		• , ,	95
Interrupt cause select register (IFSR) 365		Timer B5 mode register (TB5MR)	
036016 SI/O3 transmit/receive register (S3TRR) 036116 SI/O3 control register (S3C) 036316 SI/O3 bit rate generator (S3BRG) 036416 SI/O4 transmit/receive register (S4TRR) 036516 SI/O4 control register (S4C) 036716 SI/O4 control register (S4C) 036716 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 037016 SI/O4 bit rate generator (U2SMR) 141 037316 SI/O4 bit rate generator (U2SMR) 121 037716 UART2 transmit/receive mode register (U2MR) 118 037816 UART2 transmit/receive control register 0 (U2C0) 119 037B16 UART2 transmit/receive con		Interrupt cause coloct register (IESD)	65
036116 SI/O3 control register (S3C) 036316 SI/O3 bit rate generator (S3BRG) 036416 SI/O4 transmit/receive register (S4TRR) 036516 SI/O4 control register (S4C) 036716 SI/O4 bit rate generator (S4BRG) 036716 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) 03617 SI/O4 bit rate generator (S4BRG) 03618 SI/O4 bit rate generator (S4BRG) 03718 SI/O4 bit rate generator (U2SMR) 141 037516 UART2 special mode register (U2SMR) 121 037616 UART2 bit rate generator (U2BRG) 117 037616 UART2 transmit/receive control register 0 (U2C0) 119 037C16 UART2 transmit/receive control register 1			03
036216 SI/O3 control register (S3C) 036316 SI/O3 bit rate generator (S3BRG) 036416 SI/O4 transmit/receive register (S4TRR) 036516 SI/O4 control register (S4C) 036716 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) 03716 UART2 special mode register (U2SMR2) 141 037716 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit/receive control register 0 (U2C0) 119 037C16 UART2 transmit/receive control register 1 (U2C1) 120 037E16		01/03 transmitreceive register (03 mm)	
036316 SI/O3 bit rate generator (S3BRG) 036416 SI/O4 transmit/receive register (S4TRR) 036516 SI/O4 control register (S4C) 036716 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (U2SMR) 03716 UART2 special mode register (U2SMR) 121 037816 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit/receive control register (U2CO) 119 037C16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117		SI/O3 control register (S3C)	
036416 SI/O4 transmit/receive register (S4TRR) 150 036516 SI/O4 control register (S4C) SI/O4 bit rate generator (S4BRG) 036816 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 03616 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 03716 SI/O4 bit rate generator (S4BRG) SI/O4 bit rate generator (S4BRG) 141 037216 UART2 special mode register (U2SMR2) 141 141 037816 UART2 bit rate generator (U2BRG) 117 117 037B16 UART2 transmit/receive control register (U2CO) 119 037C16 UART2 transmit/receive control register (U2CO) 119 037E16 UART2 receive buffer register (U2RB) 117			
036516 SI/O4 control register (S4C) 036616 SI/O4 bit rate generator (S4BRG) 036916 SI/O4 bit rate generator (S4BRG) 036916 036916 036D16 036D16 036D16 036D16 037016 037016 037316 037316 037316 03746 037516 037618 037516 UART2 special mode register (U2SMR2) 141 037816 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037816 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit/receive control register 0 (U2C0) 119 037C16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			150
036716 SI/O4 bit rate generator (S4BRG) 036816 036916 036A16 036B16 036C16 036D16 036D16 036D16 037016 037016 037316 037316 037516 037516 037716 UART2 special mode register 2(U2SMR2) 141 037716 UART2 special mode register (U2SMR) 121 037716 UART2 transmit/receive mode register (U2MR) 118 037816 UART2 bit rate generator (U2BRG) 117 037A16 UART2 transmit buffer register (U2TB) 117 037B16 UART2 transmit/receive control register 0 (U2C0) 119 037C16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117	036516	5 \ /	100
036716 SI/O4 bit rate generator (S4BRG) 036816 036916 036A16 036B16 036C16 036D16 036D16 036D16 037016 037016 037316 037316 037516 037516 037716 UART2 special mode register 2(U2SMR2) 141 037716 UART2 special mode register (U2SMR) 121 037716 UART2 transmit/receive mode register (U2MR) 118 037816 UART2 bit rate generator (U2BRG) 117 037A16 UART2 transmit buffer register (U2TB) 117 037B16 UART2 transmit/receive control register 0 (U2C0) 119 037C16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117	036616	SI/O4 control register (S4C)	
036916 036A16 036B18 036C16 036D16 036B16 036F16 036F16 037018 037718 037218 037316 037416 037518 037618 UART2 special mode register 2(U2SMR2) 141 UART2 special mode register (U2SMR) 121 UART2 transmit/receive mode register (U2MR) 118 037918 037A18 037A18 037A18 037B18 037A18 037B18 037C18 037B18 037C18 037D18 037D18 UART2 transmit/receive control register 0 (U2CO) 119 037E18 037E18 UART2 receive buffer register (U2RB) 117	036716		
036A16 036B16 036C16 036D16 036F16 037016 037116 037216 037316 037316 037416 037719 037719 037819 037810 037811 037812 037813 037814 037815 037816	036816		
036B16 036C1e 036D16 036E16 036F16 037016 037016 037216 037316 037316 037416 037516 037611 UART2 special mode register 2(U2SMR2) 141 UART2 special mode register (U2SMR) 121 UART2 transmit/receive mode register (U2MR) 118 037916 037A16 037B16 037C16 037B16 037C16 037D16 037E16 03F16	036916		
036C16 036D16 036E16 036F16 037016 037016 037716 037316 037316 037416 037516 037616 037616 037719 UART2 special mode register 2(U2SMR2) 141 UART2 special mode register (U2SMR) 121 UART2 transmit/receive mode register (U2MR) 118 037916 037A16 037B16 037C16 037D16 037C16 037D16 037C16 037D16 037E18 UART2 transmit/receive control register 0 (U2CO) 119 037E18 UART2 receive buffer register (U2RB) 117	036A16		
036D16 036E16 036F16 037016 037116 037126 037316 037316 037416 037516 037516 037610 037711 037812 037813 037814 037815 037816	036B ₁₆		
036E16 036F16 037016 037016 037116 037216 037316 037416 037616 037616 037616 037716 037716 037716 037716 037816 037816 037916 037916 037916 037016			
036F16 037016 037016 037116 037216 037316 037416 037516 037610 UART2 special mode register 2(U2SMR2) 141 037716 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit buffer register (U2TB) 117 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037E16 UART2 receive buffer register (U2RB) 117			
037016 037016 037116 037216 037316 037316 037416 037516 037610 UART2 special mode register 2(U2SMR2) 141 037716 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037816 UART2 transmit buffer register (U2TB) 117 037B16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			
037116 037216 037316 037316 037316 037416 037516 UART2 special mode register 2(U2SMR2) 141 037516 UART2 special mode register (U2SMR) 121 037716 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit buffer register (U2TB) 117 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037E16 UART2 receive buffer register (U2RB) 117			
037216 037316 037316 037416 037516 UART2 special mode register 2(U2SMR2) 141 037616 UART2 special mode register (U2SMR) 121 037716 UART2 transmit/receive mode register (U2MR) 118 037816 UART2 bit rate generator (U2BRG) 117 037816 UART2 transmit buffer register (U2TB) 117 037016 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			
037316 UART2 special mode register 2(U2SMR2) 141 037516 UART2 special mode register (U2SMR) 121 037716 UART2 transmit/receive mode register (U2MR) 118 037816 UART2 bit rate generator (U2BRG) 117 037A16 UART2 transmit/receive control register 0 (U2C0) 119 037C16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			
037416 UART2 special mode register 2(U2SMR2) 141 037616 UART2 special mode register (U2SMR) 121 037716 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit buffer register (U2TB) 117 037C16 UART2 transmit/receive control register 0 (U2C0) 119 037E16 UART2 receive buffer register (U2RB) 117			
037516 UART2 special mode register 2(U2SMR2) 141 037716 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037A16 UART2 transmit buffer register (U2TB) 117 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			
037616 UART2 special mode register 2(U2SMR2) 141 037716 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037B16 UART2 transmit buffer register (U2TB) 117 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037E16 UART2 receive buffer register (U2RB) 117			
037716 UART2 special mode register (U2SMR) 121 037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037A16 UART2 transmit buffer register (U2TB) 117 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117		UART2 special mode register 2(U2SMR2)	141
037816 UART2 transmit/receive mode register (U2MR) 118 037916 UART2 bit rate generator (U2BRG) 117 037A16 UART2 transmit buffer register (U2TB) 117 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			
037916 UART2 bit rate generator (U2BRG) 037A16 037B16 037C16 UART2 transmit buffer register (U2TB) 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			
037A16 037B16 037C16 037D16 UART2 transmit buffer register (U2TB) 117 037C16 037D16 UART2 transmit/receive control register 0 (U2C0) 119 037E16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117			110
037B16 UART2 transmit buffer register (U21B) 037C16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117		, ,	117
037C16 UART2 transmit/receive control register 0 (U2C0) 119 037D16 UART2 transmit/receive control register 1 (U2C1) 120 037E16 UART2 receive buffer register (U2RB) 117		UAK 12 transmit buffer register (U21B)	•
037D ₁₆ UART2 transmit/receive control register 1 (U2C1) 120 037E ₁₆ UART2 receive buffer register (U2RB) 117			119
037E ₁₆ UART2 receive buffer register (U2RB) 117	037D16	UART2 transmit/receive control register 1 (U2C1)	120
	037E ₁₆	LIART2 receive huffer register (LI2RR)	
	037F ₁₆	C 1000110 Dallot Togister (OZIND)	

Addre	ss Register	Page
038016	Count start flag (TABSR)	86
038116	Clock prescaler reset flag (CPSRF)	
038216	One-shot start flag (ONSF)	87
038316	Trigger select register (TRGSR)	
0384 ₁₆ 0385 ₁₆	Up-down flag (UDF)	86
038616		
038716	Timer A0 (TA0)	
038816	Times A4 (TA4)	
038916	Timer A1 (TA1)	
038A ₁₆	Timer A2 (TA2)	86
038B ₁₆	,	
038C ₁₆ 038D ₁₆	Timer A3 (TA3)	
038E16		
038F ₁₆	Timer A4 (TA4)	
039016	Timor P0 (TP0)	
039116	Timer B0 (TB0)	
039216	Timer B1 (TB1)	96
039316	,	90
039416	Timer B2 (TB2)	
039616	Timer A0 mode register (TA0MR)	
039716	Timer A1 mode register (TA1MR)	
039816	Timer A2 mode register (TA2MR)	85
039916	Timer A3 mode register (TA3MR)	
039A ₁₆	Timer A4 mode register (TA4MR)	
039B ₁₆	Timer B0 mode register (TB0MR)	
039C16	Timer B1 mode register (TB1MR)	95
039D ₁₆ 039E ₁₆	Timer B2 mode register (TB2MR)	
039F16		
03A016	UART0 transmit/receive mode register (U0MR)	118
03A1 ₁₆	UART0 bit rate generator (U0BRG)	
03A216	UART0 transmit buffer register (U0TB)	117
03A316	• ` ` '	110
03A4 ₁₆ 03A5 ₁₆	UART0 transmit/receive control register 0 (U0C0) UART0 transmit/receive control register 1 (U0C1)	119 120
03A616	OAKTO transmitreceive control register 1 (OOCT)	120
03A716	UART0 receive buffer register (U0RB)	117
03A816	UART1 transmit/receive mode register (U1MR)	118
03A9 ₁₆	UART1 bit rate generator (U1BRG)	
03AA16	UART1 transmit buffer register (U1TB)	117
03AB ₁₆	o (,	440
03AC ₁₆ 03AD ₁₆	UART1 transmit/receive control register 0 (U1C0) UART1 transmit/receive control register 1 (U1C1)	119 120
03AD16 03AE16	, ,	
03AF16	UART1 receive buffer register (U1RB)	117
03B016	UART transmit/receive control register 2 (UCON)	121
03B116		
03B216		
03B3 ₁₆		
03B416		
03B516 03B616	Flash memory control register 1 (FMR1) (Note 1)	
03B616 03B716	Flash memory control register 0 (FMR0) (Note 1)	240
03B816	DMA0 request cause select register (DM0SL)	75
03B916	. , ,	
03BA16	DMA1 request cause select register (DM1SL)	76
03BB16		
03BC16	CRC data register (CRCD)	165
03BD16	CRC input register (CRCIN)	100
03BE ₁₆	Cito input register (Ortony)	
JODI 10		

Note 1 : This register is only exist in flash memory version.

Note 2 : Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.

Quick Reference to Pages Classified by Address

Addre	ss Register	Page
03C0 ₁₆ 03C1 ₁₆	A-D register 0 (AD0)	
03C2 ₁₆ 03C3 ₁₆	A-D register 1 (AD1)	
03C4 ₁₆	A-D register 2 (AD2)	
03C6 ₁₆	A-D register 3 (AD3)	
03C8 ₁₆	A-D register 4 (AD4)	156
03CA ₁₆	A-D register 5 (AD5)	
03CC ₁₆	A-D register 6 (AD6)	
03CE ₁₆	A-D register 7 (AD7)	
03D016 03D116		
03D216 03D316		
03D416	A-D control register 2 (ADCON2)	156
03D516 03D616	A-D control register 0 (ADCON0)	155
03D7 ₁₆ 03D8 ₁₆	A-D control register 1 (ADCON1) D-A register 0 (DA0)	
03D9 ₁₆ 03DA ₁₆	D-A register 1 (DA1)	164
03DB ₁₆ 03DC ₁₆	D-A control register (DACON)	
03DD16 03DE16		
03DF ₁₆ 03E ₀₁₆	Port P0 (P0)	173
03E1 ₁₆ 03E2 ₁₆	Port P1 (P1) Port P0 direction register (PD0)	173
03E3 ₁₆ 03E4 ₁₆	Port P1 direction register (PD1) Port P2 (P2)	
03E516 03E616	Port P3 (P3) Port P2 direction register (PD2)	173
03E7 ₁₆ 03E8 ₁₆	Port P3 direction register (PD3) Port P4 (P4)	172
03E916 03EA16	Port P5 (P5) Port P4 direction register (PD4)	173
03EB ₁₆	Port P5 direction register (PD5)	172
03EC ₁₆ 03ED ₁₆	Port P6 (P6) Port P7 (P7)	173
03EE16 03EF16	Port P6 direction register (PD6) Port P7 direction register (PD7)	172
03F0 ₁₆ 03F1 ₁₆	Port P8 (P8) Port P9 (P9)	173
03F2 ₁₆ 03F3 ₁₆	Port P8 direction register (PD8) Port P9 direction register (PD9)	172
03F4 ₁₆ 03F5 ₁₆	Port P10 (P10)	173
03F6 ₁₆ 03F7 ₁₆	Port P10 direction register (PD10)	172
03F8 ₁₆		
03FA ₁₆ 03FB ₁₆		
03FC ₁₆ 03FD ₁₆	Pull-up control register 0 (PUR0) Pull-up control register 1 (PUR1)	174
03FE16 03FF16	Pull-up control register 1 (PORT) Pull-up control register 2 (PUR2) Port control register (PCR)	175
USF#16	1 of control regional (Lory)	.,,

Note: Locations in the SFR area where nothing is allocated are reserved areas. Do not access these areas for read or write.

Chapter 1

Hardware

Description

The M16C/62 group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.

The M16C/62 group includes a wide range of products with different internal memory types and sizes and various package types.

Features

oata. oo	
Memory capacity	ROM (See Figure 1.1.4. ROM Expansion)
	RAM 3K to 20K bytes
• Shortest instruction execution time	62.5ns (f(XIN)=16MHz, Vcc=5V)
	100ns (f(XIN)=10MHz, Vcc=3V, with software one-wait): Mask ROM, flash memory 5V version
	142.9ns (f(XIN)=7MHz, Vcc=3V, with software one-wait): One-time PROM version
Supply voltage	4.2 to 5.5V (f(XIN)=16MHz, without software wait) : Mask ROM, flash memory 5V version
117	4.5 to 5.5V (f(XIN)=16MHz, without software wait) : One-time PROM version
	2.7 to 5.5V (f(XIN)=10MHz with software one-wait) : Mask ROM, flash memory 5V version
	2.7 to 5.5V (f(XIN)=7MHz with software one-wait) : One-time PROM version
Low power consumption	25.5mW (f(XIN)=10MHz, with software one-wait, VCC = 3V)
·	25 internal and 8 external interrupt sources, 4 software
	interrupt sources; 7 levels (including key input interrupt)
Multifunction 16-bit timer	
	5 channels (3 for UART or clock synchronous, 2 for clock synchro-
	nous)
• DMAC	· ·
	10 bits X 8 channels (Expandable up to 10 channels)
• D-A converter	
CRC calculation circuit	
Watchdog timer	
9	
Programmable I/O	
• Input port	
Memory expansion	
Chip select output	
Clock generating circuit	_
	(built-in feedback resistor, and external ceramic or quartz oscillator)

Applications

Audio, cameras, office equipment, communications equipment, portable equipment

-----Table of Contents-----

Central Processing Unit (CPU)12	Timer	83
Reset	Serial I/O	113
Processor Mode28	A-D Converter	153
Clock Generating Circuit41	D-A Converter	163
Protection49	CRC Calculation Circuit	165
Interrupts 51	Programmable I/O Ports	167
Watchdog Timer71	Electrical characteristic	182
DMAC73	Flash memory version	235

Pin Configuration

Figures 1.1.1 and 1.1.2 show the pin configurations (top view).

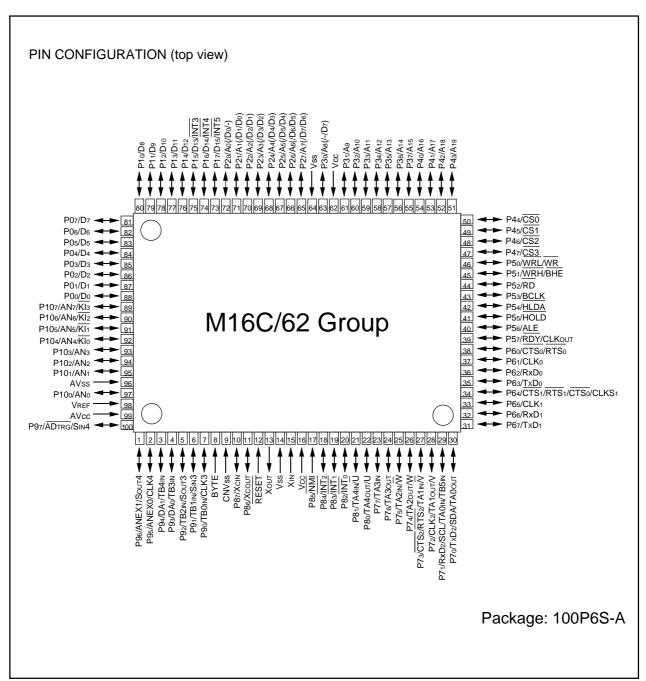


Figure 1.1.1. Pin configuration (top view)

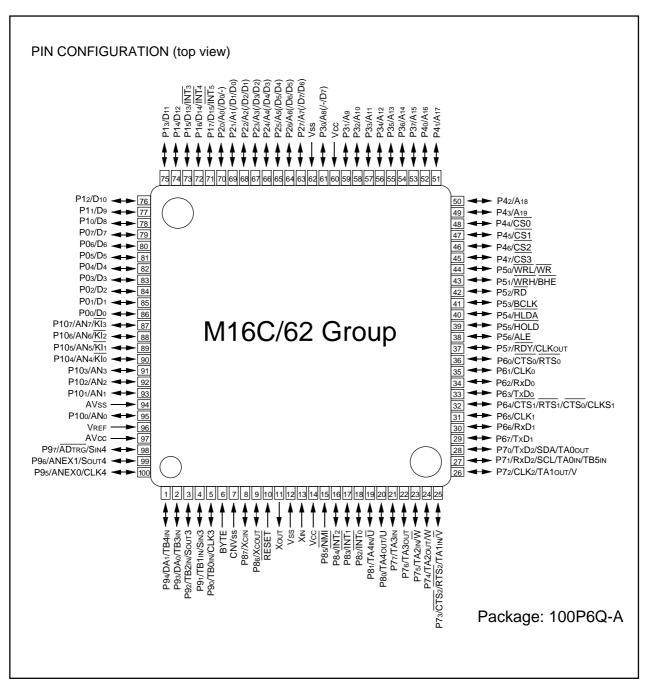


Figure 1.1.2. Pin configuration (top view)

Block Diagram

Figure 1.1.3 is a block diagram of the M16C/62 group.

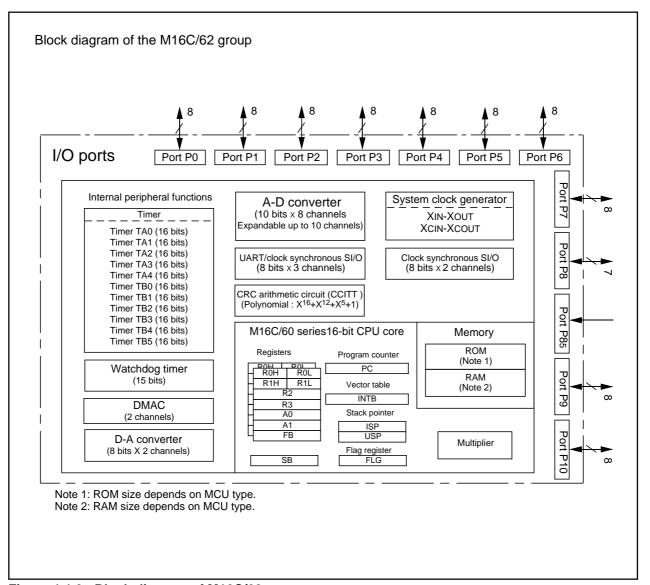


Figure 1.1.3. Block diagram of M16C/62 group

Performance Outline

Table 1.1.1 is a performance outline of M16C/62 group.

Table 1.1.1. Performance outline of M16C/62 group

Number of basic instructions			
	91 instructions		
Shortest instruction execution time 6	62.5ns(f(XIN)=16MHz, VCC=5V)		
	100ns (f(XIN)=10MHz, Vcc=3V, with software one-wait)		
:	Mask ROM, flash memory 5V version		
	142.9ns (f(XIN)=7MHz, Vcc=3V, with software one-wait)		
:	One-time PROM version		
Memory ROM ((See the figure 1.1.4. ROM Expansion)		
capacity RAM 3	3K to 20K bytes		
I/O port P0 to P10 (except P85) 8	8 bits x 10, 7 bits x 1		
Input port P85 1	1 bit x 1		
Multifunction TA0, TA1, TA2, TA3, TA4 1	16 bits x 5		
timer TB0, TB1, TB2, TB3, TB4, TB5 1	16 bits x 6		
Serial I/O UART0, UART1, UART2 ((UART or clock synchronous) x 3		
SI/O3, SI/O4 ((Clock synchronous) x 2		
A-D converter 1	10 bits x (8 + 2) channels		
D-A converter 8	8 bits x 2		
DMAC 2	2 channels (trigger: 24 sources)		
CRC calculation circuit	CRC-CCITT		
Watchdog timer 1	15 bits x 1 (with prescaler)		
Interrupt 2	25 internal and 8 external sources, 4 software sources, 7 levels		
Clock generating circuit 2	2 built-in clock generation circuits		
(1	built-in feedback resistor, and external ceramic or quartz oscillator)		
Supply voltage 4	4.2 to 5.5V (f(XIN)=16MHz, without software wait)		
-	Mask ROM, flash memory 5V version		
4	4.5 to 5.5V (f(XIN)=16MHz, without software wait)		
:	One-time PROM version		
	2.7 to 5.5V (f(XIN)=10MHz with software one-wait)		
:	Mask ROM, flash memory 5V version		
2	2.7 to 5.5V (f(XIN)=7MHz with software one-wait)		
:	One-time PROM version		
Power consumption 2	25.5mW (f(XIN) = 10MHz, Vcc=3V with software one-wait)		
I/O withstand voltage 5	5V		
characteristics Output current 5	5mA		
Memory expansion A	Available (to 1.2M bytes or 4M bytes)		
Device configuration C	CMOS high performance silicon gate		
Package 1	100-pin plastic mold QFP		

Mitsubishi plans to release the following products in the M16C/62 group:

- (1) Support for mask ROM version, external ROM version, one-time PROM version, EPROM version, and Flash memory version
- (2) ROM capacity
- (3) Package

100P6S-A : Plastic molded QFP (mask ROM, one-time PROM, and flash memory versions)100P6Q-A : Plastic molded QFP(mask ROM, one-time PROM, and flash memory versions)

100D0 : Ceramic LCC (EPROM version)

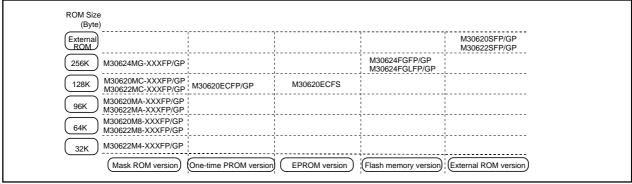


Figure 1.1.4. ROM expansion

The M16C/62 group products currently supported are listed in Table 1.1.2.

Table 1.1.2. M16C/62 group

November. 1999

Type No	ROM capacity	RAM capacity	Package type	Remarks	
M30622M4-XXXFP	32K byte	3K byte	100P6S-A		
M30622M4-XXXGP	32K byte	3K byte	100P6Q-A		
M30620M8-XXXFP		10K byte	100P6S-A		
M30620M8-XXXGP	C41/ hv 4a		100P6Q-A		
M30622M8-XXXFP	64K byte	416.1	100P6S-A		
M30622M8-XXXGP		4K byte	100P6Q-A	mask ROM version	
M30620MA-XXXFP		10K byte	100P6S-A		
M30620MA-XXXGP	96K byte	TOK byte	100P6Q-A		
M30622MA-XXXFP	90K byte	5K byte	100P6S-A		
M30622MA-XXXGP		on byte	100P6Q-A		
M30620MC-XXXFP		40141	100P6S-A		
M30620MC-XXXGP	128K byte	10K byte	100P6Q-A		
M30622MC-XXXFP	120K byte	5K byte	100P6S-A		
M30622MC-XXXGP			100P6Q-A		
M30624MG-XXXFP	256K byte	20K byte	100P6S-A		
M30624MG-XXXGP	250K byte	20K byte	100P6Q-A		
M30620ECFP	400141	400K h. 45		On a time a DDOM	
M30620ECGP	128K byte	10K byte	100P6Q-A	One-time PROM version	
M30620ECFS	128K byte	10K byte	100D0	EPROM version (Note)	
M30624FGFP	0501/ 5. 4-	20K byte	100P6S-A	Flash memory	
M30624FGGP	256K byte		100P6Q-A	5V version	
M30624FGLFP	256K byta	20K byta	100P6S-A	Flash memory	
M30624FGLGP	256K byte	20K byte	100P6Q-A	3V version	
M30620SFP			100P6S-A		
M30620SGP		10K byte	100P6Q-A	Fortered DOM	
M30622SFP		0141	100P6S-A	External ROM version	
M30622SGP		3K byte	100P6Q-A		

Note: Do not use the EPROM version for mass production, because it is a tool for program development (for evaluation).

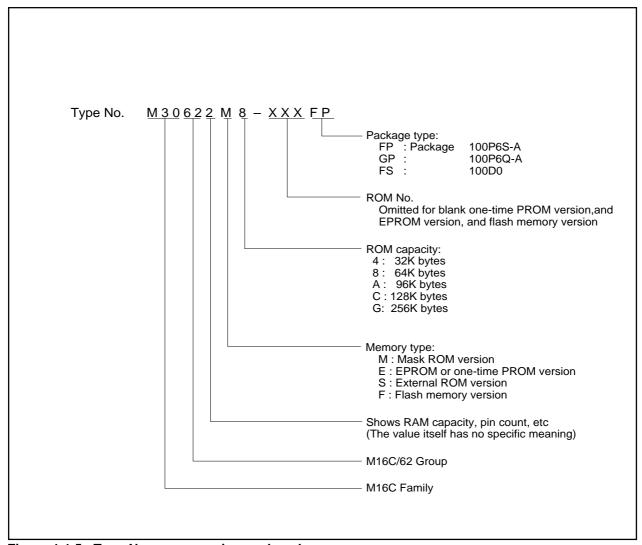


Figure 1.1.5. Type No., memory size, and package

Pin Description

Pin name	Signal name	I/O type	Function	
Vcc, Vss	Power supply input		Supply 2.7 to 5.5 V to the Vcc pin. Supply 0 V to the Vss pin.	
CNVss	CNVss	Input	This pin switches between processor modes. Connect this pin to the Vss pin when after a reset you want to start operation in single-chip mode (memory expansion mode) or the Vcc pin when starting operation in microprocessor mode.	
RESET	Reset input	Input	A "L" on this input resets the microcomputer.	
XIN	Clock input	Input	These pins are provided for the main clock generating circuit.Connect	
Хоит	Clock output	Output	a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.	
BYTE	External data bus width select input	Input	This pin selects the width of an external data bus. A 16-bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". Connect this pin to the Vss pin when not using external data bus.	
AVcc	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vcc.	
AVss	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vss.	
VREF	Reference voltage input	Input	This pin is a reference voltage input for the A-D converter.	
P00 to P07	I/O port P0	Input/output	This is an 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually. When used for input in single-chip mode, the port can be set to have or not have a pull-up resistor in units of four bits by software. In memory expansion and microprocessor modes, selection of the internal pull-resistor is not available.	
Do to D7		Input/output	When set as a separate bus, these pins input and output data (Do-D7).	
P10 to P17	I/O port P1	Input/output	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as external interrupt pins as selected by software.	
D8 to D15		Input/output	When set as a separate bus, these pins input and output data (D8-D15)	
P20 to P27	I/O port P2	Input/output	This is an 8-bit I/O port equivalent to P0.	
Ao to A7		Output	These pins output 8 low-order address bits (A ₀ –A ₇).	
Ao/Do to A7/D7		Input/output	If the external bus is set as an 8-bit wide multiplexed bus, these pins input and output data (D0–D7) and output 8 low-order address bits (A0–A7) separated in time by multiplexing.	
A0, A1/D0 to A7/D6		Output Input/output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D0–D6) and output address (A1–A7) separated in time by multiplexing. They also output address (A0).	
P30 to P37	I/O port P3	Input/output	This is an 8-bit I/O port equivalent to P0.	
A8 to A15		Output	These pins output 8 middle-order address bits (A8–A15).	
A8/D7, A9 to A15		Input/output Output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A9–A15).	
P40 to P47	I/O port P4	Input/output	This is an 8-bit I/O port equivalent to P0.	
CS0 to CS3, A16 to A19		Output Output	These pins output $\overline{\text{CS}_0}$ – $\overline{\text{CS}_3}$ signals and A16–A19. $\overline{\text{CS}_0}$ – $\overline{\text{CS}_3}$ are chip select signals used to specify an access space. A16–A19 are 4 highorder address bits.	

Pin Description

Pin name	Signal name	I/O type	Function	
P50 to P57	I/O port P5	Input/output	This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by software.	
WRL / WR, WRH / BHE, RD, BCLK, HLDA, HOLD,		Output Output Output Output Input Output Input	Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE signals. WRL and WRH, and BHE and WR can be switched using software control. WRL, WRH, and RD selected With a 16-bit external data bus, data is written to even addresses when the WRL signal is "L" and to the odd addresses when the WRH signal is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". Data is read when RD is "L". Odd addresses are accessed when BHE is "L". Use this mode when using an 8-bit external data bus. While the input level at the HOLD pin is "L", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs a "L" level. ALE is used to latch the address. While the input level of the RDY pin is "L", the microcomputer is in the ready state.	
P60 to P67	I/O port P6	Input/output	This is an 8-bit I/O port equivalent to P0. When used for input in single-chip, memory expansion, and microprocessor modes, the port can be set to have or not have a pull-up resistor in units of four bits by software. Pins in this port also function as UART0 and UART1 I/O pins as selected by software.	
P70 to P77	I/O port P7	Input/output	This is an 8-bit I/O port equivalent to P6 (P70 and P71 are N channel open-drain output). Pins in this port also function as timer A0–A3, timer B5 or UART2 I/O pins as selected by software.	
P80 to P84, P86, P87, P85	I/O port P8	Input/output Input/output Input/output Input	P80 to P84, P86, and P87 are I/O ports with the same functions as P6. Using software, they can be made to function as the I/O pins for timer A4 and the input pins for external interrupts. P86 and P87 can be set using software to function as the I/O pins for a sub clock generation circuit. In this case, connect a quartz oscillator between P86 (XCOUT pin) and P87 (XCIN pin). P85 is an input-only port that also functions for NMI. The NMI interrupt is generated when the input at this pin changes from "H" to "L". The NMI function cannot be cancelled using software. The pull-up cannot be set for this pin.	
P90 to P97	I/O port P9	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as SI/O3, 4 I/O pins, Timer B0–B4 input pins, D-A converter output pins, A-D converter extended input pins, or A-D trigger input pins as selected by software.	
P100 to P107	I/O port P10	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A-D converter input pins. Furthermore, P104–P107 also function as input pins for the key input interrupt function.	

Operation of Functional Blocks

The M16C/62 group accommodates certain units in a single chip. These units include ROM and RAM to store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations. Also included are peripheral units such as timers, serial I/O, D-A converter, DMAC, CRC calculation circuit, A-D converter, and I/O ports.

The following explains each unit.

Memory

Figure 1.4.1 is a memory map of the M16C/62 group. The address space extends the 1M bytes from address 0000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30622MC-XXXFP, there is 128K bytes of internal ROM from E000016 to FFFFF16. The vector table for fixed interrupts such as the reset and $\overline{\text{NMI}}$ are mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details.

From 0040016 up is RAM. For example, in the M30622MC-XXXFP, 5K bytes of internal RAM is mapped to the space from 0040016 to 017FF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Figures 1.7.1 to 1.7.3 are location of peripheral unit control registers. Any part of the SFR area that is not occupied is reserved and cannot be used for other purposes.

The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps.

In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be used. For example, in the M30622MC-XXXFP, the following spaces cannot be used.

- The space between 0180016 and 03FFF16 (Memory expansion and microprocessor modes)
- The space between D000016 and D7FFF16 (Memory expansion mode)

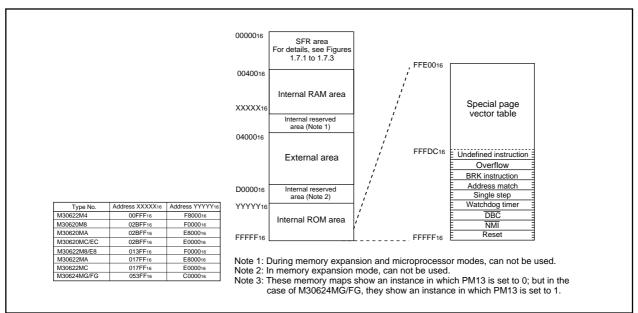


Figure 1.4.1. Memory map

Central Processing Unit (CPU)

The CPU has a total of 13 registers shown in Figure 1.5.1. Seven of these registers (R0, R1, R2, R3, A0, A1, and FB) come in two sets; therefore, these have two register banks.

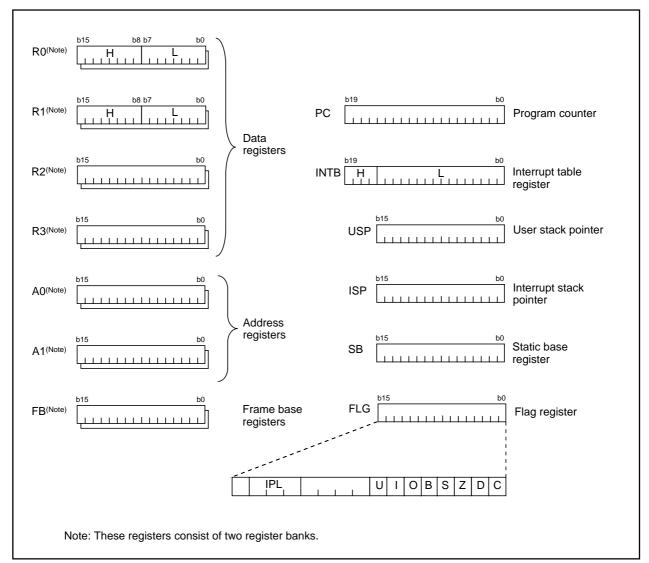


Figure 1.5.1. Central processing unit register

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)

Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations.

Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H), and low-order bits as (R0L/R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can use as 32-bit data registers (R2R0/R3R1).

(2) Address registers (A0 and A1)

Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data registers. These registers can also be used for address register indirect addressing and address register relative addressing.

In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

(3) Frame base register (FB)

Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.

(4) Program counter (PC)

Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.

(5) Interrupt table register (INTB)

Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector table.

(6) Stack pointer (USP/ISP)

Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 16 bits.

Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag). This flag is located at the position of bit 7 in the flag register (FLG).

(7) Static base register (SB)

Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.

(8) Flag register (FLG)

Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.5.2 shows the flag register (FLG). The following explains the function of each flag:

• Bit 0: Carry flag (C flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

• Bit 1: Debug flag (D flag)

This flag enables a single-step interrupt.

When this flag is "1", a single-step interrupt is generated after instruction execution. This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 2: Zero flag (Z flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, cleared to "0".

• Bit 3: Sign flag (S flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, cleared to "0".

Bit 4: Register bank select flag (B flag)

This flag chooses a register bank. Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

• Bit 5: Overflow flag (O flag)

This flag is set to "1" when an arithmetic operation resulted in overflow; otherwise, cleared to "0".

• Bit 6: Interrupt enable flag (I flag)

This flag enables a maskable interrupt.

An interrupt is disabled when this flag is "0", and is enabled when this flag is "1". This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 7: Stack pointer select flag (U flag)

Interrupt stack pointer (ISP) is selected when this flag is "0"; user stack pointer (USP) is selected when this flag is "1".

This flag is cleared to "0" when a hardware interrupt is acknowledged or an INT instruction of software interrupt Nos. 0 to 31 is executed.

• Bits 8 to 11: Reserved area

• Bits 12 to 14: Processor interrupt priority level (IPL)

Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

• Bit 15: Reserved area

The C, Z, S, and O flags are changed when instructions are executed. See the software manual for details.

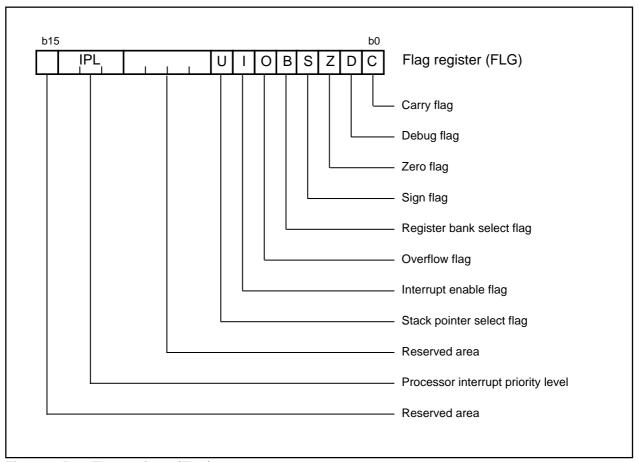


Figure 1.5.2. Flag register (FLG)

Reset

There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See "Software Reset" for details of software resets.) This section explains on hardware resets.

When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the reset pin level "L" (0.2Vcc max.) for at least 20 cycles. When the reset pin level is then returned to the "H" level while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table.

Figure 1.6.1 shows the example reset circuit. Figure 1.6.2 shows the reset sequence.

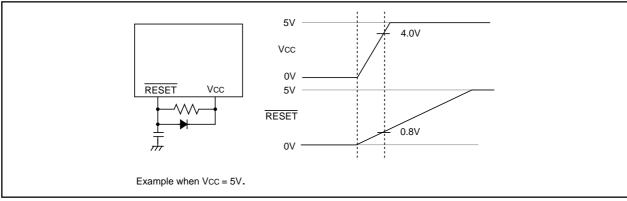


Figure 1.6.1. Example reset circuit

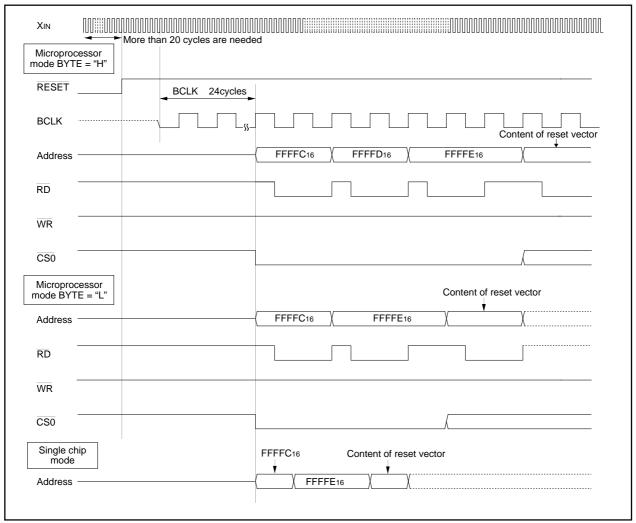


Figure 1.6.2. Reset sequence

Table 1.6.1 shows the statuses of the other pins while the $\overline{\text{RESET}}$ pin level is "L". Figures 1.6.3 and 1.6.4 show the internal status of the microcomputer immediately after the reset is cancelled.

Table 1.6.1. Pin status when RESET pin level is "L"

	Status				
Pin name	CNIV(sq. V/sq.	CNVss = Vcc			
	CNVss = Vss	BYTE = Vss	BYTE = Vcc		
P0	Input port (floating)	Data input (floating)	Data input (floating)		
P1	Input port (floating)	Data input (floating)	Input port (floating)		
P2, P3, P40 to P43	Input port (floating)	Address output (undefined)	Address output (undefined)		
P44	Input port (floating)	CS0 output ("H" level is output)	CS0 output ("H" level is output)		
P45 to P47	Input port (floating)	Input port (floating) (pull-up resistor is on)	Input port (floating) (pull-up resistor is on)		
P50	Input port (floating)	WR output ("H" level is output)	WR output ("H" level is output)		
P51	Input port (floating)	BHE output (undefined)	BHE output (undefined)		
P52	Input port (floating)	RD output ("H" level is output)	RD output ("H" level is output)		
P53	Input port (floating)	BCLK output	BCLK output		
P54	Input port (floating)	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)		
P55	Input port (floating)	HOLD input (floating)	HOLD input (floating)		
P56	Input port (floating)	ALE output ("L" level is output)			
P57	Input port (floating)	RDY input (floating)	RDY input (floating)		
P6, P7, P80 to P84, P86, P87, P9, P10	Input port (floating)	Input port (floating)	Input port (floating)		

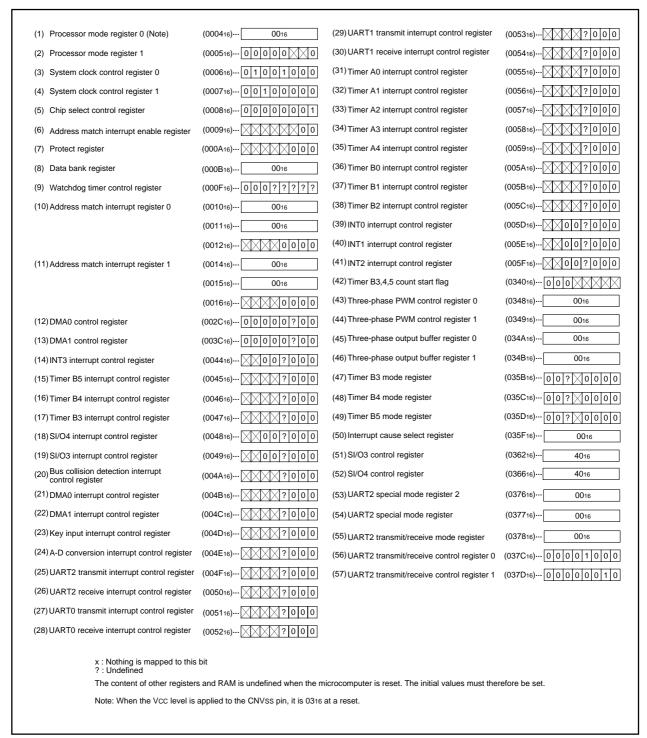


Figure 1.6.3. Device's internal status after a reset is cleared

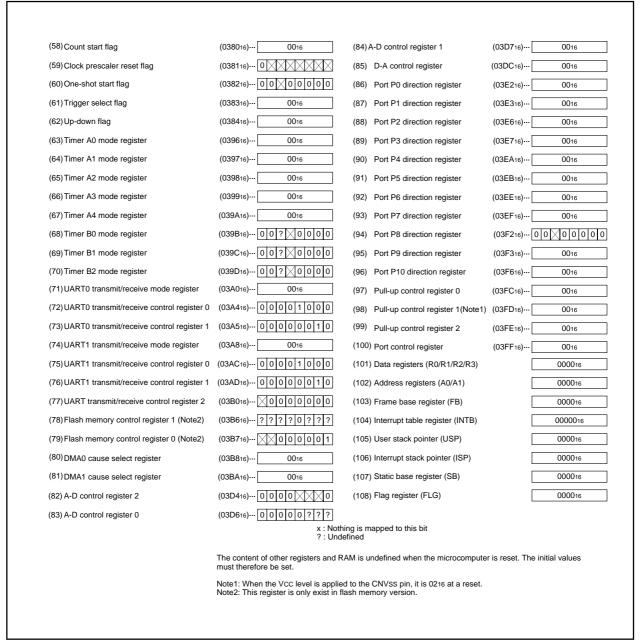


Figure 1.6.4. Device's internal status after a reset is cleared

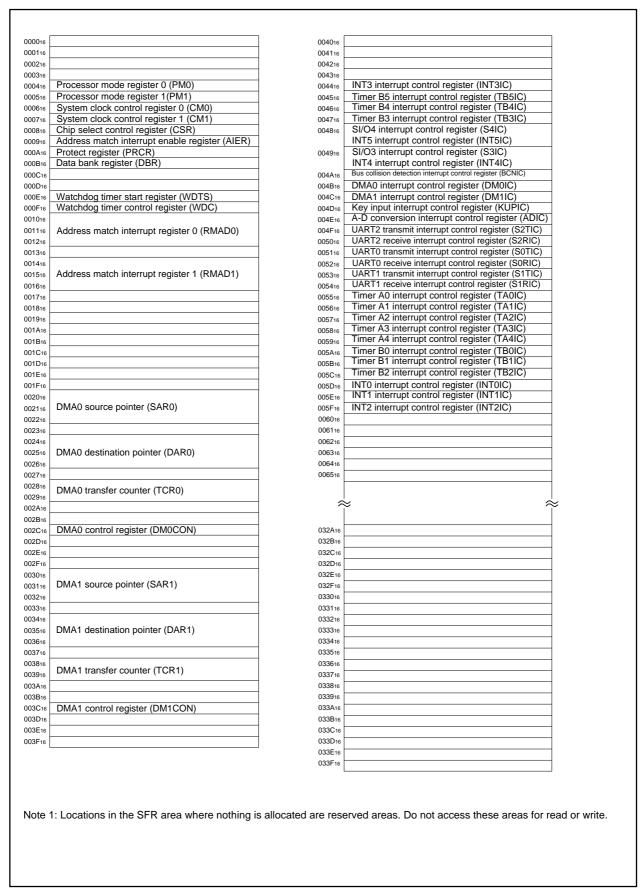


Figure 1.7.1. Location of peripheral unit control registers (1)

34016	Timer B3, 4, 5 count start flag (TBSR)	038016	Count start flag (TABSR)
34116		038116	Clock prescaler reset flag (CPSRF)
34216	Timor A1 1 register (TA11)	038216	One-shot start flag (ONSF)
34316	Timer A1-1 register (TA11)	038316	Trigger select register (TRGSR)
34416	Timor A2.1 register (TA21)	038416	Up-down flag (UDF)
34516	Timer A2-1 register (TA21)	038516	<u> </u>
34616		038616	T: AO (TAO)
34716	Timer A4-1 register (TA41)	038716	Timer A0 (TA0)
34816	Three-phase PWM control register 0(INVC0)	038816	
34916	Three-phase PWM control register 1(INVC1)	038916	Timer A1 (TA1)
34A ₁₆	Three-phase output buffer register 0(IDB0)	038A ₁₆	
- +			Timer A2 (TA2)
34B16	Three-phase output buffer register 1(IDB1)	038B ₁₆	, ,
34C16	Dead time timer(DTT)	038C ₁₆	Timer A3 (TA3)
34D16	Timer B2 interrupt occurrence frequency set counter(ICTB2)	038D ₁₆	111101710 (1710)
34E16		038E ₁₆	Timor A4 (TA4)
34F16		038F16	Timer A4 (TA4)
35016		039016	
35116	Timer B3 register (TB3)	039116	Timer B0 (TB0)
- t			
35216	Timer B4 register (TB4)	039216	Timer B1 (TB1)
35316	Timer B4 register (TB4)	039316	,
35416	Timer PE register (TPE)	039416	Timer B2 (TB2)
35516	Timer B5 register (TB5)	039516	Timer B2 (TB2)
35616		039616	Timer A0 mode register (TA0MR)
35716		039716	Timer A1 mode register (TA1MR)
- +			
35816		039816	Timer A2 mode register (TA2MR)
35916		039916	Timer A3 mode register (TA3MR)
35A16		039A ₁₆	Timer A4 mode register (TA4MR)
35B16	Timer B3 mode register (TB3MR)	039B ₁₆	Timer B0 mode register (TB0MR)
35C ₁₆	Timer B4 mode register (TB4MR)	039C ₁₆	Timer B1 mode register (TB1MR)
- +		039D16	Timer B2 mode register (TB2MR)
35D16	Timer B5 mode register (TB5MR)		Timer bz mode register (Tbzivik)
35E16		039E ₁₆	
35F16	Interrupt cause select register (IFSR)	039F16	
36016	SI/O3 transmit/receive register (S3TRR)	03A016	UART0 transmit/receive mode register (U0MR)
36116	<u> </u>	03A1 ₁₆	UART0 bit rate generator (U0BRG)
36216	SI/O3 control register (S3C)	03A216	,
t t	SI/O3 bit rate generator (S3BRG)	03A316	UART0 transmit buffer register (U0TB)
36316			LIABTO transmit/reasing central register 0 (LIOCO)
36416	SI/O4 transmit/receive register (S4TRR)	03A416	UART0 transmit/receive control register 0 (U0C0)
36516		03A5 ₁₆	UART0 transmit/receive control register 1 (U0C1)
36616	SI/O4 control register (S4C)	03A616	UART0 receive buffer register (U0RB)
36716	SI/O4 bit rate generator (S4BRG)	03A7 ₁₆	Critto receive barrer register (Corth)
36816		03A816	UART1 transmit/receive mode register (U1MR)
36916		03A9 ₁₆	UART1 bit rate generator (U1BRG)
36A16		03AA ₁₆	Critici Diciale generale (C121C)
· · · · · · · · · · · · · · · · · · ·		03AB ₁₆	UART1 transmit buffer register (U1TB)
36B16			114574
36C16		03AC ₁₆	UART1 transmit/receive control register 0 (U1C0)
36D16		03AD ₁₆	UART1 transmit/receive control register 1 (U1C1)
36E16		03AE16	LIADTA accessor buffers a city of UADD
36F16		03AF16	UART1 receive buffer register (U1RB)
T T		03B016	UART transmit/receive control register 2 (UCON)
37016			57.11.1 transmit/1000140 control register 2 (00014)
37116		03B116	
37216		03B2 ₁₆	
37316		03B3 ₁₆	
37416		03B416	
37516		03B516	
37616	UART2 special mode register 2(U2SMR2)	03B616	Flash memory control register 1 (FMR1) (Note1)
F		03B716	Flash memory control register 0 (FMR0) (Note1
37716	UART2 special mode register (U2SMR)		
37816	UART2 transmit/receive mode register (U2MR)	03B8 ₁₆	DMA0 request cause select register (DM0SL)
37916	UART2 bit rate generator (U2BRG)	03B916	
37A16	LIADTO (see see it by West see it : (1.10TD)	03BA ₁₆	DMA1 request cause select register (DM1SL)
37B ₁₆	UART2 transmit buffer register (U2TB)	03BB ₁₆	
· · · · · · · · · · · · · · · · · · ·	UART2 transmit/receive control register 0 (U2C0)	03BC16	
37C16	• · · /	03BD16	CRC data register (CRCD)
37D16	UART2 transmit/receive control register 1 (U2C1)		<u> </u>
37E16	UART2 receive buffer register (U2RB)	03BE ₁₆	CRC input register (CRCIN)
37F16		03BF16	
1040 1	1: This register is only exist in flash memory version	าท	
	i i i ina regialer la citiv exist ili lidali lilettici V VELSIC	JII.	
	2: Locations in the SFR area where nothing is allo		someod areas. Do not garage there are a few

Figure 1.7.2. Location of peripheral unit control registers (2)

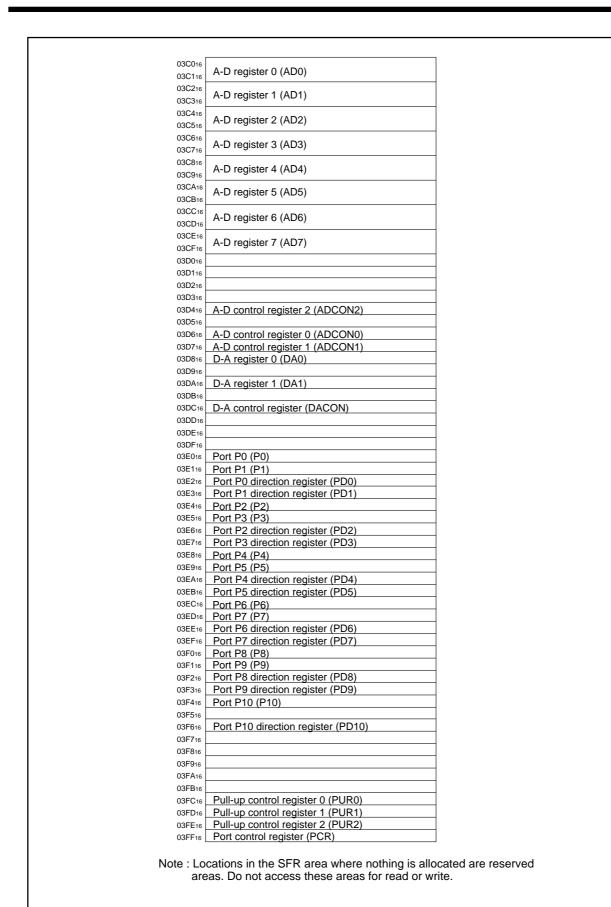


Figure 1.7.3. Location of peripheral unit control registers (3)

Memory Space Expansion Features

Here follows the description of the memory space expansion function.

With the processor running in memory expansion mode or in microprocessor mode, the memory space expansion features provide the means of expanding the accessible space. The memory space expansion features run in one of the three modes given below.

- (1) Normal mode (no expansion)
- (2) Memory space expansion mode 1 (to be referred as expansion mode 1)
- (3) Memory space expansion mode 2 (to be referred as expansion mode 2)

Use bits 5 and 4 (PM15, PM14) of processor mode register 1 to select a desired mode. The external memory area the chip select signal indicates is different in each mode so that the accessible memory space varies. Table 1.8.1 shows how to set individual modes and corresponding accessible memory spaces. For external memory area the chip select signal indicates, see Table 1.12.1 on page 34.

Table 1.8.1. The way of setting memory space expansion modes and corresponding memory spaces

Expansion mode	How to set PM15 and PM14	Accessible memory space
Normal mode (no expansion)	0, 0	Up to 1M byte
Expansion mode 1	1, 0	Up to 1.2M bytes
Expansion mode 2	1, 1	Up to 4M bytes

Here follows the description of individual modes.

(1) Normal mode (a mode with memory not expanded)

'Normal mode' means a mode in which memory is not expanded.

Figure 1.8.1 shows the memory maps and the chip select areas in normal mode.

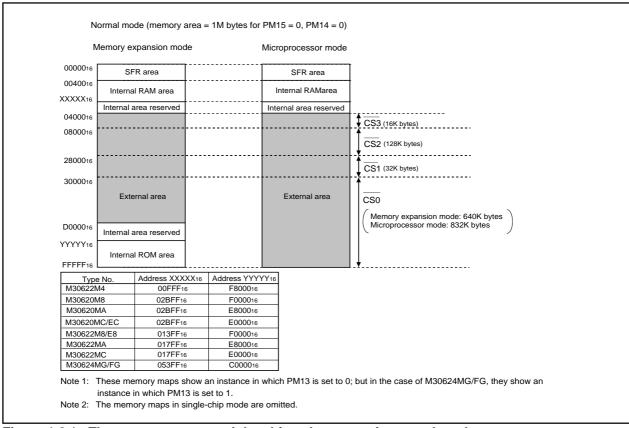
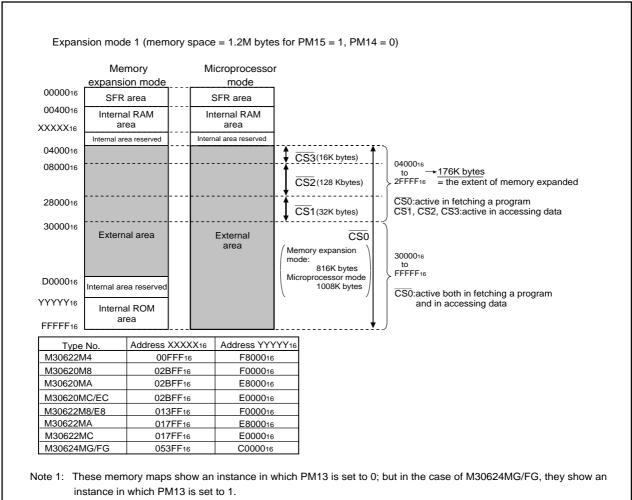


Figure 1.8.1. The memory maps and the chip select areas in normal mode



(2) Expansion mode 1

In this mode, the memory space can be expanded by 176K bytes in addition to that in normal mode.

Figure 1.8.2 shows the memory location and chip select area in expansion mode 1.

In accessing data in expansion mode 1, $\overline{CS3}$, $\overline{CS2}$, and $\overline{CS1}$ go active in the area from 0400016 through 2FFFF16; in fetching a program, $\overline{CS0}$ goes active. That is, the address space is expanded by using the area from 0400016 through 2FFFF16 (176K bytes) appropriately for accessing data $\overline{(CS3)}$, $\overline{CS2}$, $\overline{CS1}$) and fetching a program $\overline{(CS0)}$.

Note 2: The memory maps in single-chip mode are omitted.

Figure 1.8.2. Memory location and chip select area in expansion mode 1

A connection example

Figure 1.8.3 shows a connection example of the MCU with the external memories in expansion mode 1. In this example, $\overline{\text{CS0}}$ is connected with a 1-M byte flash ROM and $\overline{\text{CS2}}$ is connected with a 128-K byte SRAM.

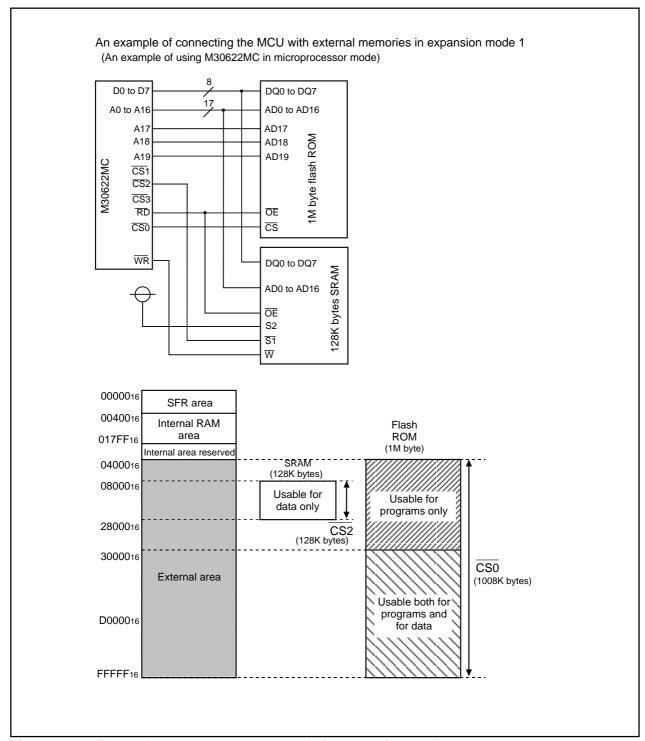


Figure 1.8.3. External memory connect example in expansion mode 1

(3) Expansion mode 2

In expansion mode 2, the data bank register (0000B16) goes effective. Figure 1.8.4 shows the data bank register.

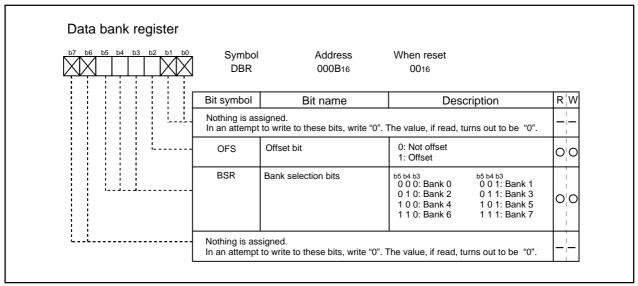


Figure 1.8.4. Data bank register

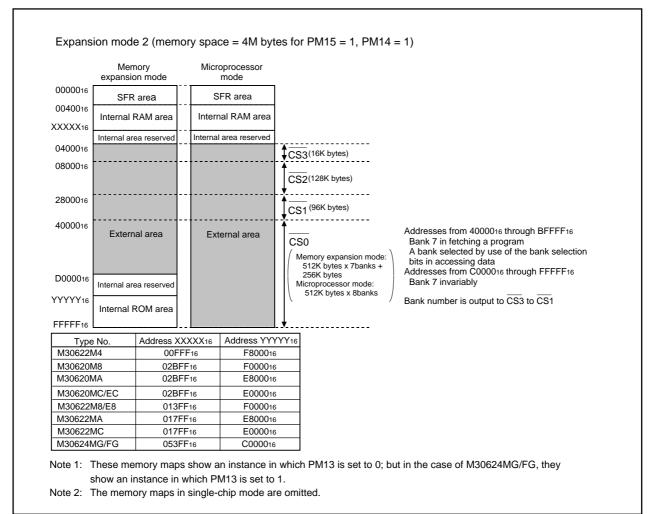


Figure 1.8.5. Memory location and chip select area in expansion mode 2

The data bank register is made up of the bank selection bits (bits 5 through 3) and the offset bit (bit 2). The bank selection bits are used to set a bank number for accessing data lying between 4000016 and BFFFF16. Assigning 1 to the offset bit provides the means to set offsets covering 4000016.

Figure 1.8.5 shows the memory location and chip select areas in expansion mode 2.

The area relevant to $\overline{\text{CSO}}$ ranges from 4000016 through FFFF16. As for the area from 4000016 through BFFFF16, the bank number set by use of the bank selection bits are output from the output terminals $\overline{\text{CS3}}$ - $\overline{\text{CS1}}$ only in accessing data. In fetching a program, bank 7 (1112) is output from $\overline{\text{CS3}}$ - $\overline{\text{CS1}}$. As for the area from C000016 through FFFF16, bank 7 (1112) is output from $\overline{\text{CS3}}$ - $\overline{\text{CS1}}$ without regard to accessing data or to fetching a program.

In accessing an area irrelevant to \overline{CSO} , a chip select signal $\overline{CS3}$ (400016 - 7FFF16), $\overline{CS2}$ (800016 - 27FFF16), and $\overline{CS1}$ (2800016 - 3FFFF16) is output depending on the address as in the past.

Figure 1.8.6 shows an example of connecting the MCU with a 4-M byte ROM and to a 128-K byte SRAM. Connect the chip select of 4-M byte ROM with $\overline{\text{CS0}}$. Connect M16C's $\overline{\text{CS3}}$, $\overline{\text{CS2}}$, and $\overline{\text{CS1}}$ with address inputs AD21, AD20, and AD19 respectively. Connect M16C's output A19 with address input AD18. Figure 1.8.7 shows the relationship between addresses of the 4-M byte ROM and those of M16C.

In this mode, memory is banked every 512 K bytes, so that data access in different banks requires switching over banks. However, data on bank boundaries when offset bit = 0 can be accessed successively by setting the offset bit to 1, because in which case the memory address is offset by 4000016. For example, two bytes of data located at addresses OFFFFF16 and 10000016 of 4-Mbyte ROM can be accessed successively without having to change the bank bit by setting the offset bit to 1 and then accessing addresses 07FFFF16 and 80000016.

On the other hand, the SRAM's chip select assumes that $\overline{CSO}=1$ (not selected) and $\overline{CS2}=0$ (selected), so connect \overline{CSO} with S2 and $\overline{CS2}$ with $\overline{S1}$. If the SRAM doesn't have a bipolar chip select input terminal, decode \overline{CSO} and $\overline{CS2}$ externally.

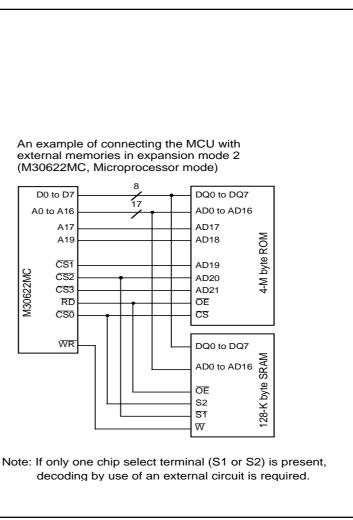


Figure 1.8.6. An example of connecting the MCU with external memories in expansion mode 2

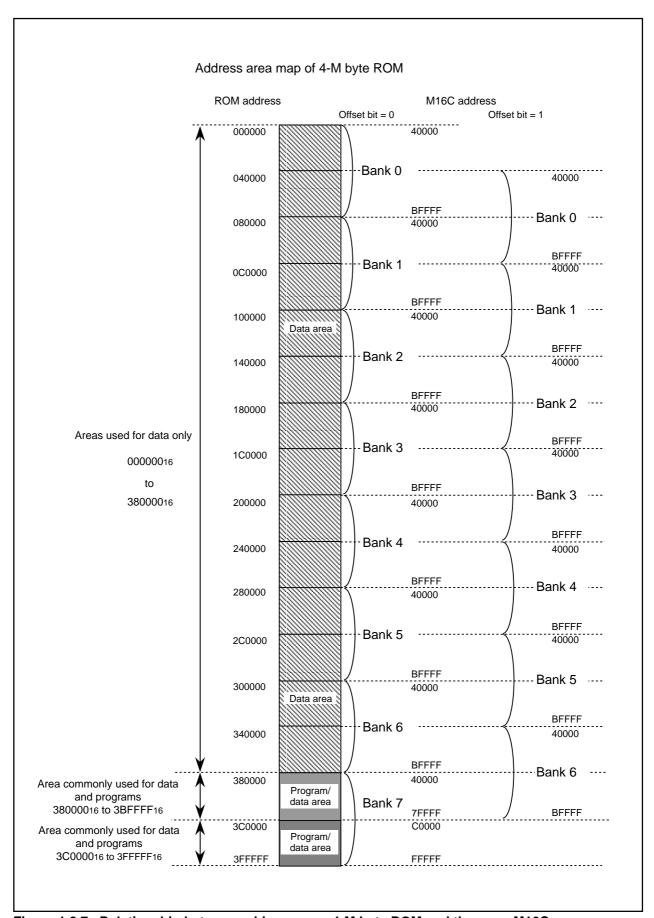


Figure 1.8.7. Relationship between addresses on 4-M byte ROM and those on M16C

Software Reset

Writing "1" to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has the same effect as a hardware reset. The contents of internal RAM are preserved.

Processor Mode

(1) Types of Processor Mode

One of three processor modes can be selected: single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, the memory map, and the access space differ according to the selected processor mode.

Single-chip mode

In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be accessed. Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal peripheral functions.

Memory expansion mode

In memory expansion mode, external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM).

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

Microprocessor mode

In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The internal ROM area cannot be accessed.

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

(2) Setting Processor Modes

The processor mode is set using the CNVss pin and the processor mode bits (bits 1 and 0 at address 000416). Do not set the processor mode bits to "102".

Regardless of the level of the CNVss pin, changing the processor mode bits selects the mode. Therefore, never change the processor mode bits when changing the contents of other bits. Also do not attempt to shift to or from the microprocessor mode within the program stored in the internal ROM area.

Applying Vss to CNVss pin

The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode is selected by writing "012" to the processor mode is selected bits.

Applying Vcc to CNVss pin

The microcomputer starts to operate in microprocessor mode after being reset.

Figure 1.9.1 shows the processor mode register 0 and 1.

Figure 1.10.1 shows the memory maps applicable for each of the modes when memory area dose not be expanded (normal mode).

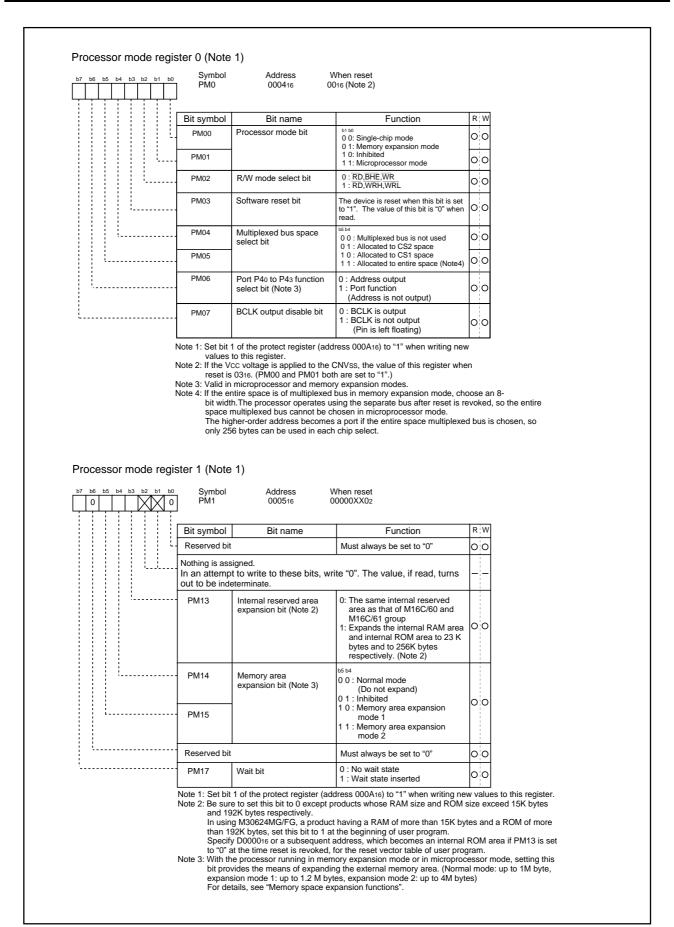


Figure 1.9.1. Processor mode register 0 and 1

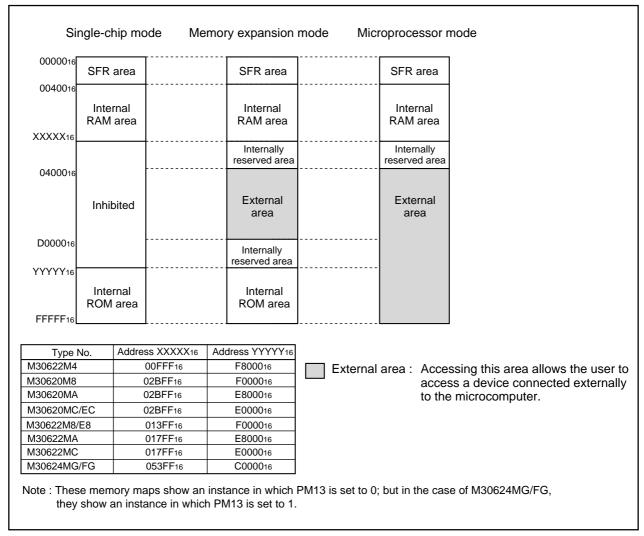


Figure 1.10.1. Memory maps in each processor mode (without memory area expansion, normal mode)

Figure 1.10.2 shows the memory maps and the chip selection areas effected by PM13 (the internal reserved area expansion bit) in each processor mode for the product having an internal RAM of more than 15K bytes and a ROM of more than 192K bytes.

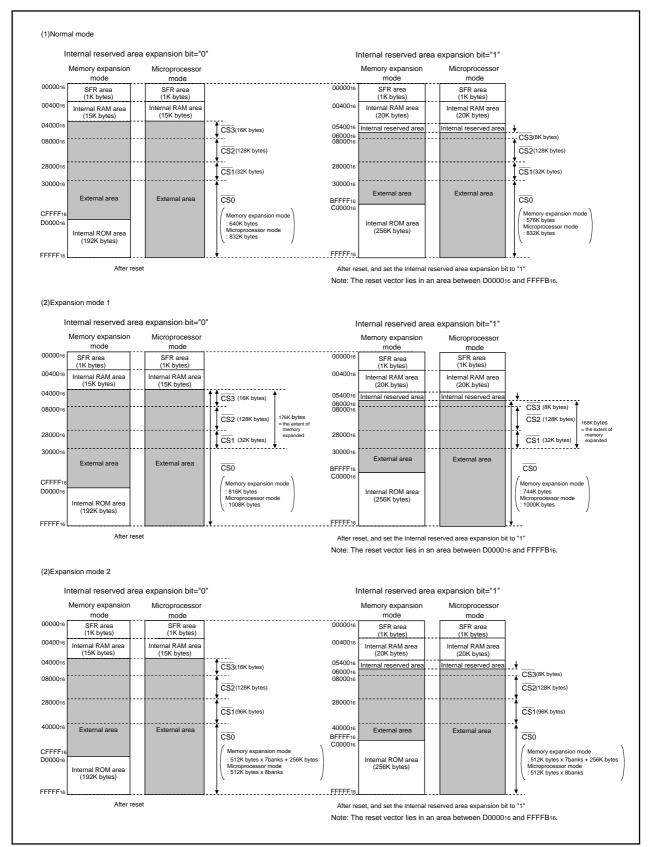


Figure 1.10.2. Memory location and chip select area in each processor mode

Bus Settings

The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus settings. Table 1.11.1 shows the factors used to change the bus settings.

Table 1.11.1. Factors for switching bus settings

Bus setting	Switching factor		
Switching external address bus width	Bit 6 of processor mode register 0		
Switching external data bus width	BYTE pin		
Switching between separate and multiplex bus	Bits 4 and 5 of processor mode register 0		

(1) Selecting external address bus width

The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64K bytes address space) or 20 bits (1M bytes address space). When bit 6 of the processor mode register 0 is set to "1", the external address bus width is set to 16 bits, and P2 and P3 become part of the address bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set to "0", the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the address bus.

(2) Selecting external data bus width

The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be set.) When the BYTE pin is "L", the bus width is set to 16 bits; when "H", it is set to 8 bits. (The internal bus width is permanently set to 16 bits.) While operating, fix the BYTE pin either to "H" or to "L".

(3) Selecting separate/multiplex bus

The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.

Separate bus

In this mode, the data and address are input and output separately. The data bus can be set using the BYTE pin to be 8 or 16 bits. When the BYTE pin is "H", the data bus is set to 8 bits and P0 functions as the data bus and P1 as a programmable I/O port. When the BYTE pin is "L", the data bus is set to 16 bits and P0 and P1 are both used for the data bus.

When the separate bus is used for access, a software wait can be selected.

Multiplex bus

In this mode, data and address I/O are time multiplexed. With an 8-bit data bus selected (BYTE pin = "H"), the 8 bits from D₀ to D₇ are multiplexed with A₀ to A₇.

With a 16-bit data bus selected (BYTE pin = "L"), the 8 bits from Do to D7 are multiplexed with A1 to A8. D8 to D15 are not multiplexed. In this case, the external devices connected to the multiplexed bus are mapped to the microcomputer's even addresses (every 2nd address). To access these external devices, access the even addresses as bytes.

The ALE signal latches the address. It is output from P56.

Before using the multiplex bus for access, be sure to insert a software wait.

If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.

The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode.

The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.

Table 1.11.2. Pin functions for each processor mode

Processor mode	Single-chip mode	Memory ex	Memory expansion mode			
Multiplexed bus space select bit		"01", "10" Either CS1 or CS2 is for multiplexed bus and others are for separate bus		"00" (separate bus)		"11" (Note 1) multiplexed bus for the entire space
Data bus width BYTE pin level		8 bits "H"	16 bits "L"	8 bits "H"	16 bits "L"	8 bit "H"
P00 to P07	I/O port	Data bus	Data bus	Data bus	Data bus	I/O port
P10 to P17	I/O port	I/O port	Data bus	I/O port	Data bus	I/O port
P20	I/O port	Address bus /data bus(Note 2)	Address bus	Address bus	Address bus	Address bus /data bus
P21 to P27	I/O port	Address bus /data bus(Note 2)	Address bus /data bus(Note 2)	Address bus	Address bus	Address bus /data bus
P30	I/O port	Address bus	Address bus /data bus(Note 2)	Address bus	Address bus	A8/D7
P31 to P37	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port
P40 to P43 Port P40 to P43 function select bit = 1	I/O port	I/O port	I/O port	/O port	I/O port	I/O port
P40 to P43 Port P40 to P43 function select bit = 0	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port
P44 to P47	I/O port) or programmatetails, refer to "Bu			
P50 to P53	I/O port		RL, WRH, and Etails, refer to "Bu		E, WR, and BCLk	(
P54	I/O port	HLDA	HLDA	HLDA	HLDA	HLDA
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD
P56	I/O port	ALE	ALE	ALE	ALE	ALE
P57	I/O port	RDY	RDY	RDY	RDY	RDY

Note 1: If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.

The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be chosen in microprocessor mode.

The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used in each chip select.

Note 2: Address bus when in separate bus mode.

Bus Control

The following explains the signals required for accessing external devices and software waits. The signals required for accessing the external devices are valid when the processor mode is set to memory expansion mode and microprocessor mode. The software waits are valid in all processor modes.

(1) Address bus/data bus

The address bus consists of the 20 pins A₀ to A₁₉ for accessing the 1M bytes of address space.

The data bus consists of the pins for data I/O. When the BYTE pin is "H", the 8 ports D₀ to D₇ function as the data bus. When BYTE is "L", the 16 ports D₀ to D₁₅ function as the data bus.

When a change is made from single-chip mode to memory expansion mode, the value of the address bus is undefined until external memory is accessed.

(2) Chip select signal

The chip select signal is output using the same pins as P44 to P47. Bits 0 to 3 of the chip select control register (address 000816) set each pin to function as a port or to output the chip select signal. The chip select control register is valid in memory expansion mode and microprocessor mode. In single-chip mode, P44 to P47 function as programmable I/O ports regardless of the value in the chip select control register.

In microprocessor mode, only $\overline{\text{CS0}}$ outputs the chip select signal after the reset state has been cancelled. $\overline{\text{CS1}}$ to $\overline{\text{CS3}}$ function as input ports. Figure 1.12.1 shows the chip select control register.

The chip select signal can be used to split the external area into as many as four blocks. Tables 1.12.1 and 1.12.2 show the external memory areas specified using the chip select signal.

Table 1.12.1. External areas specified by the chip select signals

(A product having an internal RAM equal to or less than 15K bytes and a ROM equal to or less than 192K bytes)(Note)

	Memory space	Processor mode	Chip selec		lect signal	
e	kpansion mode	1 10003301 mode	CS0	CS1	CS2	CS3
	Normal mode	Memory expansion mode	3000016 to CFFFF16 (640K bytes)		0800016 to 27FFF16	0400016 to 07FFF16 (16K bytes)
ss range	(PM15,14=0,0)	Microprocessor mode	3000016 to FFFFF16 (832K bytes)	2800016 to 2FFFF16 (32K bytes)		
	Expansion	Memory expansion mode	0400016 to CFFFF16 (816K bytes)			
Specified	mode 1 (PM15,14=1,0)	Microprocessor mode	0400016 to FFFFF16 (1008K bytes)		(128K bytes)	
	Expansion mode 2 (PM15,14=1,1)	Memory expansion mode	4000016 to BFFFF16 (512K bytes X 7 + 256K bytes)	2800016 to 3FFFF16		
		Microprocessor mode	4000016 to FFFF16 (512K bytes X 8)	(96K bytes)		

Note: Be sure to set bit 3 (PM13) of processor mode register 1 to "0".

Table 1.12.2. External areas specified by the chip select signals
(A product having an internal RAM of more than 15K bytes and a ROM of more than 192K bytes)

	Memory space	Processor mode		Chip select s	signal	
e	xpansion mode		CS0	CS1	CS2	CS3
	Normal mode (PM15,14=0,0)	Memory expansion mode	When PM13=0 3000016 to CFFFF16 (640K bytes) When PM13=1 3000016 to BFFFF16 (576K bytes)			
range	e Mic	Microprocessor mode	3000016 to FFFFF16 (816K bytes)			When PM13=0
ddress r	address	Memory expansion mode	When PM13=0 0400016 to CFFFF16 (816K bytes)	2800016 to 2FFFF16 (32K bytes)	0800016 to 27FFF16 (128K bytes)	0400016 to 07FFF16 (16K bytes) When PM13=1 0600016 to 07FFF16 (8K bytes)
Specified a			When PM13=1 0600016 to BFFFF16 (744K bytes)			
dS S	(PM15,14=1,0)	Microprocessor mode	When PM13=0 0400016 to FFFFF16 (1008K bytes) When PM13=1			
			0600016 to FFFFF16 (1000K bytes)			
	Expansion mode 2	Memory expansion mode	4000016 to BFFFF16 (512K bytes X 7 +256K bytes)	2800016 to		
	(PM15,14=1,1)	Microprocessor mode	4000016 to FFFFF16 (512K bytes X 8)	3FFFF ₁₆ (96K bytes)		

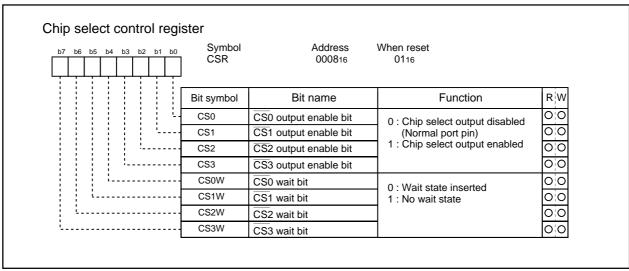


Figure 1.12.1. Chip select control register

(3) Read/write signals

With a 16-bit data bus (BYTE pin = "L"), bit 2 of the processor mode register 0 (address 000416) select the combinations of \overline{RD} , \overline{BHE} , and \overline{WR} signals or \overline{RD} , \overline{WRL} , and \overline{WRH} signals. With an 8-bit data bus (BYTE pin = "H"), use the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals. (Set bit 2 of the processor mode register 0 (address 000416) to "0".) Tables 1.12.3 and 1.12.4 show the operation of these signals.

After a reset has been cancelled, the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals is automatically selected. When switching to the \overline{RD} , \overline{WRL} , and \overline{WRH} combination, do not write to external memory until bit 2 of the processor mode register 0 (address 000416) has been set (Note).

Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A₁₆) to "1".

Table 4 40 0 0	maratian of D	D WDI	J W/DII a: ala
Table 1.12.3. O	peration of R	CD. WKL. and	I WKM Signais
	po. a	,,	

Data bus width	RD	WRL	WRH	Status of external data bus
	L H H Read data		Read data	
16-bit	Н	L	Н	Write 1 byte of data to even address
(BYTE = "L")	Н	Н	L	Write 1 byte of data to odd address
	Н	L	L	Write data to both even and odd addresses

Table 1.12.4. Operation of RD, WR, and BHE signals

				_	
Data bus width	RD	WR	BHE	A0	Status of external data bus
	Н	L	L	Н	Write 1 byte of data to odd address
	L	Н	L	L H Read 1 byte of data from odd addr	
16-bit	Н	L	Н	L	Write 1 byte of data to even address
(BYTE = "L")	L	Н	Н	L	Read 1 byte of data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8-bit	Н	L	Not used	H/L	Write 1 byte of data
(BYTE = "H")	L	Н	Not used	H/L	Read 1 byte of data

(4) ALE signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls.

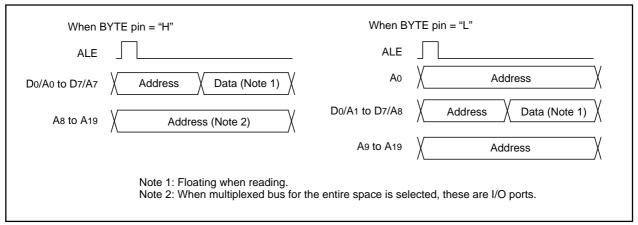


Figure 1.12.2. ALE signal and address/data bus

(5) The RDY signal

RDY is a signal that facilitates access to an external device that requires long access time. As shown in Figure 1.12.3, if an "L" is being input to the RDY at the BCLK falling edge, the bus turns to the wait state. If an "H" is being input to the RDY pin at the BCLK falling edge, the bus cancels the wait state. Table 1.12.5 shows the state of the microcomputer with the bus in the wait state, and Figure 1.12.3 shows an example in which the RD signal is prolonged by the RDY signal.

The \overline{RDY} signal is valid when accessing the external area during the bus cycle in which bits 4 to 7 of the chip select control register (address 000816) are set to "0". The \overline{RDY} signal is invalid when setting "1" to all bits 4 to 7 of the chip select control register (address 000816), but the \overline{RDY} pin should be treated as properly as in non-using.

Table 1.12.5. Microcomputer status in ready state (Note)

Item	Status	
Oscillation	On	
R/W signal, address bus, data bus, CS	Maintain status when RDY signal received	
ALE signal, HLDA, programmable I/O ports		
Internal peripheral circuits	On	

Note: The RDY signal cannot be received immediately prior to a software wait.

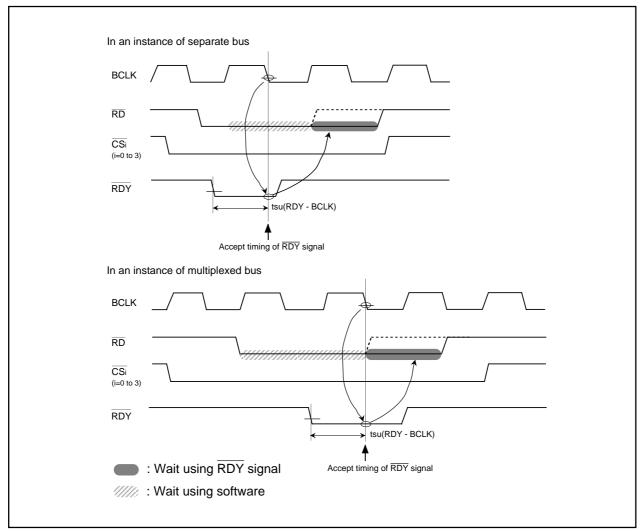


Figure 1.12.3. Example of RD signal extended by RDY signal

(6) Hold signal

The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting "L" to the $\overline{\text{HOLD}}$ pin places the microcomputer in the hold state at the end of the current bus access. This status is maintained and "L" is output from the $\overline{\text{HLDA}}$ pin as long as "L" is input to the $\overline{\text{HOLD}}$ pin. Table 1.12.6 shows the microcomputer status in the hold state.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence.

HOLD > DMAC > CPU

Figure 1.12.4. Bus-using priorities

Table 1.12.6. Microcomputer status in hold state

Ite	m	Status	
Oscillation		ON	
R/W signal, address bus, data	bus, CS, BHE	Floating	
Programmable I/O ports	P0, P1, P2, P3, P4, P5	Floating	
	P6, P7, P8, P9, P10	Maintains status when hold signal is received	
HLDA		Output "L"	
Internal peripheral circuits		ON (but watchdog timer stops)	
ALE signal		Undefined	

(7) External bus status when the internal area is accessed

Table 1.12.7 shows the external bus status when the internal area is accessed.

Table 1.12.7. External bus status when the internal area is accessed

Item		SFR accessed	Internal ROM/RAM accessed
Address bus		Address output	Maintain status before accessed
			address of external area
Data bus	When read	Floating	Floating
	When write	Output data	Undefined
$\overline{RD}, \overline{WR}, \overline{WR}$	RL, WRH	RD, WR, WRL, WRH output	Output "H"
BHE		BHE output	Maintain status before accessed
			status of external area
CS		Output "H"	Output "H"
ALE		Output "L"	Output "L"

(8) BCLK output

The user can choose the BCLK output by use of bit 7 of processor mode register 0 (000416) (Note). When set to "1", the output floating.

Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A₁₆) to "1".

(9) Software wait

A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address 000516) (Note) and bits 4 to 7 of the chip select control register (address 000816).

A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the wait bit of the processor mode register 1. When set to "0", each bus cycle is executed in one BCLK cycle. When set to "1", each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been reset, this bit defaults to "0". When set to "1", a wait is applied to all memory areas (two or three BCLK cycles), regardless of the contents of bits 4 to 7 of the chip select control register. Set this bit after referring to the recommended operating conditions (main clock input oscillation frequency) of the electric characteristics. However, when the user is using the RDY signal, the relevant bit in the chip select control register's bits 4 to 7 must be set to "0".

When the wait bit of the processor mode register 1 is "0", software waits can be set independently for each of the 4 areas selected using the chip select signal. Bits 4 to 7 of the chip select control register correspond to chip selects $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$. When one of these bits is set to "1", the bus cycle is executed in one BCLK cycle. When set to "0", the bus cycle is executed in two or three BCLK cycles. These bits default to "0" after the microcomputer has been reset.

The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also, insert a software wait if using the multiplex bus to access the external memory area.

Table 1.12.8 shows the software wait and bus cycles. Figure 1.12.5 shows example bus timing when using software waits.

Note: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect register (address 000A₁₆) to "1".

Table 1.12.8. Software waits and bus cycles

Area	Bus status	Wait bit	Bits 4 to 7 of chip select control register	Bus cycle
SFR		Invalid	Invalid	2 BCLK cycles
Internal		0	Invalid	1 BCLK cycle
ROM/RAM		1	Invalid	2 BCLK cycles
	Separate bus	0	1	1 BCLK cycle
External	Separate bus	0	0	2 BCLK cycles
memory	Separate bus	1	0 (Note)	2 BCLK cycles
	Multiplex bus	0	0	3 BCLK cycles
	Multiplex bus	1	0 (Note)	3 BCLK cycles

Note: When using the RDY signal, always set to "0".

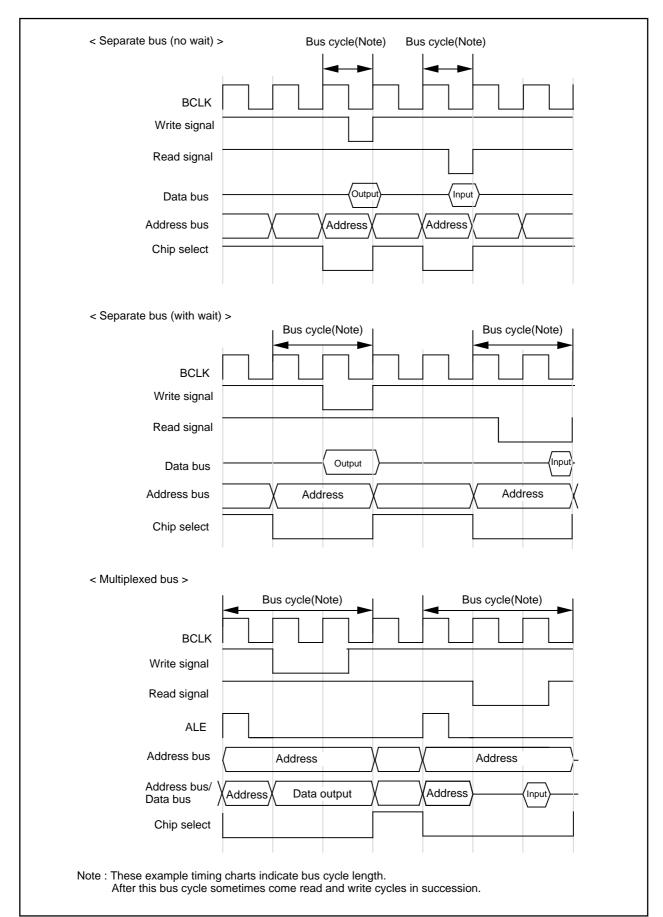


Figure 1.12.5. Typical bus timings using software wait

Clock Generating Circuit

The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the CPU and internal peripheral units.

Table 1.13.1. Main clock and sub-clock generating circuits

	Main clock generating circuit	Sub-clock generating circuit	
Use of clock	CPU's operating clock source	CPU's operating clock source	
	Internal peripheral units'	Timer A/B's count clock	
	operating clock source	source	
Usable oscillator	Ceramic or crystal oscillator	Crystal oscillator	
Pins to connect oscillator	XIN, XOUT	Xcin, Xcout	
Oscillation stop/restart function	Available	Available	
Oscillator status immediately after reset	Oscillating Stopped		
Other	Externally derived clock can be input		

Example of oscillator circuit

Figure 1.13.1 shows some examples of the main clock circuit, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Figure 1.13.2 shows some examples of sub-clock circuits, one using an oscillator connected to the circuit, and the other one using an externally derived clock for input. Circuit constants in Figures 1.13.1 and 1.13.2 vary with each oscillator used. Use the values recommended by the manufacturer of your oscillator.

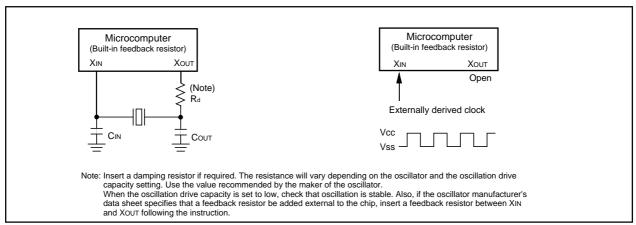


Figure 1.13.1. Examples of main clock

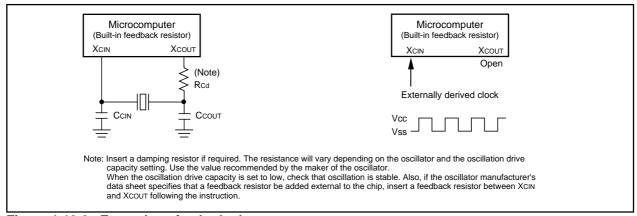


Figure 1.13.2. Examples of sub-clock

Clock Control

Figure 1.13.3 shows the block diagram of the clock generating circuit.

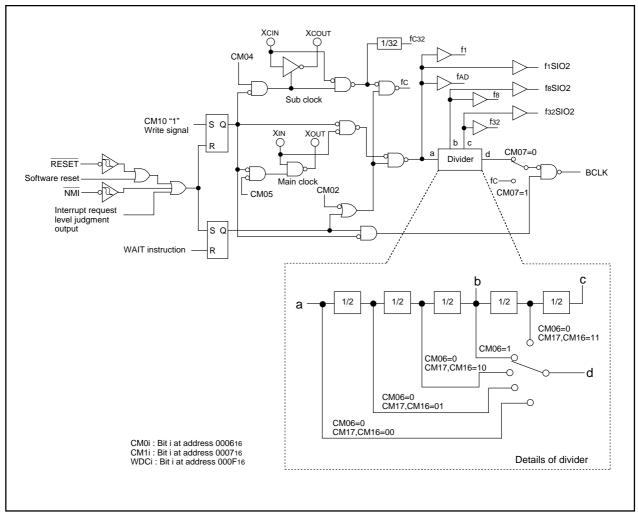


Figure 1.13.3. Clock generating circuit

The following paragraphs describes the clocks generated by the clock generating circuit.

(1) Main clock

The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation. After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716). Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(2) Sub-clock

The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset. After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure that the sub-clock oscillation has fully stabilized before switching.

After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616). Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit changes to "1" when shifting to stop mode and at a reset.

(3) **BCLK**

The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by 1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expansion and the microprocessor modes.

The main clock division select bit 0(bit 6 at address 000616) changes to "1" when shifting from high-speed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

(4) Peripheral function clock(f1, f8, f32, f1SIO2, f8SIO2,f32SIO2,fAD)

The clock for the peripheral devices is derived from the main clock or by dividing it by 1, 8, or 32. The peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function clock stop bit (bit 2 at 000616) to "1" and then executing a WAIT instruction.

(5) fC32

This clock is derived by dividing the sub-clock by 32. It is used for the timer A and timer B counts.

(6) fc

This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.

Figure 1.13.4 shows the system clock control registers 0 and 1.

b7 b6 b5 b4 b3 b2 b1 b0	Symbol CM0	Address 000616	When reset 4816	
	Bit symbol	Bit name	Function	RW
<u>-</u> -	CM00	Clock output function select bit	0 0 : I/O port P57 0 1 : fc output	0
	CM01	(Valid only in single-chip mode)	1 0 : f8 output 1 1 : f32 output	00
	CM02	WAIT peripheral function clock stop bit	0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode (Note 8)	00
	CM03	XCIN-XCOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	00
[CM04	Port Xc select bit	0 : I/O port 1 : XCIN-XCOUT generation	00
	CM05	Main clock (XIN-XOUT) stop bit (Note 3, 4, 5)	0 : On 1 : Off	00
	CM06	Main clock division select bit 0 (Note 7)	0 : CM16 and CM17 valid 1 : Division by 8 mode	00
	CM07	System clock select bit (Note 6)	0 : Xin, Xout 1 : Xcin, Xcout	00

- Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register.
- Note 2: Changes to "1" when shiffing to stop mode and at a reset.
- Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop mode and operating with XIN, set this bit to "0". When main clock oscillation is operating by itself, set system clock select bit (CM07) to "1" before setting this bit to "1".
- Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.
- Note 5: If this bit is set to "1", XOUT turns "H". The built-in feedback resistor remains being connected, so XIN turns pulled up to XOUT ("H") via the feedback resistor.
- Note 6: Set port Xc select bit (CM04) to "1" and stabilize the sub-clock oscillating before setting to this bit from "0" to "1". Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to "0" and stabilize the main clock oscillating before setting this bit from "1" to "0".
- Note 7: This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
- Note 8: fc32 is not included.

System clock control register 1 (Note 1)

0 0 0 0	Symbol CM1	Address 000716	When reset 2016	
	Bit symbol	Bit name	Function	RW
	CM10	All clock stop control bit (Note4)	0 : Clock on 1 : All clocks off (stop mode)	00
	Reserved	bit	Always set to "0"	00
	Reserved	bit	Always set to "0"	00
	Reserved	bit	Always set to "0"	00
	Reserved	bit	Always set to "0"	00
	CM15	XIN-XOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	00
	CM16	Main clock division select bit 1 (Note 3)	0 0 : No division mode 0 1 : Division by 2 mode	00
·	CM17	, ,	1 0 : Division by 4 mode 1 1 : Division by 16 mode	

- Note 1: Set bit 0 of the protect register (address 000A₁₆) to "1" before writing to this register.
- Note 2: This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

 Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is "0". If "1", division mode is
- fixed at 8.
- Note 4: If this bit is set to "1", XOUT turns "H", and the built-in feedback resistor is cut off. XCIN and XCOUT turn highimpedance state.

Figure 1.13.4. Clock control registers 0 and 1

Clock Output

In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f32, or fc to be output from the P57/CLKOUT pin. When the WAIT peripheral function clock stop bit (bit 2 at address 000616) is set to "1", the output of f8 and f32 stops when a WAIT instruction is executed.

Stop Mode

Writing "1" to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcomputer enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC remains above 2V.

Because the oscillation , BCLK, f1 to f32, f1SIO2 to f32SIO2, fC, fC32, and fAD stops in stop mode, peripheral functions such as the A-D converter and watchdog timer do not function. However, timer A and timer B operate provided that the event counter mode is set to an external pulse, and UARTi(i = 0 to 2), SI/O3,4 functions provided an external clock is selected. Table 1.13.2 shows the status of the ports in stop mode. Stop mode is cancelled by a hardware reset or an interrupt. If an interrupt is to be used to cancel stop mode, that interrupt must first have been enabled. If returning by an interrupt, that interrupt routine is executed. When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division select bit 0 (bit 6 at address 000616) is set to "1". When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

Table 1.13.2. Port status during stop mode

Pin		Memory expansion mode	Single-chip mode
		Microprocessor mode	
Address bus, data bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$,		Retains status before stop mode	
BHE			
RD, WR, WI	RL, WRH	"H"	
HLDA, BCLI	<	"H"	
ALE		"H"	
Port		Retains status before stop mode	Retains status before stop mode
CLKOUT When fc selected		Valid only in single-chip mode	"H"
When f8, f32 selected		Valid only in single-chip mode	Retains status before stop mode

Wait Mode

When a WAIT instruction is executed, the BCLK stops and the microcomputer enters the wait mode. In this mode, oscillation continues but the BCLK and watchdog timer stop. Writing "1" to the WAIT peripheral function clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral functions, allowing power dissipation to be reduced. Table 1.13.3 shows the status of the ports in wait mode.

Wait mode is cancelled by a hardware reset or an interrupt. If an interrupt is used to cancel wait mode, the microcomputer restarts from the interrupt routine using as BCLK, the clock that had been selected when the WAIT instruction was executed.

Table 1.13.3. Port status during wait mode

Pin		Memory expansion mode	Single-chip mode	
		Microprocessor mode		
Address bus, dat	ta bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$,	Retains status before wait mode		
BHE				
RD, WR, WRL, V	WRH	"H"		
HLDA,BCLK		"H"		
ALE		"H"		
Port		Retains status before wait mode	Retains status before wait mode	
CLKout	When fc selected	Valid only in single-chip mode	Does not stop	
	When f8, f32 selected	Valid only in single-chip mode	Does not stop when the WAIT	
			peripheral function clock stop	
			bit is "0".	
			When the WAIT peripheral	
			function clock stop bit is "1",	
			the status immediately prior	
			to entering wait mode is main-	
			tained.	

Status Transition Of BCLK

Power dissipation can be reduced and low-voltage operation achieved by changing the count source for BCLK. Table 1.13.4 shows the operating modes corresponding to the settings of system clock control registers 0 and 1.

When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address 000616) changes to "1" when shifting from high-speed/medium-speed to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained. The following shows the operational modes of BCLK.

(1) Division by 2 mode

The main clock is divided by 2 to obtain the BCLK.

(2) Division by 4 mode

The main clock is divided by 4 to obtain the BCLK.

(3) Division by 8 mode

The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4 mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption mode, make sure the sub-clock is oscillating stably.

(4) Division by 16 mode

The main clock is divided by 16 to obtain the BCLK.

(5) No-division mode

The main clock is divided by 1 to obtain the BCLK.

(6) Low-speed mode

fC is used as the BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the sub-clock starts. Therefore, the program must be written to wait until this clock has stabilized immediately after powering up and after stop mode is cancelled.

(7) Low power dissipation mode

fc is the BCLK and the main clock is stopped.

Note: Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably. Allow a wait time in software for the oscillation to stabilize before switching over the clock.

Table 1.13.4. Operating modes dictated by settings of system clock control registers 0 and 1

CM17	CM16	CM07	CM06	CM05	CM04	Operating mode of BCLK
0	1	0	0	0	Invalid	Division by 2 mode
1	0	0	0	0	Invalid	Division by 4 mode
Invalid	Invalid	0	1	0	Invalid	Division by 8 mode
1	1	0	0	0	Invalid	Division by 16 mode
0	0	0	0	0	Invalid	No-division mode
Invalid	Invalid	1	Invalid	0	1	Low-speed mode
Invalid	Invalid	1	Invalid	1	1	Low power dissipation mode

Power control

The following is a description of the three available power control modes:

Modes

Power control is available in three modes.

(a) Normal operation mode

High-speed mode

Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the internal clock selected. Each peripheral function operates according to its assigned clock.

Medium-speed mode

Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the BCLK. The CPU operates according to the internal clock selected. Each peripheral function operates according to its assigned clock.

Low-speed mode

fc becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. Each peripheral function operates according to its assigned clock.

Low power consumption mode

The main clock operating in low-speed mode is stopped. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. The only peripheral functions that operate are those with the sub-clock selected as the count source.

(b) Wait mode

The CPU operation is stopped. The oscillators do not stop.

(c) Stop mode

All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three modes listed here, is the most effective in decreasing power consumption.

Figure 1.13.5 is the state transition diagram of the above modes.

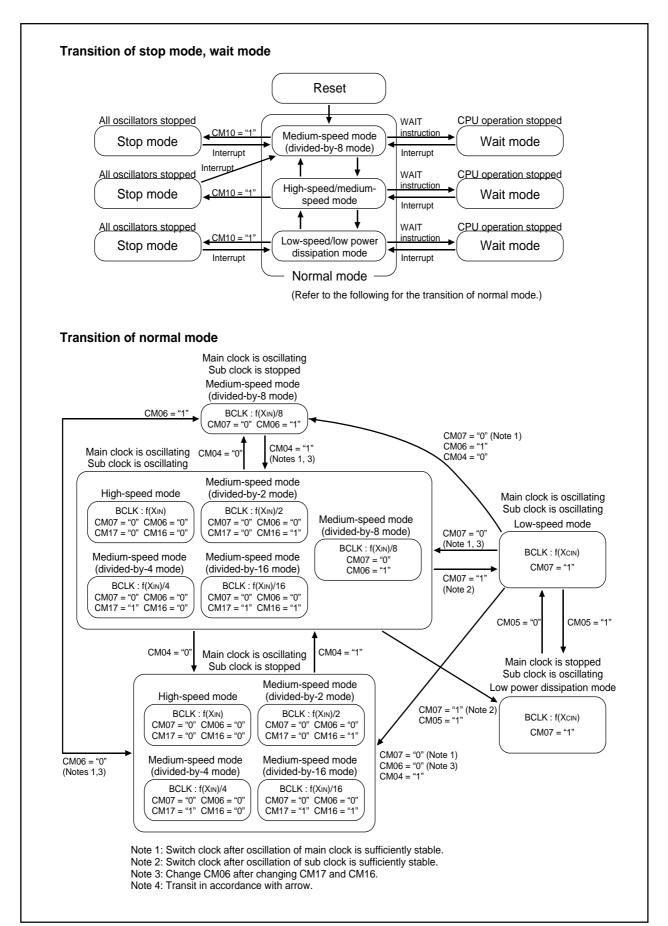


Figure 1.13.5. State transition diagram of Power control mode

Protection

The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 1.13.6 shows the protect register. The values in the processor mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control register 0 (address 000616), system clock control register 1 (address 000716), port P9 direction register (address 03F316), SI/O3 control register (address 036216) and SI/O4 control register (address 036616) can only be changed when the respective bit in the protect register is set to "1". Therefore, important outputs can be allocated to port P9.

If, after "1" (write-enabled) has been written to the port P9 direction register and SI/Oi control register (i=3,4) write-enable bit (bit 2 at address 000A16), a value is written to any address, the bit automatically reverts to "0" (write-inhibited). However, the system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and 1 write-enable bit (bit 1 at 000A16) do not automatically return to "0" after a value has been written to an address. The program must therefore be written to return these bits to "0".

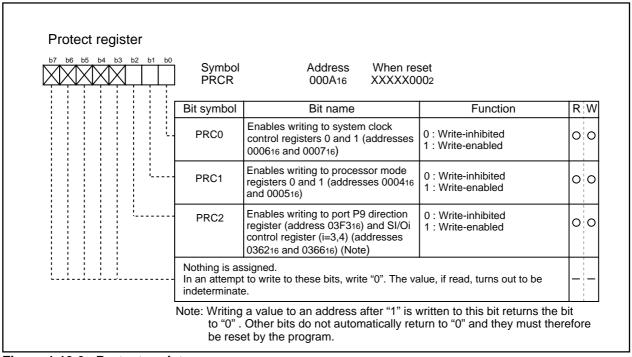


Figure 1.13.6. Protect register

Overview of Interrupt

Type of Interrupts

Figure 1.14.1 lists the types of interrupts.

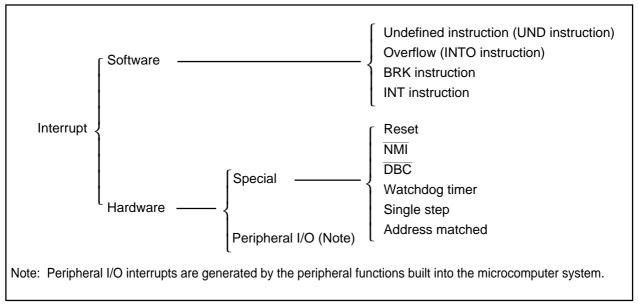


Figure 1.14.1. Classification of interrupts

• Maskable interrupt : An interrupt which can be enabled (disabled) by the interrupt enable flag

(I flag) or whose interrupt priority can be changed by priority level.

• Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag

(I flag) or whose interrupt priority cannot be changed by priority level.

Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

• Undefined instruction interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

Overflow interrupt

An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to "1". The following are instructions whose O flag changes by arithmetic:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

BRK interrupt

A BRK interrupt occurs when executing the BRK instruction.

INT interrupt

An INT interrupt occurs when specifying one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/O interrupt does.

The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is involved.

So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to "0" and select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift.

Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are non-maskable interrupts.

Reset

Reset occurs if an "L" is input to the RESET pin.

• NMI interrupt

An $\overline{\text{NMI}}$ interrupt occurs if an "L" is input to the $\overline{\text{NMI}}$ pin.

• DBC interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances.

Watchdog timer interrupt

Generated by the watchdog timer.

• Single-step interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug flag (D flag) set to "1", a single-step interrupt occurs after one instruction is executed.

Address match interrupt

An address match interrupt occurs immediately before the instruction held in the address indicated by the address match interrupt register is executed with the address match interrupt enable bit set to "1". If an address other than the first address of the instruction in the address match interrupt register is set, no address match interrupt occurs.

(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 0 through 31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.

Bus collision detection interrupt

This is an interrupt that the serial I/O bus collision detection generates.

DMA0 interrupt, DMA1 interrupt

These are interrupts that DMA generates.

Key-input interrupt

A key-input interrupt occurs if an "L" is input to the KI pin.

• A-D conversion interrupt

This is an interrupt that the A-D converter generates.

UART0, UART1, UART2/NACK, SI/O3 and SI/O4 transmission interrupt

These are interrupts that the serial I/O transmission generates.

• UART0, UART1, UART2/ACK, SI/O3 and SI/O4 reception interrupt

These are interrupts that the serial I/O reception generates.

Timer A0 interrupt through timer A4 interrupt

These are interrupts that timer A generates

Timer B0 interrupt through timer B5 interrupt

These are interrupts that timer B generates.

• INTO interrupt through INT5 interrupt

An INT interrupt occurs if either a rising edge or a falling edge or a both edge is input to the INT pin.

Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 1.14.2 shows the format for specifying the address.

Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.

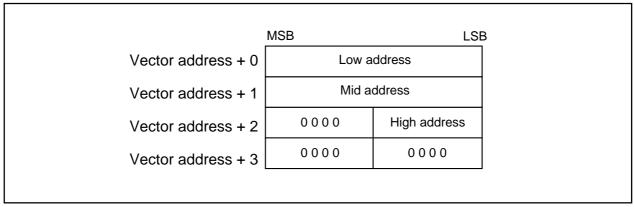


Figure 1.14.2. Format for specifying interrupt vector addresses

Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 1.14.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Table 1.14.1. Interrupts assigned to the fixed vector tables and addresses of vector tables

Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction
BRK instruction	FFFE416 to FFFE716	If the vector contains FF16, program execution starts from
		the address shown by the vector in the variable vector table
Address match	FFFE816 to FFFEB16	There is an address-matching interrupt enable bit
Single step (Note)	FFFEC16 to FFFEF16	Do not use
Watchdog timer	FFFF016 to FFFF316	
DBC (Note)	FFFF416 to FFFF716	Do not use
NMI	FFFF816 to FFFFB16	External interrupt by input to NMI pin
Reset	FFFFC16 to FFFFF16	

Note: Interrupts used for debugging purposes only.

Variable vector tables

The addresses in the variable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 1.14.2 shows the interrupts assigned to the variable vector tables and addresses of vector tables.

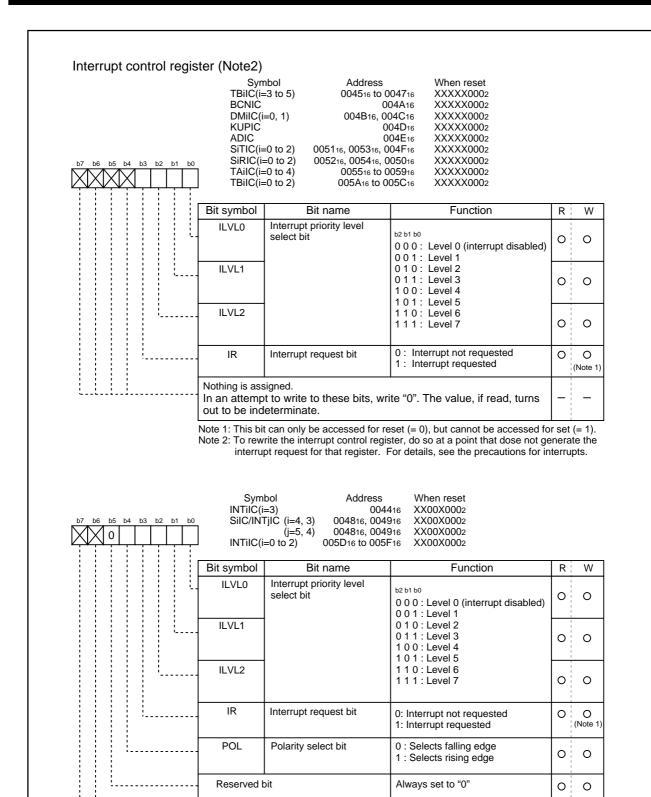
Table 1.14.2. Interrupts assigned to the variable vector tables and addresses of vector tables

Software interrupt number	Vector table address Address (L) to address (H)	Interrupt source	Remarks
Software interrupt number 0	+0 to +3 (Note 1)	BRK instruction	Cannot be masked I flag
Software interrupt number 4	+16 to +19 (Note 1)	ĪNT3	
Software interrupt number 5	+20 to +23 (Note 1)	Timer B5	
Software interrupt number 6	+24 to +27 (Note 1)	Timer B4	
Software interrupt number 7	+28 to +31 (Note 1)	Timer B3	
Software interrupt number 8	+32 to +35 (Note 1)	SI/O4/INT5 (Note 2)	
Software interrupt number 9	+36 to +39 (Note 1)	SI/O3/INT4 (Note 2)	
Software interrupt number 10	+40 to +43 (Note 1)	Bus collision detection	
Software interrupt number 11	+44 to +47 (Note 1)	DMA0	
Software interrupt number 12	+48 to +51 (Note 1)	DMA1	
Software interrupt number 13	+52 to +55 (Note 1)	Key input interrupt	
Software interrupt number 14	+56 to +59 (Note 1)	A-D	
Software interrupt number 15	+60 to +63 (Note 1)	UART2 transmit/NACK (Note 3)	
Software interrupt number 16	+64 to +67 (Note 1)	UART2 receive/ACK (Note 3)	
Software interrupt number 17	+68 to +71 (Note 1)	UART0 transmit	
Software interrupt number 18	+72 to +75 (Note 1)	UART0 receive	
Software interrupt number 19	+76 to +79 (Note 1)	UART1 transmit	
Software interrupt number 20	+80 to +83 (Note 1)	UART1 receive	
Software interrupt number 21	+84 to +87 (Note 1)	Timer A0	
Software interrupt number 22	+88 to +91 (Note 1)	Timer A1	
Software interrupt number 23	+92 to +95 (Note 1)	Timer A2	
Software interrupt number 24	+96 to +99 (Note 1)	Timer A3	
Software interrupt number 25	+100 to +103 (Note 1)	Timer A4	
Software interrupt number 26	+104 to +107 (Note 1)	Timer B0	
Software interrupt number 27	+108 to +111 (Note 1)	Timer B1	
Software interrupt number 28	+112 to +115 (Note 1)	Timer B2	
Software interrupt number 29	+116 to +119 (Note 1)	ĪNT0	
Software interrupt number 30	+120 to +123 (Note 1)	INT1	
Software interrupt number 31	+124 to +127 (Note 1)	INT2	
Software interrupt number 32	+128 to +131 (Note 1)		Connet be a second of the
to Software interrupt number 63	to +252 to +255 (Note 1)	Software interrupt	Cannot be masked I fla

Note 1: Address relative to address in interrupt table register (INTB).

Note 2: It is selected by interrupt request cause bit (bit 6, 7 in address 035F16).

Note 3: When IIC mode is selected, NACK and ACK interrupts are selected.


Interrupt Control

Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the priority to be accepted. What is described here does not apply to non-maskable interrupts.

Enable or disable a maskable interrupt using the interrupt enable flag (I flag), interrupt priority level selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the IPL are located in the flag register (FLG).

Figure 1.14.3 shows the memory map of the interrupt control registers.

Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1). Note 2: To rewrite the interrupt control register, do so at a point that dose not generate the interrupt request for that register. For details, see the precautions for interrupts.

In an attempt to write to these bits, write "0". The value, if read, turns

Figure 1.14.3. Interrupt control registers

Nothing is assigned.

out to be indeterminate.

Interrupt Enable Flag (I flag)

The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this flag to "1" enables all maskable interrupts; setting it to "0" disables all maskable interrupts. This flag is set to "0" after reset.

Interrupt Request Bit

The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is accepted and jumps to the corresponding interrupt vector, the request bit is set to "0" by hardware. The interrupt request bit can also be set to "0" by software. (Do not set this bit to "1").

Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)

Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL. Therefore, setting the interrupt priority level to "0" disables the interrupt.

Table 1.14.3 shows the settings of interrupt priority levels and Table 1.14.4 shows the interrupt levels enabled, according to the consist of the IPL.

The following are conditions under which an interrupt is accepted:

- · interrupt enable flag (I flag) = 1
- · interrupt request bit = 1
- · interrupt priority level > IPL

The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are independent, and they are not affected by one another.

Table 1.14.3. Settings of interrupt priority levels

Interrupt priority level select bit		Interrupt priority level	Priority order
b2 b1	b0		
0 0	0	Level 0 (interrupt disabled)	
0 0	1	Level 1	Low
0 1	0	Level 2	
0 1	1	Level 3	
1 0	0	Level 4	
1 0	1	Level 5	
1 1	0	Level 6	
1 1	1	Level 7	High

Table 1.14.4. Interrupt levels enabled according to the contents of the IPL

IPL		Enabled interrupt priority levels
IPL2 IPL1 I	PL ₀	
0 0	0	Interrupt levels 1 and above are enabled
0 0	1	Interrupt levels 2 and above are enabled
0 1	0	Interrupt levels 3 and above are enabled
0 1	1	Interrupt levels 4 and above are enabled
1 0	0	Interrupt levels 5 and above are enabled
1 0	1	Interrupt levels 6 and above are enabled
1 1	0	Interrupt levels 7 and above are enabled
1 1	1	All maskable interrupts are disabled

Rewrite the interrupt control register

To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h; Clear TA0IC int. priority level and int. request bit.

NOP ; Four NOP instructions are required when using HOLD function.

NOP ; Enable interrupts.

Example 2:

INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

MOV.W MEM, R0 ; Dummy read. FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC FLG ; Push Flag register onto stack

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

POPC FLG ; Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions: AND, OR, BCLR, BSET

Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

- (1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016. After this, the corresponding interrupt request bit becomes "0".
- (2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
- (3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
- (4) Saves the content of the temporary register (Note) within the CPU in the stack area.
- (5) Saves the content of the program counter (PC) in the stack area.
- (6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.

Note: This register cannot be utilized by the user.

Interrupt Response Time

'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 1.14.4 shows the interrupt response time.

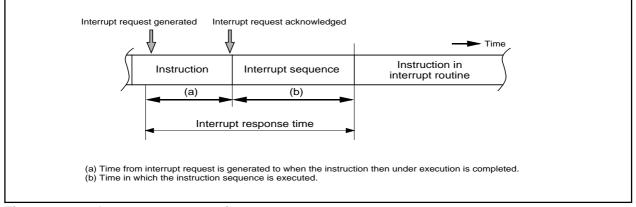


Figure 1.14.4. Interrupt response time

Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the DIVX instruction (without wait).

Time (b) is as shown in Table 1.14.5.

Table 1.14.5. Time required for executing the interrupt sequence

Interrupt vector address	Stack pointer (SP) value	16-Bit bus, without wait	8-Bit bus, without wait
Even	Even	18 cycles (Note 1)	20 cycles (Note 1)
Even	Odd	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Even	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Odd	20 cycles (Note 1)	20 cycles (Note 1)

Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence interrupt or of a single-step interrupt.

Note 2: Locate an interrupt vector address in an even address, if possible.

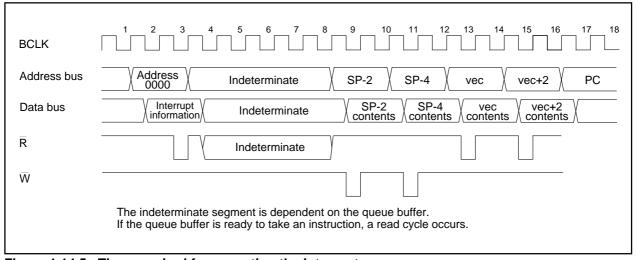


Figure 1.14.5. Time required for executing the interrupt sequence

Variation of IPL when Interrupt Request is Accepted

If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL. If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown in Table 1.14.6 is set in the IPL.

Table 1.14.6. Relationship between interrupts without interrupt priority levels and IPL

Interrupt sources without priority levels	Value set in the IPL
Watchdog timer, NMI	7
Reset	0
Other	Not changed

Saving Registers

In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter (PC) are saved in the stack area.

First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8 lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the program counter. Figure 1.14.6 shows the state of the stack as it was before the acceptance of the interrupt request, and the state the stack after the acceptance of the interrupt request.

Save other necessary registers at the beginning of the interrupt routine using software. Using the PUSHM instruction alone can save all the registers except the stack pointer (SP).

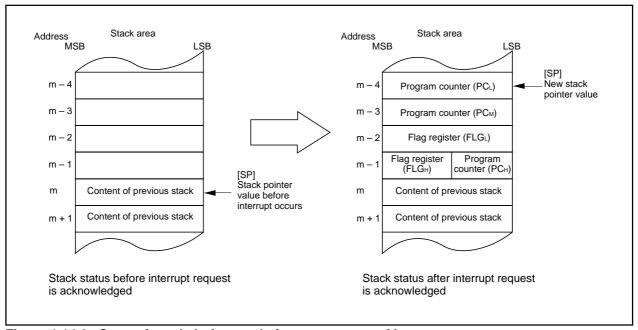


Figure 1.14.6. State of stack before and after acceptance of interrupt request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the content of the stack pointer, at the time of acceptance of an interrupt request, is even or odd. If the content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at a time. Figure 1.14.7 shows the operation of the saving registers.

Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the stack pointer indicated by the U flag. Otherwise, it is the interrupt stack pointer (ISP).

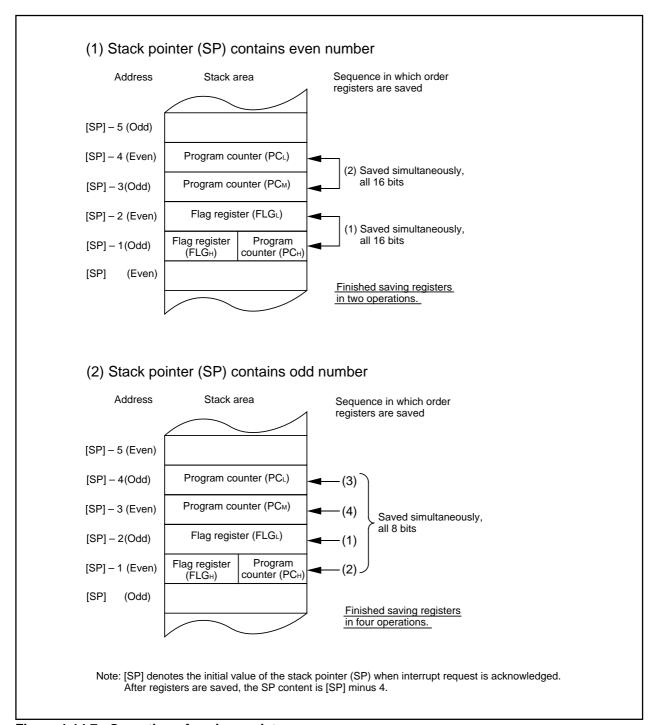


Figure 1.14.7. Operation of saving registers

Returning from an Interrupt Routine

Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register (FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter (PC), both of which have been saved in the stack area. Then control returns to the program that was being executed before the acceptance of the interrupt request, so that the suspended process resumes.

Return the other registers saved by software within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Interrupt Priority

If there are two or more interrupt requests occurring at a point in time within a single sampling (checking whether interrupt requests are made), the interrupt assigned a higher priority is accepted.

Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware priority is accepted.

Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority), watchdog timer interrupt, etc. are regulated by hardware.

Figure 1.14.8 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

Reset > NMI > DBC > Watchdog timer > Peripheral I/O > Single step > Address match

Figure 1.14.8. Hardware interrupts priorities

Interrupt resolution circuit

When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest priority level. Figure 1.14.9 shows the circuit that judges the interrupt priority level.

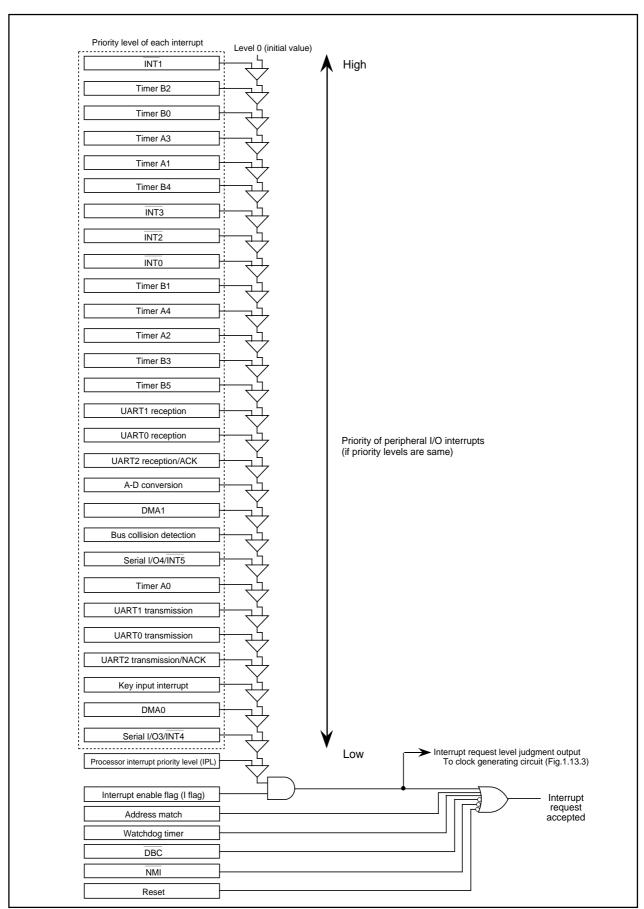


Figure 1.14.9. Maskable interrupts priorities (peripheral I/O interrupts)

INT Interrupt

INTO to INT5 are triggered by the edges of external inputs. The edge polarity is selected using the polarity select bit.

Of interrupt control registers, 004816 is used both as serial I/O4 and external interrupt INT5 input control register, and 004916 is used both as serial I/O3 and as external interrupt INT4 input control register. Use the interrupt request cause select bits - bits 6 and 7 of the interrupt request cause select register (035F16) - to specify which interrupt request cause to select. After having set an interrupt request cause, be sure to clear the corresponding interrupt request bit before enabling an interrupt.

Either of the interrupt control registers - 004816, 004916 - has the polarity-switching bit. Be sure to set this bit to "0" to select an serial I/O as the interrupt request cause.

As for external interrupt input, an interrupt can be generated both at the rising edge and at the falling edge by setting "1" in the INTi interrupt polarity switching bit of the interrupt request cause select register (035F₁₆). To select both edges, set the polarity switching bit of the corresponding interrupt control register to 'falling edge' ("0").

Figure 1.14.10 shows the Interrupt request cause select register.

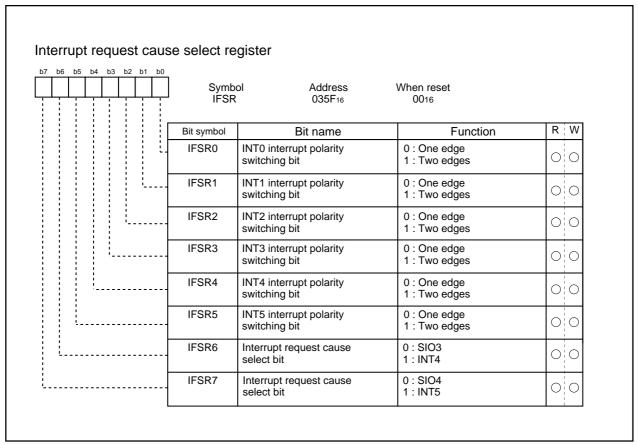


Figure 1.14.10. Interrupt request cause select register

NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when the input to the P85/ $\overline{\text{NMI}}$ pin changes from "H" to "L". The $\overline{\text{NMI}}$ interrupt is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address 03F016).

This pin cannot be used as a normal port input.

Key Input Interrupt

If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as A-D input ports. Figure 1.14.11 shows the block diagram of the key input interrupt. Note that if an "L" level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an interrupt.

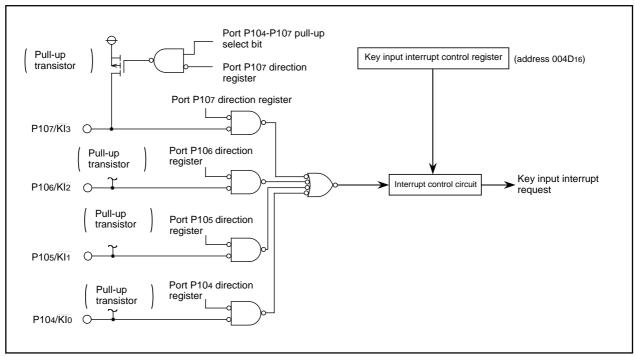


Figure 1.14.11. Block diagram of key input interrupt

Address Match Interrupt

An address match interrupt is generated when the address match interrupt address register contents match the program counter value. Two address match interrupts can be set, each of which can be enabled and disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL). The value of the program counter (PC) for an address match interrupt varies depending on the instruction being executed. Note that when using the external data bus in width of 8 bits, the address match interrupt cannot be used for external area. Figure 1.14.12 shows the address match interrupt-related registers.

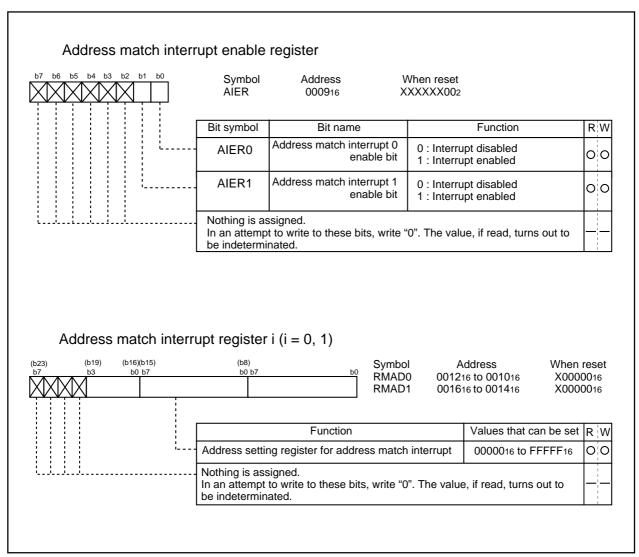


Figure 1.14.12. Address match interrupt-related registers

Precautions for Interrupts

(1) Reading address 0000016

• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.

The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0".

Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0".

Though the interrupt is generated, the interrupt routine may not be executed.

Do not read address 0000016 by software.

(2) Setting the stack pointer

• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the NMI interrupt is prohibited.

(3) The NMI interrupt

- •The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if unused.
- The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
- Do not reset the CPU with the input to the NMI pin being in the "L" state.
- Do not attempt to go into stop mode with the input to the \overline{NMI} pin being in the "L" state. With the input to the \overline{NMI} being in the "L" state, the CM10 is fixed to "0", so attempting to go into stop mode is turned down.
- Do not attempt to go into wait mode with the input to the \overline{NMI} pin being in the "L" state. With the input to the \overline{NMI} pin being in the "L" state, the CPU stops but the oscillation does not stop, so no power is saved. In this instance, the CPU is returned to the normal state by a later interrupt.
- Signals input to the NMI pin require an "L" level of 1 clock or more, from the operation clock of the CPU.

(4) External interrupt

- Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INTo through INT5 regardless of the CPU operation clock.
- When the polarity of the INTo to INTo pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 1.14.13 shows the procedure for changing the INT interrupt generate factor.

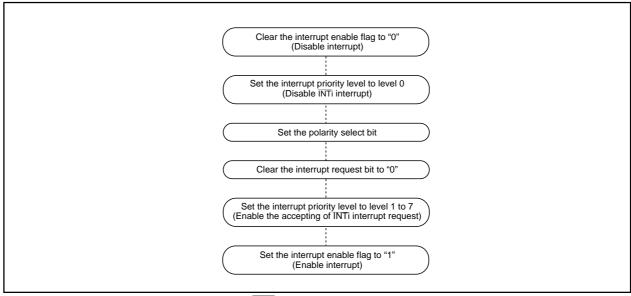


Figure 1.14.13. Switching condition of INT interrupt request

(5) Rewrite the interrupt control register

• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

```
Example 1:
   INT_SWITCH1:
       FCLR
                              ; Disable interrupts.
       AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.
       NOP
                              ; Four NOP instructions are required when using HOLD function.
       NOP
       FSET
                              ; Enable interrupts.
Example 2:
   INT_SWITCH2:
       FCLR
                              ; Disable interrupts.
       AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.
       MOV.W MEM, R0
                              ; Dummy read.
       FSET
                              ; Enable interrupts.
Example 3:
   INT_SWITCH3:
       PUSHC FLG
                              ; Push Flag register onto stack
       FCI R
                              ; Disable interrupts.
       AND.B
                #00h, 0055h
                             ; Clear TAOIC int. priority level and int. request bit.
                              ; Enable interrupts.
       POPC
                FLG
```

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions: AND, OR, BCLR, BSET

Watchdog Timer

The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is selected for the BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7 of the watchdog timer control register (address 000F16). Thus the watchdog timer's period can be calculated as given below. The watchdog timer's period is, however, subject to an error due to the prescaler.

With XIN chosen for BCLK

Watchdog timer period =

| prescaler dividing ratio (16 or 128) X watchdog timer count (32768)
| BCLK

With XCIN chosen for BCLK

Watchdog timer period =
| prescaler dividing ratio (2) X watchdog timer count (32768)
| BCLK

For example, suppose that BCLK runs at 16 MHz and that 16 has been chosen for the dividing ratio of the prescaler, then the watchdog timer's period becomes approximately 32.8 ms.

The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by writing to the watchdog timer start register (address 000E16).

Figure 1.15.1 shows the block diagram of the watchdog timer. Figure 1.15.2 shows the watchdog timer-related registers.

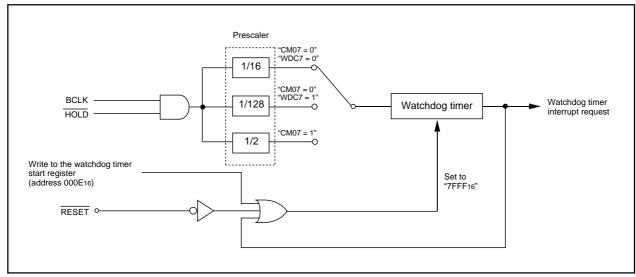


Figure 1.15.1. Block diagram of watchdog timer

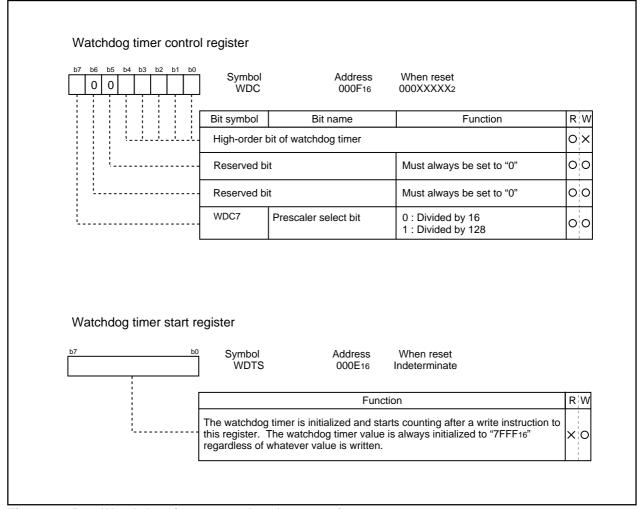


Figure 1.15.2. Watchdog timer control and start registers

DMAC

This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16-bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure 1.16.1 shows the block diagram of the DMAC. Table 1.16.1 shows the DMAC specifications. Figures 1.16.2 to 1.16.4 show the registers used by the DMAC.

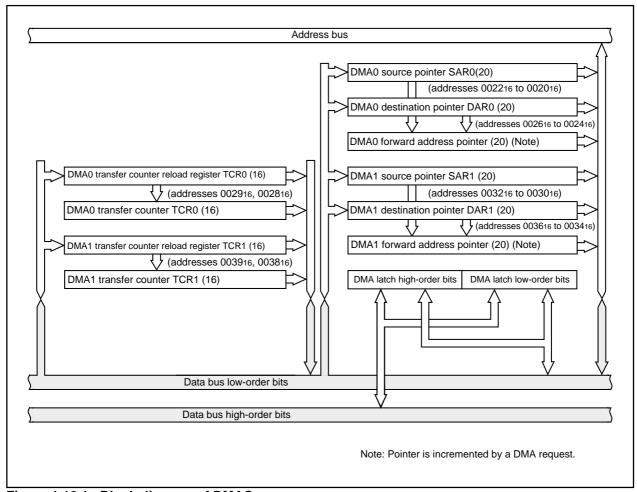


Figure 1.16.1. Block diagram of DMAC

Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level. The DMA transfer doesn't affect any interrupts either.

If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the number of transfers. For details, see the description of the DMA request bit.

Table 1.16.1. DMAC specifications

Item	Specification
No. of channels	2 (cycle steal method)
Transfer memory space	 From any address in the 1M bytes space to a fixed address From a fixed address to any address in the 1M bytes space From a fixed address to a fixed address
Maximum No. of bytes transferred	(Note that DMA-related registers [002016 to 003F16] cannot be accessed) 128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)
DMA request factors (Note)	Falling edge of INT0 or INT1 (INT0 can be selected by DMA0, INT1 by DMA1) or both edge Timer A0 to timer A4 interrupt requests Timer B0 to timer B5 interrupt requests UART0 transfer and reception interrupt requests UART1 transfer and reception interrupt requests UART2 transfer and reception interrupt requests Serial I/O3, 4 interrpt requests A-D conversion interrupt requests Software triggers
Channel priority	DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously
Transfer unit	8 bits or 16 bits
Transfer address direction	forward/fixed (forward direction cannot be specified for both source and destination simultaneously)
Transfer mode	 Single transfer mode After the transfer counter underflows, the DMA enable bit turns to "0", and the DMAC turns inactive Repeat transfer mode After the transfer counter underflows, the value of the transfer counter reload register is reloaded to the transfer counter. The DMAC remains active unless a "0" is written to the DMA enable bit.
DMA interrupt request generation timing	When an underflow occurs in the transfer counter
Active	When the DMA enable bit is set to "1", the DMAC is active. When the DMAC is active, data transfer starts every time a DMA transfer request signal occurs.
Inactive	 When the DMA enable bit is set to "0", the DMAC is inactive. After the transfer counter underflows in single transfer mode
Forward address pointer and reload timing for transfer counter	At the time of starting data transfer immediately after turning the DMAC active, the value of one of source pointer and destination pointer - the one specified for the forward direction - is reloaded to the forward direction address pointer, and the value of the transfer counter reload register is reloaded to the transfer counter.
Writing to register	Registers specified for forward direction transfer are always write enabled. Registers specified for fixed address transfer are write-enabled when the DMA enable bit is "0".
Reading the register	Can be read at any time. However, when the DMA enable bit is "1", reading the register set up as the forward register is the same as reading the value of the forward address pointer.

Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the interrupt priority level.

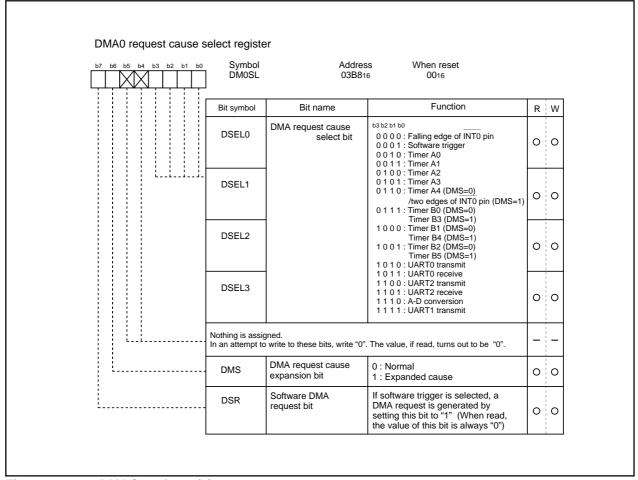


Figure 1.16.2. DMAC register (1)

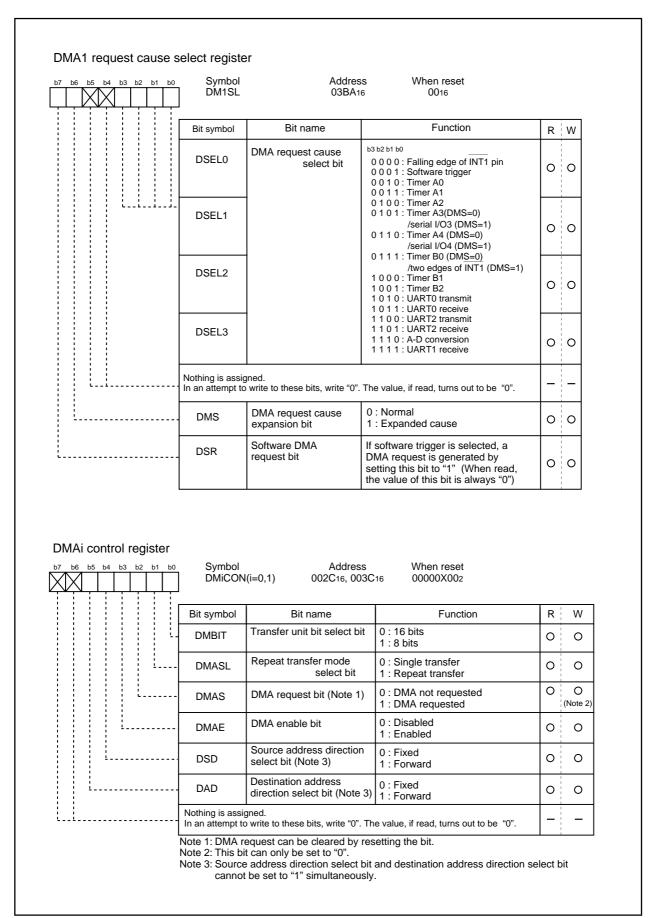


Figure 1.16.3. DMAC register (2)

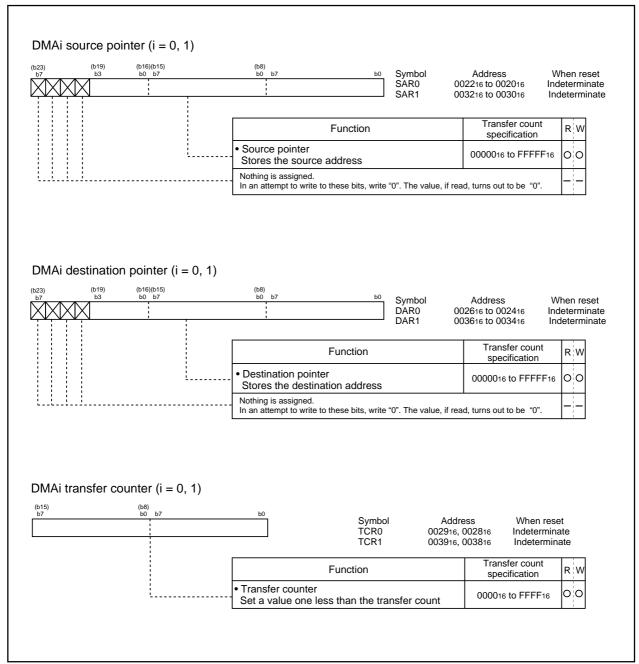


Figure 1.16.4. DMAC register (3)

(1) Transfer cycle

The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area (source read) and the bus cycle in which the data is written to memory or to the SFR area (destination write). The number of read and write bus cycles depends on the source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.

(a) Effect of source and destination addresses

When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd addresses, there are one more source read cycle and destination write cycle than when the source and destination both start at even addresses.

(b) Effect of BYTE pin level

When transferring 16-bit data over an 8-bit data bus (BYTE pin = "H") in memory expansion mode and microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are required for reading the data and two are required for writing the data. Also, in contrast to when the CPU accesses internal memory, when the DMAC accesses internal memory (internal ROM, internal RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin.

(c) Effect of software wait

When the SFR area or a memory area with a software wait is accessed, the number of cycles is increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.

Figure 1.16.5 shows the example of the transfer cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 1.16.5, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source read cycle and the destination write cycle.

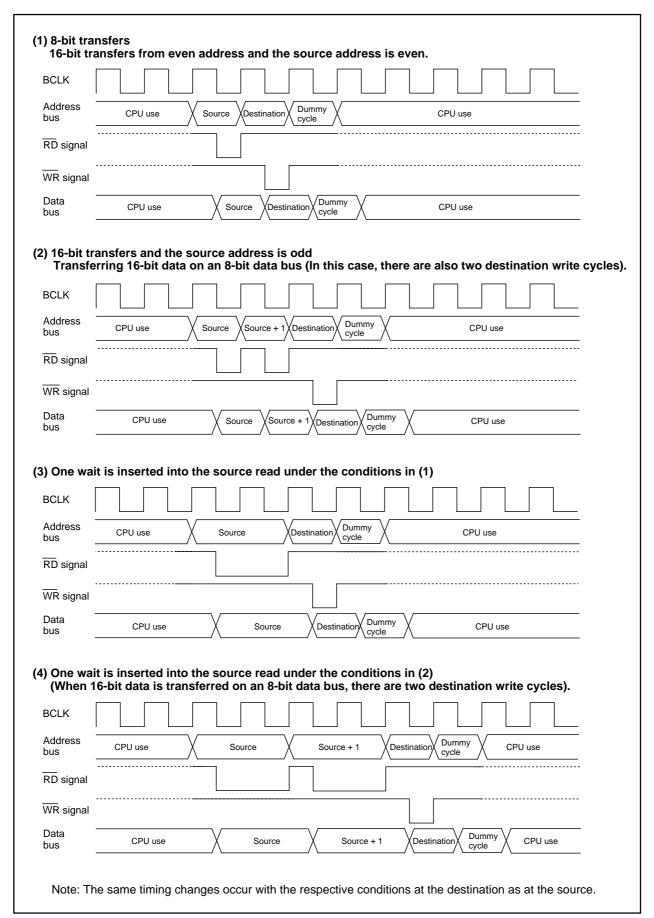


Figure 1.16.5. Example of the transfer cycles for a source read

(2) DMAC transfer cycles

Any combination of even or odd transfer read and write addresses is possible. Table 1.16.2 shows the number of DMAC transfer cycles.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

Table 1.16.2. No. of DMAC transfer cycles

			Single-ch	nip mode	Memory expa	ansion mode	
Transfer unit	Bus width	Access address				Microprocessor mode	
			No. of read	No. of write	No. of read	No. of write	
			cycles	cycles	cycles	cycles	
	16-bit	Even	1	1	1	1	
8-bit transfers	(BYTE= "L")	Odd	1	1	1	1	
(DMBIT= "1")	8-bit	Even	_	_	1	1	
	(BYTE = "H")	Odd	_	_	1	1	
	16-bit	Even	1	1	1	1	
16-bit transfers	(BYTE = "L")	Odd	2	2	2	2	
(DMBIT= "0")	8-bit	Even	_	_	2	2	
	(BYTE = "H")	Odd	_	_	2	2	

Coefficient j, k

Internal memory			Ex	ternal memory	
Internal ROM/RAM	Internal ROM/RAM	SFR area	Separate bus	Separate bus	Multiplex
No wait	With wait		No wait	With wait	bus
1	2	2	1	2	3

DMA enable bit

Setting the DMA enable bit to "1" makes the DMAC active. The DMAC carries out the following operations at the time data transfer starts immediately after DMAC is turned active.

- (1) Reloads the value of one of the source pointer and the destination pointer the one specified for the forward direction to the forward direction address pointer.
- (2) Reloads the value of the transfer counter reload register to the transfer counter.

Thus overwriting "1" to the DMA enable bit with the DMAC being active carries out the operations given above, so the DMAC operates again from the initial state at the instant "1" is overwritten to the DMA enable bit.

DMA request bit

The DMAC can generate a DMA transfer request signal triggered by a factor chosen in advance out of DMA request factors for each channel.

DMA request factors include the following.

- * Factors effected by using the interrupt request signals from the built-in peripheral functions and software DMA factors (internal factors) effected by a program.
- * External factors effected by utilizing the input from external interrupt signals.

For the selection of DMA request factors, see the descriptions of the DMAi factor selection register.

The DMA request bit turns to "1" if the DMA transfer request signal occurs regardless of the DMAC's state (regardless of whether the DMA enable bit is set "1" or to "0"). It turns to "0" immediately before data transfer starts.

In addition, it can be set to "0" by use of a program, but cannot be set to "1".

There can be instances in which a change in DMA request factor selection bit causes the DMA request bit to turn to "1". So be sure to set the DMA request bit to "0" after the DMA request factor selection bit is changed.

The DMA request bit turns to "1" if a DMA transfer request signal occurs, and turns to "0" immediately before data transfer starts. If the DMAC is active, data transfer starts immediately, so the value of the DMA request bit, if read by use of a program, turns out to be "0" in most cases. To examine whether the DMAC is active, read the DMA enable bit.

Here follows the timing of changes in the DMA request bit.

(1) Internal factors

Except the DMA request factors triggered by software, the timing for the DMA request bit to turn to "1" due to an internal factor is the same as the timing for the interrupt request bit of the interrupt control register to turn to "1" due to several factors.

Turning the DMA request bit to "1" due to an internal factor is timed to be effected immediately before the transfer starts.

(2) External factors

An external factor is a factor caused to occur by the leading edge of input from the INTi pin (i depends on which DMAC channel is used).

Selecting the INTi pins as external factors using the DMA request factor selection bit causes input from these pins to become the DMA transfer request signals.

The timing for the DMA request bit to turn to "1" when an external factor is selected synchronizes with the signal's edge applicable to the function specified by the DMA request factor selection bit (synchronizes with the trailing edge of the input signal to each INTi pin, for example).

With an external factor selected, the DMA request bit is timed to turn to "0" immediately before data transfer starts similarly to the state in which an internal factor is selected.

(3) The priorities of channels and DMA transfer timing

If a DMA transfer request signal falls on a single sampling cycle (a sampling cycle means one period from the leading edge to the trailing edge of BCLK), the DMA request bits of applicable channels concurrently turn to "1". If the channels are active at that moment, DMA0 is given a high priority to start data transfer. When DMA0 finishes data transfer, it gives the bus right to the CPU. When the CPU finishes single bus access, then DMA1 starts data transfer and gives the bus right to the CPU.

An example in which DMA transfer is carried out in minimum cycles at the time when DMA transfer request signals due to external factors concurrently occur.

Figure 1.16.6 An example of DMA transfer effected by external factors.

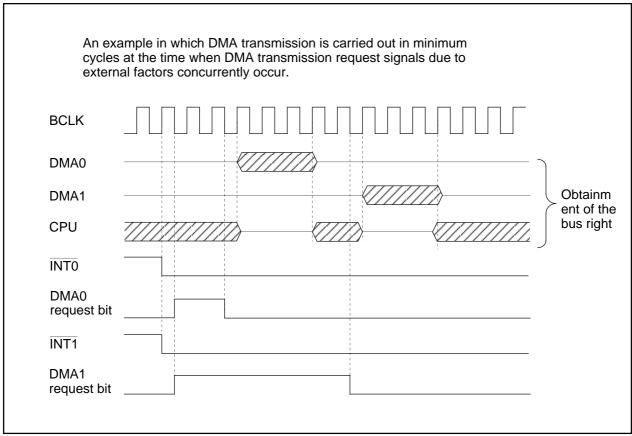


Figure 1.16.6. An example of DMA transfer effected by external factors

Timer

There are eleven 16-bit timers. These timers can be classified by function into timers A (five) and timers B (six). All these timers function independently. Figures 1.17.1 and 1.17.2 show the block diagram of timers.

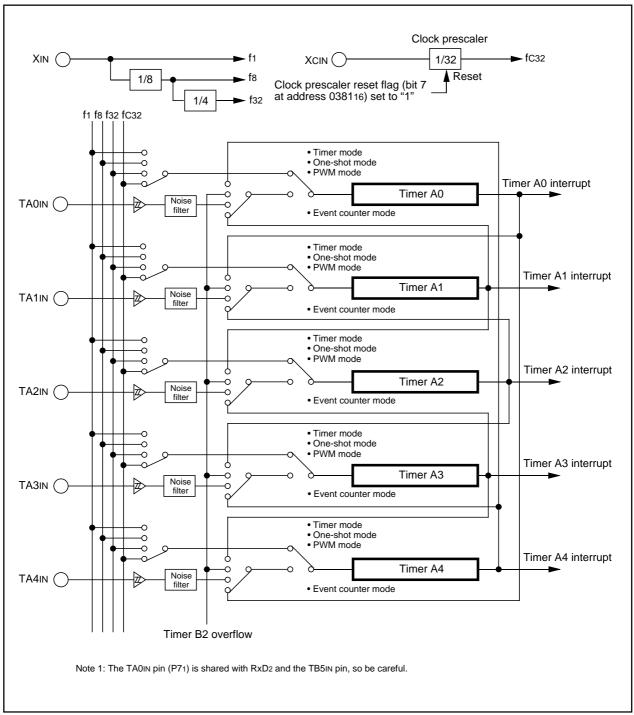


Figure 1.17.1. Timer A block diagram

Figure 1.17.2. Timer B block diagram

Timer A

Figure 1.17.3 shows the block diagram of timer A. Figures 1.17.4 to 1.17.6 show the timer A-related registers.

Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode register (i = 0 to 4) bits 0 and 1 to choose the desired mode.

Timer A has the four operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer over flow.
- One-shot timer mode: The timer stops counting when the count reaches "000016".
- Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.

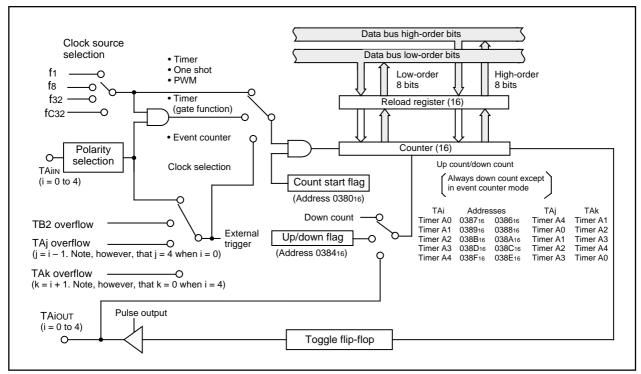


Figure 1.17.3. Block diagram of timer A

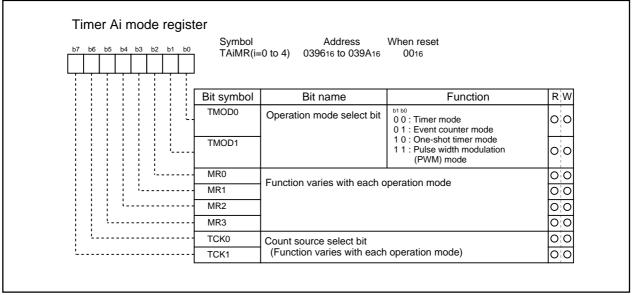


Figure 1.17.4. Timer A-related registers (1)

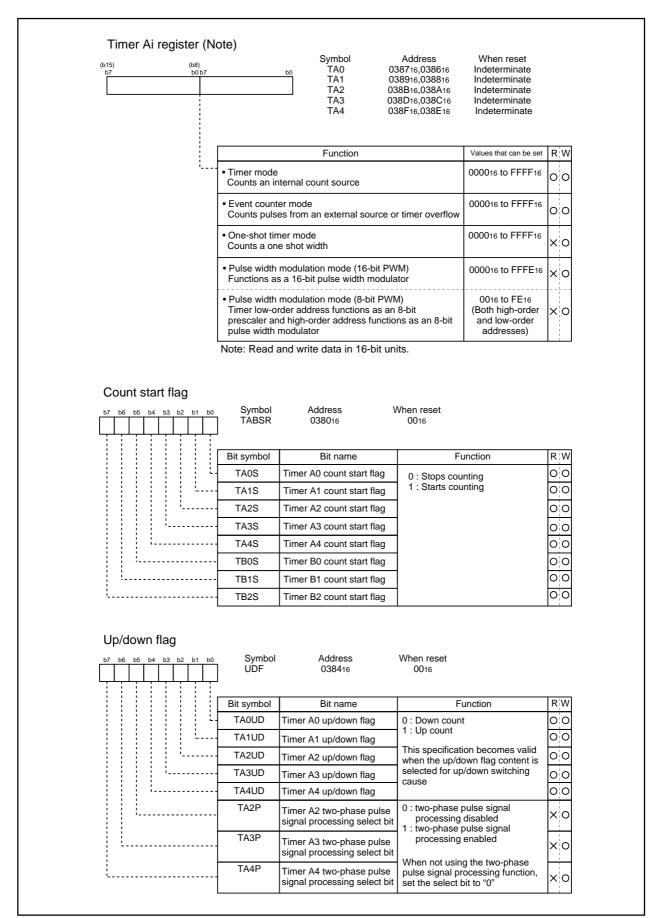


Figure 1.17.5. Timer A-related registers (2)

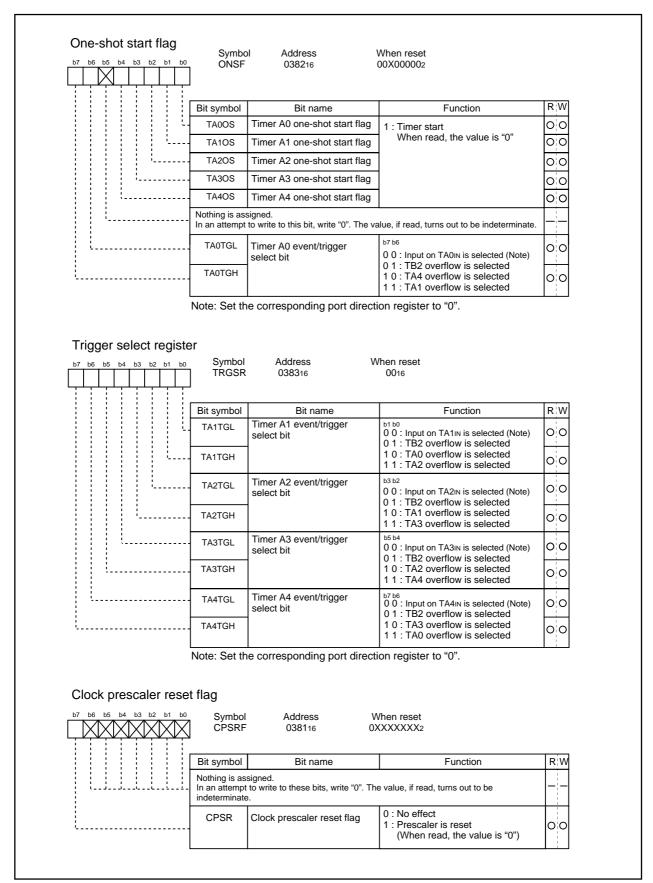


Figure 1.17.6. Timer A-related registers (3)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 1.17.1.) Figure 1.17.7 shows the timer Ai mode register in timer mode.

Table 1.17.1. Specifications of timer mode

Item	Specification		
Count source	f1, f8, f32, fC32		
Count operation	Down count		
	When the timer underflows, it reloads the reload register contents before continuing counting		
Divide ratio	1/(n+1) n : Set value		
Count start condition	Count start flag is set (= 1)		
Count stop condition	Count start flag is reset (= 0)		
Interrupt request generation timing	When the timer underflows		
TAilN pin function	Programmable I/O port or gate input		
TAiout pin function	Programmable I/O port or pulse output		
Read from timer	Count value can be read out by reading timer Ai register		
Write to timer	When counting stopped		
	When a value is written to timer Ai register, it is written to both reload register and counter		
	When counting in progress		
	When a value is written to timer Ai register, it is written to only reload register		
	(Transferred to counter at next reload time)		
Select function	Gate function		
	Counting can be started and stopped by the TAilN pin's input signal		
	Pulse output function		
	Each time the timer underflows, the TAio∪T pin's polarity is reversed		

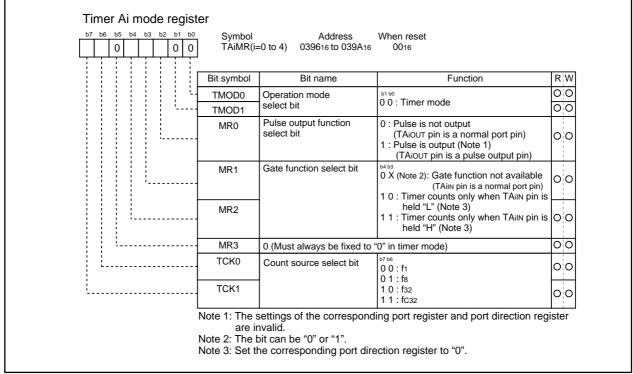


Figure 1.17.7. Timer Ai mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. Timers A0 and A1 can count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase external signal. Table 1.17.2 lists timer specifications when counting a single-phase external signal. Figure 1.17.8 shows the timer Ai mode register in event counter mode.

Table 1.17.3 lists timer specifications when counting a two-phase external signal. Figure 1.17.9 shows the timer Ai mode register in event counter mode.

Table 1.17.2. Timer specifications in event counter mode (when not processing two-phase pulse signal)

Item	Specification		
Count source	External signals input to TAilN pin (effective edge can be selected by software)		
	TB2 overflow, TAj overflow		
Count operation	Up count or down count can be selected by external signal or software		
	When the timer overflows or underflows, it reloads the reload register con		
	tents before continuing counting (Note)		
Divide ratio	1/ (FFFF16 - n + 1) for up count		
	1/ (n + 1) for down count n : Set value		
Count start condition	Count start flag is set (= 1)		
Count stop condition	Count start flag is reset (= 0)		
Interrupt request generation timing	The timer overflows or underflows		
TAilN pin function	Programmable I/O port or count source input		
TAio∪T pin function	Programmable I/O port, pulse output, or up/down count select input		
Read from timer	Count value can be read out by reading timer Ai register		
Write to timer	When counting stopped		
	When a value is written to timer Ai register, it is written to both reload register and counter		
	When counting in progress		
	When a value is written to timer Ai register, it is written to only reload register		
	(Transferred to counter at next reload time)		
Select function	Free-run count function		
	Even when the timer overflows or underflows, the reload register content is not reloaded to it		
	Pulse output function		
	Each time the timer overflows or underflows, the TAiout pin's polarity is reversed		

Note: This does not apply when the free-run function is selected.

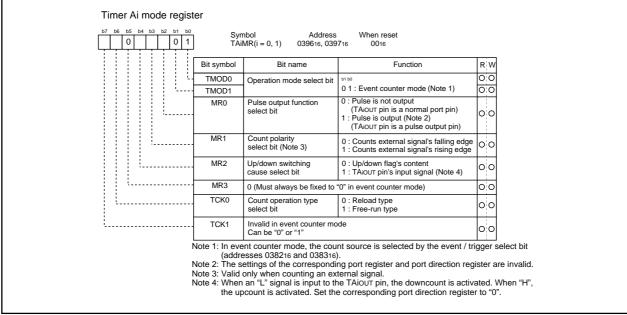


Figure 1.17.8. Timer Ai mode register in event counter mode

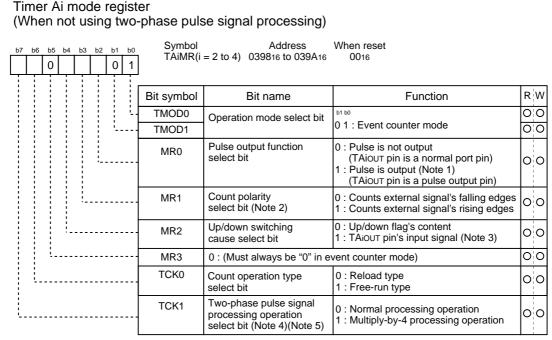


Table 1.17.3. Timer specifications in event counter mode (when processing two-phase pulse signal with timers A2, A3, and A4)

Item	Specification		
Count source	• Two-phase pulse signals input to TAin or TAiout pin		
Count operation	Up count or down count can be selected by two-phase pulse signal		
	When the timer overflows or underflows, the reload register content is		
	reloaded and the timer starts over again (Note)		
Divide ratio	1/ (FFFF16 - n + 1) for up count		
	1/ (n + 1) for down count n : Set value		
Count start condition	Count start flag is set (= 1)		
Count stop condition	Count start flag is reset (= 0)		
Interrupt request generation timing	Timer overflows or underflows		
TAilN pin function	Two-phase pulse input		
TAiout pin function	Two-phase pulse input		
Read from timer	Count value can be read out by reading timer A2, A3, or A4 register		
Write to timer	When counting stopped		
	When a value is written to timer A2, A3, or A4 register, it is written to both		
	reload register and counter		
	When counting in progress		
	When a value is written to timer A2, A3, or A4 register, it is written to only		
	reload register. (Transferred to counter at next reload time.)		
Select function	Normal processing operation		
	The timer counts up rising edges or counts down falling edges on the TAIN		
	pin when input signal on the TAio∪⊤ pin is "H"		
	TAIOUT _ L L		
	TAIIN (i=2,3) Up Up Up Down Down Down count count count count count		
	Multiply-by-4 processing operation If the phase relationship is such that the TAilN pin goes "H" when the input		
	signal on the TAiout pin is "H", the timer counts up rising and falling edges		
	on the TAiout and TAiin pins. If the phase relationship is such that the		
	TAilN pin goes "L" when the input signal on the TAiout pin is "H", the timer		
	counts down rising and falling edges on the TAiout and TAiin pins.		
	TAIOUT A LA L		
	Count up all edges Count down all edges		
	TAIIN (i=3,4)		
	Count up all edges Count down all edges		

Note: This does not apply when the free-run function is selected.

Note 1: The settings of the corresponding port register and port direction register are invalid.

Note 2: This bit is valid when only counting an external signal.

Note 3: Set the corresponding port direction register to "0".

Note 4: This bit is valid for the timer A3 mode register.

For timer A2 and A4 mode registers, this bit can be "0 "or "1".

Note 5: When performing two-phase pulse signal processing, make sure the two-phase pulse signal processing operation select bit (address 038416) is set to "1". Also, always be sure to set the event/trigger select bit (addresses 038216 and 038316) to "00".

Timer Ai mode register (When using two-phase pulse signal processing)

b7 b6 b5 b4 b3 b2 b1 b0 0 1 0 0 1	Symbol TAiMR(i	Address = 2 to 4) 039816 to 039A16	When reset 0016	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	bi bi	00
	TMOD1		0 1 : Event counter mode	00
	MR0	0 (Must always be "0" when processing)	using two-phase pulse signal	00
	MR1	0 (Must always be "0" when processing)	using two-phase pulse signal	00
	MR2	1 (Must always be "1" when processing)	using two-phase pulse signal	00
	MR3	0 (Must always be "0" when processing)	using two-phase pulse signal	00
	TCK0	Count operation type select bit	0 : Reload type 1 : Free-run type	00
	TCK1	Two-phase pulse processing operation select bit (Note 1)(Note 2)	0 : Normal processing operation 1 : Multiply-by-4 processing operation	00

Note 1: This bit is valid for timer A3 mode register.

For timer A2 and A4 mode registers, this bit can be "0" or "1".

Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse signal processing operation select bit (address 038416) is set to "1". Also, always be sure to set the event/trigger select bit (addresses 038216 and 038316) to "00".

Figure 1.17.9. Timer Ai mode register in event counter mode

(3) One-shot timer mode

In this mode, the timer operates only once. (See Table 1.17.4.) When a trigger occurs, the timer starts up and continues operating for a given period. Figure 1.17.10 shows the timer Ai mode register in one-shot timer mode.

Table 1.17.4. Timer specifications in one-shot timer mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	The timer counts down
	When the count reaches 000016, the timer stops counting after reloading a new count
	If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	1/n n : Set value
Count start condition	An external trigger is input
	The timer overflows
	• The one-shot start flag is set (= 1)
Count stop condition	A new count is reloaded after the count has reached 000016
	• The count start flag is reset (= 0)
Interrupt request generation timing	The count reaches 000016
TAilN pin function	Programmable I/O port or trigger input
TAiout pin function	Programmable I/O port or pulse output
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload
	register and counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)

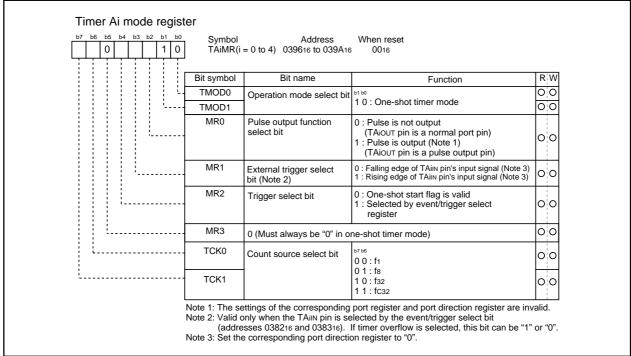


Figure 1.17.10. Timer Ai mode register in one-shot timer mode

(4) Pulse width modulation (PWM) mode

In this mode, the timer outputs pulses of a given width in succession. (See Table 1.17.5.) In this mode, the counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 1.17.11 shows the timer Ai mode register in pulse width modulation mode. Figure 1.17.12 shows the example of how a 16-bit pulse width modulator operates. Figure 1.17.13 shows the example of how an 8-bit pulse width modulator operates.

Table 1.17.5. Timer specifications in pulse width modulation mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)
	The timer reloads a new count at a rising edge of PWM pulse and continues counting
	The timer is not affected by a trigger that occurs when counting
16-bit PWM	High level width n / fi n : Set value
	Cycle time (2 ¹⁶ -1) / fi fixed
8-bit PWM	High level width n×(m+1)/fi n: values set to timer Ai register's high-order address
	• Cycle time (2 ⁸ -1)×(m+1) / fi m : values set to timer Ai register's low-order address
Count start condition	External trigger is input
	The timer overflows
	The count start flag is set (= 1)
Count stop condition	The count start flag is reset (= 0)
Interrupt request generation timing	PWM pulse goes "L"
TAilN pin function	Programmable I/O port or trigger input
TAiout pin function	Pulse output
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload
	register and counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)

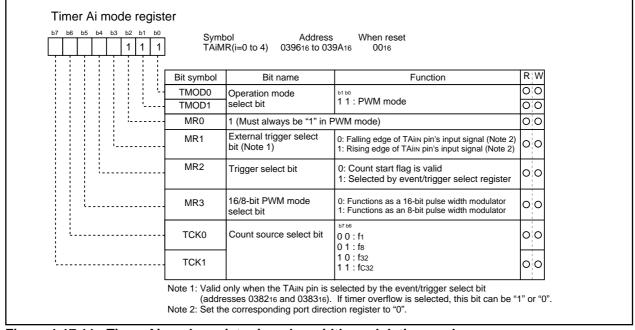


Figure 1.17.11. Timer Ai mode register in pulse width modulation mode

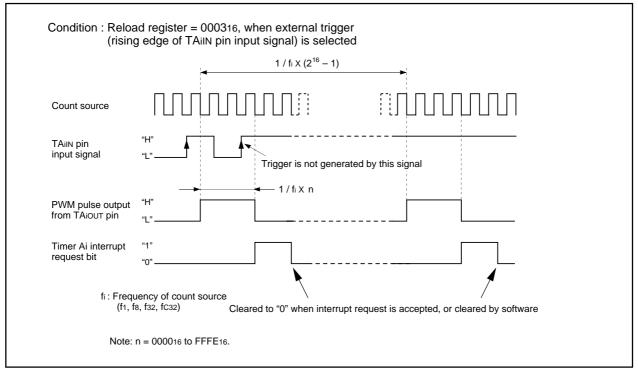


Figure 1.17.12. Example of how a 16-bit pulse width modulator operates

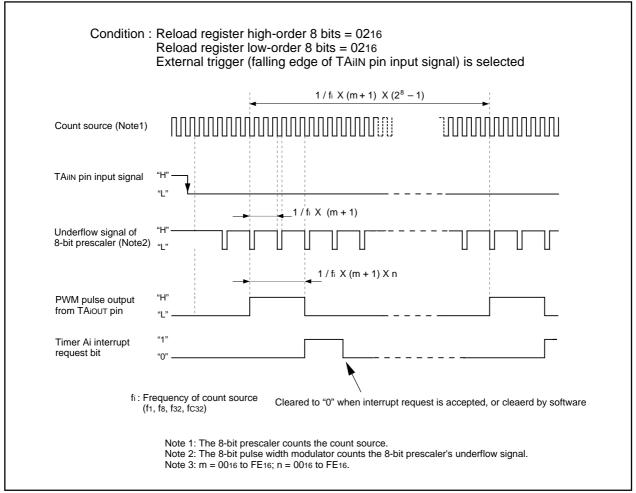


Figure 1.17.13. Example of how an 8-bit pulse width modulator operates

Timer B

Figure 1.17.14 shows the block diagram of timer B. Figures 1.17.15 and 1.17.16 show the timer B-related registers.

Use the timer Bi mode register (i = 0 to 5) bits 0 and 1 to choose the desired mode.

Timer B has three operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer overflow.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

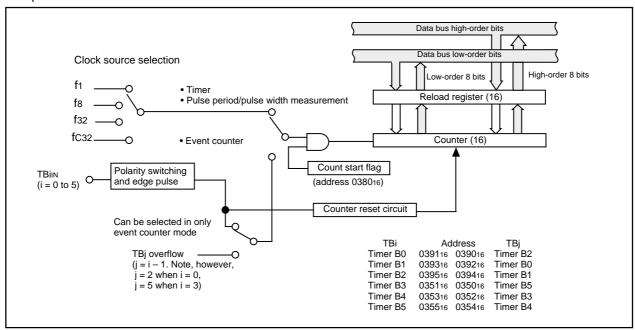


Figure 1.17.14. Block diagram of timer B

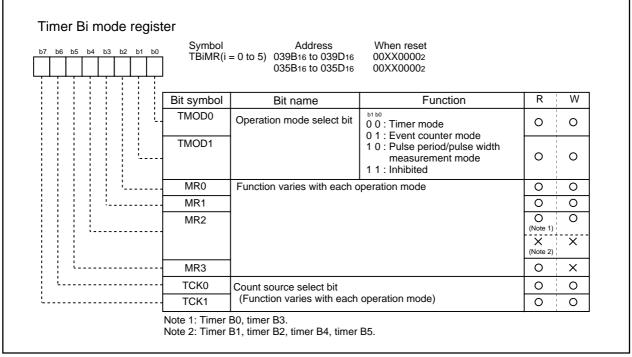


Figure 1.17.15. Timer B-related registers (1)

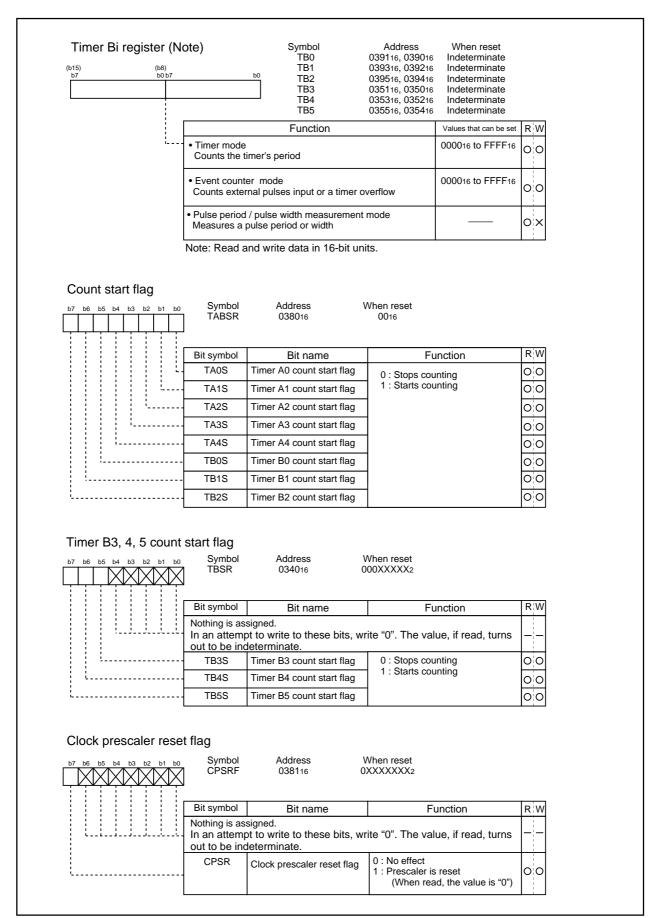


Figure 1.17.16. Timer B-related registers (2)

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 1.17.6.) Figure 1.17.17 shows the timer Bi mode register in timer mode.

Table 1.17.6. Timer specifications in timer mode

Item	Specification	
Count source	f1, f8, f32, fC32	
Count operation	Counts down	
	When the timer underflows, it reloads the reload register contents before	
	continuing counting	
Divide ratio	1/(n+1) n : Set value	
Count start condition	Count start flag is set (= 1)	
Count stop condition	Count start flag is reset (= 0)	
Interrupt request generation timing	The timer underflows	
TBilN pin function	Programmable I/O port	
Read from timer	Count value is read out by reading timer Bi register	
Write to timer	When counting stopped	
	When a value is written to timer Bi register, it is written to both reload register and counter	
	When counting in progress	
	When a value is written to timer Bi register, it is written to only reload register	
	(Transferred to counter at next reload time)	

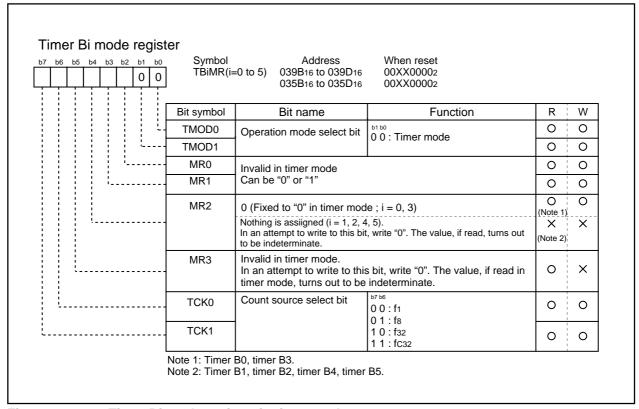


Figure 1.17.17. Timer Bi mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.17.7.) Figure 1.17.18 shows the timer Bi mode register in event counter mode.

Table 1.17.7. Timer specifications in event counter mode

Item	Specification
Count source	● External signals input to TBilN pin
	• Effective edge of count source can be a rising edge, a falling edge, or falling
	and rising edges as selected by software
Count operation	Counts down
	When the timer underflows, it reloads the reload register contents before
	continuing counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBilN pin function	Count source input
Read from timer	Count value can be read out by reading timer Bi register
Write to timer	When counting stopped
	When a value is written to timer Bi register, it is written to both reload register and counter
	When counting in progress
	When a value is written to timer Bi register, it is written to only reload register
	(Transferred to counter at next reload time)

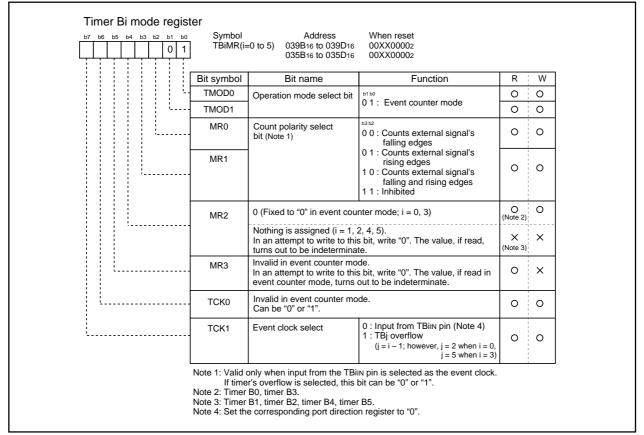


Figure 1.17.18. Timer Bi mode register in event counter mode

(3) Pulse period/pulse width measurement mode

In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.17.8.) Figure 1.17.19 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure 1.17.20 shows the operation timing when measuring a pulse period. Figure 1.17.21 shows the operation timing when measuring a pulse width.

Table 1.17.8. Timer specifications in pulse period/pulse width measurement mode

Item	Specification
Count source	f1, f8, f32, fC32
Count operation	• Up count
	• Counter value "000016" is transferred to reload register at measurement
	pulse's effective edge and the timer continues counting
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	When measurement pulse's effective edge is input (Note 1)
	• When an overflow occurs. (Simultaneously, the timer Bi overflow flag
	changes to "1". The timer Bi overflow flag changes to "0" when the count
	start flag is "1" and a value is written to the timer Bi mode register.)
TBiln pin function	Measurement pulse input
Read from timer	When timer Bi register is read, it indicates the reload register's content
	(measurement result) (Note 2)
Write to timer	Cannot be written to

Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting. Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.

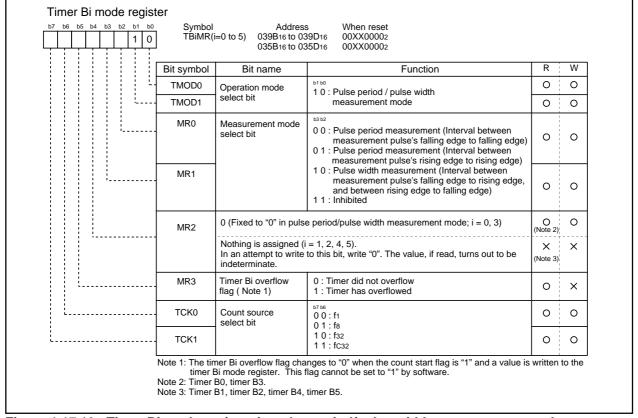


Figure 1.17.19. Timer Bi mode register in pulse period/pulse width measurement mode

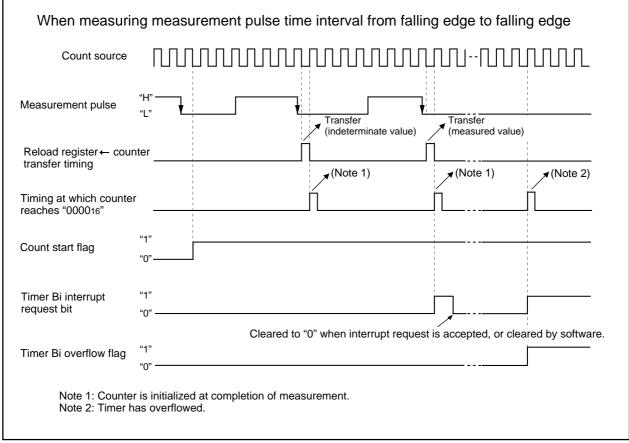


Figure 1.17.20. Operation timing when measuring a pulse period

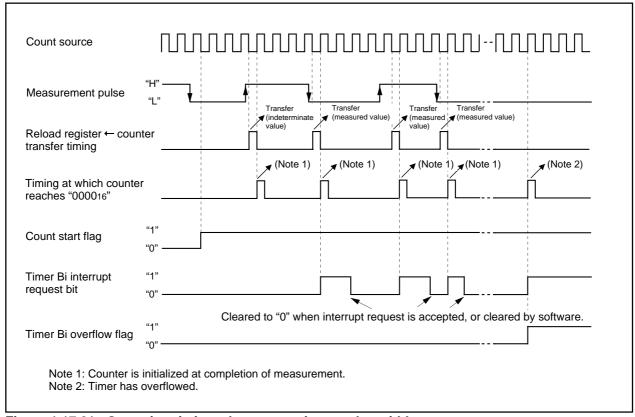


Figure 1.17.21. Operation timing when measuring a pulse width

Timers' functions for three-phase motor control

Use of more than one built-in timer A and timer B provides the means of outputting three-phase motor driving waveforms.

Figures 1.18.1 to 1.18.3 show registers related to timers for three-phase motor control.

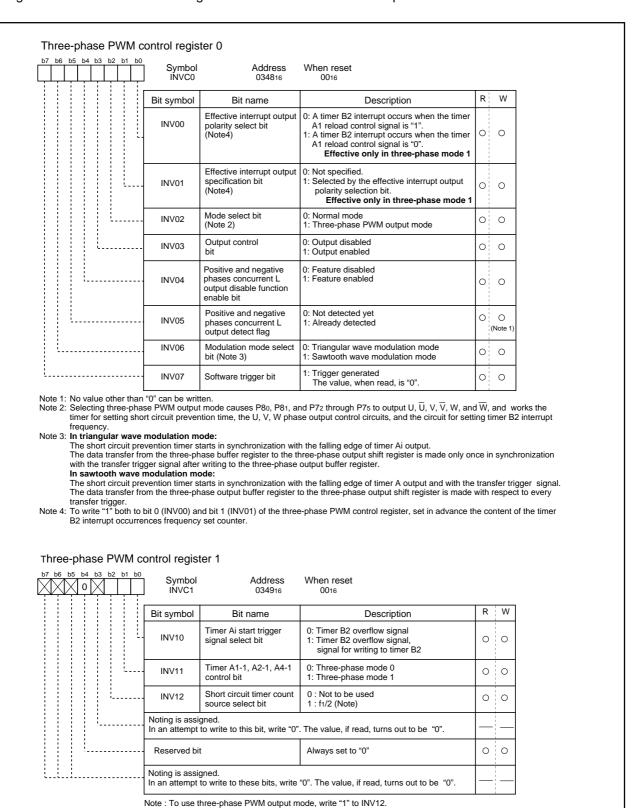


Figure 1.18.1. Registers related to timers for three-phase motor control

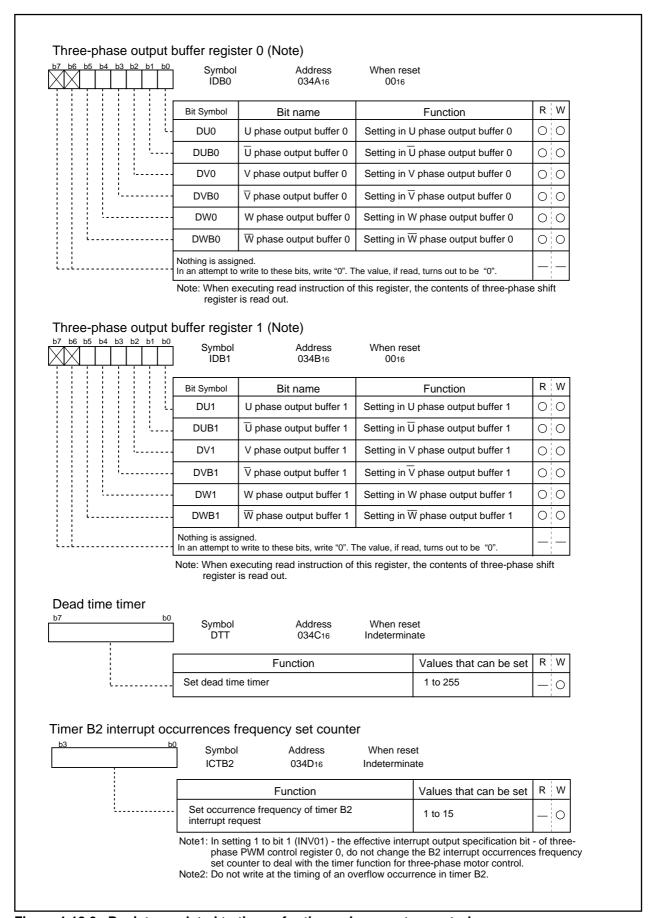


Figure 1.18.2. Registers related to timers for three-phase motor control

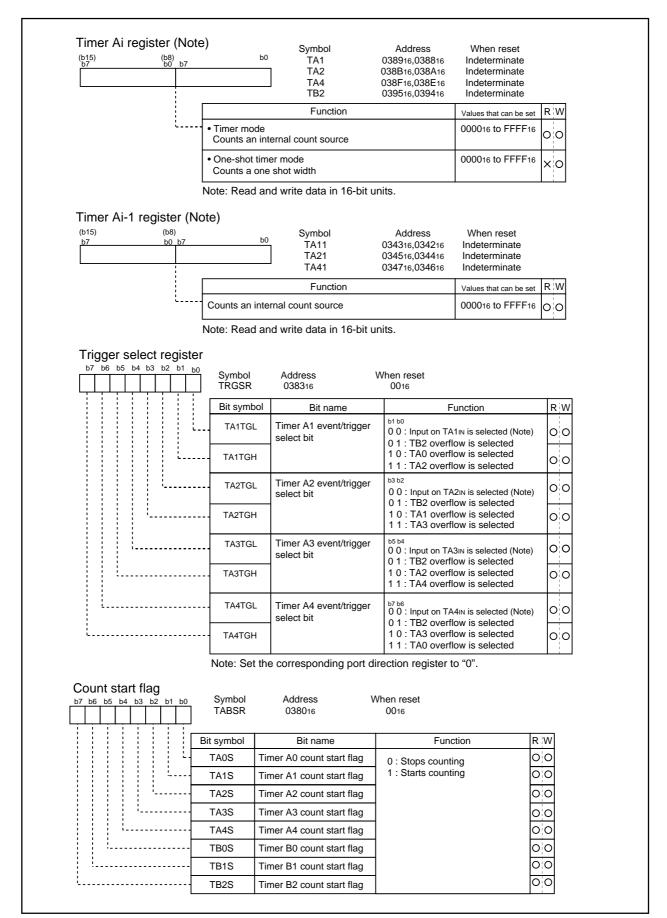


Figure 1.18.3. Registers related to timers for three-phase motor control

Three-phase motor driving waveform output mode (three-phase waveform mode)

Setting "1" in the mode select bit (bit 2 at 034816) shown in Figure 1.18.1 - causes three-phase waveform mode that uses four timers A1, A2, A4, and B2 to be selected. As shown in Figure 1.18.4, set timers A1, A2, and A4 in one-shot timer mode, set the trigger in timer B2, and set timer B2 in timer mode using the respective timer mode registers.

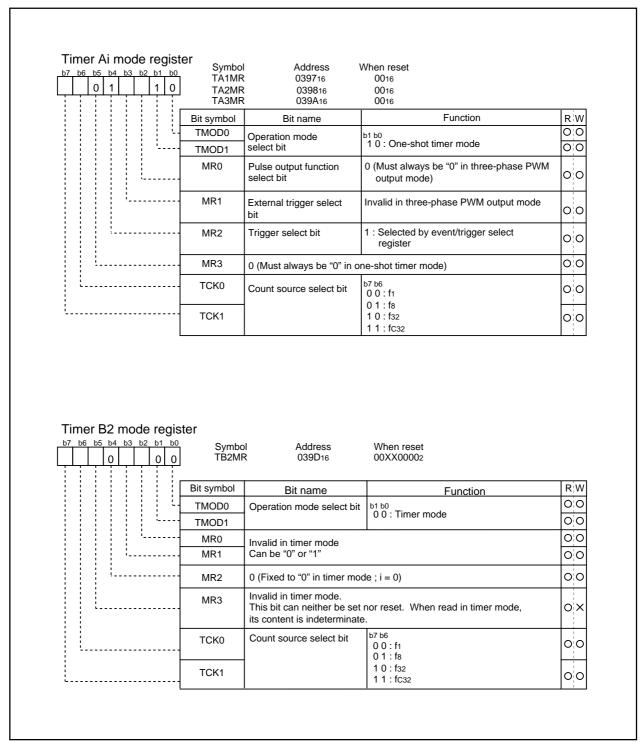


Figure 1.18.4. Timer mode registers in three-phase waveform mode

Figure 1.18.5 shows the block diagram for three-phase waveform mode. In three-phase waveform mode, the positive-phase waveforms (U phase, V phase, and W phase) and negative waveforms (\overline{U} phase, \overline{V} phase, and \overline{W} phase), six waveforms in total, are output from P80, P81, P72, P73, P74, and P75 as active on the "L" level. Of the timers used in this mode, timer A4 controls the U phase and \overline{U} phase, timer A1 controls the V phase and \overline{V} phase, and timer A2 controls the W phase and \overline{W} phase respectively; timer B2 controls the periods of one-shot pulse output from timers A4, A1, and A2.

In outputting a waveform, dead time can be set so as to cause the "L" level of the positive waveform output (U phase, V phase, and W phase) not to lap over the "L" level of the negative waveform output (\overline{U} phase, \overline{V} phase, and \overline{W} phase).

To set short circuit time, use three 8-bit timers sharing the reload register for setting dead time. A value from 1 through 255 can be set as the count of the timer for setting dead time. The timer for setting dead time works as a one-shot timer. If a value is written to the dead timer (034C16), the value is written to the reload register shared by the three timers for setting dead time.

Any of the timers for setting dead time takes the value of the reload register into its counter, if a start trigger comes from its corresponding timer, and performs a down count in line with the clock source selected by the dead time timer count source select bit (bit 2 at 034916). The timer can receive another trigger again before the workings due to the previous trigger are completed. In this instance, the timer performs a down count from the reload register's content after its transfer, provoked by the trigger, to the timer for setting dead time.

Since the timer for setting dead time works as a one-shot timer, it starts outputting pulses if a trigger comes; it stops outputting pulses as soon as its content becomes 0016, and waits for the next trigger to come.

The positive waveforms (U phase, V phase, and W phase) and the negative waveforms (\overline{U} phase, \overline{V} phase, and \overline{W} phase) in three-phase waveform mode are output from respective ports by means of setting "1" in the output control bit (bit 3 at 034816). Setting "0" in this bit causes the ports to be the state of set by port direction register. This bit can be set to "0" not only by use of the applicable instruction, but by entering a falling edge in the \overline{NMI} terminal or by resetting. Also, if "1" is set in the positive and negative phases concurrent L output disable function enable bit (bit 4 at 034816) causes one of the pairs of U phase and \overline{U} phase, V phase and \overline{V} phase, and W phase and \overline{W} phase concurrently go to "L", as a result, the port become the state of set by port direction register.

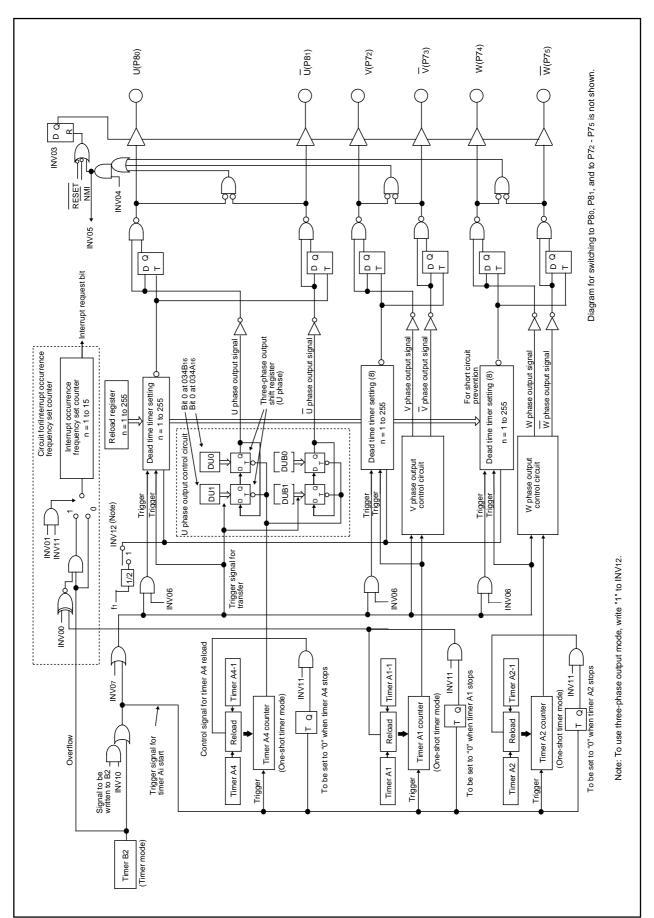


Figure 1.18.5. Block diagram for three-phase waveform mode

Triangular wave modulation

To generate a PWM waveform of triangular wave modulation, set "0" in the modulation mode select bit (bit 6 at 034816). Also, set "1" in the timers A4-1, A1-1, A2-1 control bit (bit 1 at 034916). In this mode, each of timers A4, A1, and A2 has two timer registers, and alternately reloads the timer register's content to the counter every time timer B2 counter's content becomes 000016. If "0" is set to the effective interrupt output specification bit (bit 1 at 034816), the frequency of interrupt requests that occur every time the timer B2 counter's value becomes 000016 can be set by use of the timer B2 counter (034D16) for setting the frequency of interrupt occurrences. The frequency of occurrences is given by (setting; setting \neq 0). Setting "1" in the effective interrupt output specification bit (bit 1 at 034816) provides the means to choose which value of the timer A1 reload control signal to use, "0" or "1", to cause timer B2's interrupt request to occur. To make this selection, use the effective interrupt output polarity selection bit (bit 0 at 034816). An example of U phase waveform is shown in Figure 1.18.6, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 034A16). And set "0" in DUB0 (bit 1 at 034A16). In addition, set "0" in DU1 (bit 0 at 034B16) and set "1" in DUB1 (bit 1 at 034B16). Also, set "0" in the effective interrupt output specification bit (bit 1 at 034816) to set a value in the timer B2 interrupt occurrence frequency set counter. By this setting, a timer B2 interrupt occurs when the timer B2 counter's content becomes 000016 as many as (setting) times. Furthermore, set "1" in the effective interrupt output specification bit (bit 1 at 034816), set "0" in the effective interrupt polarity select bit (bit 0 at 034816) and set "1" in the interrupt occurrence frequency set counter (034D16). These settings cause a timer B2 interrupt to occur every other interval when the U phase output goes to "H".

When the timer B2 counter's content becomes 000016, timer A4 starts outputting one-shot pulses. In this instance, the content of DU1 (bit 0 at 034B16) and that of DU0 (bit 0 at 034A16) are set in the three-phase output shift register (U phase), the content of DUB1 (bit 1 at 034B16) and that of DUB0 (bit 1 at 034A16) are set in the three-phase shift register ($\overline{\text{U}}$ phase). After triangular wave modulation mode is selected, however, no setting is made in the shift register even though the timer B2 counter's content becomes 000016.

The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the U terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (038F16, 038E16) and when timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to U phase output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform does not lap over the "L" level of the U phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0" by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, "0" already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the timer A4 counter starts counting the value written to timer A4-1 (034716, 034616), and starts outputting one-shot pulses. When timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, but if the three-phase output shift register's content changes from "0" to "1" as a result of the shift, the output level changes from "L" to "H" without waiting for the timer for setting dead time to finish outputting one-shot pulses. A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase output shift register on the U phase side is used, the workings in generating a U phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U

phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the values of timer B2, timer A4, and timer A4-1. In dealing with the V and W phases, and \overline{V} and \overline{W} phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with the U and \overline{U} phases to generate an intended waveform.

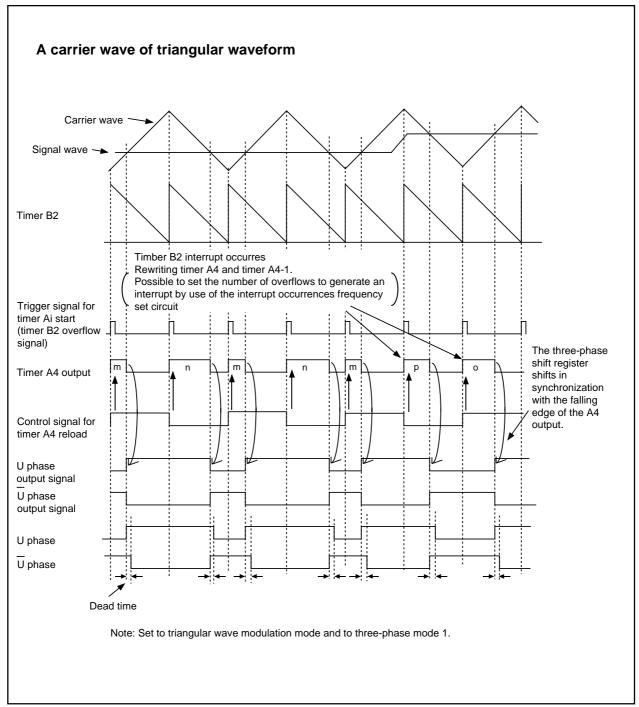


Figure 1.18.6. Timing chart of operation (1)

Assigning certain values to DU0 (bit 0 at 034A16) and DUB0 (bit 1 at 034A16), and to DU1 (bit 0 at 034B16) and DUB1 (bit 1 at 034B16) allows the user to output the waveforms as shown in Figure 1.18.7, that is, to output the U phase alone, to fix \overline{U} phase to "H", to fix the U phase to "H," or to output the \overline{U} phase alone.

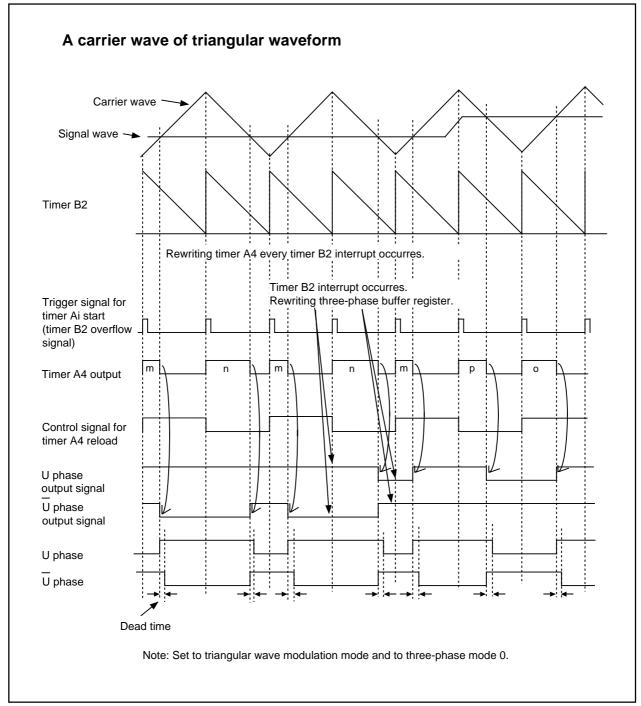


Figure 1.18.7. Timing chart of operation (2)

Sawtooth modulation

To generate a PWM waveform of sawtooth wave modulation, set "1" in the modulation mode select bit (bit 6 at 034816). Also, set "0" in the timers A4-1, A1-1, and A2-1 control bit (bit 1 at 034916). In this mode, the timer registers of timers A4, A1, and A2 comprise conventional timers A4, A1, and A2 alone, and reload the corresponding timer register's content to the counter every time the timer B2 counter's content becomes 000016. The effective interrupt output specification bit (bit 1 at 034816) and the effective interrupt output polarity select bit (bit 0 at 034816) go nullified.

An example of U phase waveform is shown in Figure 1.18.8, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 034A16), and set "0" in DUB0 (bit 1 at 034A16). In addition, set "0" in DU1 (bit 0 at 034A16) and set "1" in DUB1 (bit 1 at 034A16).

When the timber B2 counter's content becomes 000016, timer B2 generates an interrupt, and timer A4 starts outputting one-shot pulses at the same time. In this instance, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase output shift register (U phase), and the contents of DUB1 and DUB0 are set in the three-phase output register (U phase). After this, the three-phase buffer register's content is set in the three-phase shift register every time the timer B2 counter's content becomes 000016.

The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the \overline{U} terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (038F16, 038E16) and when timer A4 finishes outputting one-shot pulses, the three-phase output shift register's content is shifted one position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to the \overline{U} output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform doesn't lap over the "L" level of the \overline{U} phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0 "by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, 0 already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase shift register (\overline{U} phase) again.

A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase output shift register on the \overline{U} phase side is used, the workings in generating a \overline{U} phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the \overline{U} phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the values of timer B2 and timer A4. In dealing with the V and W phases, and \overline{V} and \overline{W} phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with the U and \overline{U} phases to generate an intended waveform.

Setting "1" both in DUB0 and in DUB1 provides a means to output the U phase alone and to fix the $\overline{\text{U}}$ phase output to "H" as shown in Figure 1.18.9.

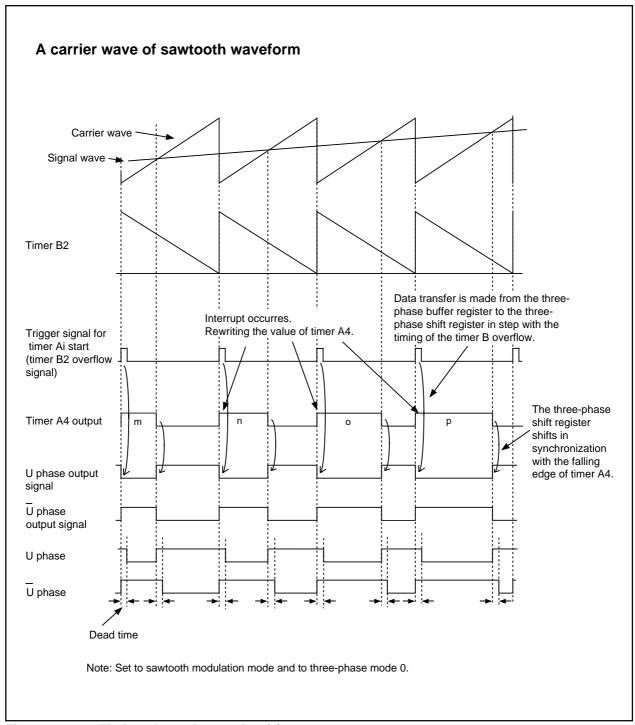


Figure 1.18.8. Timing chart of operation (3)

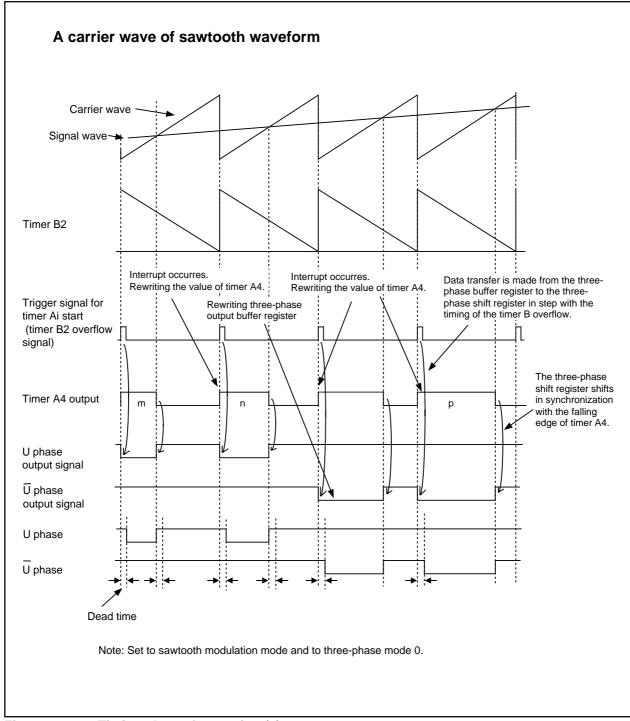


Figure 1.18.9. Timing chart of operation (4)

Serial I/O

Serial I/O is configured as five channels: UART0, UART1, UART2, S I/O3 and S I/O4.

UART0 to 2

UART0, UART1 and UART2 each have an exclusive timer to generate a transfer clock, so they operate independently of each other.

Figure 1.19.1 shows the block diagram of UART0, UART1 and UART2. Figures 1.19.2 and 1.19.3 show the block diagram of the transmit/receive unit.

UARTi (i = 0 to 2) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses 03A016, 03A816 and 037816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART. Although a few functions are different, UART0, UART1 and UART2 have almost the same functions. UART2, in particular, is used for the SIM interface with some extra settings added in clock-asynchronous serial I/O mode (Note). It also has the bus collision detection function that generates an interrupt request if the TxD pin and the RxD pin are different in level.

Table 1.19.1 shows the comparison of functions of UART0 through UART2, and Figures 1.19.4 to 1.19.8 show the registers related to UARTi.

Note: SIM: Subscriber Identity Module

Table 1.19.1. Comparison of functions of UART0 through UART2

Function	UART0	UART1	UART2
CLK polarity selection	Possible (Note 1)	Possible (Note 1)	Possible (Note 1)
LSB first / MSB first selection	Possible (Note 1)	Possible (Note 1)	Possible (Note 2)
Continuous receive mode selection	Possible (Note 1)	Possible (Note 1)	Possible (Note 1)
Transfer clock output from multiple pins selection	Impossible	Possible (Note 1)	Impossible
Separate CTS/RTS pins	Possible	Impossible	Impossible
Serial data logic switch	Impossible	Impossible	Possible (Note 4)
Sleep mode selection	Possible (Note 3)	Possible (Note 3)	Impossible
TxD, RxD I/O polarity switch	Impossible	Impossible	Possible
TxD, RxD port output format	CMOS output	CMOS output	N-channel open-drain output
Parity error signal output	Impossible	Impossible	Possible (Note 4)
Bus collision detection	Impossible	Impossible	Possible

Note 1: Only when clock synchronous serial I/O mode.

Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode.

Note 3: Only when UART mode.

Note 4: Using for SIM interface.

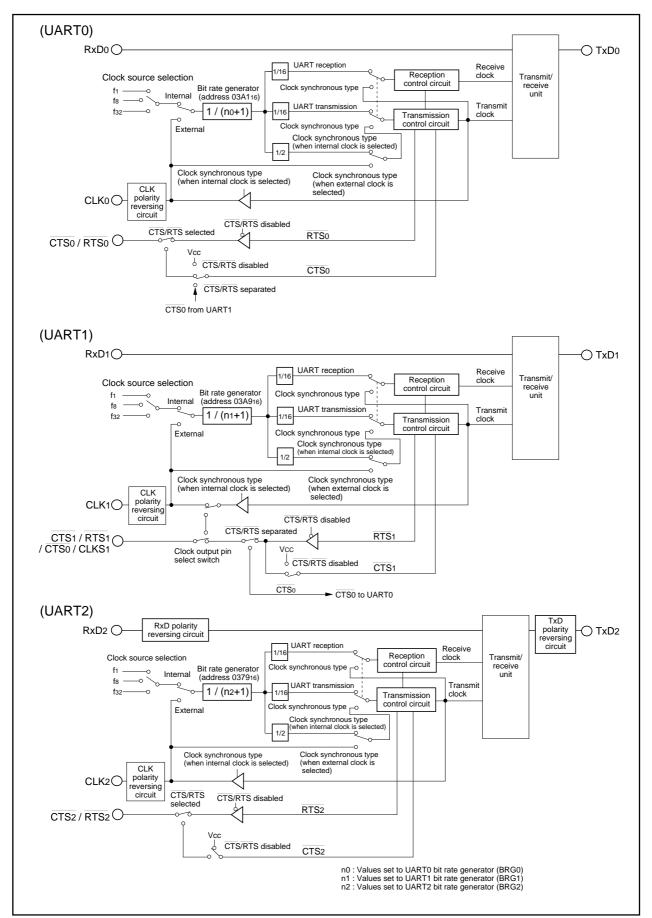


Figure 1.19.1. Block diagram of UARTi (i = 0 to 2)

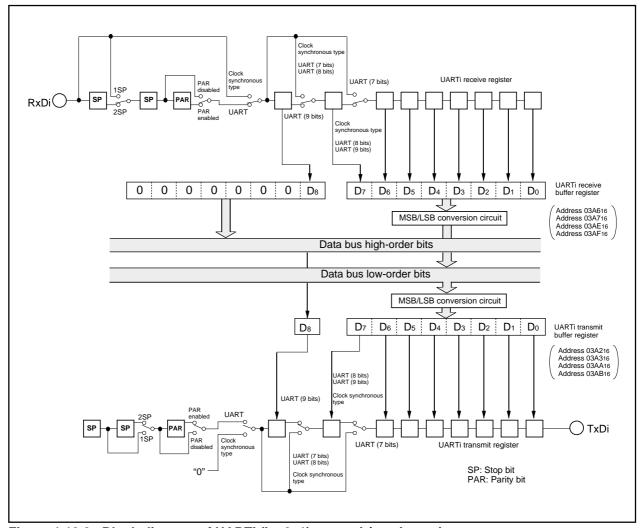


Figure 1.19.2. Block diagram of UARTi (i = 0, 1) transmit/receive unit

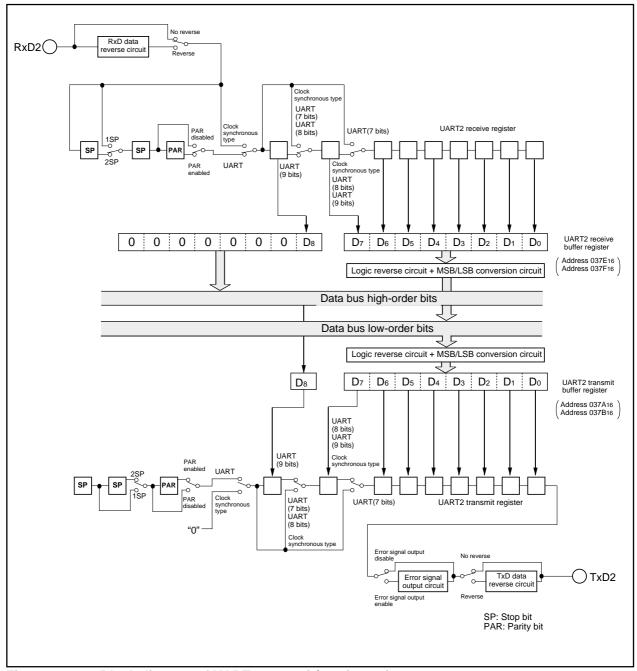


Figure 1.19.3. Block diagram of UART2 transmit/receive unit



Figure 1.19.4. Serial I/O-related registers (1)

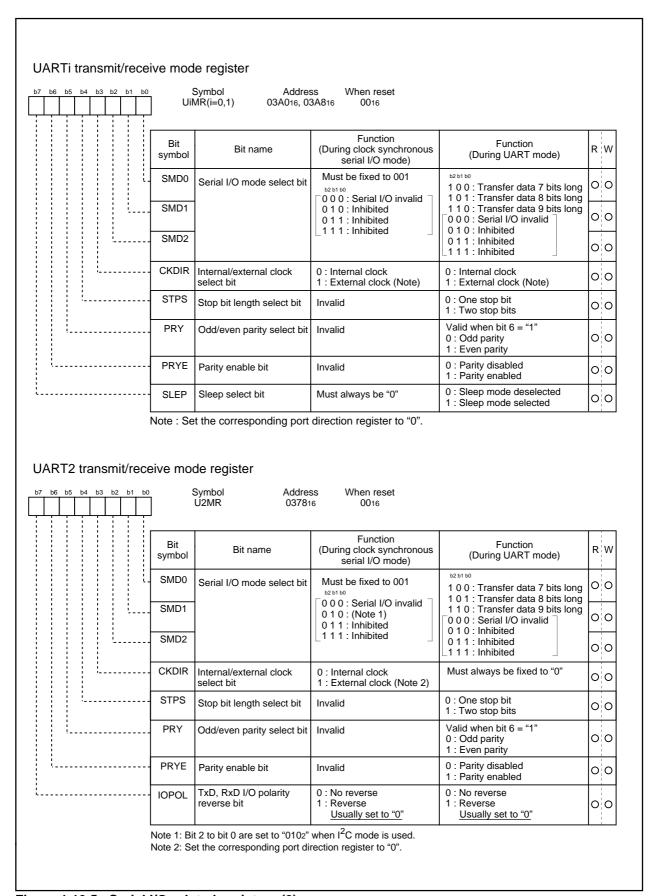


Figure 1.19.5. Serial I/O-related registers (2)

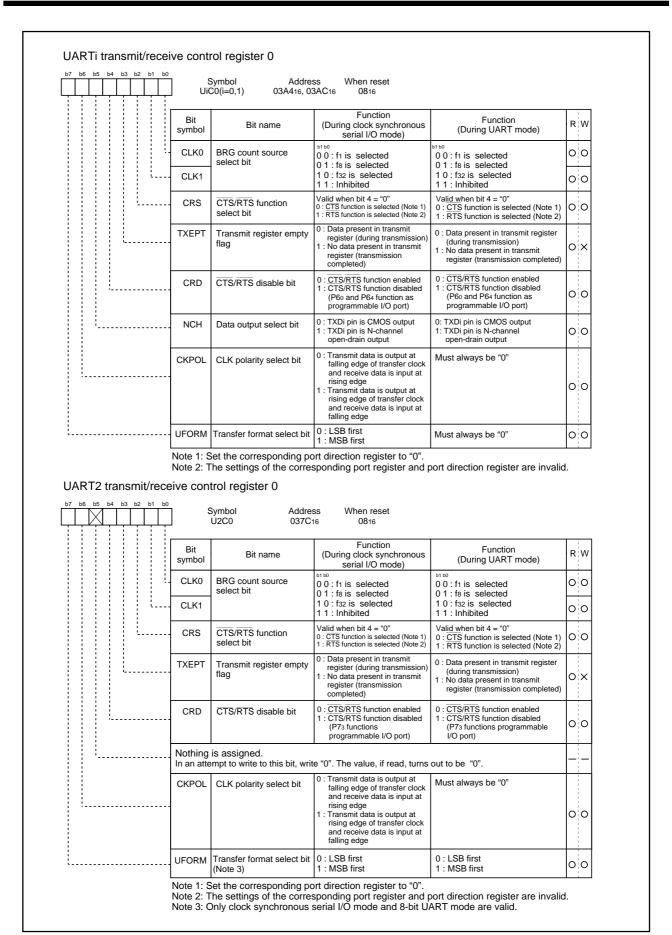


Figure 1.19.6. Serial I/O-related registers (3)

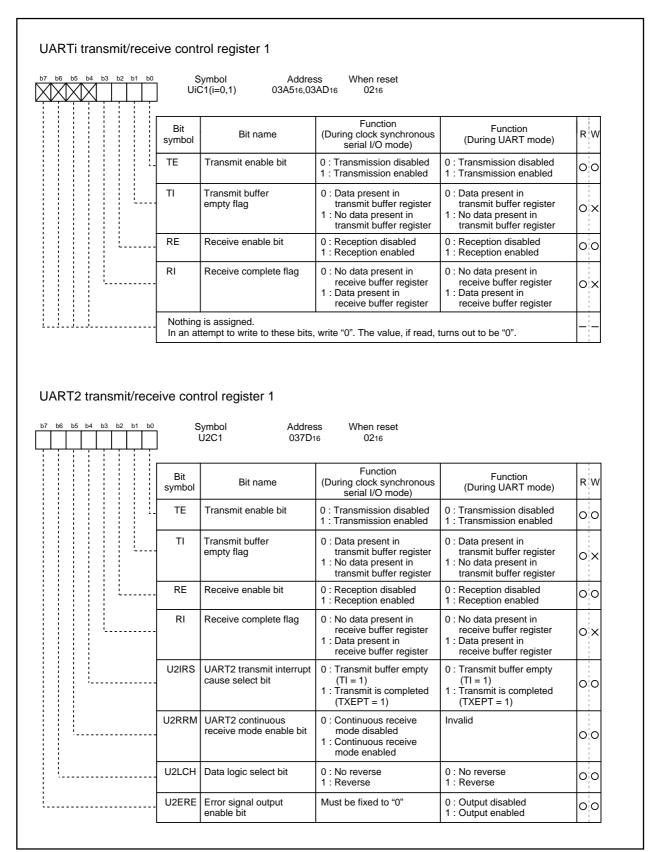


Figure 1.19.7. Serial I/O-related registers (4)

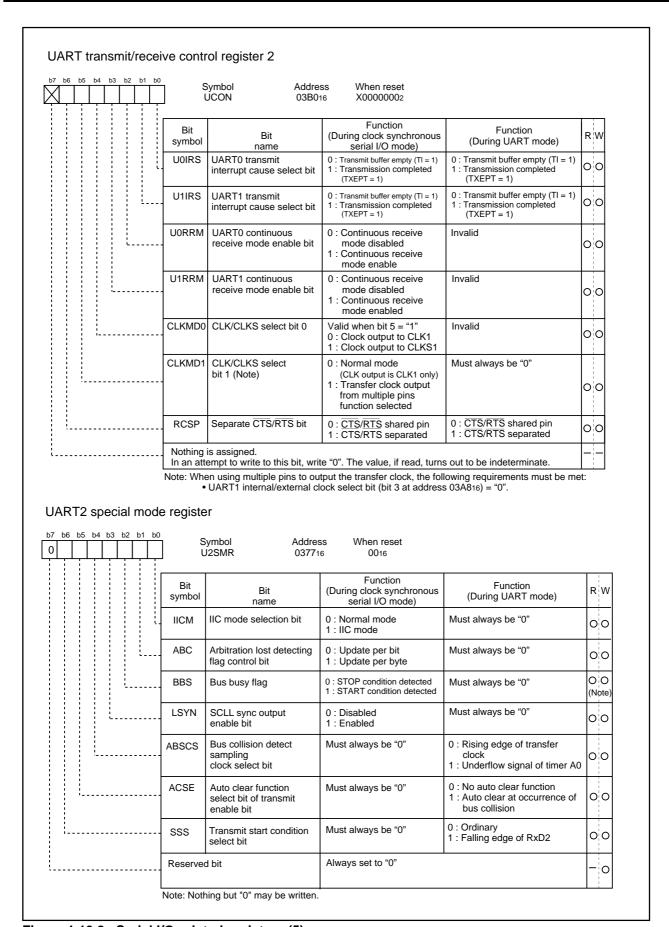


Figure 1.19.8. Serial I/O-related registers (5)

(1) Clock synchronous serial I/O mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Tables 1.19.2 and 1.19.3 list the specifications of the clock synchronous serial I/O mode. Figure 1.19.9 shows the UARTi transmit/receive mode register.

Table 1.19.2. Specifications of clock synchronous serial I/O mode (1)

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816)
	= "0") : fi/ 2(n+1) (Note 1) fi = f1, f8, f32
	When external clock is selected (bit 3 at addresses 03A016, 03A816, 037816)
	= "1") : Input from CLKi pin
Transmission/reception control	TTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0"
	– When CTS function selected, CTS input level = "L"
	Furthermore, if external clock is selected, the following requirements must also be met:
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "0":
	CLKi input level = "H"
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1":
	CLKi input level = "L"
Reception start condition	• To start reception, the following requirements must be met:
	- Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1"
	- Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0"
	 Furthermore, if external clock is selected, the following requirements must also be met:
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "0":
	CLKi input level = "H"
	- CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = "1":
	CLKi input level = "L"
Interrupt request	When transmitting
generation timing	- Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at
	address 037D16) = "0": Interrupts requested when data transfer from UARTi
	transfer buffer register to UARTi transmit register is completed
	- Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at
	address 037D16) = "1": Interrupts requested when data transmission from
	UARTi transfer register is completed
	When receiving
	- Interrupts requested when data transfer from UARTi receive register to
	UARTi receive buffer register is completed
Error detection	Overrun error (Note 2)
	This error occurs when the next data is ready before contents of UARTi
	receive buffer register are read out

Note 1: "n" denotes the value 0016 to FF16 that is set to the UART bit rate generator.

Note 2: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".

Table 1.19.4. Specifications of clock synchronous serial I/O mode (2)

Item	Specification
Select function	CLK polarity selection
	Whether transmit data is output/input at the rising edge or falling edge of the
	transfer clock can be selected
	LSB first/MSB first selection
	Whether transmission/reception begins with bit 0 or bit 7 can be selected
	Continuous receive mode selection
	Reception is enabled simultaneously by a read from the receive buffer register
	Transfer clock output from multiple pins selection (UART1) (Note)
	UART1 transfer clock can be chosen by software to be output from one of
	the two pins set
	Separate CTS/RTS pins (UART0) (Note)
	UART0 CTS and RTS pins each can be assigned to separate pins
	Switching serial data logic (UART2)
	Whether to reverse data in writing to the transmission buffer register or
	reading the reception buffer register can be selected.
	TxD, RxD I/O polarity reverse (UART2)
	This function is reversing TxD port output and RxD port input. All I/O data
	level is reversed.

Note: The transfer clock output from multiple pins and the separate $\overline{\text{CTS/RTS}}$ pins functions cannot be selected simultaneously.

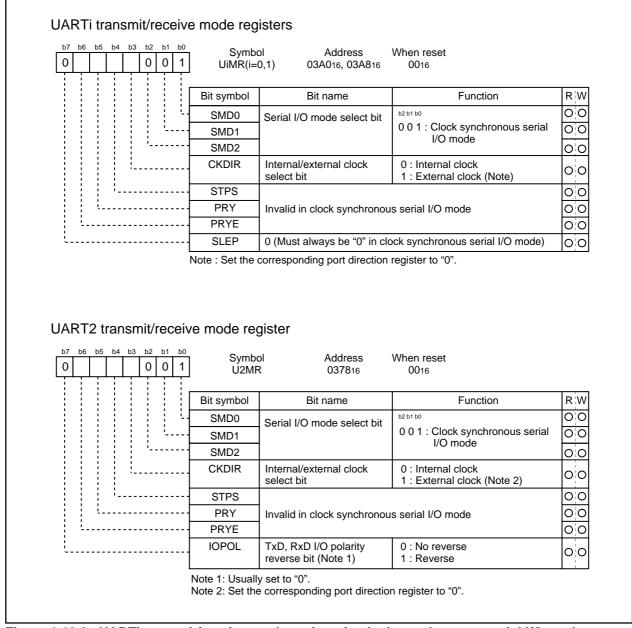


Figure 1.19.9. UARTi transmit/receive mode register in clock synchronous serial I/O mode

Table 1.19.4 lists the functions of the input/output pins during clock synchronous serial I/O mode. This table shows the pin functions when the transfer clock output from multiple pins and the separate $\overline{\text{CTS}}/\overline{\text{RTS}}$ pins functions are <u>not selected</u>. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.)

Table 1.19.4. Input/output pin functions in clock synchronous serial I/O mode

Pin name	Function	Method of selection
TxDi (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= "0" (Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "0"
(P61, P65, P72)	Transfer clock input	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "1" Port P61, P65 and P72 direction register (bits 1 and 5 at address 03EE16, bit 2 at address 03EF16) = "0"
CTSi/RTSi (P60, P64, P73)	CTS input	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "0" Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) = "0"
	RTS output	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "1"
	Programmable I/O port	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "1"

(when transfer clock output from multiple pins and separate CTS/RTS pins functions are not selected)

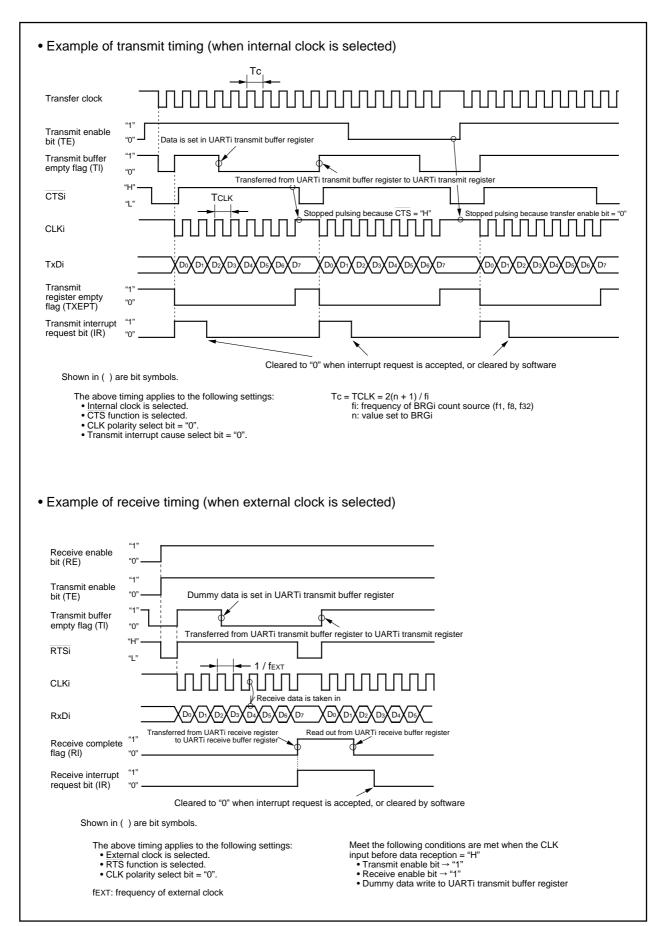


Figure 1.19.10. Typical transmit/receive timings in clock synchronous serial I/O mode

(a) Polarity select function

As shown in Figure 1.19.11, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) allows selection of the polarity of the transfer clock.

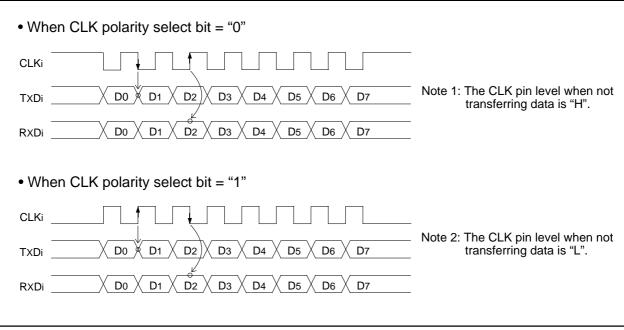


Figure 1.19.11. Polarity of transfer clock

(b) LSB first/MSB first select function

As shown in Figure 1.19.12, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16, 037C16) = "0", the transfer format is "LSB first"; when the bit = "1", the transfer format is "MSB first".

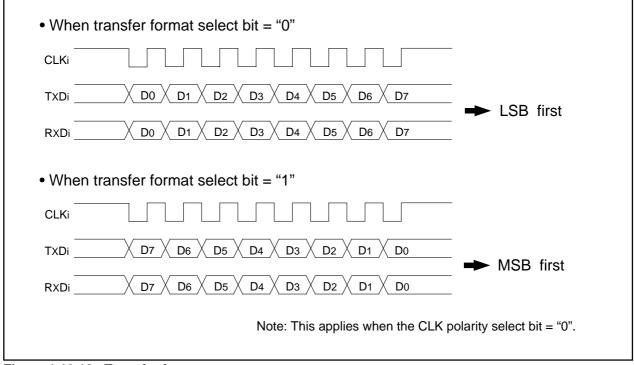


Figure 1.19.12. Transfer format

(c) Transfer clock output from multiple pins function (UART1)

This function allows the setting two transfer clock output pins and choosing one of the two to output a clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 1.19.13.) The multiple pins function is valid only when the internal clock is selected for UART1. Note that when this function is selected, UART1 CTS/RTS function cannot be used.

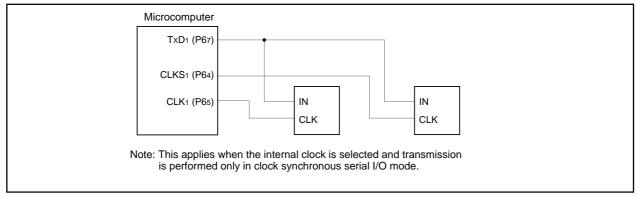


Figure 1.19.13. The transfer clock output from the multiple pins function usage

(d) Continuous receive mode

If the continuous receive mode enable bit (bits 2 and 3 at address 03B016, bit 5 at address 037D16) is set to "1", the unit is placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to the transmit buffer register back again.

(e) Separate CTS/RTS pins function (UART0)

This function works the same way as in the clock asynchronous serial I/O (UART) mode. The method of setting and the input/output pin functions are both the same, so refer to select function in the next section, "(2) Clock asynchronous serial I/O (UART) mode". Note that this function is <u>invalid</u> if the transfer clock output from the multiple pins function is selected.

(f) Serial data logic switch function (UART2)

When the data logic select bit (bit6 at address 037D16) = "1", and writing to transmit buffer register or reading from receive buffer register, data is reversed. Figure 1.19.14 shows the example of serial data logic switch timing.

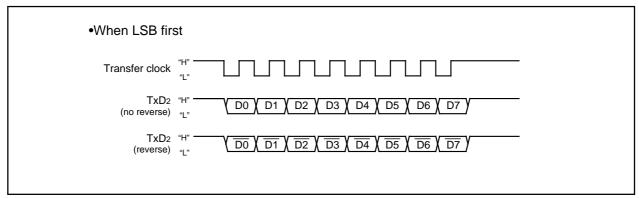


Figure 1.19.14. Serial data logic switch timing

(2) Clock asynchronous serial I/O (UART) mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 1.19.5 and 1.19.6 list the specifications of the UART mode. Figure 1.19.15 shows the UARTi transmit/receive mode register.

Table 1.19.5. Specifications of UART Mode (1)

Item	Specification
Transfer data format	Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected
	Start bit: 1 bit
	Parity bit: Odd, even, or nothing as selected
	Stop bit: 1 bit or 2 bits as selected
Transfer clock	• When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = "0"):
	$fi/16(n+1)$ (Note 1) $fi = f_1, f_8, f_{32}$
	• When external clock is selected (bit 3 at addresses 03A016, 03A816 ="1"):
	fEXT/16(n+1) (Note 1) (Note 2) (Do not set external clock for UART2)
Transmission/reception control	• CTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = "0"
	- When CTS function selected, CTS input level = "L"
Reception start condition	To start reception, the following requirements must be met:
	- Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = "1"
	- Start bit detection
Interrupt request	When transmitting
generation timing	- Transmit interrupt cause select bits (bits 0,1 at address 03B016, bit4 at
	address 037D16) = "0": Interrupts requested when data transfer from UARTi
	transfer buffer register to UARTi transmit register is completed
	- Transmit interrupt cause select bits (bits 0, 1 at address 03B016, bit4 at
	address 037D16) = "1": Interrupts requested when data transmission from
	UARTi transfer register is completed
	When receiving
	- Interrupts requested when data transfer from UARTi receive register to
	UARTi receive buffer register is completed
Error detection	Overrun error (Note 3)
	This error occurs when the next data is ready before contents of UARTi
	receive buffer register are read out
	• Framing error
	This error occurs when the number of stop bits set is not detected
	• Parity error
	This error occurs when if parity is enabled, the number of 1's in parity and
	character bits does not match the number of 1's set
	• Error sum flag This flag is set (- 1) when any of the everrup, framing, and parity errors is
	This flag is set (= 1) when any of the overrun, framing, and parity errors is
	encountered

Note 1: 'n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.

Note 2: fext is input from the CLKi pin.

Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".

Table 1.19.6. Specifications of UART Mode (2)

Item	Specification	
Select function	Separate CTS/RTS pins (UART0)	
	UART0 CTS and RTS pins each can be assigned to separate pins	
	Sleep mode selection (UART0, UART1)	
	This mode is used to transfer data to and from one of multiple slave micro-	
	computers	
	Serial data logic switch (UART2)	
	This function is reversing logic value of transferring data. Start bit, parity bit	
	and stop bit are not reversed.	
	• TxD, RxD I/O polarity switch	
	This function is reversing TxD port output and RxD port input. All I/O data	
	level is reversed.	

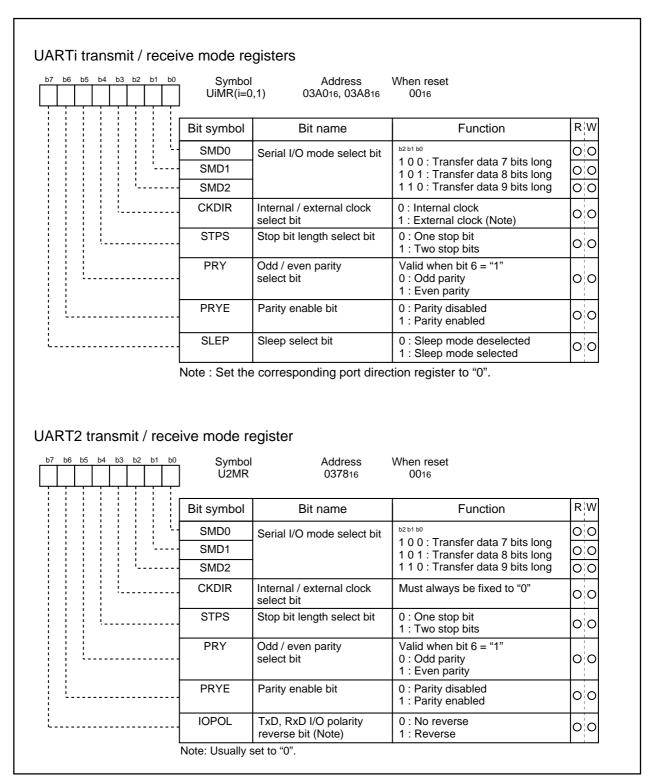


Figure 1.19.15. UARTi transmit/receive mode register in UART mode

Table 1.19.7 lists the functions of the input/output pins during UART mode. This table shows the pin functions when the separate $\overline{\text{CTS}/\text{RTS}}$ pins function is <u>not selected</u>. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open-drain is selected, this pin is in floating state.)

Table 1.19.7. Input/output pin functions in UART mode

Pin name	Function	Method of selection
TxDi (P63, P67, P70)	Serial data output	
RxDi (P62, P66, P71)	Serial data input	Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16, bit 1 at address 03EF16)= "0" (Can be used as an input port when performing transmission only)
CLKi	Programmable I/O port	Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = "0"
(P61, P65, P72)	Transfer clock input	Internal/external clock select bit (bit 3 at address 03A016, 03A816) = "1" Port P61, P65 direction register (bits 1 and 5 at address 03EE16) = "0" (Do not set external clock for UART2)
CTSi/RTSi (P60, P64, P73)	CTS input	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) ="0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "0" Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16, bit 3 at address 03EF16) = "0"
	RTS output	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "0" CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = "1"
	Programmable I/O port	CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = "1"

(when separate CTS/RTS pins function is not selected)

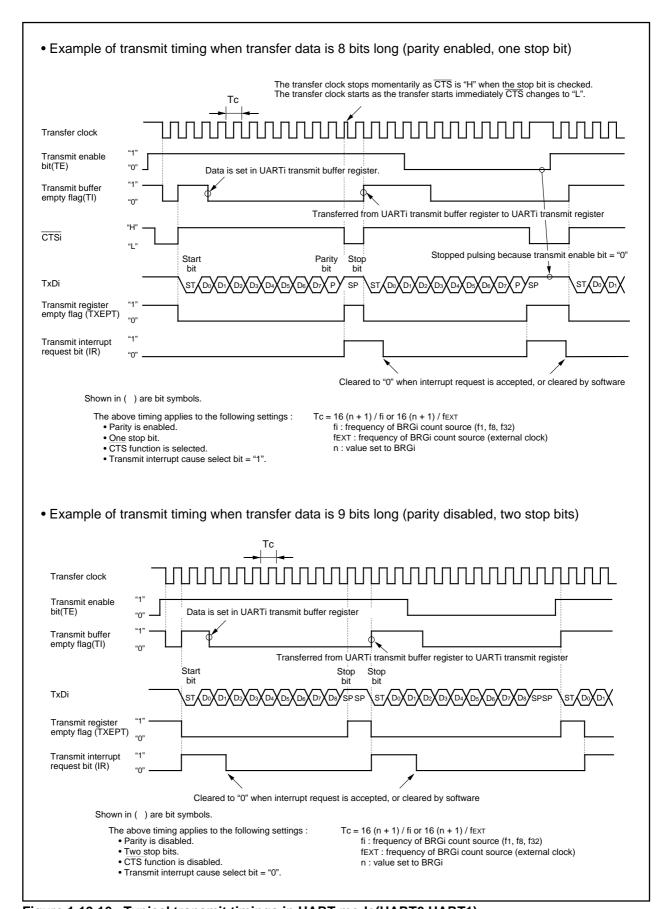


Figure 1.19.16. Typical transmit timings in UART mode(UART0,UART1)

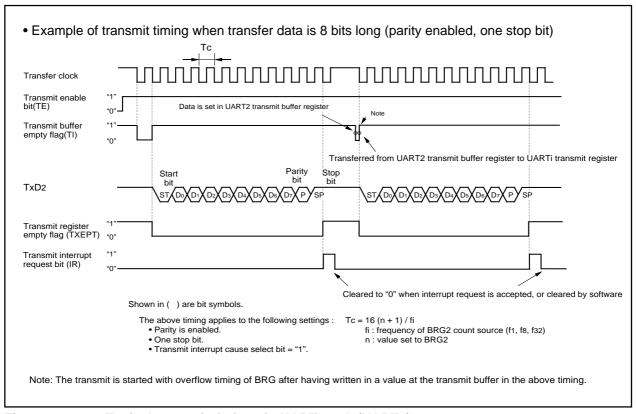


Figure 1.19.17. Typical transmit timings in UART mode(UART2)

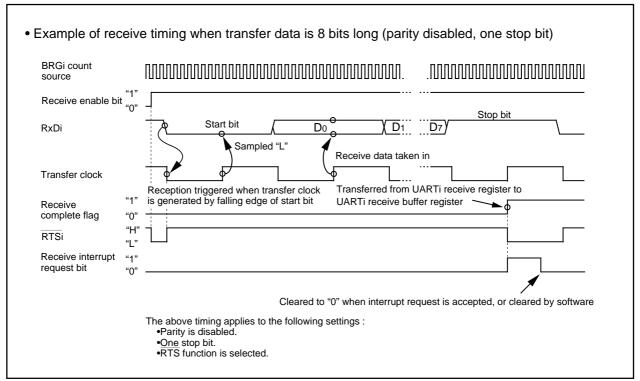


Figure 1.19.18. Typical receive timing in UART mode

(a) Separate CTS/RTS pins function (UART0)

Setting the $\overline{CTS}/\overline{RTS}$ separate bit (bit 6 of address 03B016) to "1" inputs/outputs the \overline{CTS} signal and \overline{RTS} signal from different pins. Choose which to use, \overline{CTS} or \overline{RTS} , by use of the $\overline{CTS}/\overline{RTS}$ function select bit (bit 2 of address 03A416). This function is effective in UART0 only. With this function chosen, the user cannot use the $\overline{CTS}/\overline{RTS}$ function. Set "0" both to the $\overline{CTS}/\overline{RTS}$ function select bit (bit 2 of address 03AC16) and to the $\overline{CTS}/\overline{RTS}$ disable bit (bit 4 of address 03AC16).

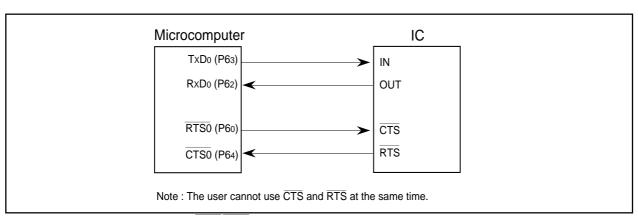


Figure 1.19.19. The separate CTS/RTS pins function usage

(b) Sleep mode (UART0, UART1)

This mode is used to transfer data between specific microcomputers among multiple microcomputers connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses 03A016, 03A816) is set to "1" during reception. In this mode, the unit performs receive operation when the MSB of the received data = "1" and does not perform receive operation when the MSB = "0".

(c) Function for switching serial data logic (UART2)

When the data logic select bit (bit 6 of address 037D16) is assigned 1, data is inverted in writing to the transmission buffer register or reading the reception buffer register. Figure 1.19.20 shows the example of timing for switching serial data logic.

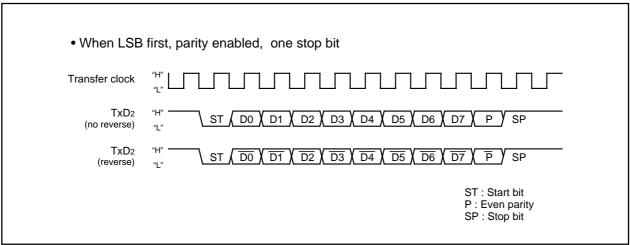


Figure 1.19.20. Timing for switching serial data logic

(d) TxD, RxD I/O polarity reverse function (UART2)

This function is to reverse TxD pin output and RxD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) is reversed. Set this function to "0" (not to reverse) for usual use.

(e) Bus collision detection function (UART2)

This function is to sample the output level of the TxD pin and the input level of the RxD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 1.19.21 shows the example of detection timing of a buss collision (in UART mode).

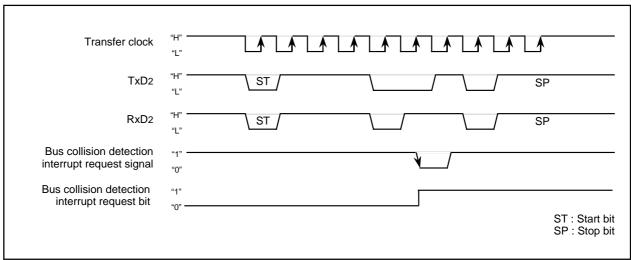


Figure 1.19.21. Detection timing of a bus collision (in UART mode)

(3) Clock-asynchronous serial I/O mode (used for the SIM interface)

The SIM interface is used for connecting the microcomputer with a memory card or the like; adding some extra settings in UART2 clock-asynchronous serial I/O mode allows the user to effect this function. Table 1.19.8 shows the specifications of clock-asynchronous serial I/O mode (used for the SIM interface).

Table 1.19.8. Specifications of clock-asynchronous serial I/O mode (used for the SIM interface)

Item	Specification
Transfer data format	• Transfer data 8-bit UART mode (bit 2 through bit 0 of address 037816 = "1012")
	• One stop bit (bit 4 of address 037816 = "0")
	With the direct format chosen
	Set parity to "even" (bit 5 and bit 6 of address 037816 = "1" and "1" respectively)
	Set data logic to "direct" (bit 6 of address 037D16 = "0").
	Set transfer format to LSB (bit 7 of address 037C16 = "0").
	With the inverse format chosen
	Set parity to "odd" (bit 5 and bit 6 of address 037816 = "0" and "1" respectively)
	Set data logic to "inverse" (bit 6 of address 037D16 = "1")
	Set transfer format to MSB (bit 7 of address 037C16 = "1")
Transfer clock	• With the internal clock chosen (bit 3 of address 037816 = "0"): fi / 16 (n + 1) (Note 1): fi=f1, f8, f32
	(Do not set external clock)
Transmission / reception control	Disable the CTS and RTS function (bit 4 of address 037C16 = "1")
Other settings	The sleep mode select function is not available for UART2
	• Set transmission interrupt factor to "transmission completed" (bit 4 of address 037D16 = "1")
Transmission start condition	To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 of address 037D16) = "1"
	- Transmit buffer empty flag (bit 1 of address 037D16) = "0"
Reception start condition	To start reception, the following requirements must be met:
	- Reception enable bit (bit 2 of address 037D16) = "1"
	- Detection of a start bit
Interrupt request	When transmitting
generation timing	When data transmission from the UART2 transfer register is completed
	(bit 4 of address 037D16 = "1")
	When receiving
	When data transfer from the UART2 receive register to the UART2 receive
	buffer register is completed
Error detection	Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 2)
	Framing error (see the specifications of clock-asynchronous serial I/O)
	Parity error (see the specifications of clock-asynchronous serial I/O)
	- On the reception side, an "L" level is output from the TxD2 pin by use of the parity error
	signal output function (bit 7 of address 037D16 = "1") when a parity error is detected
	- On the transmission side, a parity error is detected by the level of input to
	the RxD2 pin when a transmission interrupt occurs
	• The error sum flag (see the specifications of clock-asynchronous serial I/O)

Note 1: 'n' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.

Note 2: If an overrun error occurs, the UART2 receive buffer will have the next data written in. Note also that the UARTi receive interrupt request bit is not set to "1".

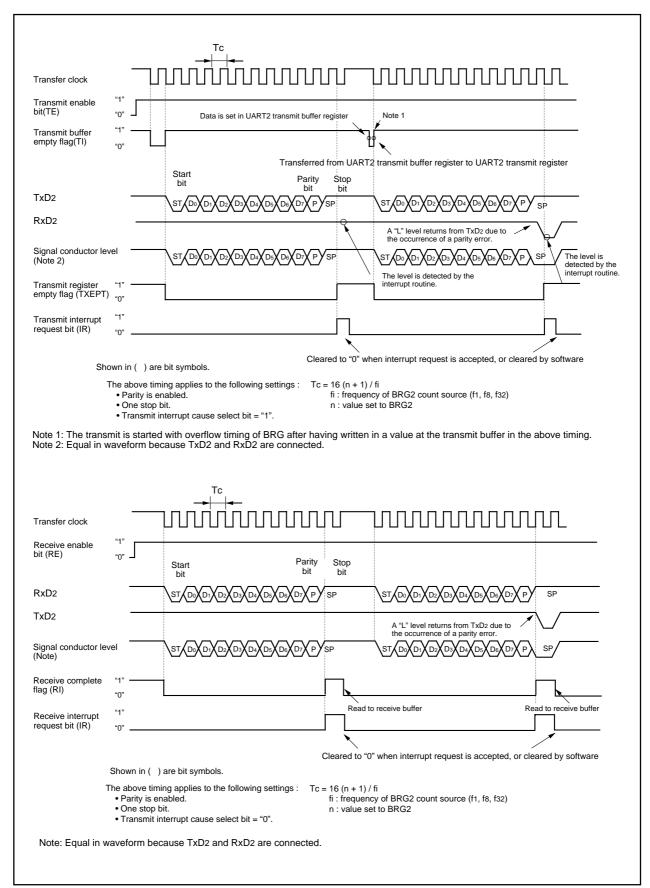


Figure 1.19.22. Typical transmit/receive timing in UART mode (used for the SIM interface)

(a) Function for outputting a parity error signal

With the error signal output enable bit (bit 7 of address 037D16) assigned "1", you can output an "L" level from the TxD2 pin when a parity error is detected. In step with this function, the generation timing of a transmission completion interrupt changes to the detection timing of a parity error signal. Figure 1.19.23 shows the output timing of the parity error signal.

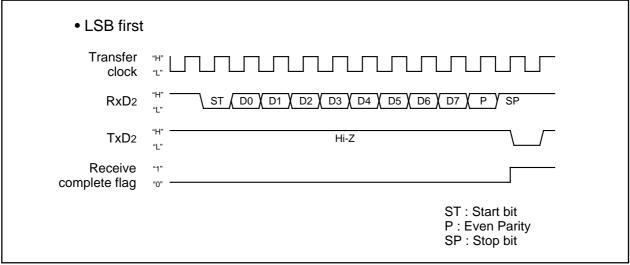


Figure 1.19.23. Output timing of the parity error signal

(b) Direct format/inverse format

Connecting the SIM card allows you to switch between direct format and inverse format. If you choose the direct format, D₀ data is output from TxD₂. If you choose the inverse format, D₇ data is inverted and output from TxD₂.

Figure 1.19.24 shows the SIM interface format.

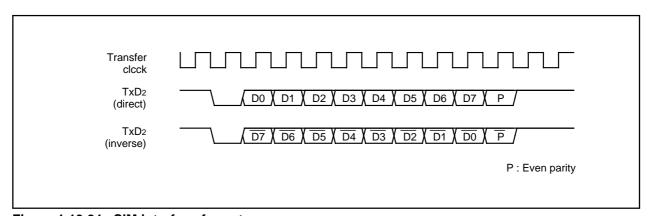


Figure 1.19.24. SIM interface format

Figure 1.19.25 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pull-up.

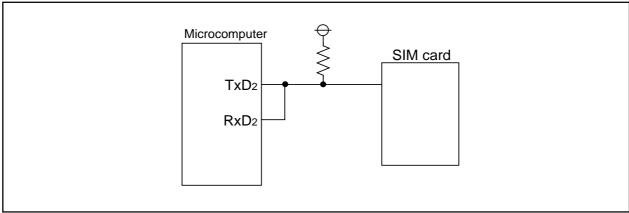


Figure 1.19.25. Connecting the SIM interface

UART2 Special Mode Register

The UART2 special mode register (address 037716) is used to control UART2 in various ways. Figure 1.19.26 shows the UART2 special mode register.

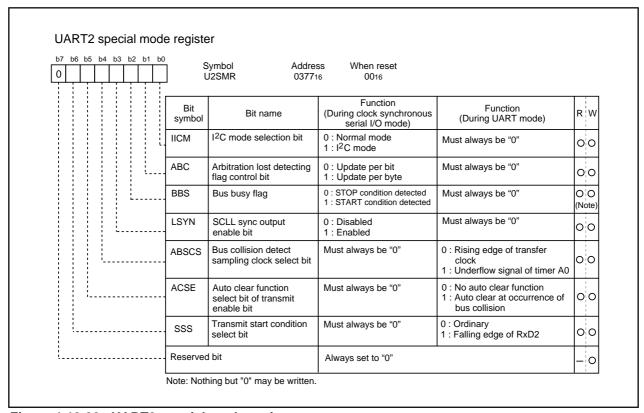


Figure 1.19.26. UART2 special mode register

Table 1.19.9. Features in I²C mode

	Function	Normal mode	I ² C mode (Note 1)
1	Factor of interrupt number 10 (Note 2)	Bus collision detection	Start condition detection or stop condition detection
2	Factor of interrupt number 15 (Note 2)	UART2 transmission	No acknowledgment detection (NACK)
3	Factor of interrupt number 16 (Note 2)	UART2 reception	Acknowledgment detection (ACK)
4	UART2 transmission output delay	Not delayed	Delayed
5	P70 at the time when UART2 is in use	TxD2 (output)	SDA (input/output) (Note 3)
6	P71 at the time when UART2 is in use	RxD2 (input)	SCL (input/output)
7	P72 at the time when UART2 is in use	CLK2	P72
8	DMA1 factor at the time when 1 1 0 1 is assigned to the DMA request factor selection bits	UART2 reception	Acknowledgment detection (ACK)
9	Noise filter width	15ns	50ns
10	Reading P71	Reading the terminal when 0 is assigned to the direction register	Reading the terminal regardless of the value of the direction register
11	Initial value of UART2 output	H level (when 0 is assigned to the CLK polarity select bit)	The value set in latch P70 when the port is selected

Note 1: Make the settings given below when I²C mode is in use.

Set 0 1 0 in bits 2, 1, 0 of the UART2 transmission/reception mode register.

Disable the RTS/CTS function. Choose the MSB First function.

Note 2: Follow the steps given below to switch from a factor to another.

- 1. Disable the interrupt of the corresponding number.
- 2. Switch from a factor to another.
- 3. Reset the interrupt request flag of the corresponding number.
- 4. Set an interrupt level of the corresponding number.

Note 3: Set an initial value of SDA transmission output when serial I/O is invalid.

In the first place, the control bits related to the I²C bus (simplified I²C bus) interface are explained. Bit 0 of the UART special mode register (037716) is used as the I²C mode selection bit.

Setting "1" in the I²C mode select bit (bit 0) goes the circuit to achieve the I²C bus (simplified I²C bus) interface effective.

Table 1.19.9 shows the relation between the I²C mode select bit and respective control workings. Since this function uses clock-synchronous serial I/O mode, set this bit to "0" in UART mode.

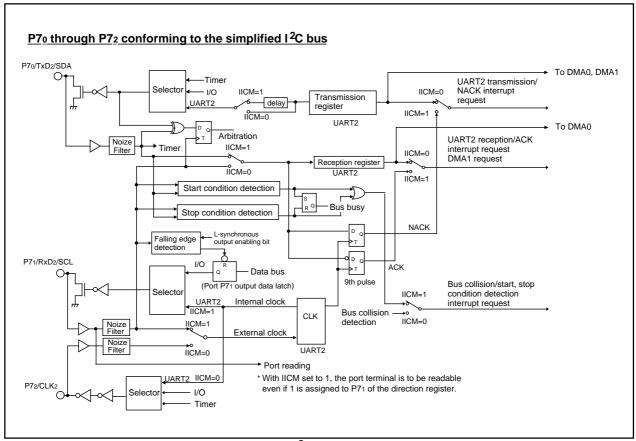


Figure 1.19.27. Functional block diagram for I²C mode

Figure 1.19.27 shows the functional block diagram for I²C mode. Setting "1" in the I²C mode selection bit (IICM) causes ports P70, P71, and P72 to work as data transmission-reception terminal SDA, clock input-output terminal SCL, and port P72 respectively. A delay circuit is added to the SDA transmission output, so the SDA output changes after SCL fully goes to "L". An attempt to read Port P71 (SCL) results in getting the terminal's level regardless of the content of the port direction register. The initial value of SDA transmission output in this mode goes to the value set in port P70. The interrupt factors of the bus collision detection interrupt, UART2 transmission interrupt, and of UART2 reception interrupt turn to the start/stop condition detection interrupt, acknowledgment non-detection interrupt, and acknowledgment detection interrupt respectively.

The start condition detection interrupt refers to the interrupt that occurs when the falling edge of the SDA terminal (P70) is detected with the SCL terminal (P71) staying "H". The stop condition detection interrupt refers to the interrupt that occurs when the rising edge of the SDA terminal (P70) is detected with the SCL terminal (P71) staying "H". The bus busy flag (bit 2 of the UART2 special mode register) is set to "1" by the start condition detection, and set to "0" by the stop condition detection.

The acknowledgment non-detection interrupt refers to the interrupt that occurs when the SDA terminal level is detected still staying "H" at the rising edge of the 9th transmission clock. The acknowledgment detection interrupt refers to the interrupt that occurs when SDA terminal's level is detected already went to "L" at the 9th transmission clock. Also, assigning 1 1 0 1 (UART2 reception) to the DMA1 request factor select bits provides the means to start up the DMA transfer by the effect of acknowledgment detection. Bit 1 of the UART2 special mode register (037716) is used as the arbitration loss detecting flag control bit. Arbitration means the act of detecting the nonconformity between transmission data and SDA terminal data at the timing of the SCL rising edge. This detecting flag is located at bit 3 of the UART2 reception buffer register (037F16), and "1" is set in this flag when nonconformity is detected. Use the arbitration lost detecting flag control bit to choose which way to use to update the flag, bit by bit or byte by byte. When setting this bit to "1" and updated the flag byte by byte if nonconformity is detected, the arbitration lost detecting flag is set to "1" at the falling edge of the 9th transmission clock.

If update the flag byte by byte, must judge and clear ("0") the arbitration lost detecting flag after completing the first byte acknowledge detect and before starting the next one byte transmission.

Bit 3 of the UART2 special mode register is used as SCL- and L-synchronous output enable bit. Setting this bit to "1" goes the P71 data register to "0" in synchronization with the SCL terminal level going to "L".

Some other functions added are explained here. Figure 1.19.28 shows their workings.

Bit 4 of the UART2 special mode register is used as the bus collision detect sampling clock select bit. The bus collision detect interrupt occurs when the RxD2 level and TxD2 level do not match, but the nonconformity is detected in synchronization with the rising edge of the transfer clock signal if the bit is set to "0". If this bit is set to "1", the nonconformity is detected at the timing of the overflow of timer A0 rather than at the rising edge of the transfer clock.

Bit 5 of the UART2 special mode register is used as the auto clear function select bit of transmit enable bit. Setting this bit to "1" automatically resets the transmit enable bit to "0" when "1" is set in the bus collision detect interrupt request bit (nonconformity).

Bit 6 of the UART2 special mode register is used as the transmit start condition select bit. Setting this bit to "1" starts the TxD transmission in synchronization with the falling edge of the RxD terminal.

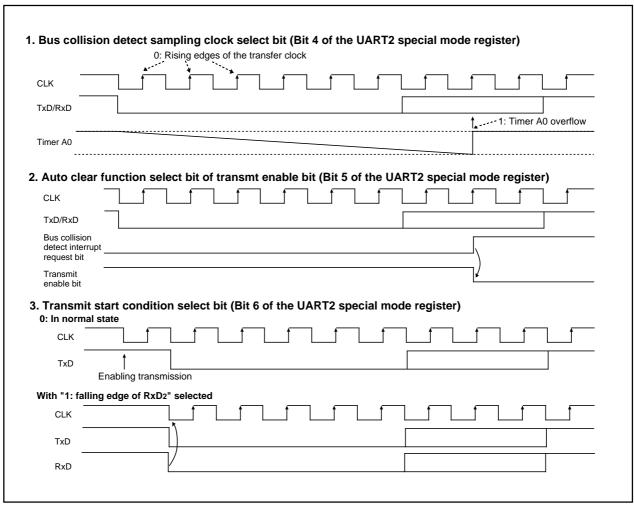


Figure 1.19.28. Some other functions added

UART2 Special Mode Register 2

UART2 special mode register 2 (address 037616) is used to further control UART2 in I²C mode. Figure 1.19.29 shows the UART2 special mode register 2.

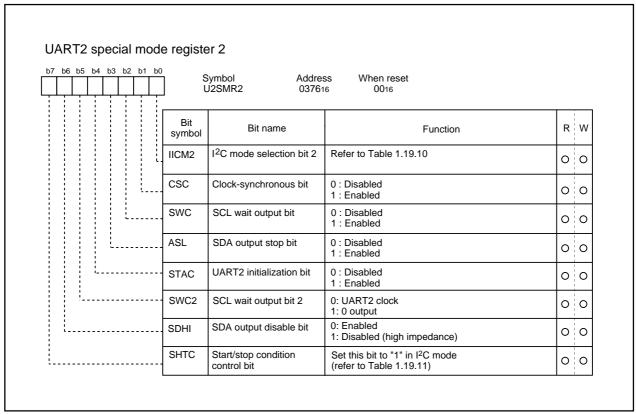


Figure 1.19.29. UART2 special mode register 2

Bit 0 of the UART2 special mode register 2 (address 037616) is used as the I²C mode selection bit 2. Table 1.19.10 shows the types of control to be changed by I²C mode selection bit 2 when the I²C mode selection bit is set to "1". Table 1.19.11 shows the timing characteristics of detecting the start condition and the stop condition. Set the start/stop condition control bit (bit 7 of UART2 special mode register 2) to "1" in I²C mode.

Table 1.19.10. Functions changed by I²C mode selection bit 2

	Function	IICM2 = 0	IICM2 = 1
1	Factor of interrupt number 15	No acknowledgment detection (NACK)	UART2 transmission (the rising edge of the final bit of the clock)
2	Factor of interrupt number 16	Acknowledgment detection (ACK)	UART2 reception (the falling edge of the final bit of the clock)
3	DMA1 factor at the time when 1 1 0 1 is assigned to the DMA request factor selection bits	Acknowledgment detection (ACK)	UART2 reception (the falling edge of the final bit of the clock)
4	Timing for transferring data from the UART2 reception shift register to the reception buffer.	The rising edge of the final bit of the reception clock	The falling edge of the final bit of the reception clock
5	Timing for generating a UART2 reception/ACK interrupt request	The rising edge of the final bit of the reception clock	The falling edge of the final bit of the reception clock

Table 1.19.11. Timing characteristics of detecting the start condition and the stop condition (Note1)

3 to 6 cycles < duration for setting-up (Note2)
3 to 6 cycles < duration for holding (Note2)

Note 1: When the start/stop condition count bit is "1".

Note 2: "cycles" is in terms of the input oscillation frequency f(XIN) of the main clock.

	Duration for setting up	Duration for holding	1 1 1
SCL			
SDA _ (Start condition)			1 1 1 1 1
SDA (Stop condition)			1

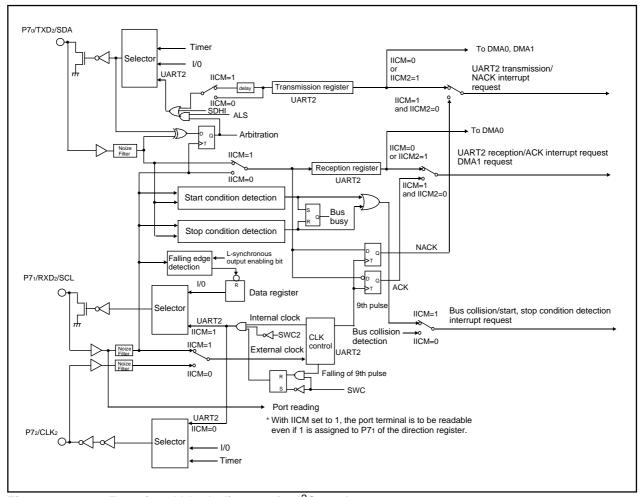


Figure 1.19.30. Functional block diagram for I²C mode

Functions available in I²C mode are shown in Figure 1.19.30 — a functional block diagram.

Bit 3 of the UART2 special mode register 2 (address 037616) is used as the SDA output stop bit. Setting this bit to "1" causes an arbitration loss to occur, and the SDA pin turns to high-impedance state the instant when the arbitration loss detection flag is set to "1".

Bit 1 of the UART2 special mode register 2 (address 037616) is used as the clock synchronization bit. With this bit set to "1" at the time when the internal SCL is set to "H", the internal SCL turns to "L" if the falling edge is found in the SCL pin; and the baud rate generator reloads the set value, and start counting within the "L" interval. When the internal SCL changes from "L" to "H" with the SCL pin set to "L", stops counting the baud rate generator, and starts counting it again when the SCL pin turns to "H". Due to this function, the UART2 transmission-reception clock becomes the logical product of the signal flowing through the internal SCL and that flowing through the SCL pin. This function operates over the period from the moment earlier by a half cycle than falling edge of the UART2 first clock to the rising edge of the ninth bit. To use this function, choose the internal clock for the transfer clock.

Bit 2 of the UART2 special mode register 2 (037616) is used as the SCL wait output bit. Setting this bit to "1" causes the SCL pin to be fixed to "L" at the falling edge of the ninth bit of the clock. Setting this bit to "0" frees the output fixed to "L".

Bit 4 of the UART2 special mode register 2 (address 037616) is used as the UART2 initialization bit. Setting this bit to "1", and when the start condition is detected, the microcomputer operates as follows.

- (1) The transmission shift register is initialized, and the content of the transmission register is transferred to the transmission shift register. This starts transmission by dealing with the clock entered next as the first bit. The UART2 output value, however, doesn't change until the first bit data is output after the entrance of the clock, and remains unchanged from the value at the moment when the microcomputer detected the start condition.
- (2) The reception shift register is initialized, and the microcomputer starts reception by dealing with the clock entered next as the first bit.
- (3) The SCL wait output bit turns to "1". This turns the SCL pin to "L" at the falling edge of the ninth bit of the clock.

Starting to transmit/receive signals to/from UART2 using this function doesn't change the value of the transmission buffer empty flag. To use this function, choose the external clock for the transfer clock. Bit 5 of the UART2 special mode register 2 (037616) is used as the SCL pin wait output bit 2. Setting this bit to "1" with the serial I/O specified allows the user to forcibly output an "L" from the SCL pin even if UART2 is in operation. Setting this bit to "0" frees the "L" output from the SCL pin, and the UART2 clock is input/output.

Bit 6 of the UART2 special mode register 2 (037616) is used as the SDA output disable bit. Setting this bit to "1" forces the SDA pin to turn to the high-impedance state. Refrain from changing the value of this bit at the rising edge of the UART2 transfer clock. There can be instances in which arbitration lost detection flag is turned on.

S I/O3, 4

S I/O3 and S I/O4 are exclusive clock-synchronous serial I/Os.

Figure 1.19.31 shows the S I/O3, 4 block diagram, and Figure 1.19.32 shows the S I/O3, 4 control register. Table 1.19.12 shows the specifications of S I/O3, 4.

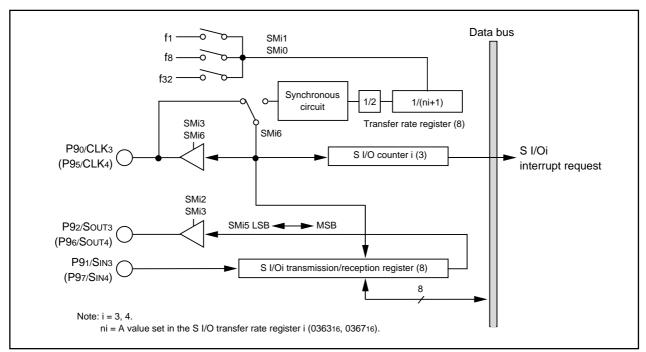


Figure 1.19.31. S I/O3, 4 block diagram

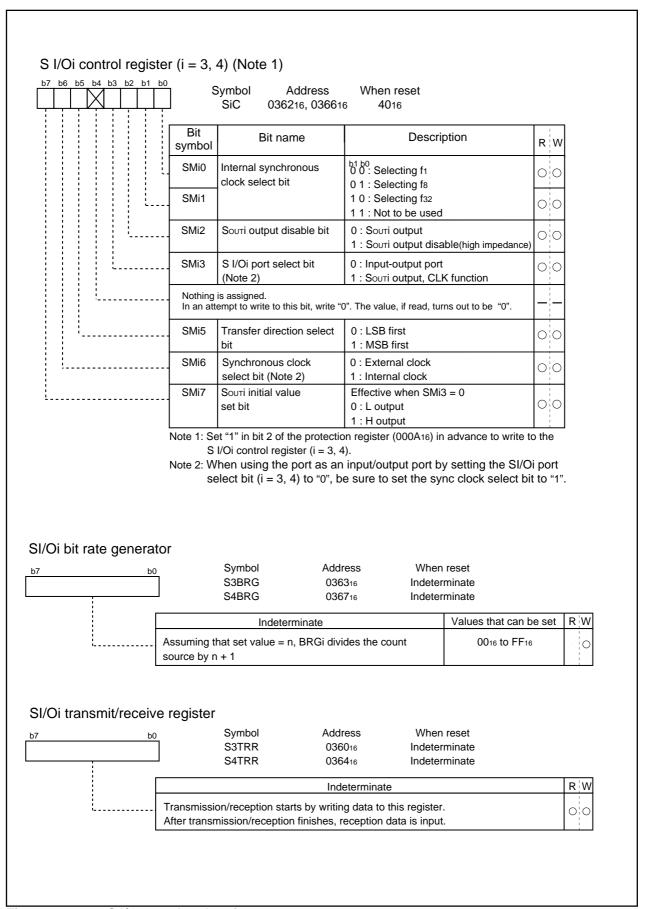


Figure 1.19.32. S I/O3, 4 related register

Table 1.19.12. Specifications of S I/O3, 4

Item	Specifications
Transfer data format	Transfer data length: 8 bits
Transfer clock	• With the internal clock selected (bit 6 of 036216, 036616 = "1"): f1/2(ni+1),
	f8/2(ni+1), f32/2(ni+1) (Note 1)
	• With the external clock selected (bit 6 of 036216, 036616 = 0):Input from the CLKi terminal (Note 2)
Conditions for	To start transmit/reception, the following requirements must be met:
transmission/	- Select the synchronous clock (use bit 6 of 036216, 036616).
reception start	Select a frequency dividing ratio if the internal clock has been selected (use bits
	0 and 1 of 036216, 036616).
	- Souti initial value set bit (use bit 7 of 036216, 036616)= 1.
	- S I/Oi port select bit (bit 3 of 036216, 036616) = 1.
	- Select the transfer direction (use bit 5 of 036216, 036616)
	-Write transfer data to SI/Oi transmit/receive register (036016, 036416)
	To use S I/Oi interrupts, the following requirements must be met:
	- Clear the SI/Oi interrupt request bit before writing transfer data to the SI/Oi
	transmit/receive register (bit 3 of 004916, 004816) = 0.
Interrupt request	Rising edge of the last transfer clock. (Note 3)
generation timing	
Select function	LSB first or MSB first selection
	Whether transmission/reception begins with bit 0 (LSB) or bit 7 (MSB) can be
	selected.
	Function for setting an Souti initial value selection
	When using an external clock for the transfer clock, the user can choose the
	Souti pin output level during a non-transfer time. For details on how to set, see
	Figure 1.19.33.
Precaution	• Unlike UART0–2, SI/Oi (i = 3, 4) is not divided for transfer register and buffer.
	Therefore, do not write the next transfer data to the SI/Oi transmit/receive register
	(addresses 036016, 036416) during a transfer. When the internal clock is selected
	for the transfer clock, Souti holds the last data for a 1/2 transfer clock period after
	it finished transferring and then goes to a high-impedance state. However, if the
	transfer data is written to the SI/Oi transmit/receive register (addresses 036016,
	036416) during this time, SOUTi is placed in the high-impedance state immediately
	upon writing and the data hold time is thereby reduced.
	1

Note 1: n is a value from 0016 through FF16 set in the S I/Oi transfer rate register (i = 3, 4).

Note 2: With the external clock selected:

- Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the high state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (SOUTI initial value set bit), make sure the CLKi pin input is held high.
- The S I/Oi circuit keeps on with the shift operation as long as the synchronous clock is entered in it, so stop the synchronous clock at the instant when it counts to eight. The internal clock, if selected, automatically stops.

Note 3: If the internal clock is used for the synchronous clock, the transfer clock signal stops at the "H" state.

■ Functions for setting an Souti initial value

When using an external clock for the transfer clock, the SouTi pin output level during a non-transfer time can be set to the high or the low state. Figure 1.19.33 shows the timing chart for setting an SouTi initial value and how to set it.

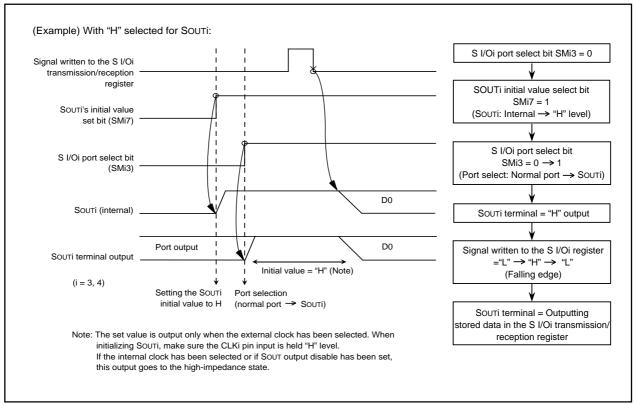


Figure 1.19.33. Timing chart for setting SOUTi's initial value and how to set it

■ S I/Oi operation timing

Figure 1.19.34 shows the S I/Oi operation timing

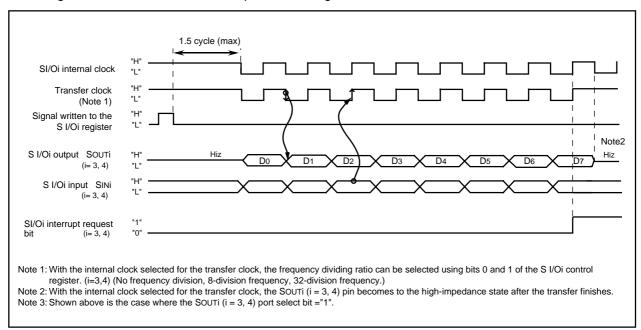


Figure 1.19.34. S I/Oi operation timing chart

A-D Converter

The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive coupling amplifier. Pins P100 to P107, P95, and P96 also function as the analog signal input pins. The direction registers of these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716) can be used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power dissipation. When using the A-D converter, start A-D conversion only after setting bit 5 of 03D716 to connect VREF. The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision, the low 8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit precision, the low 8 bits are stored in the even addresses.

Table 1.20.1 shows the performance of the A-D converter. Figure 1.20.1 shows the block diagram of the A-D converter, and Figures 1.20.2 and 1.20.3 show the A-D converter-related registers.

Table 1.20.1. Performance of A-D converter

Item	Performance	
Method of A-D conversion	Successive approximation (capacitive coupling amplifier)	
Analog input voltage (Note 1)	0V to AVcc (Vcc)	
Operating clock \$\phiAD\$ (Note 2)	VCC = 5V fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)	
	VCC = 3V divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)	
Resolution	8-bit or 10-bit (selectable)	
Absolute precision	Vcc = 5V • Without sample and hold function	
	±3LSB	
	 With sample and hold function (8-bit resolution) 	
	±2LSB	
	 With sample and hold function (10-bit resolution) 	
	ANo to AN7 input: ±3LSB	
	ANEX0 and ANEX1 input (including mode in which external	
	operation amp is connected) : ±7LSB	
	Vcc = 3V • Without sample and hold function (8-bit resolution)	
	±2LSB	
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,	
	and repeat sweep mode 1	
Analog input pins	8pins (ANo to AN7) + 2pins (ANEX0 and ANEX1)	
A-D conversion start condition	Software trigger	
	A-D conversion starts when the A-D conversion start flag changes to "1"	
	External trigger (can be retriggered)	
	A-D conversion starts when the A-D conversion start flag is "1" and the	
	ADTRG/P97 input changes from "H" to "L"	
Conversion speed per pin	Without sample and hold function	
	8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles	
	With sample and hold function	
	8-bit resolution: 28 \$\phiAD\$ cycles, 10-bit resolution: 33 \$\phiAD\$ cycles	

Note 1: Does not depend on use of sample and hold function.

Note 2: Divide the frequency if f(XIN) exceeds 10MHz, and make φAD frequency equal to 10MHz. Without sample and hold function, set the φAD frequency to 250kHz min.

With the sample and hold function, set the φAD frequency to 1MHz min.

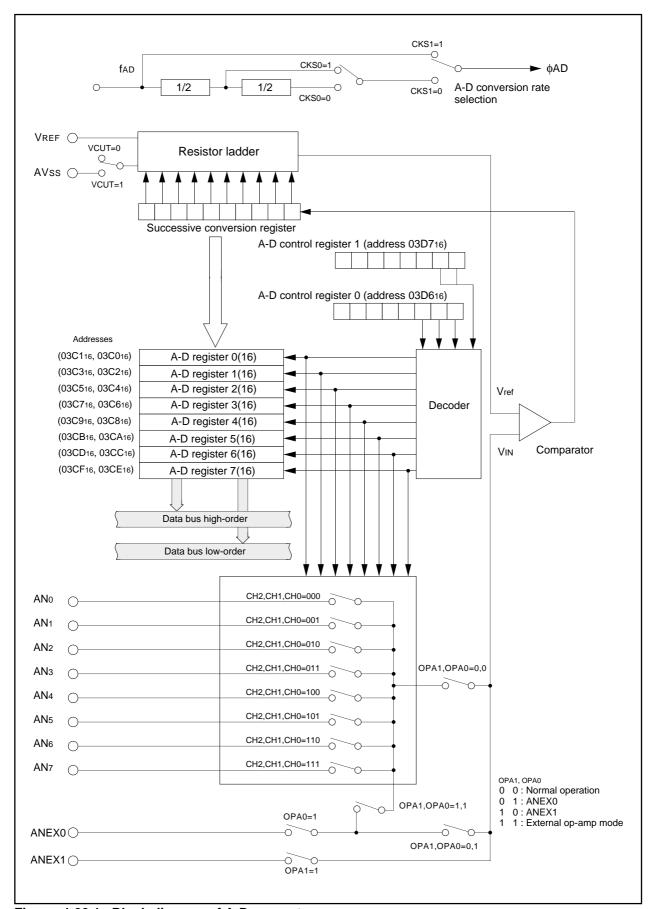


Figure 1.20.1. Block diagram of A-D converter



Figure 1.20.2. A-D converter-related registers (1)

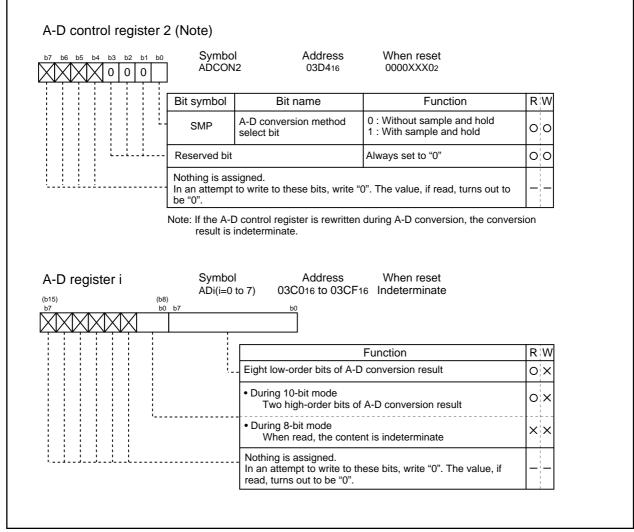


Figure 1.20.3. A-D converter-related registers (2)

(1) One-shot mode

In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 1.20.2 shows the specifications of one-shot mode. Figure 1.20.4 shows the A-D control register in one-shot mode.

Table 1.20.2. One-shot mode specifications

Item	Specification	
Function	The pin selected by the analog input pin select bit is used for one A-D conversion	
Start condition	Writing "1" to A-D conversion start flag	
Stop condition	• End of A-D conversion (A-D conversion start flag changes to "0", except when external trigger is selected)	
	Writing "0" to A-D conversion start flag	
Interrupt request generation timing	End of A-D conversion	
Input pin	One of ANo to AN7, as selected	
Reading of result of A-D converter	Read A-D register corresponding to selected pin	

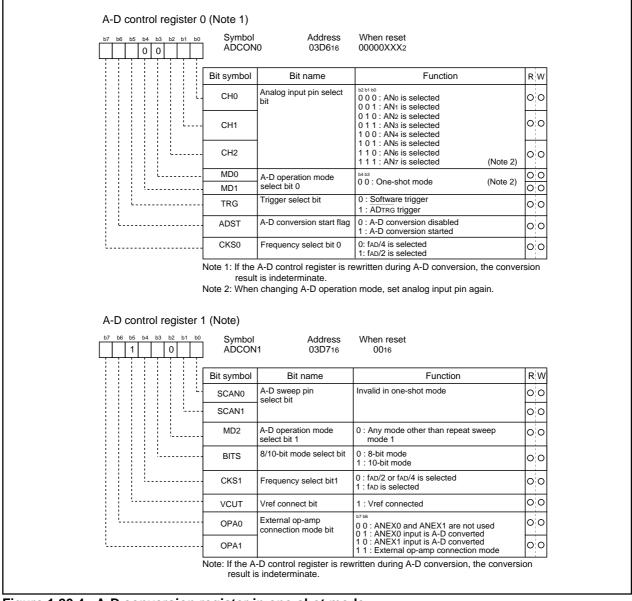


Figure 1.20.4. A-D conversion register in one-shot mode

(2) Repeat mode

In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table 1.20.3 shows the specifications of repeat mode. Figure 1.20.5 shows the A-D control register in repeat mode.

Table 1.20.3. Repeat mode specifications

Item	Specification	
Function	The pin selected by the analog input pin select bit is used for repeated A-D conversion	
Star condition	Writing "1" to A-D conversion start flag	
Stop condition	Writing "0" to A-D conversion start flag	
Interrupt request generation timing	None generated	
Input pin	One of ANo to AN7, as selected	
Reading of result of A-D converter	Read A-D register corresponding to selected pin	

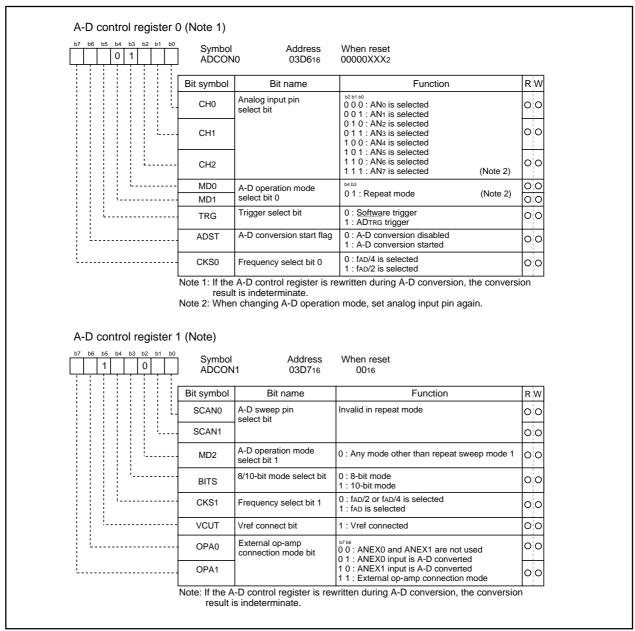


Figure 1.20.5. A-D conversion register in repeat mode

(3) Single sweep mode

In single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D conversion. Table 1.20.4 shows the specifications of single sweep mode. Figure 1.20.6 shows the A-D control register in single sweep mode.

Table 1.20.4. Single sweep mode specifications

Item	Specification
Function	The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion
Start condition	Writing "1" to A-D converter start flag
Stop condition	• End of A-D conversion (A-D conversion start flag changes to "0", except
	when external trigger is selected)
	Writing "0" to A-D conversion start flag
Interrupt request generation timing	End of A-D conversion
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7 (8 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin

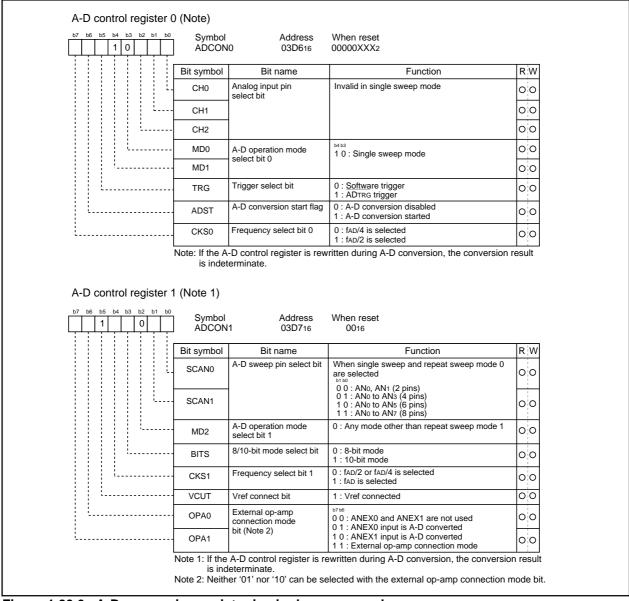


Figure 1.20.6. A-D conversion register in single sweep mode

(4) Repeat sweep mode 0

In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep A-D conversion. Table 1.20.5 shows the specifications of repeat sweep mode 0. Figure 1.20.7 shows the A-D control register in repeat sweep mode 0.

Table 1.20.5. Repeat sweep mode 0 specifications

Item	Specification
Function	The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion
Start condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	ANo and AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), or ANo to AN7 (8 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin (at any time)

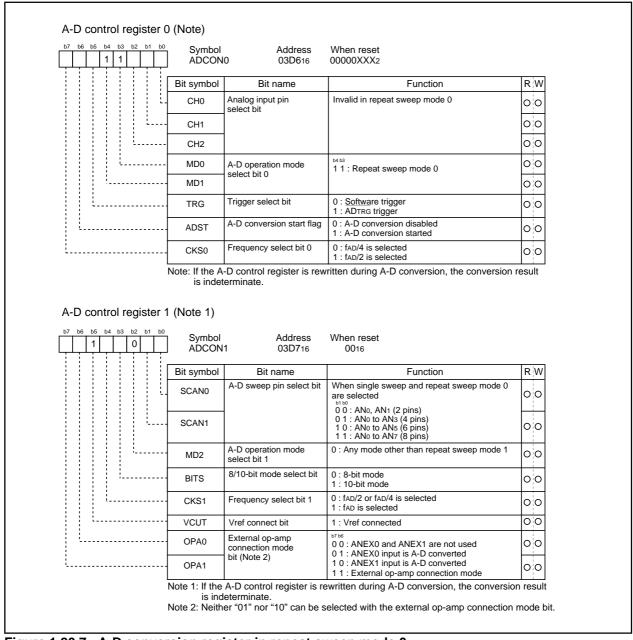


Figure 1.20.7. A-D conversion register in repeat sweep mode 0

(5) Repeat sweep mode 1

In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected using the A-D sweep pin select bit. Table 1.20.6 shows the specifications of repeat sweep mode 1. Figure 1.20.8 shows the A-D control register in repeat sweep mode 1.

Table 1.20.6. Repeat sweep mode 1 specifications

Item	Specification
Function	All pins perform repeat sweep A-D conversion, with emphasis on the pin or
	pins selected by the A-D sweep pin select bit
	Example : AN₀ selected AN₀ → AN₁ → AN₀ → AN₂ → AN₀ → AN₃, etc
Start condition	Writing "1" to A-D conversion start flag
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	ANo (1 pin), ANo and AN1 (2 pins), ANo to AN2 (3 pins), ANo to AN3 (4 pins)
Reading of result of A-D converter	Read A-D register corresponding to selected pin (at any time)

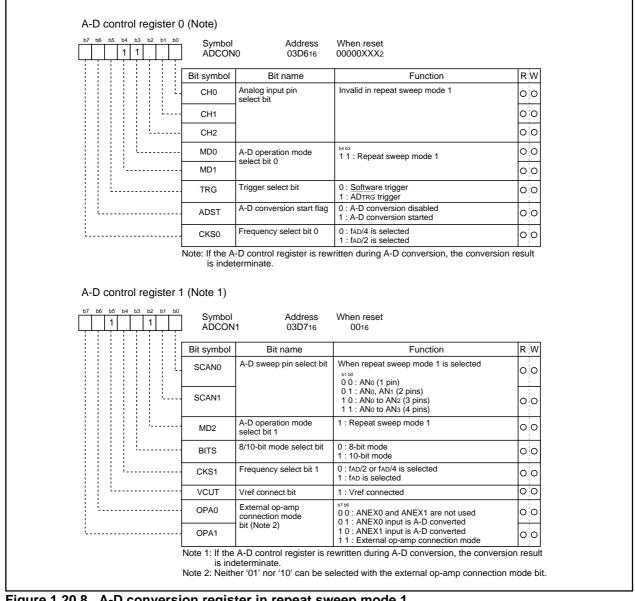


Figure 1.20.8. A-D conversion register in repeat sweep mode 1

(a) Sample and hold

Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to "1". When sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 fAD cycle is achieved with 8-bit resolution and 33 fAD with 10-bit resolution. Sample and hold can be selected in all modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and hold is to be used.

(b) Extended analog input pins

In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can also be converted from analog to digital.

When bit 6 of the A-D control register 1 (address 03D716) is "1" and bit 7 is "0", input via ANEX0 is converted from analog to digital. The result of conversion is stored in A-D register 0.

When bit 6 of the A-D control register 1 (address 03D716) is "0" and bit 7 is "1", input via ANEX1 is converted from analog to digital. The result of conversion is stored in A-D register 1.

(c) External operation amp connection mode

In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can be amplified together by just one operation amp and used as the input for A-D conversion.

When bit 6 of the A-D control register 1 (address 03D716) is "1" and bit 7 is "1", input via ANo to AN7 is output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the corresponding A-D register. The speed of A-D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.20.9 is an example of how to connect the pins in external operation amp mode.

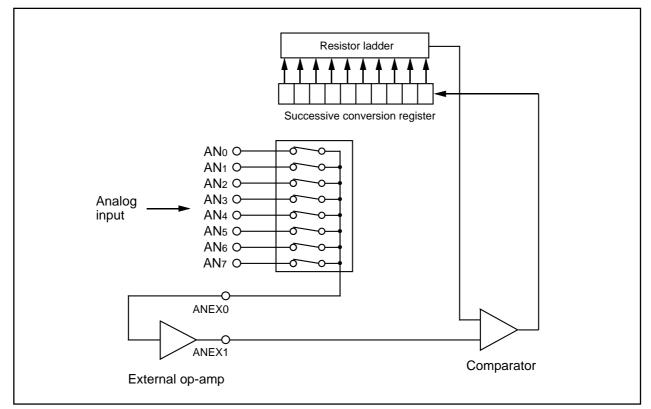


Figure 1.20.9. Example of external op-amp connection mode

D-A Converter

This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of this type.

D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the target port to output mode if D-A conversion is to be performed.

Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register.

V = VREF X n / 256 (n = 0 to 255)

VREF: reference voltage

Table 1.21.1 lists the performance of the D-A converter. Figure 1.21.1 shows the block diagram of the D-A converter. Figure 1.21.2 shows the D-A converter equivalent circuit.

Table 1.21.1. Performance of D-A converter

Item	Performance
Conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 channels

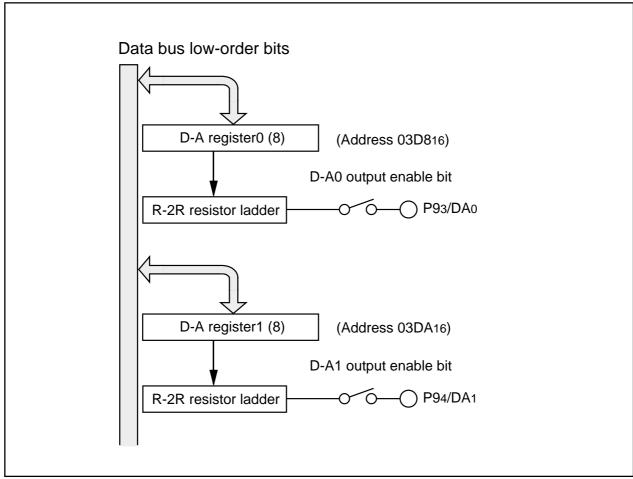


Figure 1.21.1. Block diagram of D-A converter

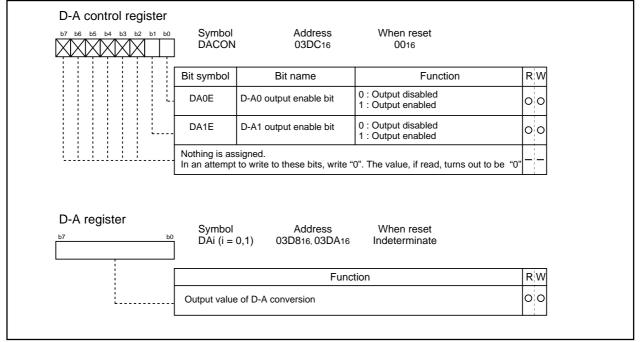


Figure 1.21.2. D-A control register

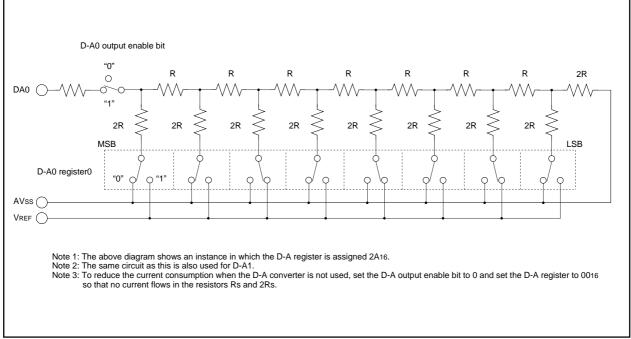


Figure 1.21.3. D-A converter equivalent circuit

CRC Calculation Circuit

The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC code is set in a CRC data register each time one byte of data is transferred to a CRC input register after writing an initial value into the CRC data register. Generation of CRC code for one byte of data is completed in two machine cycles.

Figure 1.22.1 shows the block diagram of the CRC circuit. Figure 1.22.2 shows the CRC-related registers. Figure 1.22.3 shows the calculation example using the CRC calculation circuit

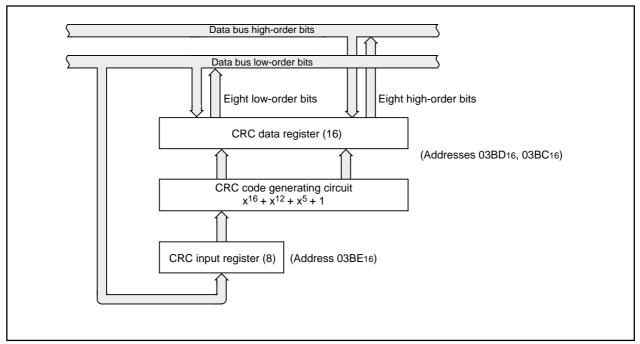


Figure 1.22.1. Block diagram of CRC circuit

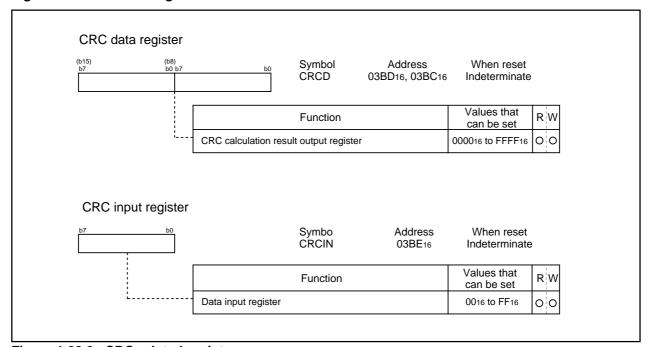


Figure 1.22.2. CRC-related registers

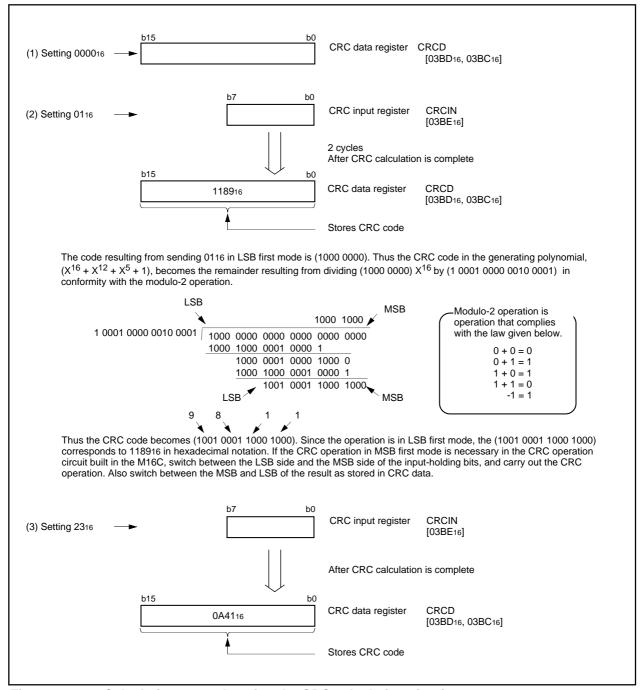


Figure 1.22.3. Calculation example using the CRC calculation circuit

Programmable I/O Ports

There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is an input-only port and has no built-in pull-up resistance.

Figures 1.23.1 to 1.23.4 show the programmable I/O ports. Figure 1.23.5 shows the I/O pins.

Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.

To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A converter), they function as outputs regardless of the contents of the direction registers. When pins are to be used as the outputs for the D-A converter, do not set the direction registers to output mode. See the descriptions of the respective functions for how to set up the built-in peripheral devices.

(1) Direction registers

Figure 1.23.6 shows the direction registers.

These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin.

Note: There is no direction register bit for P85.

(2) Port registers

Figure 1.23.7 shows the port registers.

These registers are used to write and read data for input and output to and from an external device. A port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit in port registers corresponds one for one to each I/O pin.

(3) Pull-up control registers

Figure 1.23.8 shows the pull-up control registers.

The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is set for input.

However, in memory expansion mode and microprocessor mode, the pull-up control register of P0 to P3, P40 to P43, and P5 is invalid.

(4) Port control register

Figure 1.23.9 shows the port control register.

The bit 0 of port control resister is used to read port P1 as follows:

- 0 : When port P1 is input port, port input level is read.When port P1 is output port , the contents of port P1 register is read.
- 1: The contents of port P1 register is read always.

This register is valid in the following:

- External bus width is 8 bits in microprocessor mode or memory expansion mode.
- Port P1 can be used as a port in multiplexed bus for the entire space.

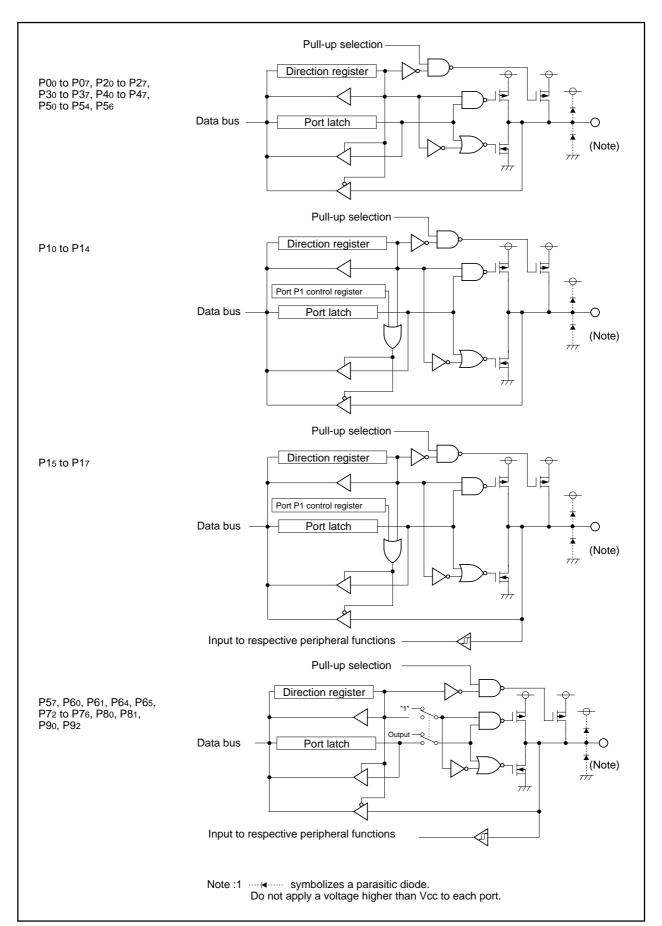


Figure 1.23.1. Programmable I/O ports (1)

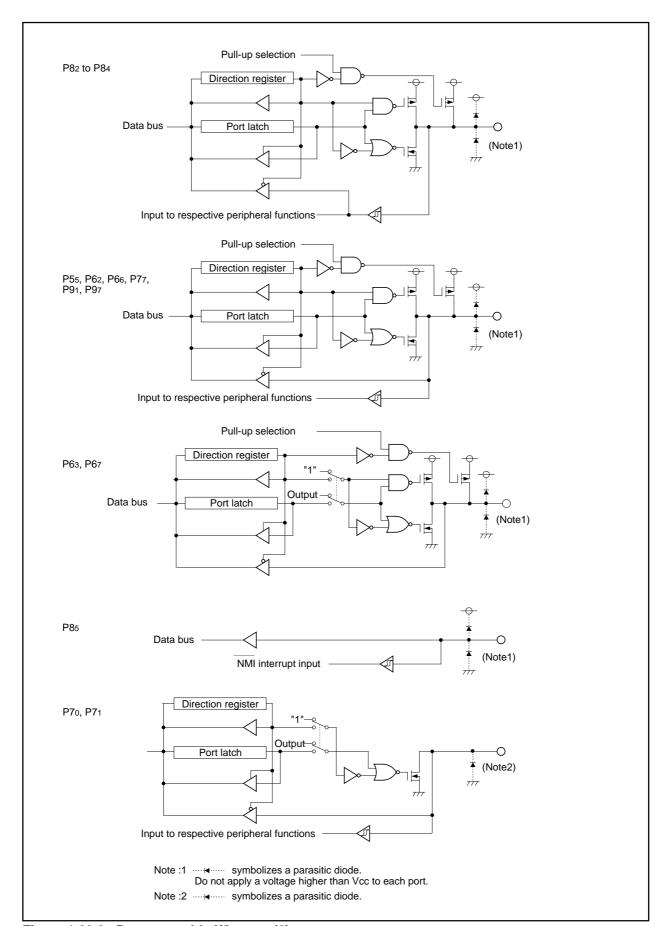


Figure 1.23.2. Programmable I/O ports (2)

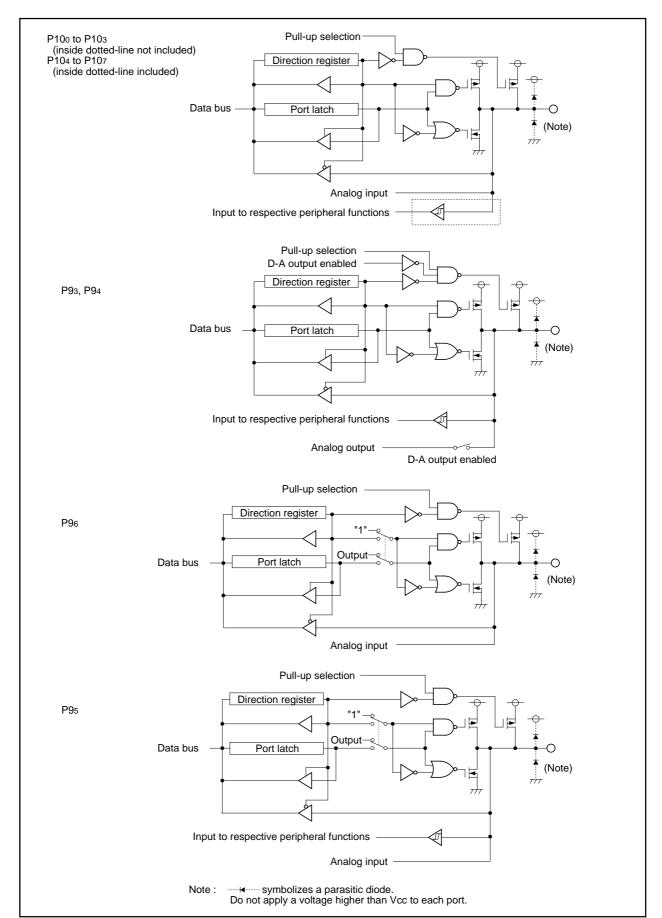


Figure 1.23.3. Programmable I/O ports (3)

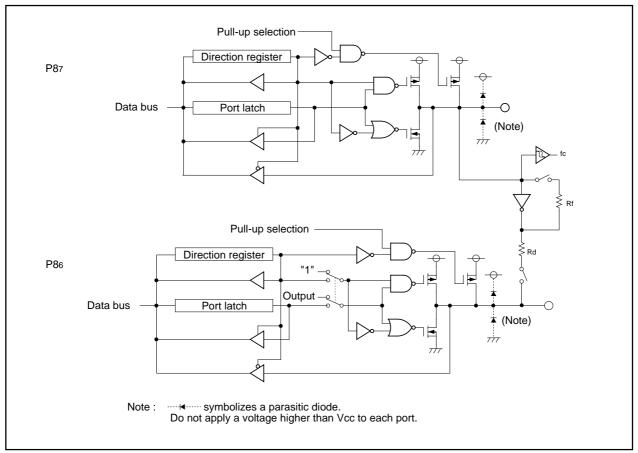


Figure 1.23.4. Programmable I/O ports (4)

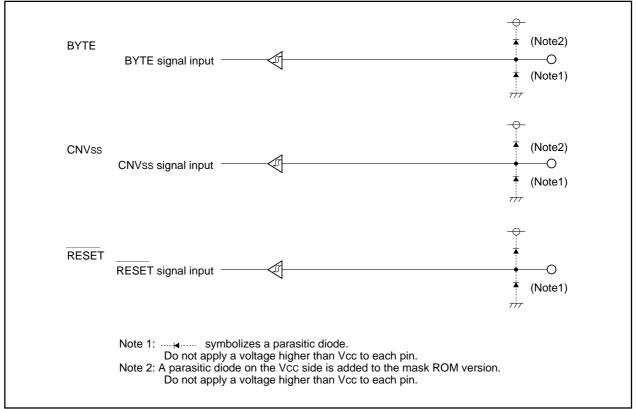


Figure 1.23.5. I/O pins

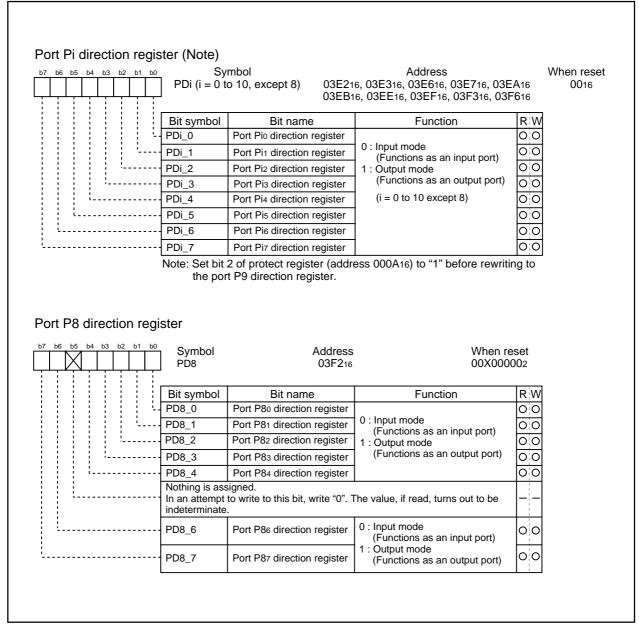


Figure 1.23.6. Direction register

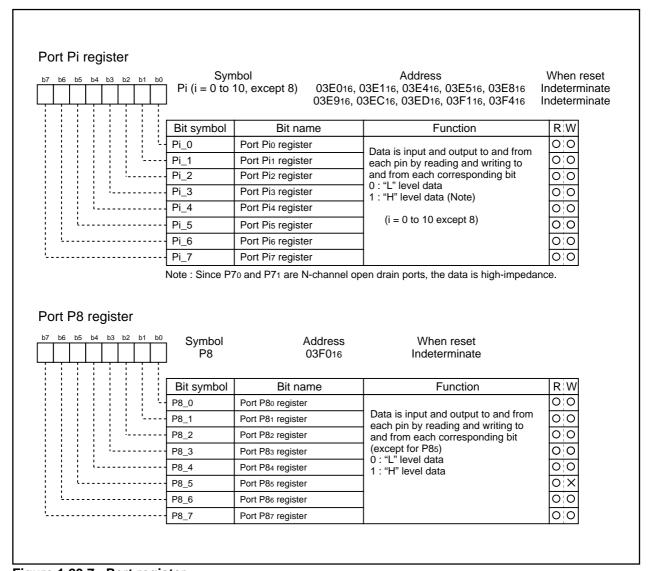


Figure 1.23.7. Port register

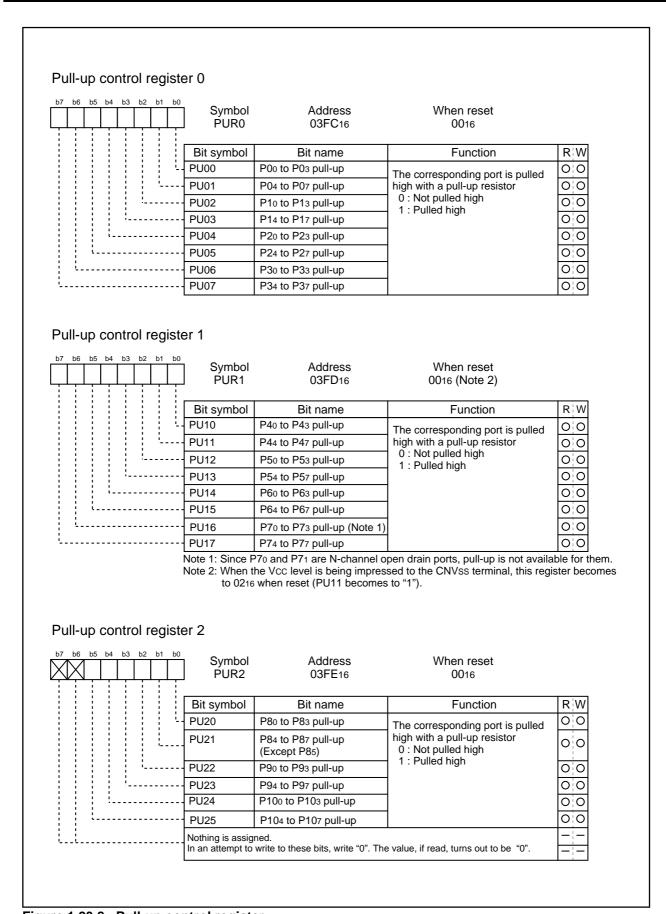


Figure 1.23.8. Pull-up control register

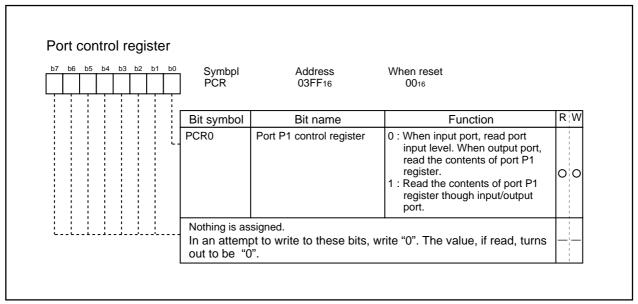


Figure 1.23.9. Port control register

Table 1.23.1. Example connection of unused pins in single-chip mode

Pin name	Connection
Ports P0 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open.
XOUT (Note)	Open
NMI	Connect via resistor to Vcc (pull-up)
AVCC	Connect to VCC
AVSS, VREF, BYTE	Connect to Vss

Note: With external clock input to XIN pin.

Table 1.23.2. Example connection of unused pins in memory expansion mode and microprocessor mode

Pin name	Connection
Ports P6 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open.
P45 / CS1 to P47 / CS3	Sets ports to input mode, sets bits $\overline{\text{CS1}}$ through $\overline{\text{CS3}}$ to 0, and connects to Vcc via resistors (pull-up).
BHE, ALE, HLDA, XOUT (Note 1), BCLK (Note 2)	Open
HOLD, RDY, NMI	Connect via resistor to Vcc (pull-up)
AVCC	Connect to Vcc
AVSS, VREF	Connect to Vss

Note 1: With external clock input to XIN pin.

Note 2: When the BCLK output disable bit (bit 7 at address 000416) is set to "1", connect to Vcc via a resistor (pull-up).

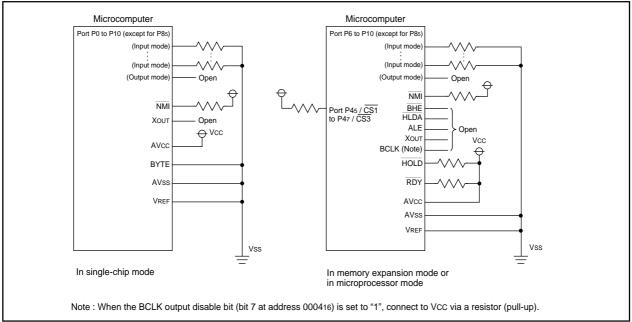


Figure 1.23.10. Example connection of unused pins

Usage Precaution

Timer A (timer mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

Timer A (event counter mode)

- (1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
- (2) When stop counting in free run type, set timer again.

Timer A (one-shot timer mode)

- (1) Setting the count start flag to "0" while a count is in progress causes as follows:
 - The counter stops counting and a content of reload register is reloaded.
 - The TAiout pin outputs "L" level.
 - The interrupt request generated and the timer Ai interrupt request bit goes to "1".
- (2) The timer Ai interrupt request bit goes to "1" if the timer's operation mode is set using any of the following procedures:
 - Selecting one-shot timer mode after reset.
 - Changing operation mode from timer mode to one-shot timer mode.
 - Changing operation mode from event counter mode to one-shot timer mode.

 Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

Timer A (pulse width modulation mode)

- (1) The timer Ai interrupt request bit becomes "1" if setting operation mode of the timer in compliance with any of the following procedures:
 - Selecting PWM mode after reset.
 - Changing operation mode from timer mode to PWM mode.
 - Changing operation mode from event counter mode to PWM mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(2) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiout pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to "1". If the TAiout pin is outputting an "L" level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes "1".

Timer B (timer mode, event counter mode)

(1) Reading the timer Bi register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Bi register with the reload timing gets "FFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.

Timer B (pulse period/pulse width measurement mode)

- (1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to "1".
- (2) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

A-D Converter

- (1) Write to each bit (except bit 6) of A-D control register 0, to each bit of A-D control register 1, and to bit 0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs). In particular, when the Vref connection bit is changed from "0" to "1", start A-D conversion after an elapse of 1 µs or longer.
- (2) When changing A-D operation mode, select analog input pin again.
- (3) Using one-shot mode or single sweep mode Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by A-D conversion interrupt request bit.)
- (4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1 Use the undivided main clock as the internal CPU clock.

Stop Mode and Wait Mode

- (1) When returning from stop mode by hardware reset, RESET pin must be set to "L" level until main clock oscillation is stabilized.
- (2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the WAIT instruction or from the instruction that sets the every-clock stop bit to "1" within the instruction queue are prefetched and then the program stops. So put at least four NOPs in succession either to the WAIT instruction or to the instruction that sets the every-clock stop bit to "1".

Interrupts

- (1) Reading address 0000016
 - When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.

The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0". Though the interrupt is generated, the interrupt routine may not be executed.

Do not read address 0000016 by software.

- (2) Setting the stack pointer
 - The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt.
 - When using the $\overline{\text{NMI}}$ interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the $\overline{\text{NMI}}$ interrupt is prohibited.
- (3) The NMI interrupt
 - The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if unused.
 - Do not get either into stop mode with the NMI pin set to "L".

- (4) External interrupt
 - When the polarity of the INT0 to INT5 pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0".
- (5) Rewrite the interrupt control register

• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

```
INT_SWITCH1:
```

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

NOP ; Four NOP instructions are required when using HOLD function.

NOP ; Enable interrupts.

Example 2:

INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TAOIC int. priority level and int. request bit.

MOV.W MEM, R0 ; Dummy read. FSET I ; Enable interrupts.

Example 3:

INT SWITCH3:

PUSHC FLG ; Push Flag register onto stack

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

POPC FLG ; Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions: AND, OR, BCLR, BSET

Noise

- (1) VPP line of one-time PROM version or EPROM version
 - VPP (This line is for PROM programming power line) line of internal PROM connected to CNVss with one-time PROM version or EPROM version. So CNVss should be a short line for improvement of noise resistance. If CNVss line is long, you should insert an approximately 5K ohm resistor close to CNVss pin and connect to Vss or Vcc.

Note 1: Inserting a 5 K ohm resistor will not cause any problem when switching to mask ROM version.

- (2) Insert bypass capacitor between VCC and VSS pin for noise and latch up countermeasure.
 - Insert bypass capacitor (about 0.1 μF) and connect short and wide line between Vcc and Vss lines.

External ROM version

The external ROM version is operated only in microprocessor mode, so be sure to perform the following:

- Connect CNVss pin to Vcc.
- Fix the processor mode bit to "112"

Built-in PROM version

(1) All built-in PROM versions

High voltage is required to program to the built-in PROM. Be careful not to apply excessive voltage. Be especially careful during power-on.

(2) One Time PROM version

One Time PROM versions shipped in blank (M30620ECFP, M30620ECGP), of which built-in PROMs are programmed by users, are also provided. For these microcomputers, a programming test and screening are not performed in the assembly process and the following processes. Therefore ROM write defectiveness occurs around 5 %. To improve their reliability after programming, we recommend to program and test as flow shown in Figure 1.24.1 before use.

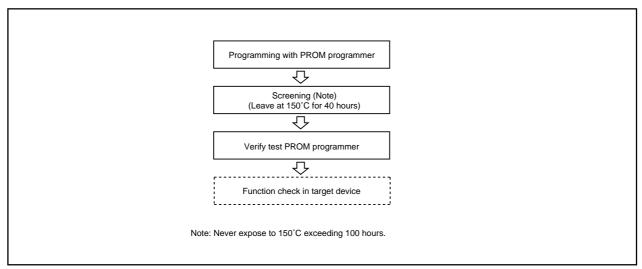


Figure 1.24.1. Programming and test flow for One Time PROM version

(3) EPROM version

- Cover the transparent glass window with a shield or others during the read mode because exposing to sun light or fluorescent lamp can cause erasing the information.
 - A shield to cover the transparent window is available from Mitsubishi Electric Corp. Be careful that the shield does not touch the EPROM lead pins.
- Clean the transparent glass before erasing. Fingers' flat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability.
- The EPROM version is a tool only for program development (for evaluation), and do not use it for the mass product run.

Items to be submitted when ordering masked ROM version

Please submit the following when ordering masked ROM products:

- (1) Mask ROM confirmation form
- (2) Mark specification sheet
- (3) ROM data: EPROMs or floppy disks
- *: In the case of EPROMs, there sets of EPROMs are required per pattern.
- *: In the case of floppy disks, 3.5-inch double-sided high-density disk (IBM format) is required per pattern.

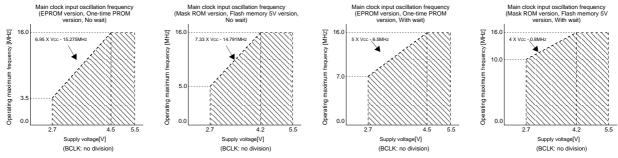
Table 1.26.1. Absolute maximum ratings

Symbol	Parameter		Condition	Rated value	Unit				
Vcc	Supply voltag	Supply voltage		Supply voltage		Supply voltage Vcc=		-0.3 to 6.5	V
AVcc	Analog suppl	y voltage	Vcc=AVcc	-0.3 to 6.5	V				
Vı	Input voltage	RESET, (maskROM: CNVss, BYTE), P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, VREF, XIN		-0.3 to Vcc+0.3	V				
İ		P70, P71,(EPROM : CNVss, BYTE)		-0.3 to 6.5(Note 1)	V				
Vo	Output voltage	P00 to P07, P10 to P17, P20 to P27, P30 to P37,P40 to P47, P50 to P57, P60 to P67,P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107, XOUT		-0.3 to Vcc+0.3	V				
		P70, P71,		-0.3 to 6.5	V				
Pd	Power dissipa	Power dissipation		300	mW				
Topr	Operating an	Operating ambient temperature		-20 to 85 / -40 to 85(Note 2)	°C				
Tstg	Storage temp	perature		-65 to 150	°C				

Note 1: When writing to EPROM ,only CNVss is -0.3 to 13 (V) .

Note 2: Specify a product of -40 to 85°C to use it.

Table 1.26.2. Recommended operating conditions (referenced to VCC = 2.7V to 5.5V at Ta = -20° C to 85°C (-40° C to 85°C(Note3) unless otherwise specified)


Symbol			Pai	rameter			Standard		Unit
			Га	ameter		Min 2.7	Typ. 5.0	Max.	
Vcc	Supply vol		•					5.5	V
AVcc	Analog su		e				Vcc		V
Vss	Supply vol						0		V
AVss	Analog su			F (DF DO (DO			U		V
ViH	HIGH input voltage	P72 to P77,	P40 to P47, P _P80 to P87, P -, CNVss, BY	50 to P57, P60 to P67, 90 to P97, P100 to P10 FE)7,	0.8Vcc		Vcc	V
		P70,P71				0.8Vcc		6.5	V
		P00 to P07,	P10 to P17, P	20 to P27, P30 (during s	single-chip mode)	0.8Vcc		Vcc	V
				20 to P27, P30 nemory expansion and m	croprocessor modes)	0.5Vcc		Vcc	V
VIL	LOW input voltage	P70 to P77,		50 to P57, P60 to P67, 90 to P97, P100 to P10 FE)7,	0		0.2Vcc	V
		P00 to P07,	P10 to P17, P	20 to P27, P30 (during s	single-chip mode)	0		0.2Vcc	V
		P00 to P07, (data input fu	P10 to P17, P	20 to P27, P30 emory expansion and mid	croprocessor modes)	0		0.16Vcc	V
I _{OH} (peak)	HIGH peak current	output P00 to P07, P10 to P17, P20 to P27,P30 to P37, P40 to P47, P50 to P57, P60 to P67,P72 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107						-10.0	mA
I _{OH (avg)}	HIGH avera		P40 to P47, P5	lo to P17, P20 to P27,F 50 to P57, P60 to P67,F 6,P87,P90 to P97,P100	72 to P77,			-5.0	mA
I OL (peak)	LOW peak of current	Juipui	P40 to P47, P	10 to P17, P20 to P27,F 50 to P57, P60 to P67,F 6,P87,P90 to P97,P100	70 to P77,			10.0	mA
I _{OL (avg)}	LOW average output curre	ent	P40 to P47, P	10 to P17, P20 to P27,F 50 to P57, P60 to P67,F 6,P87,P90 to P97,P100	70 to P77,			5.0	mA
				EPROM version,	Vcc=4.5V to 5.5V	0		16	MHz
			Nie weit	One time PROM version	Vcc=2.7V to 4.5V	0		6.95 X Vcc -15.275	MHz
			No wait	Mask ROM version,	Vcc=4.2V to 5.5V	0		16	MHz
f (XIN)	Main clock	input		Flash memory 5V version (Note 5)	Vcc=2.7V to 4.2V	0		7.33 X Vcc -14.791	MHz
. (/ 1)	oscillation	frequency		EPROM version,	Vcc=4.5V to 5.5V	0		16	MHz
		. ,	With wait	One time PROM version	Vcc=2.7V to 4.5V	0		5X Vcc -6.5	MHz
			vviiii wall	Mask ROM version,	Vcc=4.2V to 5.5V	0		16	MHz
				Flash memory 5V version (Note 5)	Vcc=2.7V to 4.2V	0		4 X Vcc -0.8	MHz
f (XcIN)	Subclock of	scillation f	requency				32.768	50	kHz

Note 1: The mean output current is the mean value within 100ms.

Note 2: The total IoL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IoH (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IoL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.

Note 3: Specify a product of -40°C to 85° C to use it.

Note 4: Relationship between main clock oscillation frequency and supply voltage.

Note 5: Execute case without wait, program / erase of flash memory by Vcc=4.2V to 5.5V and $f(BCLK) \le 6.25$ MHz. Execute case with wait, program / erase of flash memory by Vcc=4.2V to 5.5V and $f(BCLK) \le 12.5$ MHz.

Table 1.26.3. Electrical characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25°C, f(XIN) = 16MHz unless otherwise specified)

Cumbal December		Manager and a second control of the		St	Standard				
Symbol		Parameter		Measur	ring condition	Min	Тур.	Max.	Unit
Vон	voltage	P60 to P67, P72 t P86, P87, P90 to	o P47, P50 to P57, o P77, P80 to P84, P97, P100 to P107	Іон=-5mA		3.0			V
Vон	HIGH output voltage	P60 to P67, P72 t	o P17, P20 to P27, o P47, P50 to P57, o P77, P80 to P84, P97, P100 to P107	Іон=-200μΑ		4.7			V
	HIGH output	Хоит	HIGHPOWER	Iон=-1mA		3.0			V
Vон	voltage		LOWPOWER	IOH=-0.5mA		3.0			
	HIGH output voltage	Хсоит	LOWPOWER	With no load app With no load app			3.0 1.6		V
VoL	LOW output voltage	P00 to P07, P10 to P30 to P37, P40 to P60 to P67, P70 to P86, P87, P90 to P	P17, P20 to P27, P47, P50 to P57, P77, P80 to P84,	IoL=5mA				2.0	V
Vol	LOW output voltage	P00 to P07, P10 to P30 to P37, P40 to P60 to P67, P70 to P86, P87, P90 to P	P47, P50 to P57, P77, P80 to P84,	Ιοι=200μΑ				0.45	V
VoL	LOW output voltage	Хоит	HIGHPOWER	IoL=1mA				2.0	V
			LOWPOWER	IOL=0.5mA	B. J		0	2.0	
	LOW output voltage	Хсоит	HIGHPOWER	With no load appl			0		V
	Hysteresis	HOLD, RDY, TAC		With no load appl	lieu				
VT+-VT-	Tiysteresis	TB0in to TB5in, II ADTRG, CTSo to CCLK4,TA2out to	NTo to INTs, CTS2, CLKo to			0.2		0.8	V
VT+-VT-	Hysteresis	RESET				0.2		1.8	V
Іін	HIGH input current	P00 to P07, P10 to P30 to P37, P40 to P60 to P67, P70 to P90 to P97, P100 XIN, RESET, CNV	P47, P50 to P57, P77, P80 to P87, to P107,	VI=5V				5.0	μА
I _{IL}	LOW input current	P00 to P07, P10 to P30 to P37, P40 to P60 to P67, P70 to P90 to P97, P100 XIN, RESET, CNV	P47, P50 to P57, P77, P80 to P87, to P107,	Vi=0V				-5.0	μА
R _{PULLUP}	Pull-up resistance	P00 to P07, P10 to P30 to P37, P40 to P60 to P67, P72 to P86, P87, P90 to P	P47, P50 to P57, P77, P80 to P84,	Vi=0V		30.0	50.0	167.0	kΩ
R _{fXIN}	Feedback re	esistance XIN					1.0		МΩ
R _{fXCIN}	Feedback re	esistance XCIN					6.0		МΩ
V _{RAM}	RAM retenti	on voltage		When clock is stop	pped	2.0			V
			In single-chip mode, the output pins are	EPROM, One-time PROM, mask ROM versions	f(X _{IN})=16MHz Square wave, no division		30.0	50.0	mA
			open and other pins are Vss	Flash memory 5V version	f(X _{IN})=16MHz Square wave, no division		35.0	50.0	mA
				EPROM, One-time PROM, mask ROM versions	f(Xcin)=32kHz Square wave		90.0		μА
Icc	Power supp	ly current		Flash memory 5V version	f(XCIN)=32kHz Square wave, in RAM		90.0		μА
				Flash memory 5V version	f(XCIN)=32kHz Square wave, in flash memory		8.0		mA
					f(XCIN)=32kHz When a WAIT instruction is executed (Note)		4.0		μА
					Ta=25°C when clock is stopped			1.0	- μΑ
					Ta=85°C when clock is stopped			20.0	

Note: With one timer operated using fC32.

Table 1.26.4. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, VSS = AVSS = 0V at $Ta = 25^{\circ}C$, f(XIN) = 16MHz unless otherwise specified)

	5 .					Standard		
Symbol		Parameter	Mea	asuring condition	Min.	Тур.	Max.	Unit
_	Resoluti	on	VREF = VC	С			10	Bits
_	Absolute	Sample & hold function not available	VREF = VCC	c = 5V			±3	LSB
	accuracy			ANo to AN7 input			±3	LSB
		Sample & hold function available(10bit)	VREF =VCC = 5V	ANEX0, ANEX1 input, External op-amp connection mode			±7	LSB
		Sample & hold function available(8bit)	VREF = VC	C = 5V			±2	LSB
RLADDER	Ladder r	esistance	VREF = VC	C	10		40	kΩ
tconv	Convers	ion time(10bit)			3.3			μs
tconv	Convers	Conversion time(8bit)			2.8			μs
t SAMP	Samplin	g time			0.3			μs
VREF	Referen	Reference voltage			2		Vcc	V
VIA	Analog i	nput voltage			0		VREF	V

Note: Divide the frequency if f(XIN) exceeds 10 MHz, and make ØAD equal to or lower than 10 MHz.

Table 1.26.5. D-A conversion characteristics (referenced to VCC = 5V, VSS = AVSS = 0V, VREF = 5V at Ta = 25°C, f(XIN) = 16MHz unless otherwise specified)

Cranala al	Devenue	NA	5	Limit		
Symbol	Parameter	Measuring condition	Min.	Тур.	Max.	Unit
_	Resolution				8	Bits
_	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note)			1.5	mA

Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included.

Also, when DA register contents are not "00", the current IVREF always flows even though Vref may have been set to be "unconnected" by the A-D control register.

$$Vcc = 5V$$

Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25°C unless otherwise specified)

Table 1.26.6. External clock input

Symbol	Parameter	Stan	Unit	
	Falametei		Max.	Offic
tc	External clock input cycle time	62.5		ns
tw(H)	External clock input HIGH pulse width	25		ns
tw(L)	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tf	External clock fall time		15	ns

Table 1.26.7. Memory expansion and microprocessor modes

Symbol	Doromotor	Standard		Lloit
Symbol	Parameter		Max.	Unit
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		40	ns

Note: Calculated according to the BCLK frequency as follows:

$$tac1(RD - DB) = \frac{10^9}{f(BCLK) \times 2} - 45$$
 [ns]

$$tac2(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 45$$
 [ns]

$$tac3(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 45$$
 [ns]

Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25°C unless otherwise specified)

Table 1.26.8. Timer A input (counter input in event counter mode)

Symbol	Davamatas	Stan	1.1:4	
	Parameter		Max.	Unit
tc(TA)	TAilN input cycle time	100		ns
tw(TAH)	TAin input HIGH pulse width	40		ns
tw(TAL)	TAiเท input LOW pulse width	40		ns

Table 1.26.9. Timer A input (gating input in timer mode)

Symbol		Star		
	Parameter		Max.	Unit
tc(TA)	TAin input cycle time	400		ns
tw(TAH)	TAin input HIGH pulse width	200		ns
tw(TAL)	TAiın input LOW pulse width	200		ns

Table 1.26.10. Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Star	Unit	
	Falameter		Max.	Offic
tc(TA)	TAilN input cycle time	200		ns
tw(TAH)	TAim input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.26.11. Timer A input (external trigger input in pulse width modulation mode)

Symbol	Description	Standard		Llait
	Parameter	Min.	Max.	Unit
tw(TAH)	TAin input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.26.12. Timer A input (up/down input in event counter mode)

Cymphol	Parameter		Standard		
Symbol			Max.	Unit	
tc(UP)	TAiout input cycle time	2000		ns	
tw(UPH)	TAiout input HIGH pulse width	1000		ns	
tw(UPL)	TAiout input LOW pulse width	1000		ns	
tsu(UP-TIN)	TAiout input setup time	400		ns	
th(TIN-UP)	TAiout input hold time	400		ns	

Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25°C unless otherwise specified)

Table 1.26.13. Timer B input (counter input in event counter mode)

Comple ed	Parameter		Standard		
Symbol			Max.	Unit	
tc(TB)	TBin input cycle time (counted on one edge)	100		ns	
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	40		ns	
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	40		ns	
tc(TB)	TBin input cycle time (counted on both edges)	200		ns	
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	80		ns	
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns	

Table 1.26.14. Timer B input (pulse period measurement mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TB)	TBiin input cycle time	400		ns
tw(TBH)	ТВіін input HIGH pulse width	200		ns
tw(TBL)	TBiin input LOW pulse width	200		ns

Table 1.26.15. Timer B input (pulse width measurement mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBil input LOW pulse width	200		ns

Table 1.26.16. A-D trigger input

Symbol	Parameter	Star	Unit	
Symbol	i didilielei	Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 1.26.17. Serial I/O

Symbol	Parameter		Standard		
Symbol	raidilletei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200		ns	
tw(CKH)	CLKi input HIGH pulse width	100		ns	
tw(CKL)	CLKi input LOW pulse width	100		ns	
td(C-Q)	TxDi output delay time		80	ns	
th(C-Q)	TxDi hold time	0		ns	
tsu(D-C)	RxDi input setup time	30		ns	
th(C-D)	RxDi input hold time	90		ns	

Table 1.26.18. External interrupt INTi inputs

Symbol	Parameter	Standard		Unit
Syllibol	i didiffeter		Max.	
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

$$Vcc = 5V$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C, CM15 = "1" unless otherwise specified)

Table 1.26.19. Memory expansion mode and microprocessor mode (no wait)

0	Developed	Measuring condition	Stan	dard	Unit
Symbol	Parameter	Weasuring condition	Min.	Min. Max.	
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.26.1	- 4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^{9}}{f(BCLK) \times 2} - 40$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / Vcc)$$

by a circuit of the right figure.

For example, when Vol = 0.2Vcc, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2Vcc / Vcc)$$

= 6.7ns.

$$Vcc = 5V$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C, CM15 = "1" unless otherwise specified)

Table 1.26.20. Memory expansion mode and microprocessor mode (with wait, accessing external memory)

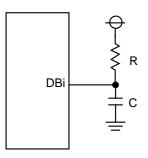
Cymahal	Dovometer	Measuring condition	Stan	dard	l lmit
Symbol	Parameter	Wedsuming condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.26.1	- 4		ns
td(BCLK-RD)	RD signal output delay time	Figure 1.20.1		25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^{9}}{f(BCLK)} - 40$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / VCC)$$

by a circuit of the right figure.

For example, when Vol = 0.2VCC, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2Vcc / Vcc)$$

= 6.7ns.

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Ta = 25°C, CM15 = "1" unless otherwise specified)

Table 1.26.21. Memory expansion mode and microprocessor mode (with wait, accessing external memory, multiplex bus area selected)

		Manager and distant	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		(Note)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns
t h(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time	Figure 1.26.1	0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)	Figure 1.20.1		40	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			25	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		- 4		ns
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note)		ns
th(ALE-AD)	ALE signal output hold time (Adderss standard)		30		ns
td(AD-RD)	Post-address RD signal output delay time		0		ns
td(AD-WR)	Post-address WR signal output delay time		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Note: Calculated according to the BCLK frequency as follows:

$$th(RD - AD) = \frac{10^9}{f(BCLK) \times 2}$$
 [ns]

th(WR – AD) =
$$\frac{10^9}{\text{f(BCLK) X 2}}$$
 [ns]

th(RD - CS) =
$$\frac{10^9}{\text{f(BCLK) X 2}}$$
 [ns]

th(WR - CS) =
$$\frac{10^9}{\text{f(BCLK) X 2}}$$
 [ns]

$$td(DB - WR) = \frac{10^9 \text{ X 3}}{f(BCLK) \text{ X 2}} - 40 \text{ [ns]}$$

th(WR – DB) =
$$\frac{10^9}{\text{f(BCLK) X 2}}$$
 [ns]

$$td(AD - ALE) = \frac{10^9}{f(BCLK) \times 2} - 25$$
 [ns]

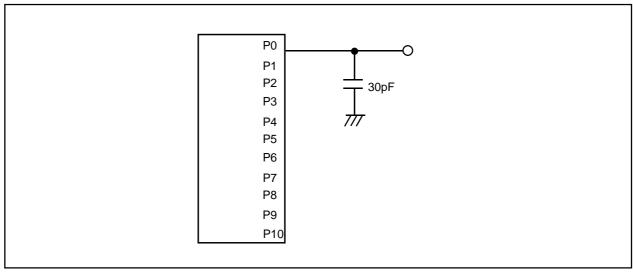


Figure 1.26.1. Port P0 to P10 measurement circuit

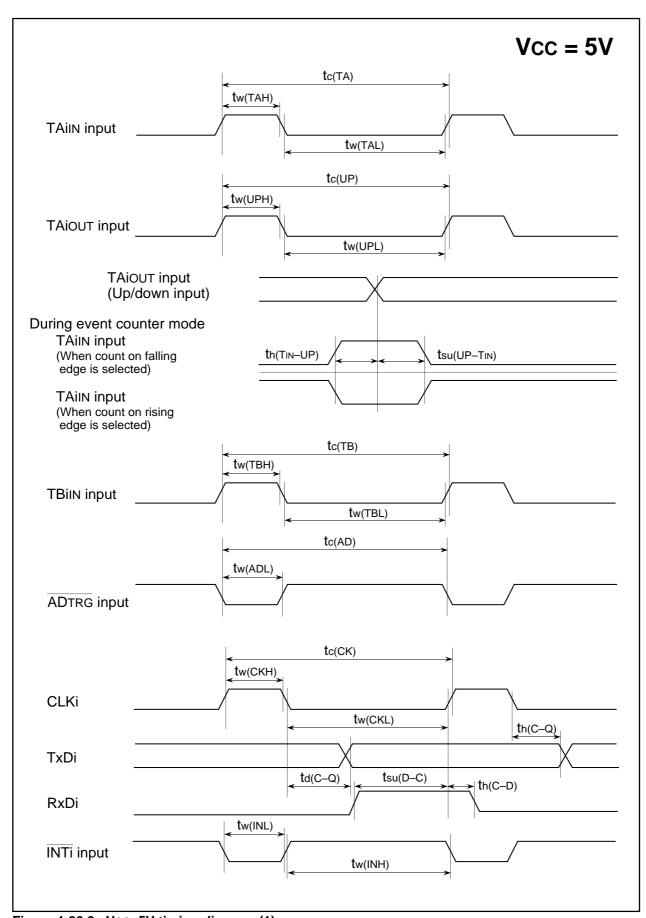


Figure 1.26.2. Vcc=5V timing diagram (1)

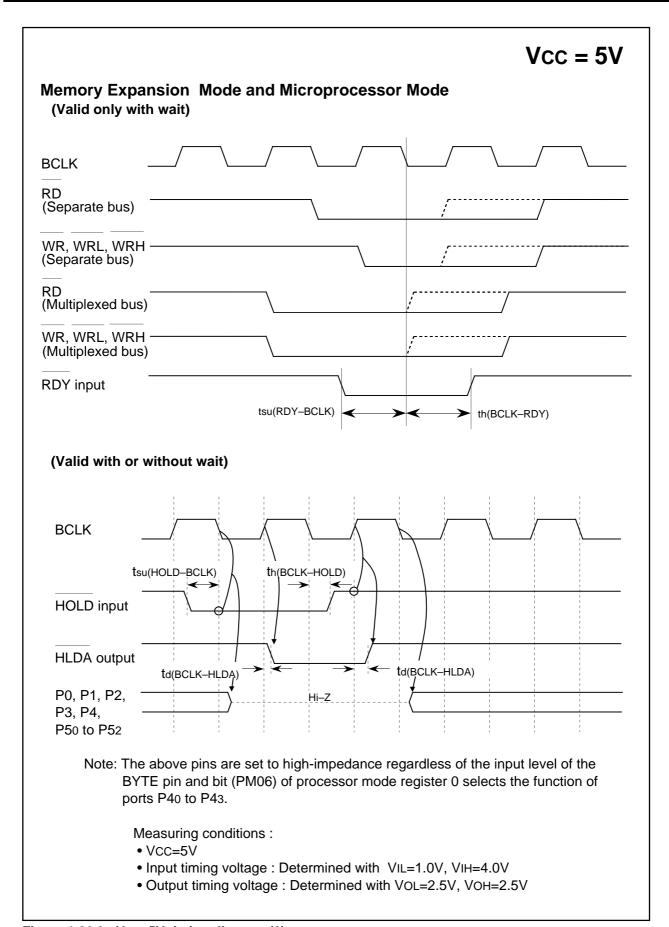


Figure 1.26.3. Vcc=5V timing diagram (2)

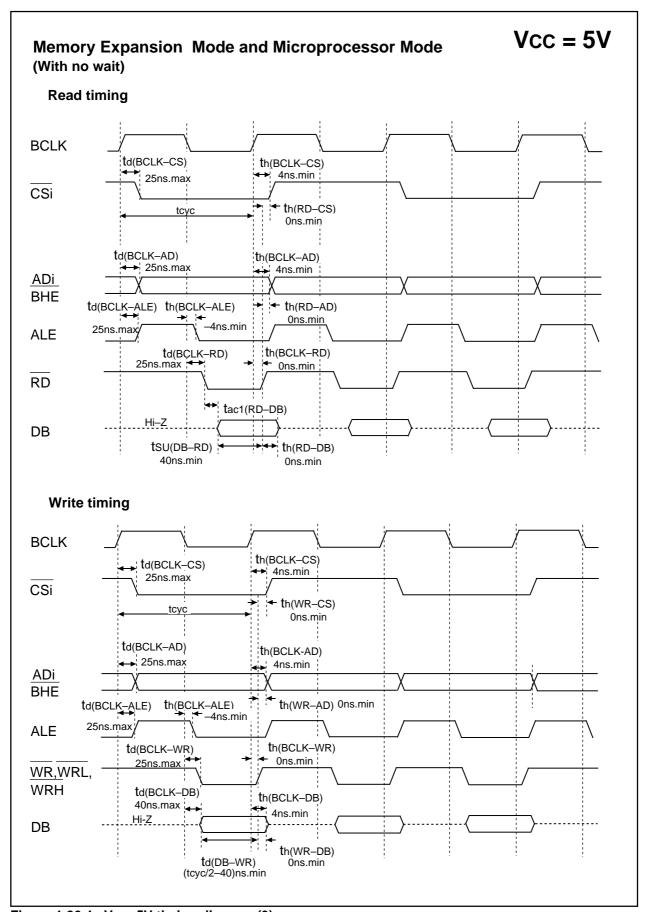


Figure 1.26.4. Vcc=5V timing diagram (3)

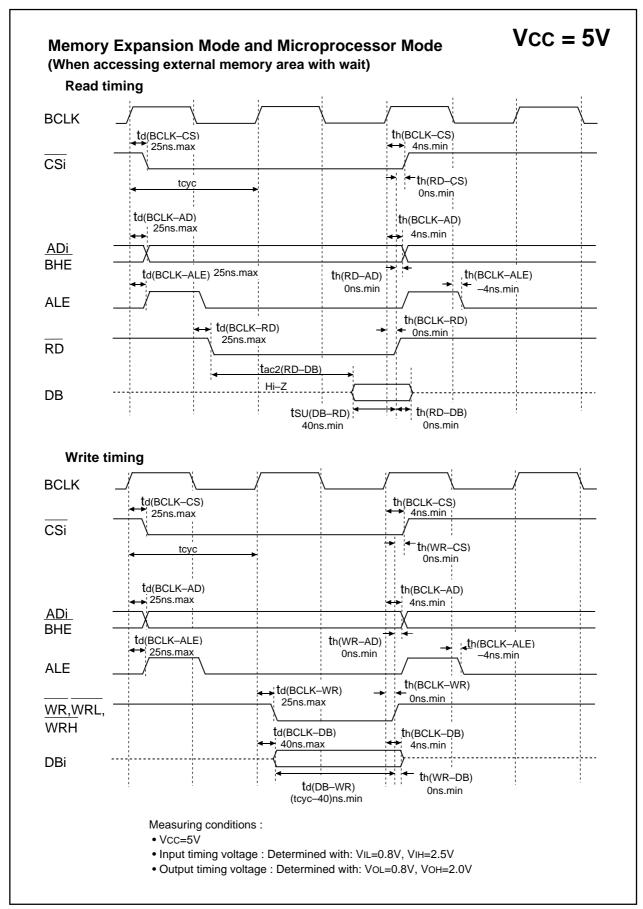


Figure 1.26.5. Vcc=5V timing diagram (4)

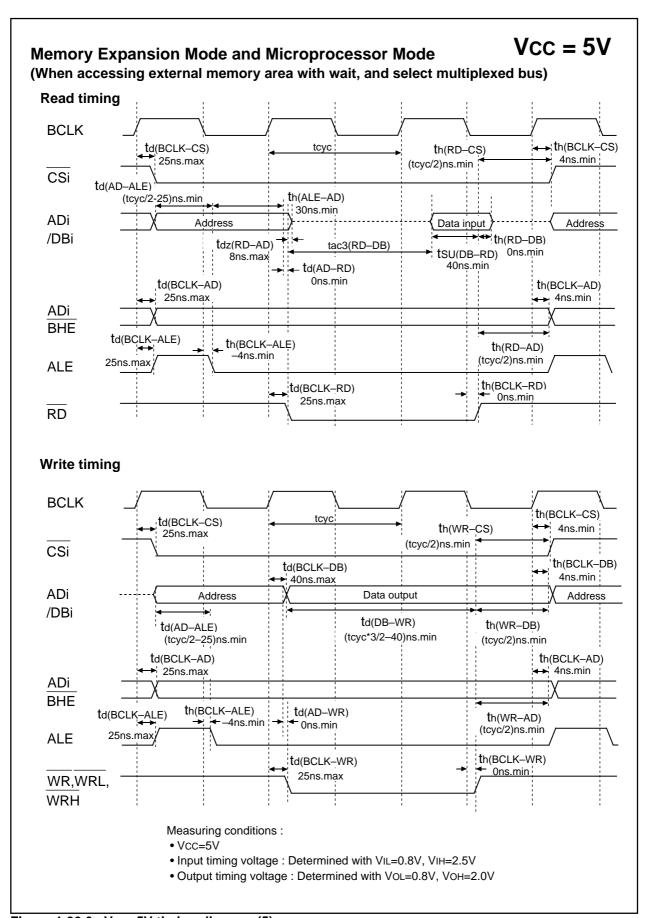


Figure 1.26.6. Vcc=5V timing diagram (5)

Table 1.26.22. Electrical characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25°C, f(XIN) = 7MHz(Note 1) with wait)

	had Baranatar			Magguring condition		Standard			
Symbol	Parameter Measuring condition		ring condition	Min	Typ.	Max.	Unit		
Vон	HIGH output voltage	P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P72 to P86,P87,P90 to P	P47,P50 to P57, P77,P80 to P84,	Iон=-1mA		2.5	7,		V
	HIGH output	voltage Xout	HIGHPOWER	Iон=-0.1mA		2.5			
Voн	TilGi Toutpu	. Voltage X001	LOWPOWER	Іон=-50μА		2.5			V
	HIGH output	voltage Xcout	HIGHPOWER	With no load appl	ied		3.0		V
		•	LOWPOWER	With no load appl	ied		1.6		
Vol	LOW output voltage	P00 to P07,P10 to P30 to P37,P40 to P60 to P67,P70 to P86,P87,P90 to P9	P47,P50 to P57, P77,P80 to P84,	IoL=1mA				0.5	V
Vol	LOW output	voltage Xout	HIGHPOWER	IoL=0.1mA				0.5	V
VOL	Zorr output	Totago 7,001	LOWPOWER	IoL=50μA				0.5	
	LOW output	voltage Хсоит	HIGHPOWER	With no load appli	ied		0		V
			LOWPOWER	With no load appli	ied		0		•
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN TB0IN to TB5IN, IN ADTRG, CTS0 to CT CLK4,TA2out to TA KI0 to KI3, RxD0 to	Γο to INT5, ΓS2, CLKο to λ4ουτ,ΝΜΙ,			0.2		0.8	V
VT+-VT-	Hysteresis	RESET				0.2		1.8	V
liн	HIGH input current	P00 to P07,P10 to F P30 to P37,P40 to F P60 to P67,P70 to F P90 to P97,P100 to	247,P50 to P57, 277,P80 to P87,	VI=3V				4.0	μА
		XIN, RESET, CNVss, BYTE							
I _{IL}	LOW input current	P00 to P07,P10 to P P30 to P37,P40 to P P60 to P67,P70 to P P90 to P97,P100 to XIN, RESET, CNVs	47,P50 to P57, 77,P80 to P87, P107,	Vi=0V				-4.0	μΑ
R PULLUP	Pull-up resistance	P00 to P07,P10 to P P30 to P37,P40 to P P60 to P67,P72 to P P86,P87,P90 to P97	217,P20 to P27, 247,P50 to P57, 277,P80 to P84,	Vi=0V		66.0	120.0	500.0	kΩ
R _{fXIN}	Feedback re	esistance XIN					3.0		MΩ
R fXCIN	Feedback re						10.0		MΩ
V _{RAM}	RAM retention			When clock is stop	anad	2.0	10.0		V
V RAM	IXAWI Teteriti	on voitage	In single-chip	EPROM,One-		2.0			V
			mode, the output pins are open and other	time PROM versions	f(XIN)=7MHz Square wave, no division		6.0	15.0	mA
			pins are Vss	Mask ROM version	f(XIN)=10MHz Square wave, no division		8.5	21.25	mA
				Flash memory 5V version	f(XIN)=10MHz Square wave, no division		13.5	21.25	mA
				EPROM,One-time PROM, mask ROM versions	f(XCIN)=32kHz Square wave		40.0		μА
				Flash memory 5V version	f(XCIN)=32kHz Square wave, in RAM		40.0		μА
Icc	Power suppl	y current		Flash memory 5V version	f(XCIN)=32kHz Square wave, in flash memory		4.5		mA
					f(XcIn)=32kHz When a WAITinstruction is executed. Oscillation capacity High (Note2)		2.8		μА
					f(Xcin)=32kHz When a WAIT instruction is executed. Oscillation capacity Low (Note2)		0.9		μА
					Ta=25°C when clock is stopped			1.0	μΑ
					Ta=85°C when clock is stopped			20.0	

Note 1: 10 MHz for the mask ROM version and flash memory 5V version.

Note 2: With one timer operated using fC32.

Table 1.26.23. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 3V, VSS = AVSS = 0V at Ta = 25°C, f(XIN) = 7MHz unless otherwise specified)

			· · · · · · · · · · · · · · · · · · ·				
Symbol	Parameter		NAion	Standard			1.1
			Measuring condition	Min.	Тур.	Max	Unit
-	Resolution		VREF = VCC			10	Bits
-	Absolute accuracy	Sample & hold function not available (8 bit)	VREF = Vcc = 3V, ϕ AD = $f(Xin)/2$			±2	LSB
RLADDER	Ladder resist	ance	VREF = VCC	10		40	kΩ
4	Conversion	EPROM, One-time PROM		14.0			μs
tconv	time(8bit)	Mask ROM, Flash memory (5V Version)		9.8			μs
VREF	Reference voltage			2.7		Vcc	V
VIA	Analog input	voltage		0		VREF	V

Note: 10 MHz for the mask ROM version and flash memory 5V version.

Table 1.26.24. D-A conversion characteristics (referenced to VCC = 3V, VSS = AVSS = 0V, VREF = 3V at Ta = 25°C, f(XIN) = 7MHz(Note2) unless otherwise specified)

Symbol	Parameter	Measuring condition	Standard			
			Min.	Тур.	Max	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note1)			1.0	mΑ

Note 1: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included.

Also, when DA register contents are not "00", the current IVREF always flows even though Vref may have been set to be "unconnected" by the A-D control register.

Note 2: 10 MHz for the mask ROM version and flash memory 5V version.

Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25°C unless otherwise specified)

Table 1.26.25. External clock input

Symbol	Parameter		Standard		1.1
			Min.	Max.	Unit
tc	External clock input cycle time	EPROM, One-time PROM	143		ns
		Mask ROM, Flash memory (5V version)	100		ns
tw(H)	External clock input HIGH pulse width	EPROM, One-time PROM	60		ns
		Mask ROM, Flash memory (5V version)	40		ns
tw(L)	External clock input LOW pulse width	EPROM, One-time PROM	60		ns
		Mask ROM, Flash memory (5V version)	40		ns
tr	External clock rise time			18	ns
tf	External clock fall time			18	ns

Table 1.26.26. Memory expansion and microprocessor modes

Symbol	Parameter	Stan	I Imia	
		Min.	Max.	Unit
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	80		ns
tsu(RDY-BCLK)	RDY input setup time	60		ns
tsu(HOLD-BCLK)	HOLD IIIput Setup time	80		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		100	ns

Note: Calculated according to the BCLK frequency as follows:

$$tac1(RD - DB) = \frac{10^9}{f(BCLK) \times 2} - 90$$
 [ns]

$$tac2(RD - DB) = \frac{3 \times 10^9}{f(BCLK) \times 2} - 90$$
 [ns]

tac3(RD - DB) =
$$\frac{3 \times 10^9}{\text{f(BCLK)} \times 2}$$
 - 90 [ns]

Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25°C unless otherwise specified)

Table 1.26.27. Timer A input (counter input in event counter mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(TA)	TAin input cycle time	150		ns
tw(TAH)	TAil input HIGH pulse width	60		ns
tw(TAL)	TAil input LOW pulse width	60		ns

Table 1.26.28. Timer A input (gating input in timer mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TA)	TAil input cycle time	600		ns
tw(TAH)	TAin input HIGH pulse width	300		ns
tw(TAL)	TAin input LOW pulse width	300		ns

Table 1.26.29. Timer A input (external trigger input in one-shot timer mode)

Cumbal	Parameter	Standard		I India
Symbol		Min.	Max.	Unit
tc(TA)	TAin input cycle time	300		ns
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAil input LOW pulse width	150		ns

Table 1.26.30. Timer A input (external trigger input in pulse width modulation mode)

Comple at	Parameter	Standard		l lait
Symbol		Min.	Max.	Unit
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAilN input LOW pulse width	150		ns

Table 1.26.31. Timer A input (up/down input in event counter mode)

Symbol	Parameter	Standard		1.1:4
		Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiouT input setup time	600		ns
th(TIN-UP)	TAio∪⊤ input hold time	600		ns

Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25°C unless otherwise specified)

Table 1.26.32. Timer B input (counter input in event counter mode)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TB)	TBiเห input cycle time (counted on one edge)	150		ns	
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	60		ns	
tw(TBL)	TBin input LOW pulse width (counted on one edge)	60		ns	
tc(TB)	ТВіім input cycle time (counted on both edges)	300		ns	
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	160		ns	
tw(TBL)	TBiin input LOW pulse width (counted on both edges)	160		ns	

Table 1.26.33. Timer B input (pulse period measurement mode)

Symbol	Parameter	Star	Unit	
	raidilletei			Max.
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBiin input LOW pulse width	300		ns

Table 1.26.34. Timer B input (pulse width measurement mode)

Symbol	Parameter		Standard	
			Max.	Unit
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBiin input LOW pulse width	300		ns

Table 1.26.35. A-D trigger input

Symbol	Parameter		Standard		
	T dramotol	Min.	Max.	Unit	
tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns	
tw(ADL)	ADTRG input LOW pulse width	200		ns	

Table 1.26.36. Serial I/O

Symbol	Parameter	Stan	Unit	
	Falanetei	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width			ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	50		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.26.37. External interrupt INTi inputs

Symbol Parameter	Parameter		Standard		
	i arameter	Min.	Max.	Unit	
tw(INH)	INTi input HIGH pulse width	380		ns	
tw(INL)	INTi input LOW pulse width	380		ns	

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = 25°C, CM15 = "1" unless otherwise specified)

Table 1.26.38. Memory expansion and microprocessor modes (with no wait)

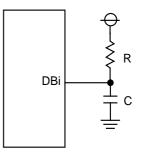
Cl. al	Danamatan	Measuring condition	Standard		I Insit	
Symbol	Parameter	ivieasuring condition	Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			60	ns	
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns	
th(RD-AD)	Address output hold time (RD standard)		0		ns	
th(WR-AD)	Address output hold time (WR standard)		0		ns	
td(BCLK-CS)	Chip select output delay time	Figure 1.26.1		60	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns	
td(BCLK-ALE)	ALE signal output delay time			60	ns	
th(BCLK-ALE)	ALE signal output hold time		-4		ns	
td(BCLK-RD)	RD signal output delay time			60	ns	
th(BCLK-RD)	RD signal output hold time		0		ns	
td(BCLK-WR)	WR signal output delay time			60	ns	
th(BCLK-WR)	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns	
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns	
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns	
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns	

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK) \times 2} - 80$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / Vcc)$$

by a circuit of the right figure.

For example, when Vol = 0.2VCC, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X ln (1 - 0.2Vcc / Vcc)$$

= 6.7ns.

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = 25°C, CM15 = "1" unless otherwise specified)

Table 1.26.39. Memory expansion and microprocessor modes (when accessing external memory area with wait)

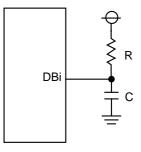
0	Development	Magazing condition	Stan	1.1		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			60	ns	
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns	
t h(RD-AD)	Address output hold time (RD standard)	-	0		ns	
th(WR-AD)	Address output hold time (WR standard)		0		ns	
td(BCLK-CS)	Chip select output delay time			60	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns	
td(BCLK-ALE)	ALE signal output delay time			60	ns	
th(BCLK-ALE)	ALE signal output hold time		- 4		ns	
td(BCLK-RD)	RD signal output delay time	Figure 1.26.1		60	ns	
th(BCLK-RD)	RD signal output hold time		0		ns	
td(BCLK-WR)	WR signal output delay time			60	ns	
th(BCLK-WR)	WR signal output hold time		0		ns	
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns	
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns	
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns	
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns	

Note 1: Calculated according to the BCLK frequency as follows:

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 80$$
 [ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.

Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / Vcc)$$

by a circuit of the right figure.

For example, when Vol = 0.2VCC, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2Vcc / Vcc)$$

= 6.7ns.

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Ta = 25°C, CM15 = "1" unless otherwise specified)

Table 1.26.40. Memory expansion and microprocessor modes (when accessing external memory area with wait, and select multiplexed bus)

	Danamatan	NA Pri	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			60	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		(Note)		ns
$t_{\text{h(WR-AD)}}$	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
$t_{\text{d(BCLK-RD)}}$	RD signal output delay time			60	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$t_{\text{d(BCLK-WR)}}$	WR signal output delay time	Figure 1.26.1		60	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			60	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		- 4		ns
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note)		ns
th(ALE-AD)	ALE signal output hold time(Address standard)		50		ns
td(AD-RD)	Post-address RD signal output delay time		0		ns
td(AD-WR)	Post-address WR signal output delay time		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Note: Calculated according to the BCLK frequency as follows:

$$th(RD - AD) = \frac{10^9}{f(BCLK) \times 2}$$
 [ns]

th(WR - AD) =
$$\frac{10^{9}}{\text{f(BCLK) X 2}}$$
 [ns]

th(RD - CS) =
$$\frac{10^{9}}{\text{f(BCLK) X 2}}$$
 [ns]

th(WR - CS) =
$$\frac{10^9}{\text{f(BCLK) X 2}}$$
 [ns]

$$td(DB - WR) = \frac{10^9 \times 3}{f(BCLK) \times 2} - 80$$
 [ns]

th(WR – DB) =
$$\frac{10^{9}}{f(BCLK) \times 2}$$
 [ns]

$$td(AD - ALE) = \frac{10^9}{f(BCLK) \times 2} - 45$$
 [ns]

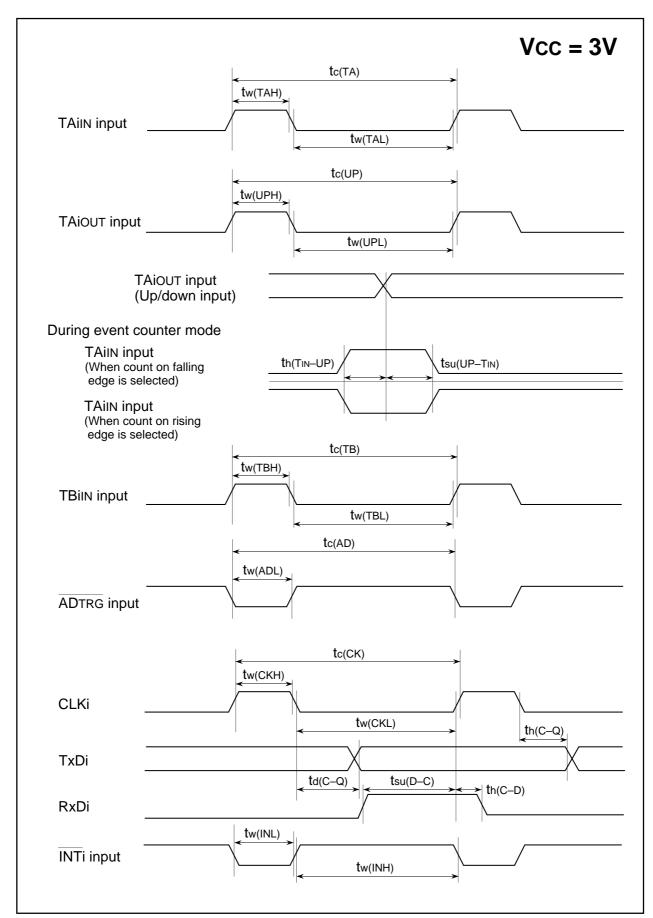
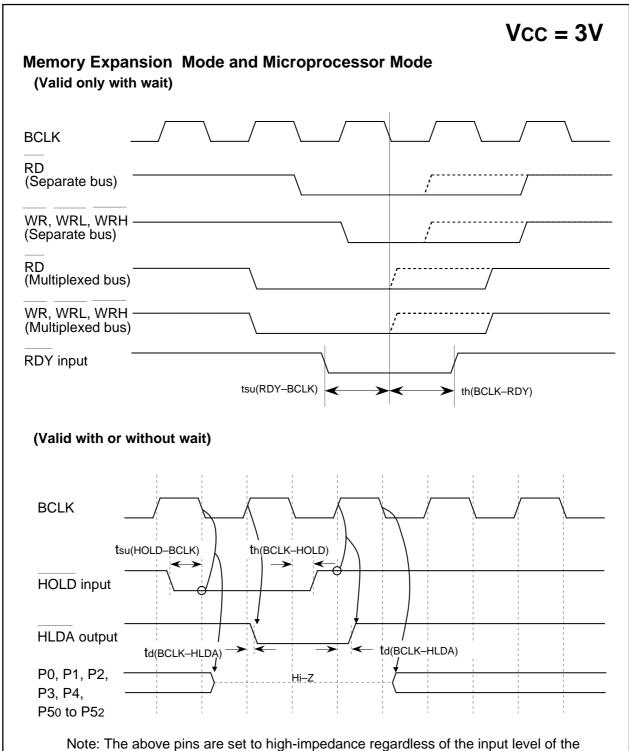



Figure 1.26.7. Vcc=3V timing diagram (1)

Note: The above pins are set to high-impedance regardless of the input level of the BYTE pin and bit (PM06) of processor mode register 0 selects the function of ports P40 to P43.

Measuring conditions:

- Vcc=3V
- Input timing voltage: Determined with VIL=0.6V, VIH=2.4V
- Output timing voltage: Determined with VoL=1.5V, VoH=1.5V

Figure 1.26.8. Vcc=3V timing diagram (2)

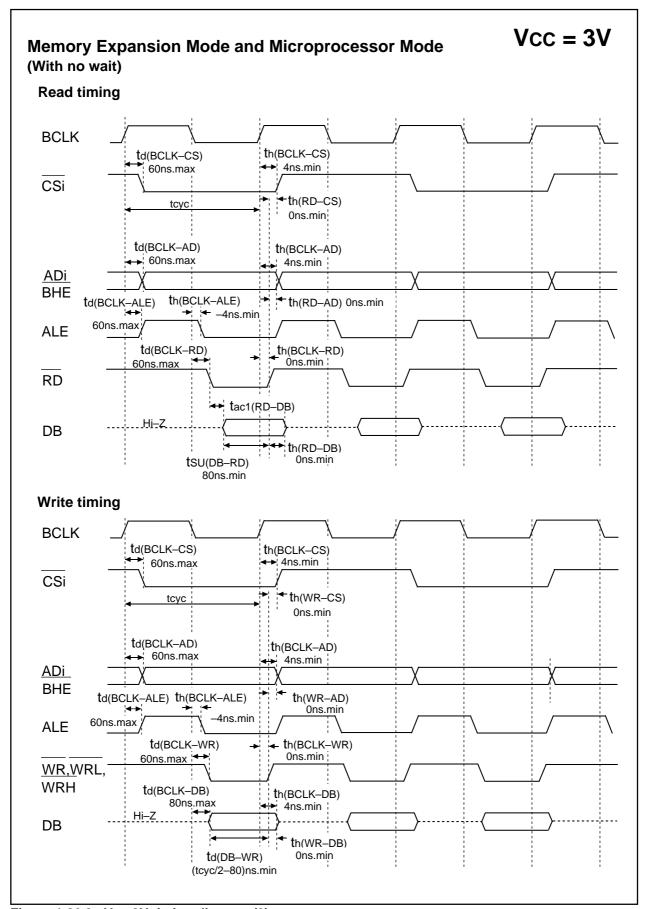


Figure 1.26.9. Vcc=3V timing diagram (3)

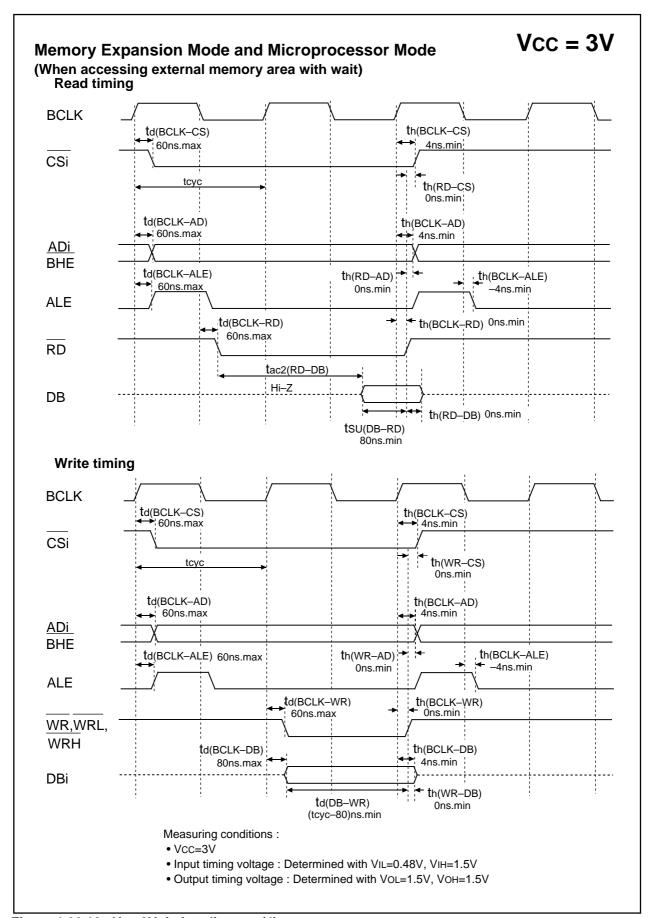


Figure 1.26.10. Vcc=3V timing diagram (4)

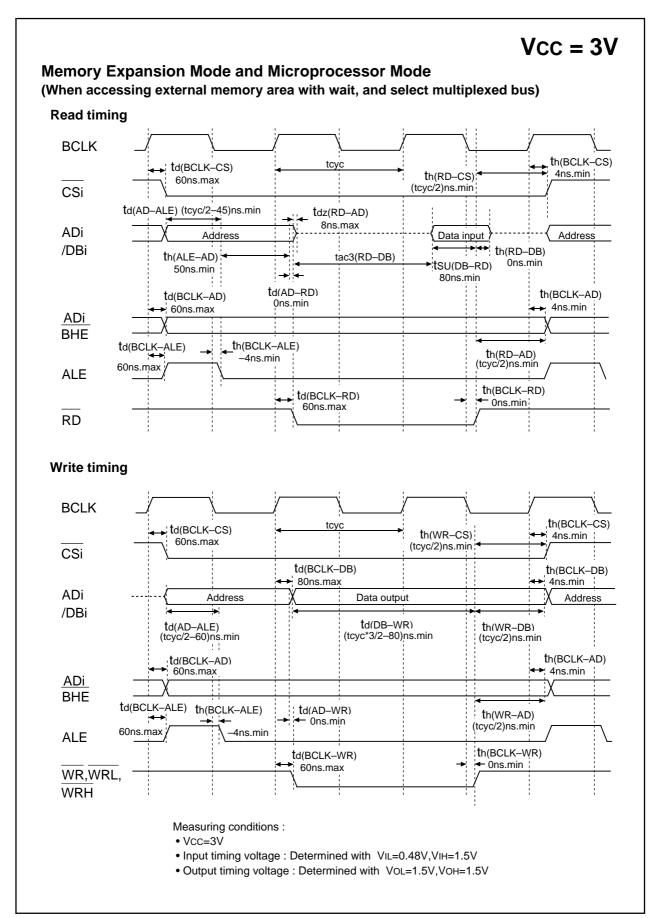


Figure 1.26.11. Vcc=3V timing diagram (5)

GZZ-SH12-58B <82A0>

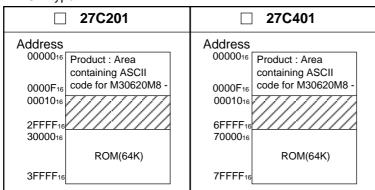
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620M8-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

	Date :	
t	Section head signature	Supervisor signature
Receipt		

Note: Please complete all items marked %.

*		Company				Submitted by	Supervisor
	Customer Company		())	ance ature		
	Customer	Date issued	Date :			Issua	


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	☐ M30620M8-XXXFP		☐ M30620M8-XXXGF			
Checksum code for t	otal EPROM area :				(hex)	

EPROM type:

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30620M8-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address		
0000016	'M '	= 4D ₁₆
0000116	'3'	= 3316
0000216	'0'	= 3016
0000316	'6'	= 3616
0000416	'2'	= 3216
0000516	0	= 3016
0000616	'M'	= 4D ₁₆
0000716	'8'	= 3816

Address	
0000816	'' = 2D ₁₆
0000916	FF ₁₆
0000A ₁₆	FF ₁₆
0000B ₁₆	FF ₁₆
0000C16	FF ₁₆
0000D ₁₆	FF ₁₆
0000E ₁₆	FF ₁₆
0000F ₁₆	FF ₁₆

GZZ-SH12-58B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620M8-XXXGP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27	C201	27C40 ⁻	
Code entered in source program	△ .SECTION△AS △ .ORG △ 0C000 △ .BYTE △ ' M30		△ .SECTION△ ASCIICO △ .ORG △ 080000H △ .BYTE △ ' M30620M	
Note: The ROM of in the check		d if the type No. written to	the EPROM does not m	atch the type No.
☐ In the case	of floppy disks			
the floppy disk there is any dis products we pr	s you give in to us, a screpancy between oduce. Check thoro	and forms them into mas the contents of these ma oughly the contents of the	c file generation utilities of sks. Hence, we assume lia ask files and the ROM dat e mask files you give in. re only one mask file in a	ability provided that a to be burned into
Microcomp	uter type No. :	☐ M30620M8-XXXF	P	KXXGP
File code :			(hex)	
Mask file na	ame :		.MSK (alpha-	-numeric 8-digit)
the separate m for submission For the M3062	sification differs acco nark specification sh to Mitsubishi.	eet (for each package), it the 100P6S mark spec	kage. After entering the mattach that sheet to this mattication sheet. For the M	asking check sheet
¾ 3. Usage Condit	ions			
For our referenthe products yo		our products, please rep	ly to the following question	ns about the usage o
(1) Which I	kind of XIN-XOUT ose	cillation circuit is used?		
	Ceramic resonator	☐ Quartz-crystal	oscillator	
□ E	External clock input	☐ Other ()	
What fr	equency do you use	e?		
f(X	IN) =	MHz		

GZZ- SH12-58B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620M8-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	
-----------------	--

(2)	Which kind of XCIN-XCOUT oscilla	ition circuit is used?	
	☐ Ceramic resonator	☐ Quartz-crystal oscillator	•
	\square External clock input	□ Other ()	
	What frequency do you use?		
	f(XCIN) = kHz		
(3)	Which operation mode do you us	ee?	
	\square Single-chip mode	☐ Memory expansion mod	de
	☐ Microprocessor mode		
(4)	Which operating ambient temper	ature do you use?	
	☐ –10 °C to 75 °C	□-20 °C to 75 °C	\square –40 °C to 75 °C
	☐-10 °C to 85 °C	☐-20 °C to 85 °C	☐ –40 °C to 85 °C
(5)	Which operating supply voltage of	do you use?	
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V
	☐ 4.2V to 4.7V	☐ 4.7V to 5.2V	☐ 5.2V to 5.5V
Thank	you cooperation.		
% 4. Spec	ial item (Indicate none if there is n	o specified item)	

GZZ-SH12-60B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MA-XXXFP/GP MASK ROM CONFIRMATION FORM

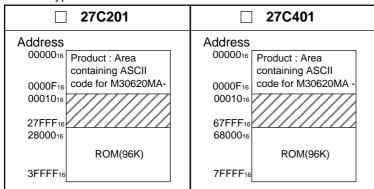
Mask ROM number	
-----------------	--

	Date :	
±	Section head signature	Supervisor signature
Receipt		
∝		

Note: Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
%	Customer	name		()	ance ature		
~	Customer	Date issued	Date:			lssu sign		

% 1. Check sheet


Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	☐ M30620MA-XXXFP		☐ M30620MA-XXXGF		
Checksum code for to	tal EPROM area :				(hex)

EPROM type:

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30620MA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address		
0000016	'M '	= 4D ₁₆
0000116	'3'	= 3316
0000216	'0'	= 3016
0000316	'6'	= 3616
0000416	'2'	= 3216
0000516	'0'	= 3016
0000616	'M '	= 4D ₁₆
0000716	'A'	= 41 16

Address	
0000816	'—' = 2D ₁₆
0000916	FF ₁₆
0000A ₁₆	FF ₁₆
0000B ₁₆	FF ₁₆
0000C ₁₆	FF ₁₆
0000D ₁₆	FF ₁₆
0000E ₁₆	FF ₁₆
0000F16	FF ₁₆

G77— SH12— 60B <82A	\n \

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MA-XXXGP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type		27C201	27C401	
Code entered in source program		ASCIICODE, ROM DATA	△ .SECTION△ ASCIICODE △ .ORG △ 080000H △ .BYTE △ ' M30620MA- '	, ROM DATA
Note: The ROM of in the check		ed if the type No. written to	o the EPROM does not match	the type No.
☐ In the case	of floppy disks			
the floppy disk there is any dis products we pr	s you give in to us screpancy betwee oduce. Check tho	s, and forms them into mas n the contents of these ma roughly the contents of the	k file generation utilities out of sks. Hence, we assume liabilit ask files and the ROM data to e mask files you give in. re only one mask file in a flop	y provided that be burned into
Microcompu	ter type No. :	☐ M30620MA-XXXFP	☐ M30620MA-XXXC	∂ P
File code :			(hex)	
Mask file nar	me :		.MSK (alpha-num	eric 8-digit)
the separate ma for submission t For the M30620	fication differs acc ark specification sl o Mitsubishi.	neet (for each package), a nit the 100P6S mark speci	age. After entering the mark s ttach that sheet to this maskin fication sheet. For the M3062	ng check sheet
	ons			
For our reference the products yo		our products, please repl	y to the following questions at	oout the usage of
(1) Which k	ind of XIN-XOUT o	scillation circuit is used?		
	Ceramic resonator	☐ Quartz-crystal	oscillator	
	xternal clock inpu	t □Other ()	
What fre	equency do you u	se?		
f(XII	N) =	MHz		

GZZ-SH12-60B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

(2)	Which kind of XCIN-XCOUT oscilla	ation circuit is used?	
	☐ Ceramic resonator	☐ Quartz-crystal oscillator	
	☐ External clock input	□Other ()	
	What frequency do you use?		
	f(XCIN) = kHz		
(3)	Which operation mode do you us	se?	
	☐ Single-chip mode	☐ Memory expansion mod	de
	☐ Microprocessor mode		
(4)	Which operating ambient temper	ature do you use?	
	□-10 °C to 75 °C	□-20 °C to 75 °C	\square –40 °C to 75 °C
	☐-10 °C to 85 °C	□–20 °C to 85 °C	☐ –40 °C to 85 °C
(5)	Which operating supply voltage of	do you use?	
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V
	☐ 4.2V to 4.7V	☐ 4.7V to 5.2V	☐ 5.2V to 5.5V
Thank	you cooperation.		
. Snec	ial item (Indicate none if there is n	o specified item)	

GZZ-SH12-62B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MC-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	
-----------------	--

	Date :	
±	Section head signature	Supervisor signature
Receipt		
Re		

Note: Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
%	Customer	name		()	uance nature		
~	Customer Date issued		Date :			lssu sign		

*1. Check sheet

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No.:	☐ M30620MC-XXXFP	☐ M30620MC-XXXGP

Checksum code for total EPROM area : (hex)

EPROM type:

☐ 27C201	☐ 27C401
Address 0000016 Product : Area containing ASCII code for M30620MC- 0001016 1FFFF16 2000016 ROM(128K)	Address 0000016 Product : Area containing ASCII code for M30620MC - 0001016 5FFFF16 6000016 ROM(128K)

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30620MC-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address		
0000016	'M '	= 4D ₁₆
0000116	'3'	= 3316
0000216	0	= 3016
0000316	- 6	= 3616
0000416	'2'	= 3216
0000516	0	= 3016
0000616	'M	= 4D ₁₆
0000716	ċ	= 4316

Address	
0000816	'—' = 2D ₁₆
0000916	FF ₁₆
0000A ₁₆	FF ₁₆
0000B ₁₆	FF16
0000C ₁₆	FF ₁₆
0000D ₁₆	FF ₁₆
0000E ₁₆	FF16
0000F ₁₆	FF ₁₆

GZZ- SH12-62B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MC-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	270	C201		27C401
Code entered in source program	· .		\triangle .ORG \triangle 0	N△ASCIICODE, ROM DATA 180000H ' M30620MC- '
Note: The ROM c in the check		l if the type No. written to	the EPROM	does not match the type No.
☐ In the case	of floppy disks			
the floppy disks there is any dis products we pr	s you give in to us, a screpancy between to oduce. Check thoro	and forms them into mas	ks. Hence, we sk files and th mask files yo	
Microcomp	uter type No. :	☐ M30620MC-XXXFP		M30620MC-XXXGP
File code :				hex)
Mask file n	ame :			MSK (alpha-numeric 8-digit)
the separate n for submission For the M3062	cification differs acco nark specification sh r to Mitsubishi.	neet (for each package), nit the 100P6S mark spe	attach that sh	tering the mark specification on eet to this masking check sheet et. For the M30620MC-XXXGP,
	tions			
For our referer the products y		our products, please rep	ly to the follov	ving questions about the usage of
(1) Which	kind of XIN-XOUT os	cillation circuit is used?		
	Ceramic resonator	☐ Quartz-crystal	oscillator	
	External clock input	☐ Other ()	
What fi	requency do you use	e?		

MHz

f(XIN) =

GZZ-SH12-62B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30620MC-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

(2)	Which kind of XCIN-XCOUT oscilla	ation circuit is used?	
	☐ Ceramic resonator	☐ Quartz-crystal oscillator	
	\square External clock input	□ Other ()	
	What frequency do you use?		
	f(XCIN) = kHz		
(3)	Which operation mode do you us	se?	
	☐ Single-chip mode	☐ Memory expansion mod	е
	☐ Microprocessor mode		
(4)	Which operating ambient temper	rature do you use?	
	□-10 °C to 75 °C	□-20 °C to 75 °C	☐ -40 °C to 75 °C
	☐-10 °C to 85 °C	□–20 °C to 85 °C	☐ –40 °C to 85 °C
(5)	Which operating supply voltage of	do you use?	
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V
	☐ 4.2V to 4.7V	☐ 4.7V to 5.2V	☐ 5.2V to 5.5V
Thank	you cooperation.		
% 4 Snec	ial item (Indicate none if there is n	on specified item)	
· Opoo	14. 11.01.1 (11.14.104.10 11.11.101.0 10 11	io opocinou itorri)	

GZZ-SH12-74B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M4-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number				
	Date :			
<u> </u>	Section head signature	Supervisor signature		
Receipt				

Note: Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
· •	0	name		()	ance ature		
*	Customer	Date issued	Date :			lssua signa		

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	☐ M30622M4-XX	XFP		M306	22M4-XX	XGP
Checksum code for to	tal EPROM area :				(hex)	

EPROM type:

Address 0000016	☐ 27C101	□ 27C201	☐ 27C401
1FFFF16	0000016 Product : Area containing ASCII code for M30622M4- 0001016 17FFF16 1800016	00000 ₁₆ Product : Area containing ASCII code for M30622M4 - 00010 ₁₆ 37FFF ₁₆ 38000 ₁₆	0000016 Product : Area containing ASCII code for M30622M4 - 0001016 77FFF16 7800016 ROM(32K)

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30622M4-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

		Address	
'M '	= 4D ₁₆	0000816	'—' = 2D ₁₆
'3'	= 3316	0000916	FF ₁₆
'0'	= 3016	0000A ₁₆	FF ₁₆
'6'	= 3616	0000B ₁₆	FF16
'2'	= 3216	0000C16	FF ₁₆
'2'	= 3216	0000D16	FF ₁₆
'M '	= 4D ₁₆	0000E ₁₆	FF16
'4'	= 3416	0000F ₁₆	FF ₁₆
	'3' '0' '6' '2' '2'	'3' = 3316 '0' = 3016 '6' = 3616 '2' = 3216 '2' = 3216 'M' = 4D16	'M' = 4D16 0000816 '3' = 3316 0000916 '0' = 3016 0000A16 '6' = 3616 0000B16 '2' = 3216 0000C16 '2' = 3216 0000D16 'M' = 4D16 0000E16

G77— SH12— 74B <82A	n -

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M4-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C101			27	7C201				27C401
Code entered in source program	△ .SECTION △ ASCIICODE, RC △ .ORG △ 0E00001 △ .BYTE △ 'M306	H	△ .SE △ AS △ .OF △ .BY	CIICO	DE, R	ЭН			.SECTION ASCIICODE, ROM DATA .ORG \triangle 080000H .BYTE \triangle ' M30622M4- '
Note: The ROM in the chec		if the typ	e No. w	ritten t	o the E	EPRO	OM do	es r	not match the type No.
☐ In the case	e of floppy disks								
Mitsubishi pro the floppy dis there is any d products we p	ocesses the mask files ks you give in to us, a	and forms the conter ughly the	them in nts of th content	nto mas ese mas s of th	sks. He ask file e masl	ence es ar k file	, we as nd the f s you g	ssui ROI give	ies out of those held on me liability provided that M data to be burned into in. in a floppy disk.
Microcom	puter type No. :	☐ M306	622M4-2	XXXFF	o		□ N	1300	622M4-XXXGP
File code	:						(hex	x)	
Mask file	name :						.MS	SK (alpha-numeric 8-digit)
the separate for submission For the M306	ecification differs acco mark specification sh on to Mitsubishi.	eet (for ea it the 100	ach pac P6S ma	kage),	attach	tha	t sheet	t to	the mark specification on this masking check sheet the M30622M4-XXXGP,
	ditions								
	ence when of testing you ordered.	our produ	ıcts, ple	ase re	ply to t	the fo	ollowin	g qı	uestions about the usage of
(1) Which	n kind of XIN-XOUT os	cillation c	ircuit is	used?					
	Ceramic resonator]Quartz	-crysta	al oscill	lator			
	External clock input		Other ()			
What	frequency do you use	e?							

f(XIN) = MHz

GZZ— SH12— 74B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M4-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

(2)	Which kind of XCIN-XCOUT oscilla	tion circuit is used?	
	☐ Ceramic resonator	☐ Quartz-crystal oscillato	or
	☐ External clock input	□ Other ()	
	What frequency do you use?		
	f(XCIN) = kHz		
(3)	Which operation mode do you us	e?	
	☐ Single-chip mode	☐ Memory expansion mo	ode
	☐ Microprocessor mode		
(4)	Which operating ambient tempera	ature do you use?	
	□-10 °C to 75 °C	\square –20 °C to 75 °C	\square –40 °C to 75 °C
	☐ –10 °C to 85 °C	□–20 °C to 85 °C	☐ –40 °C to 85 °C
(5)	Which operating supply voltage d	lo you use?	
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V
	☐ 4.2V to 4.7V	☐4.7V to 5.2V	☐ 5.2V to 5.5V
Thank	you cooperation.		
% 4. Speci	al item (Indicate none if there is no	o specified item)	

GZZ-SH12-64B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M8-XXXFP/GP MASK ROM CONFIRMATION FORM

|--|

	Date :	
±	Section head signature	Supervisor signature
Receipt		

Note: Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
%	Customer	Company name		()	iance iature		
200 Gustoni	Guotomor	Date issued	Date :			Issu		

% 1. Check sheet

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	☐ M30622M8-XXXFP	☐ M30622M8-XXXGF
--------------------------	------------------	------------------

Checksum code for total EPROM area : (hex)

EPROM type:

□ 27C201	□ 27C401
Address	Address
0000016	0000016

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30622M8-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address		
0000016	'M '	$=4D_{16}$
0000116	'3'	= 3316
0000216	'0'	= 3016
0000316	'6'	= 3616
0000416	'2'	= 3216
0000516	'2'	= 3016
0000616	'M '	= 4D ₁₆
0000716	'8'	= 3816

Address	
0000816	'—' = 2D ₁₆
0000916	FF ₁₆
0000A ₁₆	FF ₁₆
0000B ₁₆	FF ₁₆
0000C ₁₆	FF ₁₆
0000D ₁₆	FF ₁₆
0000E ₁₆	FF16
0000F ₁₆	FF ₁₆

GZZ- SH12-64B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M8-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27C	201		27C401
Code entered in source program	△ .SECTION△AS(△ .ORG △ 0C0000 △ .BYTE △ ' M306		\triangle .ORG A	ON△ASCIICODE, ROM DATA △ 080000H △ ' M30622M8- '
Note: The ROM c	annot be processed sheet.	if the type No. written to	the EPRO	OM does not match the type No.
☐ In the case	of floppy disks			
the floppy disk there is any dis products we pr	s you give in to us, and screpancy between the roduce. Check thorou	nd forms them into mas ne contents of these ma ighly the contents of the	ks. Hence ask files an e mask files	ation utilities out of those held on , we assume liability provided that d the ROM data to be burned into s you give in.
Microcomp	uter type No. :	☐ M30622M8-XXXF	P [☐ M30622M8-XXXGP
File code :	[(hex)
Mask file na	ame :			.MSK (alpha-numeric 8-digit)
the separate m for submission For the M3062	cification differs accor nark specification she to Mitsubishi.	et (for each package), the 100P6S mark spec	attach that	entering the mark specification on sheet to this masking check sheet neet. For the M30622M8-XXXGP,
	ions			
For our referent the products yo		ur products, please rep	ly to the fol	llowing questions about the usage of
(1) Which I	kind of XIN-XOUT osci	llation circuit is used?		
	Ceramic resonator	☐ Quartz-crystal	oscillator	
	External clock input	☐ Other ()	
What fr	equency do you use?	?		
f(X	N) = N	1Hz		

GZZ-SH12-64B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622M8-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

(2)	Which kind of XCIN-XCOUT oscilla	tion circuit is used?	
	☐ Ceramic resonator	☐ Quartz-crystal oscillator	
	☐ External clock input	□ Other ()	
	What frequency do you use?		
	f(XCIN) = kHz		
(3)	Which operation mode do you us	e?	
	\square Single-chip mode	☐ Memory expansion mode	•
	☐ Microprocessor mode		
(4)	Which operating ambient tempera	ature do you use?	
	□-10 °C to 75 °C	□-20 °C to 75 °C	\square –40 °C to 75 °C
	☐ –10 °C to 85 °C	□-20 °C to 85 °C	☐ -40 °C to 85 °C
(5)	Which operating supply voltage d	lo you use?	
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	\square 3.7V to 4.2V
	☐ 4.2V to 4.7V	☐ 4.7V to 5.2V	☐ 5.2V to 5.5V
Thank	you cooperation.		
% 4. Spec	ial item (Indicate none if there is no	o specified item)	

GZZ-SH12-66B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask R		
	Date :	
±	Section head signature	Supervisor signature
.≌		

Note: Please complete all items marked %.

		Company		TEL			Submitted by	Supervisor
%	Customer	Company name		()	ance ature		
~	Customer	Date issued	Date :			lssu sign		

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.

☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No.:	☐ M30622MA-XXX	(FP	□ N	//30622MA-XXXGP
Checksum code for total	al EPROM area :			(hex)

EPROM type:

☐ 27C201	☐ 27C401
Address 0000016 Product : Area containing ASCII code for M30622MA- 0001016 27FFF16 2800016 ROM(96K) 3FFFF16	Address 0000016

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30622MA-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address		
0000016	'M '	= 4D ₁₆
0000116	'3'	= 3316
0000216	'0'	= 3016
0000316	'6'	= 3616
0000416	'2'	= 3216
0000516	'2'	= 3216
0000616	'M '	= 4D ₁₆
0000716	'A'	= 4116

Address	
0000816	'—' = 2D ₁₆
0000916	FF ₁₆
0000A ₁₆	FF ₁₆
0000B ₁₆	FF ₁₆
0000C ₁₆	FF ₁₆
0000D ₁₆	FF ₁₆
0000E ₁₆	FF ₁₆
0000F ₁₆	FF ₁₆

O77	SH12-	CCD	00 4 0
(7//-	>H1/-	- nnk	2X/AUS

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MA-XXXGP MASK ROM CONFIRMATION FORM

Mask ROM number	·

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

	Г			
EPROM type	27	C201	27C40)1
Code entered in source program	△ .SECTION△A: △ .ORG △ 0C000 △ .BYTE △ ' M30		△ .SECTION△ ASCIIC △ .ORG △ 080000H △ .BYTE △ ' M30622N	·
Note: The ROM of in the check		d if the type No. written t	o the EPROM does not n	
\square In the case	of floppy disks			
the floppy disk there is any dis products we pr	s you give in to us, screpancy between oduce. Check thore	and forms them into mag the contents of these ma oughly the contents of the	k file generation utilities of sks. Hence, we assume I ask files and the ROM date mask files you give in. re only one mask file in a	iability provided that ata to be burned into
Microcompu	ter type No. :	☐ M30622MA-XXXFP	☐ M30622MA-	XXXGP
File code :			(hex)	
Mask file nar	me :		.MSK (alpha	-numeric 8-digit)
the separate ma for submission t For the M30622	fication differs acco ark specification she o Mitsubishi.	eet (for each package), a t the 100P6S mark spec	age. After entering the m ittach that sheet to this m ification sheet. For the M	nasking check sheet
	ons			
For our reference the products yo		our products, please repl	y to the following questic	ons about the usage o
(1) Which k	ind of XIN-XOUT osc	cillation circuit is used?		
	Ceramic resonator	☐ Quartz-crystal	oscillator	
□ Ε	xternal clock input	☐ Other ()	
What fre	equency do you use	?		
f(XII	N) =	MHz		

GZZ-SH12-66B <82A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MA-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

(2)	(2) Which kind of XCIN-XCOUT oscillation circuit is used?		
	☐ Ceramic resonator	☐ Quartz-crystal oscillator	
	\square External clock input	□Other ()	
	What frequency do you use?		
	f(XCIN) = kHz		
(3)	Which operation mode do you us	e?	
	☐ Single-chip mode	☐ Memory expansion mod	le
	☐ Microprocessor mode		
(4)	Which operating ambient tempera	ature do you use?	
	□-10 °C to 75 °C	□-20 °C to 75 °C	☐ –40 °C to 75 °C
	□-10 °C to 85 °C	□–20 °C to 85 °C	☐ –40 °C to 85 °C
(5)	Which operating supply voltage d	o you use?	
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V
	☐ 4.2V to 4.7V	☐4.7V to 5.2V	☐ 5.2V to 5.5V
Thank	you cooperation.		
	al item (Indicate none if there is no	o specified item)	

GZZ-SH12-03B <77A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MC-XXXFP/GP MASK ROM CONFIRMATION FORM

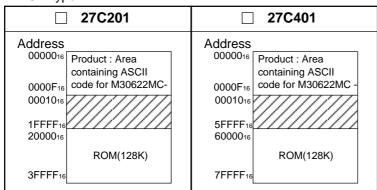
Mask R	OM number				
	Date :				
±	Section head signature	Supervisor signature			
Receipt					

Note : Please complete all items marked 🖇	Vote	· Please	complete	all items	marked	%
---	------	----------	----------	-----------	--------	----------

% Customer		Company	,	TEL			Submitted by	Supervisor
	Customor			()	ance ature		
	Date issued	Date :			Issu			

% 1. Check sheet

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.


☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No.:	☐ M30622MC-XXXFP	☐ M30622MC-XXXGP
-------------------------	------------------	------------------

Checksum code for total EPROM area : (hex)

EPROM type:

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30622MC-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address					
0000016	'M '	= 4D ₁₆			
0000116	'3'	= 3316			
0000216	'0'	= 3016			
0000316	'6'	= 3616			
0000416	'2'	= 3216			
0000516	'2'	= 3216			
0000616	'M '	= 4D ₁₆			
0000716	'C '	= 4316			

Address		
0000816	<u> </u>	$= 2D_{16}$
0000916		FF16
0000A ₁₆		FF16
0000B ₁₆		FF16
0000C16		FF16
0000D ₁₆		FF16
0000E ₁₆		FF16
0000F16		FF16

GZZ-SH12-03B <77A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MC-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

EPROM type	27	C201		27C401
Code entered in source program	△ .SECTION△AS △ .ORG △ 0C000 △ .BYTE △ ' M30		△ .ORG	TION△ASCIICODE, ROM DATA △ 080000H E △ ' M30622MC- '
Note: The ROM of in the check		I if the type No. writte	en to the EPR	OM does not match the type No.
☐ In the case	of floppy disks			
the floppy disk there is any dis products we pr	s you give in to us, a screpancy between roduce. Check thoro	and forms them into the contents of these ughly the contents o	masks. Hence mask files ar f the mask file	ration utilities out of those held on e, we assume liability provided that he had the ROM data to be burned into s you give in.
Microcomp	outer type No. : [M30622MC-XXX	FP	☐ M30622MC-XXXGP
File code :				(hex)
Mask file n	ame :			.MSK (alpha-numeric 8-digit)
the separate n for submission For the M3062	cification differs acc nark specification sh n to Mitsubishi.	neet (for each package) nit the 100P6S mark	ge), attach tha	r entering the mark specification on t sheet to this masking check sheet sheet. For the M30622MC-XXXGP,
	itions			
For our reference the products y		our products, please	reply to the fo	ollowing questions about the usage of
(1) Which	kind of XIN-XOUT os	cillation circuit is use	ed?	
	Ceramic resonator	☐ Quartz-cry	stal oscillator	
	External clock input	☐ Other ()	

What frequency do you use?

MHz

f(XIN) =

GZZ-SH12-03B <77A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30622MC-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	
Mask Row Hamber	

(2)	(2) Which kind of XCIN-XCOUT oscillation circuit is used?					
	☐ Ceramic resonator	☐ Quartz-crystal oscillator				
	☐ External clock input	□Other()				
	What frequency do you use?					
	f(XCIN) = kHz					
(3)	Which operation mode do you us	e?				
	☐ Single-chip mode	☐ Memory expansion mode	е			
	☐ Microprocessor mode					
(4)	Which operating ambient tempera	ature do you use?				
	□-10 °C to 75 °C	□-20 °C to 75 °C	\square –40 °C to 75 °C			
	☐ –10 °C to 85 °C	□–20 °C to 85 °C	☐ –40 °C to 85 °C			
(5)	Which operating supply voltage d	o you use?				
	☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V			
	☐ 4.2V to 4.7V	☐ 4.7V to 5.2V	☐ 5.2V to 5.5V			
Thank	you cooperation.					

GZZ-SH12-78B <83A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30624MG-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

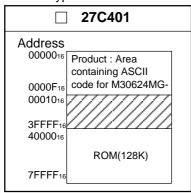
	Date :	
±	Section head signature	Supervisor signature
Receipt		
~		

Note: Please complete all items marked %.

		Company			Submitted by	Supervisor			
*	Customer	name		()	Jance			
70 `	Guotomor	Date issued	Date :			Issu)		

% 1. Check sheet

Name the product you order, and choose which to give in, EPROMs or floppy disks. If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by means of floppy disks, one floppy disk is required per pattern.


☐ In the case of EPROMs

Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any discrepancy between the data on the EPROM sets and the ROM data written to the product. Please carefully check the data on the EPROMs being submitted to Mitsubishi.

Microcomputer type No. :	☐ M30624MG-XXXFP	☐ M30624MG-XXXGF

Checksum code for total EPROM area : (hex)

EPROM type:

- (1) Write "FF16" to the lined area.
- (2) The area from 0000016 to 0000F16 is for storing data on the product type name.

The ASCII code for 'M30624MG-' is shown at right. The data in this table must be written to address 0000016 to 0000F16.

Address		
0000016	'M '	= 4D16
0000116	3	= 3316
0000216	'0'	= 3016
0000316	'6'	= 3616
0000416	'2'	= 3216
0000516	'4'	= 3416
0000616	'M '	= 4D16
0000716	ۻ	= 4716

Address	
0000816	'—' = 2D ₁₆
0000916	FF ₁₆
0000A ₁₆	FF ₁₆
0000B ₁₆	FF ₁₆
0000C16	FF ₁₆
0000D ₁₆	FF ₁₆
0000E ₁₆	FF ₁₆
0000F ₁₆	FF ₁₆

GZZ- SH12-78B <83A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30624MG-XXXFP/GP MASK ROM CONFIRMATION FORM

Mask ROM number	

The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the assembler source program.

	-			
EPROM type	27	7C401		
Code entered in source program	△ .SECTION△ AS △ .ORG △ 080000 △ .BYTE △ ' M30)H	PATA	
Note: The ROM c in the check		if the type No. wri	tten to the EP	ROM does not match the type No.
☐ In the case	of floppy disks			
the floppy disk there is any dis products we pr	s you give in to us, a screpancy between t oduce. Check thoro	and forms them into the contents of the ughly the contents	o masks. Hen se mask files of the mask f	neration utilities out of those held on ce, we assume liability provided that and the ROM data to be burned into iles you give in. one mask file in a floppy disk.
Microcomp	uter type No. :	☐ M30624MG-	XXXFP	☐ M30624MG-XXXGP
File code :				(hex)
Mask file n	ame :			.MSK (alpha-numeric 8-digit)
the separate n for submission For the M3062	cification differs acco nark specification sh to Mitsubishi.	eet (for each pack it the 100P6S mar	age), attach tl	Iter entering the mark specification on hat sheet to this masking check sheet in sheet. For the M30624MG-XXXGP,
	ions			
For our referer the products yo		our products, pleas	se reply to the	following questions about the usage of
(1) Which I	kind of XIN-XOUT osc	cillation circuit is us	sed?	
	Ceramic resonator	☐ Quartz-c	rystal oscillato	or
	External clock input	\square Other ()	
What fr	equency do you use	?		

MHz

f(XIN) =

GZZ-SH12-78B <83A0>

MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT MICROCOMPUTER M30624MG-XXXFP/GP MASK ROM CONFIRMATION FORM

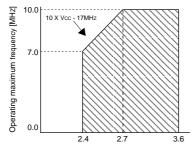
Mask ROM number	

(2) Which kind of XCIN-XCOUT oscilla	ation circuit is used?	
☐ Ceramic resonator	☐ Quartz-crystal oscillator	
☐ External clock input	□Other()	
What frequency do you use?		
f(XCIN) = kHz		
(3) Which operation mode do you us	se?	
☐ Single-chip mode	☐ Memory expansion mode	•
☐ Microprocessor mode		
(4) Which operating ambient temper	rature do you use?	
□-10 °C to 75 °C	□-20 °C to 75 °C	\square –40 °C to 75 °C
□-10 °C to 85 °C	□–20 °C to 85 °C	☐ –40 °C to 85 °C
(5) Which operating supply voltage of	do you use?	
☐ 2.7V to 3.2V	☐ 3.2V to 3.7V	☐ 3.7V to 4.2V
☐ 4.2V to 4.7V	☐ 4.7V to 5.2V	☐ 5.2V to 5.5V
Thank you cooperation.		
	no specified item)	

Outline Performance

Table 1.28.1 shows the outline performance of the M16C/62 (flash memory version) and Table 1.28.2 shows the power supply current(Typ.).

Table 1.28.1. Outline Performance of the M16C/62 (flash memory version)


I	tem	Performance			
Power supply voltage		5V version: 2.7V to 5.5 V (f(XIN)=16MHz, without wait, 4.2V to 5.5V, f(XIN)=10MHz, with one wait, 2.7V to 5.5V) 3V version: 2.4V to 3.6 V (f(XIN)=10MHz, without wait, 2.7V to 3.6V, f(XIN)=7MHz, without wait, 2.4V to 3.6V)			
Program/erase voltage		5V version: 4.2V to 5.5 V (f(XIN)=12.5MHz, with one wait, f(XIN)=6.25MHz, without wait) 3V version: 2.7V to 3.6 V (f(XIN)=10MHz, with one wait, f(XIN)=6.25MHz, without wait)			
Flash memory	operation mode	Three modes (parallel I/O, standard serial I/O, CPU rewrite)			
Erase block division User ROM area Boot ROM area		See Figure 1.28.1			
		One division (8 Kbytes) (Note 1)			
Program meth	od	In units of pages (in units of 256 bytes)			
Erase method		Collective erase/block erase			
Program/erase	e control method	Program/erase control by software command			
Protect metho	d	Protected for each block by lock bit			
Number of cor	nmands	8 commands			
Program/erase	e count	100 times			
ROM code pro	tect	Parallel I/O and standard serial modes are supported.			
3V version ma		10MHz (VCC=2.7V to 3.6V,without wait)			
oscillation frequency(Max.) (Note2)		10 X VCC - 17 MHz (VCC=2.4V to 2.7V,without wait)			
3V version pov		12.0mA(Typ.), 21.25mA(Max.) (VCC=3V, f(XIN)=10MHz, square wave, no division, without wait)			
current (Notes	s 3, 4)	40μA(Typ.) (Vcc=3V, f(Xcin)=32kHz, square wave, without wait) [operate in RAM]			
		700μA(Typ.) (VCC=3V, f(XCIN)=32kHz, square wave, without wait) [operate in flash memory]			

Note1: The boot ROM area contains a standard serial I/O mode control program which is stored in it when shipped from the factory. This area can be erased and programmed in only parallel I/O mode.

Note2: Refer to recommended operating conditions about 5 V version. 3V version relationship between main clock oscillation

frequency and supply voltage are as follows.

Main clock input oscillation frequency (flash memory 3V version, without wait)

Supply voltage[V] (BCLK: no division)

Note3: Refer to electric characteristic about 5V version. Note4: A standard value in stop and wait modes do not depend on a kind of memory to have built-in and is the same class. Refer to electric characteristic in VCC=3V.

Table 1.28.2. Power supply current (typ.) of the M16C/62 (flash memory version)

Parameter	Macauring condition	;	Standard (Ty	p.)	Remark
Parameter	Measuring condition	Read	Program	Erase	Kelliaik
5V power supply current(5V version)	f(XIN)=16MHz, without wait, No division	35mA	28mA	25mA	Division by 4 in program/erase
3V power supply current(5V version)	f(XIN)=10MHz, with wait, No division	13.5mA	-	-	
3V power supply current(3V version)	f(XIN)=10MHz, without wait, No division	12mA	17mA	14mA	Division by 2 in program/erase

Flash Memory

The M16C/62 (flash memory version) contains the DINOR (DIvided bit line NOR) type of flash memory that can be rewritten with a single voltage of 5 V or 3.3 V. For this flash memory, three flash memory modes are available in which to read, program, and erase: parallel I/O and standard serial I/O modes in which the flash memory can be manipulated using a programmer and a CPU rewrite mode in which the flash memory can be manipulated by the Central Processing Unit (CPU). Each mode is detailed in the pages to follow.

The flash memory is divided into several blocks as shown in Figure 1.28.1, so that memory can be erased one block at a time. Each block has a lock bit to enable or disable execution of an erase or program operation, allowing for data in each block to be protected.

In addition to the ordinary user ROM area to store a microcomputer operation control program, the flash memory has a boot ROM area that is used to store a program to control rewriting in CPU rewrite and standard serial I/O modes. This boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. However, the user can write a rewrite control program in this area that suits the user's application system. This boot ROM area can be rewritten in only parallel I/O mode.

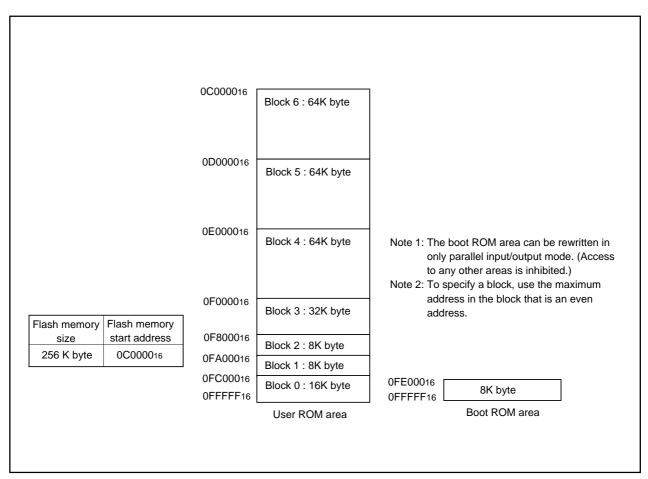


Figure 1.28.1. Block diagram of flash memory version

CPU Rewrite Mode

In CPU rewrite mode, the on-chip flash memory can be operated on (read, program, or erase) under control of the Central Processing Unit (CPU).

In CPU rewrite mode, only the user ROM area shown in Figure 1.28.1 can be rewritten; the boot ROM area cannot be rewritten. Make sure the program and block erase commands are issued for only the user ROM area and each block area.

The control program for CPU rewrite mode can be stored in either user ROM or boot ROM area. In the CPU rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must be transferred to any area other than the internal flash memory before it can be executed.

Microcomputer Mode and Boot Mode

The control program for CPU rewrite mode must be written into the user ROM or boot ROM area in parallel I/O mode beforehand. (If the control program is written into the boot ROM area, the standard serial I/O mode becomes unusable.)

See Figure 1.28.1 for details about the boot ROM area.

Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVss pin low. In this case, the CPU starts operating using the control program in the user ROM area.

When the microcomputer is reset by pulling the P55 pin low, the CNVss pin high, and the P50 pin high, the CPU starts operating using the control program in the boot ROM area. This mode is called the "boot" mode. The control program in the boot ROM area can also be used to rewrite the user ROM area.

Block Address

Block addresses refer to the maximum even address of each block. These addresses are used in the block erase command, lock bit program command, and read lock status command.

Outline Performance (CPU Rewrite Mode)

In the CPU rewrite mode, the CPU erases, programs and reads the internal flash memory as instructed by software commands. Operations must be executed from a memory other than the internal flash memory, such as the internal RAM.

When the CPU rewrite mode select bit (bit 1 at address 03B716) is set to "1", transition to CPU rewrite mode occurs and software commands can be accepted.

In the CPU rewrite mode, write to and read from software commands and data into even-numbered address ("0" for byte address A0) in 16-bit units. Always write 8-bit software commands into even-numbered address. Commands are ignored with odd-numbered addresses.

Use software commands to control program and erase operations. Whether a program or erase operation has terminated normally or in error can be verified by reading the status register.

Figure 1.29.1 shows the flash memory control register 0 and the flash memory control register 1.

Bit 0 of the flash memory control register 0 is the RY/\overline{BY} status flag used exclusively to read the operating status of the flash memory. During programming and erase operations, it is "0". Otherwise, it is "1".

Bit 1 of the flash memory control register 0 is the CPU rewrite mode select bit. The CPU rewrite mode is entered by setting this bit to "1", so that software commands become acceptable. In CPU rewrite mode, the CPU becomes unable to access the internal flash memory directly. Therefore, write bit 1 in an area other than the internal flash memory. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. The bit can be set to "0" by only writing a "0".

Bit 2 of the flash memory control register 0 is a lock bit disable bit. By setting this bit to "1", it is possible to disable erase and write protect (block lock) effectuated by the lock bit data. The lock bit disable select bit only disables the lock bit function; it does not change the lock data bit value. However, if an erase operation is performed when this bit ="1", the lock bit data that is "0" (locked) is set to "1" (unlocked) after erasure. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. This bit can be manipulated only when the CPU rewrite mode select bit = "1".

Bit 3 of the flash memory control register 0 is the flash memory reset bit used to reset the control circuit of the internal flash memory. This bit is used when exiting CPU rewrite mode and when flash memory access has failed. When the CPU rewrite mode select bit is "1", writing "1" for this bit resets the control circuit. To release the reset, it is necessary to set this bit to "0".

Bit 5 of the flash memory control register 0 is a user ROM area select bit which is effective in only boot mode. If this bit is set to "1" in boot mode, the area to be accessed is switched from the boot ROM area to the user ROM area. When the CPU rewrite mode needs to be used in boot mode, set this bit to "1". Note that if the microcomputer is booted from the user ROM area, it is always the user ROM area that can be accessed and this bit has no effect. When in boot mode, the function of this bit is effective regardless of whether the CPU rewrite mode is on or off. Use the control program except in the internal flash memory to rewrite this bit.

Bit 3 of the flash memory control register 1 turns power supply to the internal flash memory on/off. When this bit is set to "1", power is not supplied to the internal flash memory, thus power consumption can be reduced. However, in this state, the internal flash memory cannot be accessed. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. Use this bit mainly in the low speed mode (when XCIN is the block count source of BCLK).

When the CPU is shifted to the stop or wait modes, power to the internal flash memory is automatically shut off. It is reconnected automatically when CPU operation is restored. Therefore, it is not particularly necessary to set flash memory control register 1.

Figure 1.29.2 shows a flowchart for setting/releasing the CPU rewrite mode. Figure 1.29.3 shows a flowchart for shifting to the low speed mode. Always perform operation as indicated in these flowcharts.

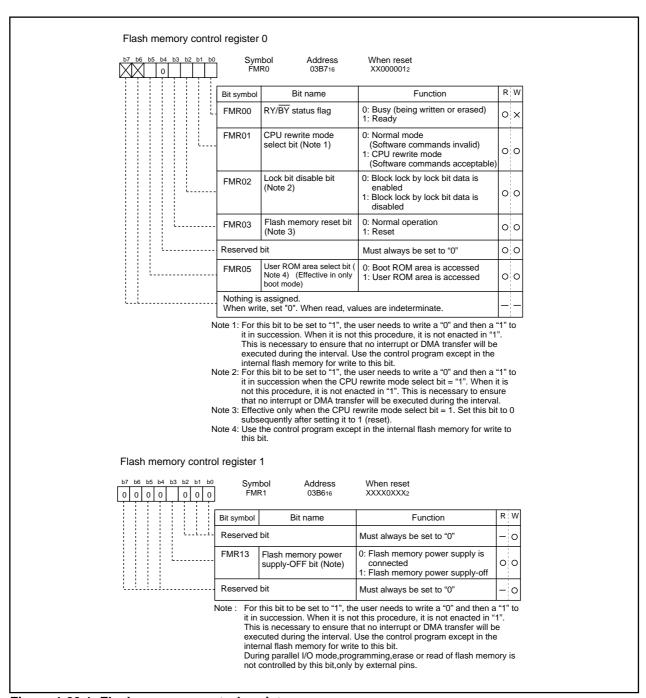


Figure 1.29.1. Flash memory control registers

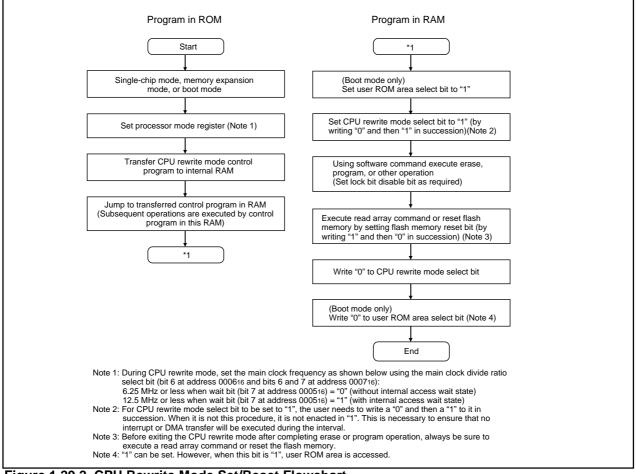


Figure 1.29.2. CPU Rewrite Mode Set/Reset Flowchart

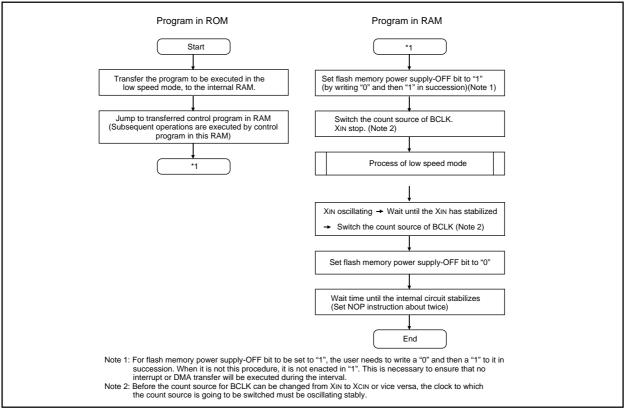


Figure 1.29.3. Shifting to The Low Speed Mode Flowchart

Precautions on CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

(1) Operation speed

During CPU rewrite mode, set the main clock frequency as shown below using the main clock divide ratio select bit (bit 6 at address 000616 and bits 6 and 7 at address 000716):

6.25 MHz or less when wait bit (bit 7 at address 000516) = 0 (without internal access wait state)

12.5 MHz or less when wait bit (bit 7 at address 000516) = 1 (with internal access wait state)

(2) Instructions inhibited against use

The instructions listed below cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory:

UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

(3) Interrupts inhibited against use

The address match interrupt cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory. If interrupts have their vector in the variable vector table, they can be used by transferring the vector into the RAM area. The $\overline{\text{NMI}}$ and watchdog timer interrupts each can be used to change the flash memory's operation mode forcibly to read array mode upon occurrence of the interrupt. Since the rewrite operation is halted when the $\overline{\text{NMI}}$ and watchdog timer interrupts occur, the erase/program operation needs to be performed over again.

Disabling erase or rewrite operations for address FC00016 to address FFFFF16 in the user ROM block disables these operations for all subsequent blocks as well. Therefore, it is recommended to rewrite this block in the standard serial I/O mode.

(4) Internal reserved area expansion bit (Bit 3 at address 000516)

The reserved area of the internal memory can be changed by using the internal reserved area expansion bit (bit 3 at address 000516). However, if the CPU rewrite mode select bit (bit 1 at address 03B716) is set to 1, the internal reserved area expansion bit (bit 3 at address 000516) also is set to 1 automatically. Similarly, if the CPU rewrite mode select bit (bit 1 at address 03B716) is set to 0, the internal reserved area expansion bit (bit 3 at address 000516) also is set to 0 automatically.

The precautions above apply to the M30624FG and M30624FGL only.

(5) Reset

Reset input is always accepted. After a reset, the addresses 0C000016 through 0CFFFF16 are made a reserved area and cannot be accessed. Therefore, if your product has this area in the user ROM area, do not write any address of this area to the reset vector. This area is made accessible by changing the internal reserved area expansion bit (bit 3 at address 000516) in a program.

(6) Access disable

Write CPU rewrite mode select bit, flash memory power supply-OFF bit and user ROM area select bit in an area other than the internal flash memory.

(7) How to access

For CPU rewrite mode select bit, lock bit disable bit, and flash memory power supply-OFF bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval.

Software Commands

Table 1.29.1 lists the software commands available with the M16C/62 (flash memory version).

After setting the CPU rewrite mode select bit to 1, write a software command to specify an erase or program operation. Note that when entering a software command, the upper byte (D8 to D15) is ignored. The content of each software command is explained below.

Table 1.29.1. List of Software Commands (CPU Rewrite Mode)

	First bus cycle			Second bus cycle			Third bus cycle		
Command	Mode	Address	Data (D ₀ to D ₇)	Mode	Address	Data (D ₀ to D ₇)	Mode	Address	Data (D ₀ to D ₇)
Read array	Write	X (Note 6)	FF16						
Read status register	Write	Х	7016	Read	Х	SRD (Note 2)			
Clear status register	Write	Х	5016						
Page program (Note 3)	Write	Х	4116	Write	WA0(Note 3)	WD0 (Note 3)	Write	WA1	WD1
Block erase	Write	Х	2016	Write	BA (Note 4)	D016			
Erase all unlock block	Write	Х	A716	Write	Х	D016			
Lock bit program	Write	Х	7716	Write	BA	D016			
Read lock bit status	Write	Х	71 16	Read	ВА	D ₆ (Note 5)			

- Note 1: When a software command is input, the high-order byte of data (D8 to D15) is ignored.
- Note 2: SRD = Status Register Data
- Note 3: WA = Write Address, WD = Write Data
 - WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is 256 bytes.
- Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)
- Note 5: De corresponds to the block lock status. Block not locked when De = 1, block locked when De = 0.
- Note 6: X denotes a given address in the user ROM area (that is an even address).

Read Array Command (FF16)

The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an even address to be read is input in one of the bus cycles that follow, the content of the specified address is read out at the data bus (D0–D15), 16 bits at a time.

The read array mode is retained intact until another command is written.

Read Status Register Command (7016)

When the command code "7016" is written in the first bus cycle, the content of the status register is read out at the data bus (D0–D7) by a read in the second bus cycle.

The status register is explained in the next section.

Clear Status Register Command (5016)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code "5016" in the first bus cycle.

Page Program Command (4116)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts when the command code "4116" is written in the first bus cycle. In the second bus cycle through the 129th bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to be incremented by 2 from "0016" to "FE16." When the system finishes loading the data, it starts an auto write operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto write operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to 1 upon completion of the auto write operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto write operation and 1 when the auto write operation is completed as is the status register bit 7.

After the auto write operation is completed, the status register can be read out to know the result of the auto write operation. For details, refer to the section where the status register is detailed.

Figure 1.29.4 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

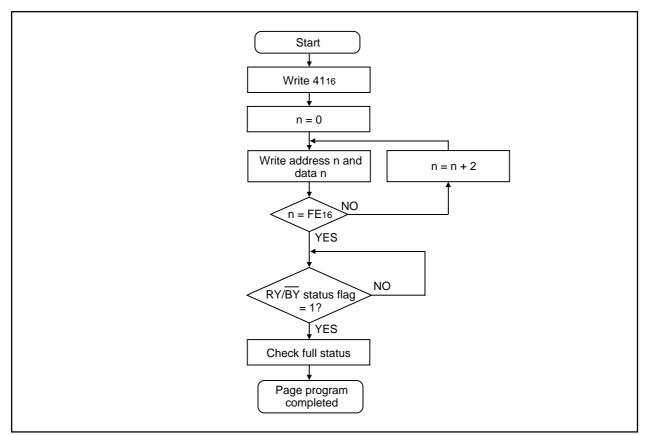


Figure 1.29.4. Page program flowchart

Block Erase Command (2016/D016)

By writing the command code "2016" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system initiates an auto erase (erase and erase verify) operation.

Whether the auto erase operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto erase operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of the auto erase operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit.

The RY/ $\overline{\text{BY}}$ status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the auto erase operation. For details, refer to the section where the status register is detailed.

Figure 1.29.5 shows an example of a block erase flowchart.

Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to the section where the data protect function is detailed.

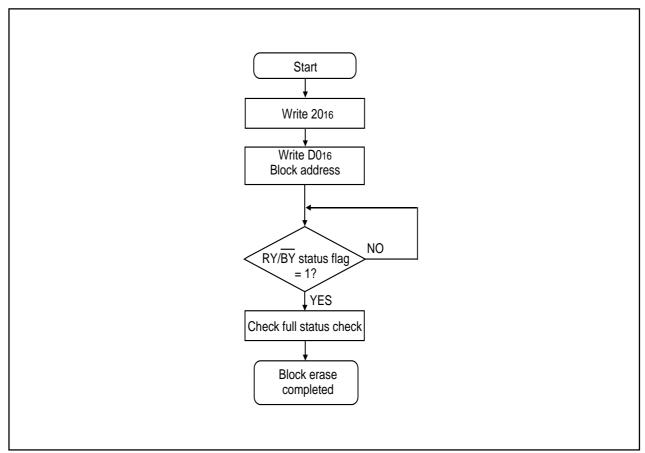


Figure 1.29.5. Block erase flowchart

Erase All Unlock Blocks Command (A716/D016)

By writing the command code "A716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows, the system starts erasing blocks successively.

Whether the erase all unlock blocks command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for block erase. Also, the status register can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register 0 = 1, all blocks are erased no matter how the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective and only nonlocked blocks (where lock bit data = 1) are erased.

Lock Bit Program Command (7716/D016)

By writing the command code "7716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for the specified block to 0 (locked).

Figure 1.29.6 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can be read out by a read lock bit status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data protect function is detailed.

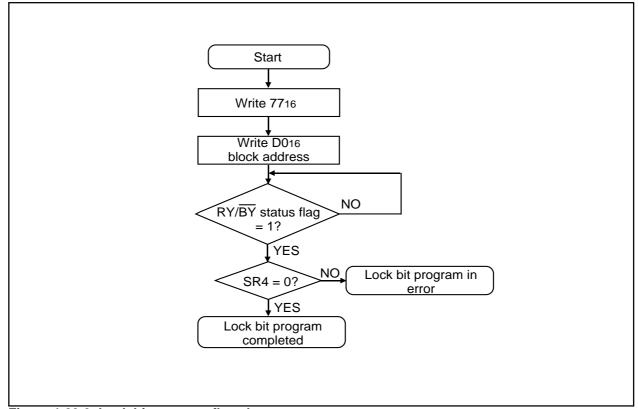


Figure 1.29.6. Lock bit program flowchart

Read Lock Bit Status Command (7116)

By writing the command code "7116" in the first bus cycle and then the block address of a flash memory block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified block on to the data (D6).

Figure 1.29.7 shows an example of a read lock bit program flowchart.

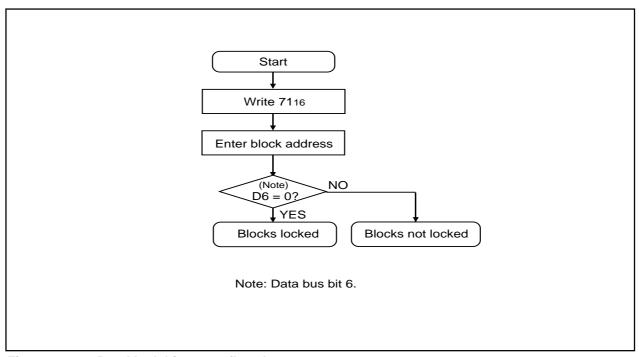


Figure 1.29.7. Read lock bit status flowchart

Data Protect Function (Block Lock)

Each block in Figure 1.28.1 has a nonvolatile lock bit to specify that the block be protected (locked) against erase/write. The lock bit program command is used to set the lock bit to 0 (locked). The lock bit of each block can be read out using the read lock bit status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash memory control register 0's lock bit disable bit is set.

- (1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write.
 On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/write.
- (2) When the lock bit disable bit = 1, all blocks are nonlocked regardless of the lock bit data, so they are enabled for erase/write. In this case, the lock bit data that is 0 (locked) is set to 1 (nonlocked) after erasure, so that the lock bit-actuated lock is removed.

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program operation has terminated normally or in an error. The content of this register can be read out by only writing the read status register command (7016). Table 1.29.2 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to "8016."

Each bit in this register is explained below.

Write state machine (WSM) status (SR7)

After power-on, the write state machine (WSM) status is set to 1.

The write state machine (WSM) status indicates the operating status of the device, as for output on the RY/BY pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon completion of these operations.

Erase status (SR5)

The erase status informs the operating status of auto erase operation to the CPU. When an erase error occurs, it is set to 1.

The erase status is reset to 0 when cleared.

Program status (SR4)

The program status informs the operating status of auto write operation to the CPU. When a write error occurs, it is set to 1.

The program status is reset to 0 when cleared.

When an erase command is in error (which occurs if the command entered after the block erase command (2016) is not the confirmation command (D016), both the program status and erase status (SR5) are set to 1.

When the program status or erase status = 1, the following commands entered by command write are not accepted.

Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):

- (1) When the valid command is not entered correctly
- (2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/D016), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered, read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block status after program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output.

Table 1.29.2. Definition of each bit in status register

Each bit of	_	Definition			
SRD	Status name	"1"	"0"		
SR7 (bit7)	Write state machine (WSM) status	Ready	Busy		
SR6 (bit6)	Reserved	-	-		
SR5 (bit5)	Erase status	Terminated in error	Terminated normally		
SR4 (bit4)	Program status	Terminated in error	Terminated normally		
SR3 (bit3)	Block status after program	Terminated in error	Terminated normally		
SR2 (bit2)	Reserved	-	-		
SR1 (bit1)	Reserved	-	-		
SR0 (bit0)	Reserved	-	-		

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations. Figure 1.29.8 shows a full status check flowchart and the action to be taken when each error occurs.

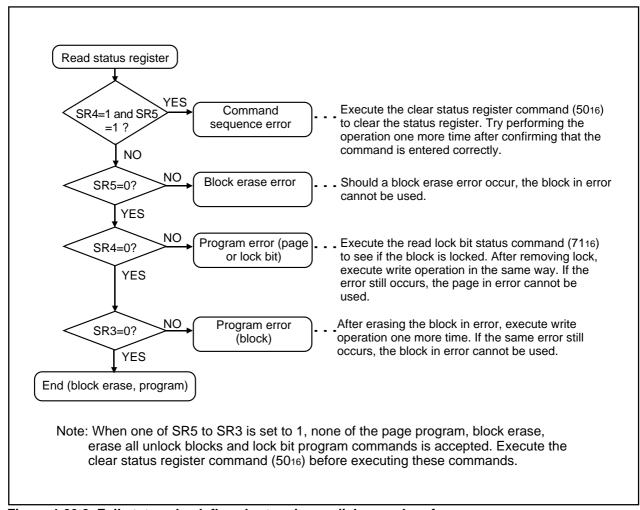


Figure 1.29.8. Full status check flowchart and remedial procedure for errors

Functions To Inhibit Rewriting Flash Memory Version

To prevent the contents of the flash memory version from being read out or rewritten easily, the device incorporates a ROM code protect function for use in parallel I/O mode and an ID code check function for use in standard serial I/O mode.

ROM code protect function

The ROM code protect function reading out or modifying the contents of the flash memory version by using the ROM code protect control address (0FFFF16) during parallel I/O mode. Figure 1.29.9 shows the ROM code protect control address (0FFFF16). (This address exists in the user ROM area.)

If one of the pair of ROM code protect bits is set to 0, ROM code protect is turned on, so that the contents of the flash memory version are protected against readout and modification. ROM code protect is implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2, level 2 is selected by default.

If both of the two ROM code protect reset bits are set to "00," ROM code protect is turned off, so that the contents of the flash memory version can be read out or modified. Once ROM code protect is turned on, the contents of the ROM code protect reset bits cannot be modified in parallel I/O mode. Use the serial I/O or some other mode to rewrite the contents of the ROM code protect reset bits.

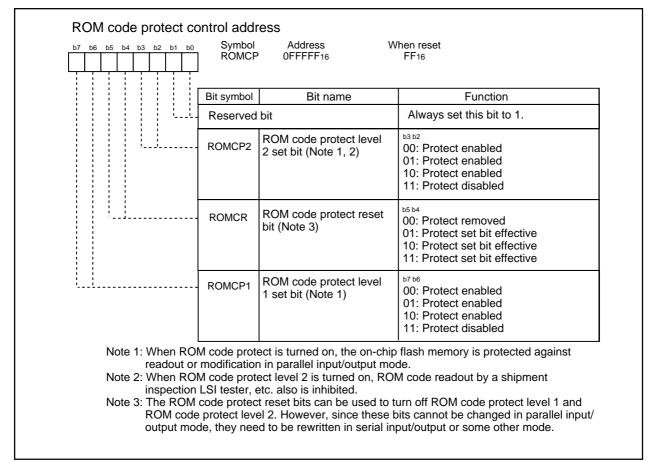


Figure 1.29.9. ROM code protect control address

ID Code Check Function

Use this function in standard serial I/O mode. When the contents of the flash memory are not blank, the ID code sent from the peripheral unit is compared with the ID code written in the flash memory to see if they match. If the ID codes do not match, the commands sent from the peripheral unit are not accepted. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 0FFFDF16, 0FFFE316, 0FFFE316, 0FFFEB16, 0FFFEB16. Write a program which has had the ID code preset at these addresses to the flash memory.

Figure 1.29.10. ID code store addresses

Parallel I/O Mode

In this mode, the M16C/62 (flash memory version) operates in a manner similar to the flash memory M5M29FB/T800 from Mitsubishi. Since there are some differences with regard to the functions not available with the microcomputer and matters related to memory capacity, the M16C/62 cannot be programed by a programer for the flash memory.

Use an exclusive programer supporting M16C/62 (flash memory version).

Refer to the instruction manual of each programer maker for the details of use.

User ROM and Boot ROM Areas

In parallel I/O mode, the user ROM and boot ROM areas shown in Figure 1.28.1 can be rewritten. Both areas of flash memory can be operated on in the same way.

Program and block erase operations can be performed in the user ROM area. The user ROM area and its blocks are shown in Figure 1.28.1.

The boot ROM area is 8 Kbytes in size. In parallel I/O mode, it is located at addresses 0FE00016 through 0FFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any location outside this address range is prohibited.)

In the boot ROM area, an erase block operation is applied to only one 8 Kbyte block. The boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the Mitsubishi factory. Therefore, using the device in standard serial input/output mode, you do not need to write to the boot ROM area.

Pin functions (Flash memory standard serial I/O mode)

Pin	Name	1/0	Description
		I/O	'
Vcc,Vss	Power input		Apply program/erase protection voltage to Vcc pin and 0 V to Vss pin.
CNVss	CNVss	Ι	Connect to Vcc pin.
RESET	Reset input	I	Reset input pin. While reset is "L" level, a 20 cycle or longer clock must be input to XIN pin.
XIN	Clock input	ı	Connect a ceramic resonator or crystal oscillator between XIN and XOUT pins. To input an externally generated clock, input it to XIN pin
Хоит	Clock output	0	and open XOUT pin.
BYTE	BYTE	I	Connect this pin to Vcc or Vss.
AVcc, AVss	Analog power supply input		Connect AVSS to Vss and AVcc to Vcc, respectively.
VREF	Reference voltage input	I	Enter the reference voltage for AD from this pin.
P00 to P07	Input port P0	I	Input "H" or "L" level signal or open.
P10 to P17	Input port P1	I	Input "H" or "L" level signal or open.
P20 to P27	Input port P2	I	Input "H" or "L" level signal or open.
P30 to P37	Input port P3	I	Input "H" or "L" level signal or open.
P40 to P47	Input port P4	I	Input "H" or "L" level signal or open.
P51 to P54, P56, P57	Input port P5	I	Input "H" or "L" level signal or open.
P50	CE input	ı	Input "H" level signal.
P55	EPM input	I	Input "L" level signal.
P60 to P63	Input port P6	I	Input "H" or "L" level signal or open.
P64	BUSY output	0	BUSY signal output pin
P65	SCLK input	I	Serial clock input pin
P66	RxD input	I	Serial data input pin
P67	TxD output	0	Serial data output pin
P70 to P77	Input port P7	I	Input "H" or "L" level signal or open.
P80 to P84, P86, P87	Input port P8	I	Input "H" or "L" level signal or open.
P85	NMI input	I	Connect this pin to Vcc.
P90 to P97	Input port P9	ı	Input "H" or "L" level signal or open.
P100 to P107	Input port P10	ı	Input "H" or "L" level signal or open.

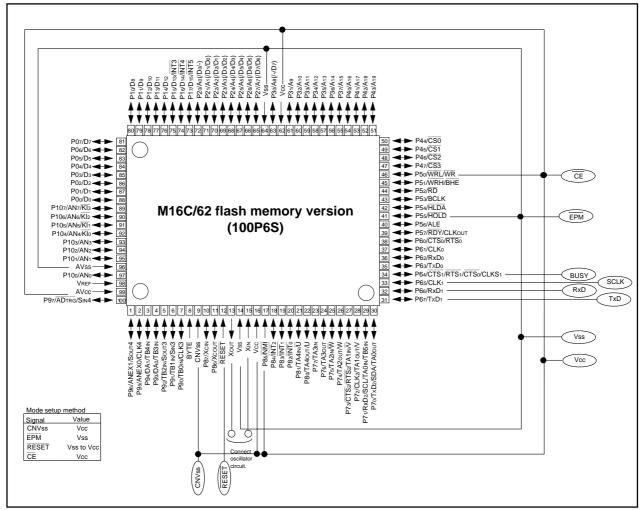


Figure 1.31.1. Pin connections for serial I/O mode (1)

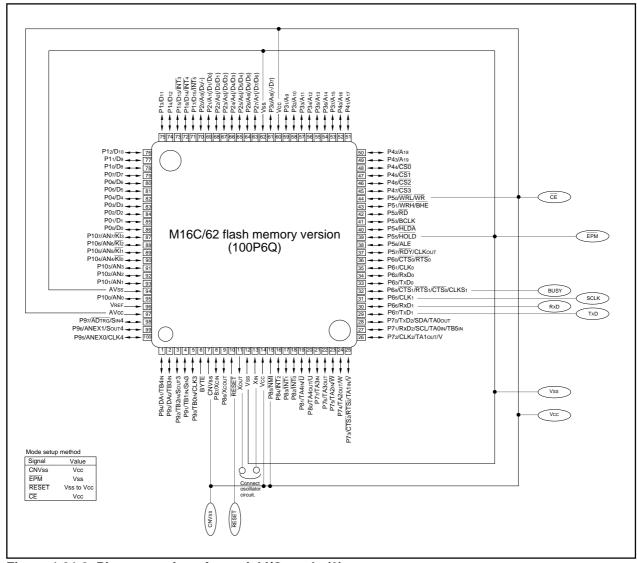


Figure 1.31.2. Pin connections for serial I/O mode (2)

Standard Serial I/O Mode

The standard serial I/O mode serially inputs and outputs the software commands, addresses and data necessary for operating (read, program, erase, etc.) the internal flash memory. It uses a purpose-specific peripheral unit.

The standard serial I/O mode differs from the parallel I/O mode in that the CPU controls operations like rewriting (uses the CPU rewrite mode) in the flash memory or serial input for rewriting data. The standard serial I/O mode is started by clearing the reset with an "H" level signal at the P50 ($\overline{\text{CE}}$) pin, an "L" signal at the P55 ($\overline{\text{EPM}}$) pin and an "H" level at the CNVss pin. (For the normal microprocessor mode, set CNVss to "L".)

This control program is written in the boot ROM area when shipped from Mitsubishi Electric. Therefore, if the boot ROM area is rewritten in the parallel I/O mode, the standard serial I/O mode cannot be used. Figures 1.31.1 and 1.31.2 show the pin connections for the standard serial I/O mode. Serial data I/O uses four UART1 pins: CLK1, RxD1, TxD1 and RTS1 (BUSY).

The CLK1 pin is the transfer clock input pin and it inputs the external transfer clock. The TxD1 pin outputs the CMOS signal. The RTS1 (BUSY) pin outputs an "L" level when reception setup ends and an "H" level when the reception operation starts. Transmission and reception data is transferred serially in 8-byte blocks.

In the standard serial I/O mode, only the user ROM area shown in Figure 1.31.1 can be rewritten, the boot ROM area cannot.

The standard serial I/O mode has a 7-byte ID code. When the flash memory is not blank and the ID code does not match the content of the flash memory, the command sent from the peripheral unit (programmer) is not accepted.

Function Overview (Standard Serial I/O Mode)

In the standard serial I/O mode, software commands, addresses and data are input and output between the flash memory and an external device (peripheral unit, etc.) using a 4-wire clock synchronized serial I/O (UART1). In reception, the software commands, addresses and program data are synchronized with the rise of the transfer clock input to the CLK1 pin and input into the flash memory via the RxD1 pin.

In transmission, the read data and status are synchronized with the fall of the transfer clock and output to the outside from the TxD1 pin.

The TxD1 pin is CMOS output. Transmission is in 8-bit blocks and LSB first.

When busy, either during transmission or reception, or while executing an erase operation or program, the RTS1 (BUSY) pin is "H" level. Accordingly, do not start the next transmission until the RTS1 (BUSY) pin is "L" level.

Also, data in memory and the status register can be read after inputting a software command. It is possible to check flash memory operating status or whether a program or erase operation ended successfully or in error by reading the status register.

Software commands and the status register are explained here following.

Software Commands

Table 1.31.1 lists software commands. In the standard serial I/O mode, erase operations, programs and reading are controlled by transferring software commands via the RxD pin. Software commands are explained here below.

Table 1.31.1. Software commands (Standard serial I/O mode)

	Control command		2nd byte	3rd byte	4th byte	5th byte	6th byte		When ID is
1	Page read	FF ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	not verificate Not acceptable
2	Page program	41 ₁₆	Address (middle)	Address (high)	Data input	Data input	Data input	Data input to 259th byte	Not acceptable
3	Block erase	20 ₁₆	Address (middle)	Address (high)	D0 ₁₆				Not acceptable
4	Erase all unlocked blocks	A7 ₁₆	D0 ₁₆						Not acceptable
5	Read status register	70 ₁₆	SRD output	SRD1 output					Acceptable
6	Clear status register	50 ₁₆							Not acceptable
7	Read lockbit status	71 ₁₆	Address (middle)	Address (high)	Lock bit data output				Not acceptable
8	Lockbit program	77 ₁₆	Address (middle)	Address (high)	D0 ₁₆				Not acceptable
9	Lockbit enable	7A ₁₆							Not acceptable
10	Lockbit disable	75 ₁₆							Not acceptable
11	ID check function	F5 ₁₆	Address (low)	Address (middle)	Address (high)	ID size	ID1	To ID7	Acceptable
12	Download function	FA ₁₆	Size (low)	Size (high)	Check- sum	Data input	To required number of times		Not acceptable
13	Version data output function	FB ₁₆	Version data output	Version data output	Version data output	Version data output	Version data output	Version data output to 9th byte	Acceptable
14	Boot area output function	FC ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable

Note1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is transferred from the peripheral unit to the flash memory microcomputer.

Note2: SRD refers to status register data. SRD1 refers to status register 1 data.

Note3: All commands can be accepted when the flash memory is totally blank.

Page Read Command

This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following.

- (1) Send the "FF16" command code in the 1st byte of the transmission.
- (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the rise of the clock.

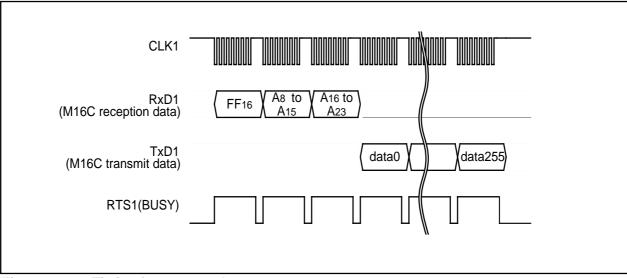


Figure 1.31.3. Timing for page read

Read Status Register Command

This command reads status information. When the "7016" command code is sent in the 1st byte of the transmission, the contents of the status register (SRD) specified in the 2nd byte of the transmission and the contents of status register 1 (SRD1) specified in the 3rd byte of the transmission are read.

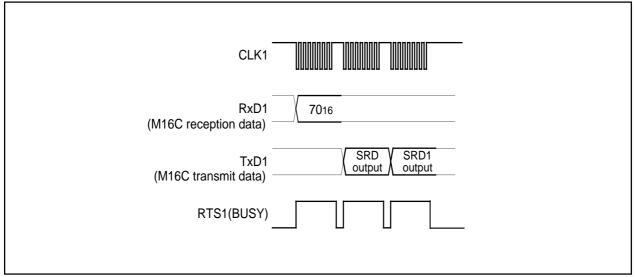


Figure 1.31.4. Timing for reading the status register

Clear Status Register Command

This command clears the bits (SR3–SR5) which are set when the status register operation ends in error. When the "5016" command code is sent in the 1st byte of the transmission, the aforementioned bits are cleared. When the clear status register operation ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level.

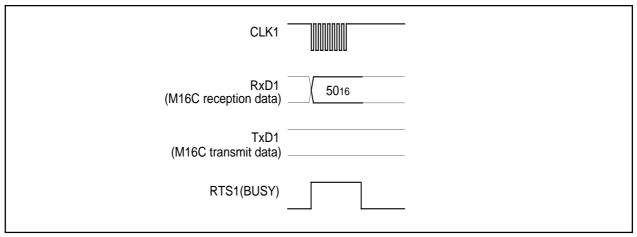


Figure 1.31.5. Timing for clearing the status register

Page Program Command

This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following.

- (1) Send the "4116" command code in the 1st byte of the transmission.
- (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.
- (3) From the 4th byte onward, as write data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written.

When reception setup for the next 256 bytes ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the page program can be known by reading the status register. For more information, see the section on the status register.

Each block can be write-protected with the lock bit. For more information, see the section on the data protection function. Additional writing is not allowed with already programmed pages.

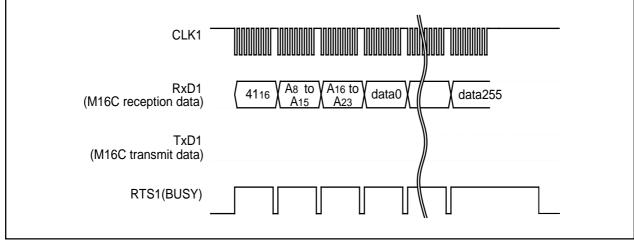


Figure 1.31.6. Timing for the page program

Block Erase Command

This command erases the data in the specified block. Execute the block erase command as explained here following.

- (1) Send the "2016" command code in the 1st byte of the transmission.
- (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.
- (3) Send the verify command code "D016" in the 4th byte of the transmission. With the verify command code, the erase operation will start for the specified block in the flash memory. Write the highest address of the specified block for addresses A16 to A23.

When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. After block erase ends, the result of the block erase operation can be known by reading the status register. For more information, see the section on the status register.

Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

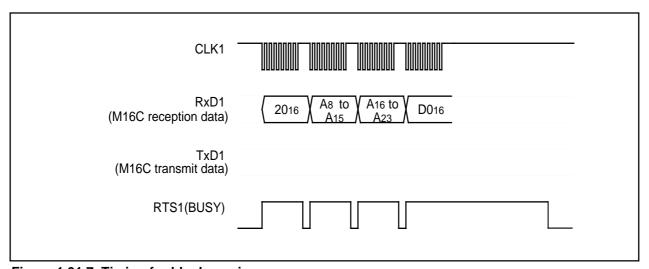


Figure 1.31.7. Timing for block erasing

Erase All Unlocked Blocks Command

This command erases the content of all blocks. Execute the erase all unlocked blocks command as explained here following.

- (1) Send the "A716" command code in the 1st byte of the transmission.
- (2) Send the verify command code "D016" in the 2nd byte of the transmission. With the verify command code, the erase operation will start and continue for all blocks in the flash memory.

When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the erase operation can be known by reading the status register. Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

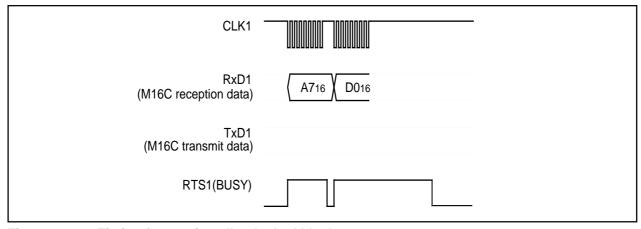


Figure 1.31.8. Timing for erasing all unlocked blocks

Lock Bit Program Command

This command writes "0" (lock) for the lock bit of the specified block. Execute the lock bit program command as explained here following.

- (1) Send the "7716" command code in the 1st byte of the transmission.
- (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.
- (3) Send the verify command code "D016" in the 4th byte of the transmission. With the verify command code, "0" is written for the lock bit of the specified block. Write the highest address of the specified block for addresses A8 to A23.

When writing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. Lock bit status can be read with the read lock bit status command. For information on the lock bit function, reset procedure and so on, see the section on the data protection function.

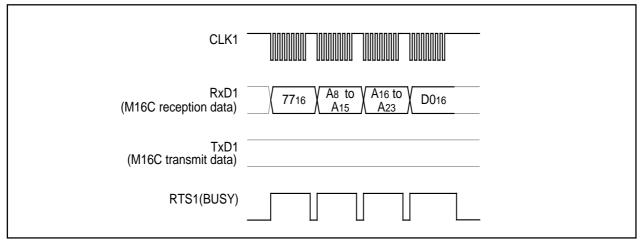


Figure 1.31.9. Timing for the lock bit program

Read Lock Bit Status Command

This command reads the lock bit status of the specified block. Execute the read lock bit status command as explained here following.

- (1) Send the "7116" command code in the 1st byte of the transmission.
- (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.
- (3) The lock bit data of the specified block is output in the 4th byte of the transmission. Write the highest address of the specified block for addresses A8 to A23.

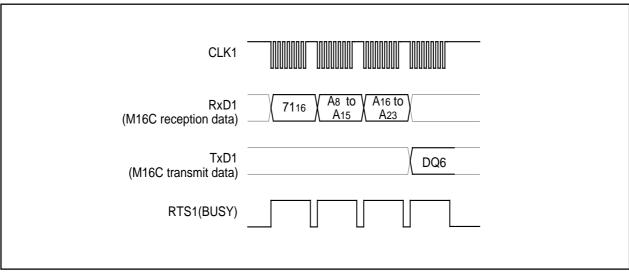


Figure 1.31.10. Timing for reading lock bit status

Lock Bit Enable Command

This command enables the lock bit in blocks whose bit was disabled with the lock bit disable command. The command code "7A16" is sent in the 1st byte of the serial transmission. This command only enables the lock bit function; it does not set the lock bit itself.

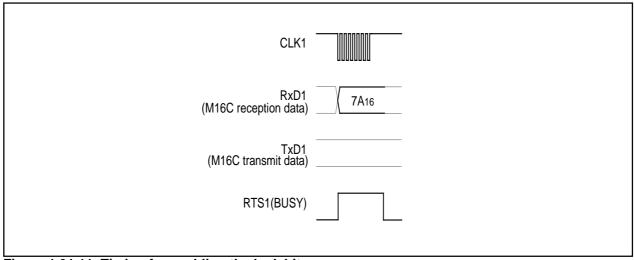


Figure 1.31.11. Timing for enabling the lock bit

Lock Bit Disable Command

This command disables the lock bit. The command code "7516" is sent in the 1st byte of the serial transmission. This command only disables the lock bit function; it does not set the lock bit itself. However, if an erase command is executed after executing the lock bit disable command, "0" (locked) lock bit data is set to "1" (unlocked) after the erase operation ends. In any case, after the reset is cancelled, the lock bit is enabled.

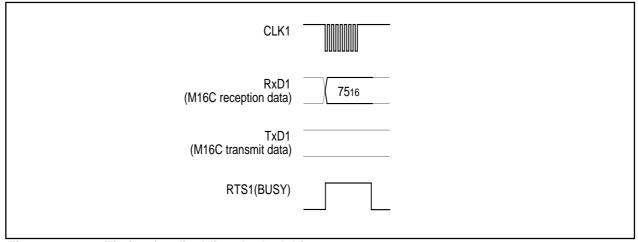


Figure 1.31.12. Timing for disabling the lock bit

Download Command

This command downloads a program to the RAM for execution. Execute the download command as explained here following.

- (1) Send the "FA16" command code in the 1st byte of the transmission.
- (2) Send the program size in the 2nd and 3rd bytes of the transmission.
- (3) Send the check sum in the 4th byte of the transmission. The check sum is added to all data sent in the 5th byte onward.
- (4) The program to execute is sent in the 5th byte onward.

When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.

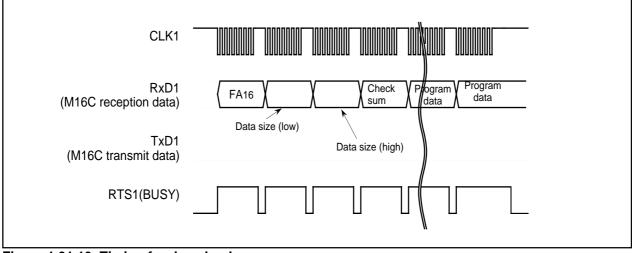


Figure 1.31.13. Timing for download

Version Information Output Command

This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following.

- (1) Send the "FB16" command code in the 1st byte of the transmission.
- (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.

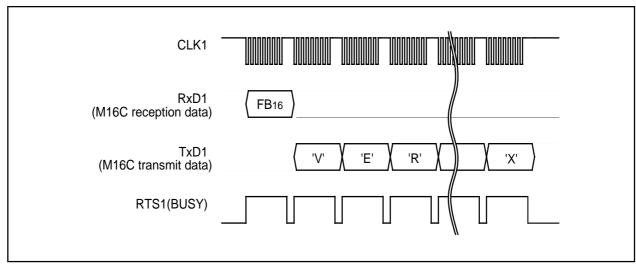


Figure 1.31.14. Timing for version information output

Boot Area Output Command

This command outputs the control program stored in the boot area in one page blocks (256 bytes). Execute the boot area output command as explained here following.

- (1) Send the "FC16" command code in the 1st byte of the transmission.
- (2) Send addresses A8 to A15 and A16 to A23 in the 2nd and 3rd bytes of the transmission respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.

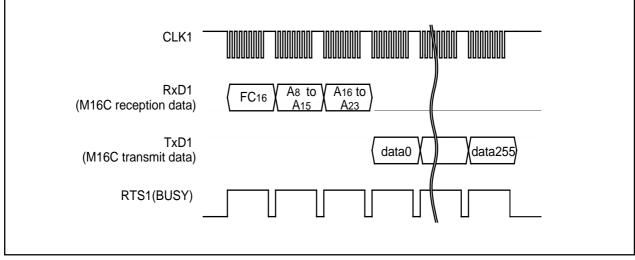


Figure 1.31.15. Timing for boot area output

ID Check

This command checks the ID code. Execute the boot ID check command as explained here following.

- (1) Send the "F516" command code in the 1st byte of the transmission.
- (2) Send addresses A₀ to A₇, A₈ to A₁₅ and A₁₆ to A₂₃ of the 1st byte of the ID code in the 2nd, 3rd and 4th bytes of the transmission respectively.
- (3) Send the number of data sets of the ID code in the 5th byte.
- (4) The ID code is sent in the 6th byte onward, starting with the 1st byte of the code.

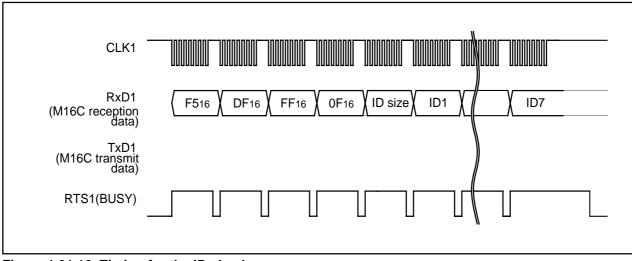


Figure 1.31.16. Timing for the ID check

ID Code

When the flash memory is not blank, the ID code sent from the peripheral unit and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the peripheral unit is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFF716 and 0FFFFB16. Write a program into the flash memory, which already has the ID code set for these addresses.

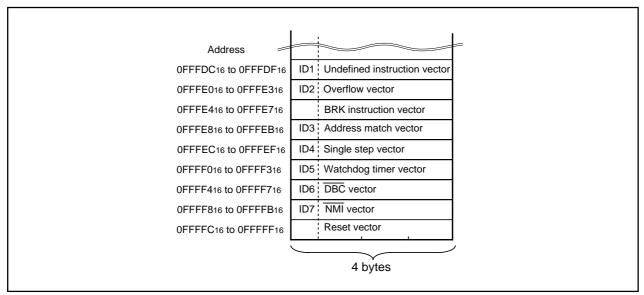


Figure 1.31.17. ID code storage addresses

Data Protection (Block Lock)

Each of the blocks in Figure 1.30.1 have a nonvolatile lock bit that specifies protection (block lock) against erasing/writing. A block is locked (writing "0" for the lock bit) with the lock bit program command. Also, the lock bit of any block can be read with the read lock bit status command.

Block lock disable/enable is determined by the status of the lock bit itself and execution status of the lock bit disable and lock enable bit commands.

- (1) After the reset has been cancelled and the lock bit enable command executed, the specified block can be locked/unlocked using the lock bit (lock bit data). Blocks with a "0" lock bit data are locked and cannot be erased or written in. On the other hand, blocks with a "1" lock bit data are unlocked and can be erased or written in.
- (2) After the lock bit enable command has been executed, all blocks are unlocked regardless of lock bit data status and can be erased or written in. In this case, lock bit data that was "0" before the block was erased is set to "1" (unlocked) after erasing, therefore the block is actually unlocked with the lock bit.

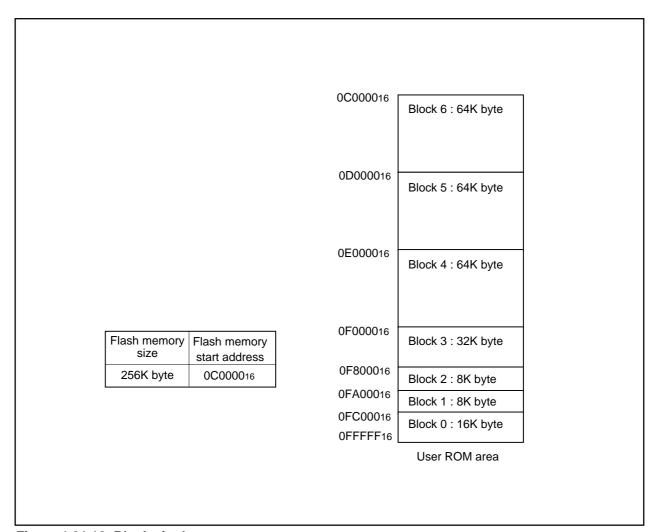


Figure 1.31.18. Blocks in the user area

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase operation or a program ended successfully or in error. It can be read by writing the read status register command (7016). Also, the status register is cleared by writing the clear status register command (5016). Table 1.31.2 gives the definition of each status register bit. After clearing the reset, the status register outputs "8016".

Table 1.31.2. Status register (SRD)

0000111	0	Definition			
SRD0 bits	Status name	"1"	"0"		
SR7 (bit7)	Write state machine (WSM) status	Ready	Busy		
SR6 (bit6)	Reserved	-	-		
SR5 (bit5)	Erase status	Terminated in error	Terminated normally		
SR4 (bit4)	Program status	Terminated in error	Terminated normally		
SR3 (bit3)	Block status after program	Terminated in error	Terminated normally		
SR2 (bit2)	Reserved	-	-		
SR1 (bit1)	Reserved	-	-		
SR0 (bit0)	Reserved	-	-		

Write State Machine (WSM) Status (SR7)

The write state machine (WSM) status indicates the operating status of the flash memory. When power is turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation, but it is set back to "1" when the operation ends.

Erase Status (SR5)

The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)

The program status reports the operating status of the auto write operation. If a write error occurs, it is set to "1". When the program status is cleared, it is set to "0".

Program Status After Program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the page program, block erase, erase all unlocked blocks and lock bit program commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register.

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from check sum comparisons. It can be read after the SRD by writing the read status register command (7016). Also, status register 1 is cleared by writing the clear status register command (5016).

Table 1.31.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and the flag status is maintained even after the reset.

Table 1.31.3. Status register 1 (SRD1)

CDD4 bits	0	Definition		
SRD1 bits	Status name	"1"	"0"	
SR15 (bit7)	Boot update completed bit	Update completed	Not update	
SR14 (bit6)	Reserved	-	-	
SR13 (bit5)	Reserved	-	-	
SR12 (bit4)	Checksum match bit	Match	Mismatch	
SR11 (bit3)	ID check completed bits		verified	
SR10 (bit2)		01 Verif	ication mismatch	
OKTO (BILZ)		10 Rese	erved	
		11 Verif	ied	
SR9 (bit1)	Data receive time out	Time out	Normal operation	
SR8 (bit0)	Reserved	-	-	

Boot Update Completed Bit (SR15)

This flag indicates whether the control program was downloaded to the RAM or not, using the download function.

Check Sum Consistency Bit (SR12)

This flag indicates whether the check sum matches or not when a program, is downloaded for execution using the download function.

ID Check Completed Bits (SR11 and SR10)

These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)

This flag indicates when a time out error is generated during data reception. If this flag is attached during data reception, the received data is discarded and the microcomputer returns to the command wait state.

Full Status Check

Results from executed erase and program operations can be known by running a full status check. Figure 1.31.19 shows a flowchart of the full status check and explains how to remedy errors which occur.

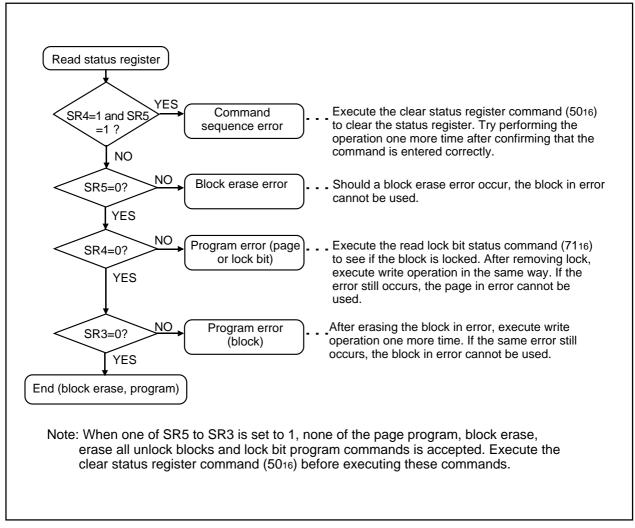


Figure 1.31.19. Full status check flowchart and remedial procedure for errors

Example Circuit Application for The Standard Serial I/O Mode

The below figure shows a circuit application for the standard serial I/O mode. Control pins will vary according to peripheral unit (programmer), therefore see the peripheral unit (programmer) manual for more information.

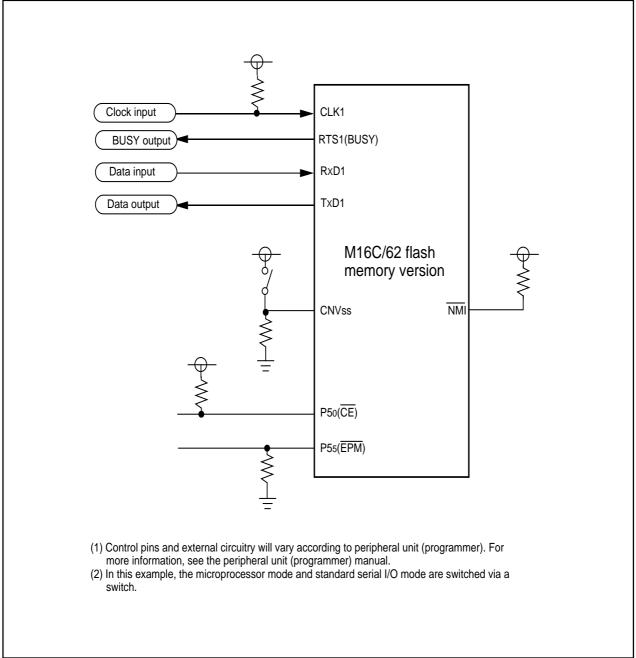
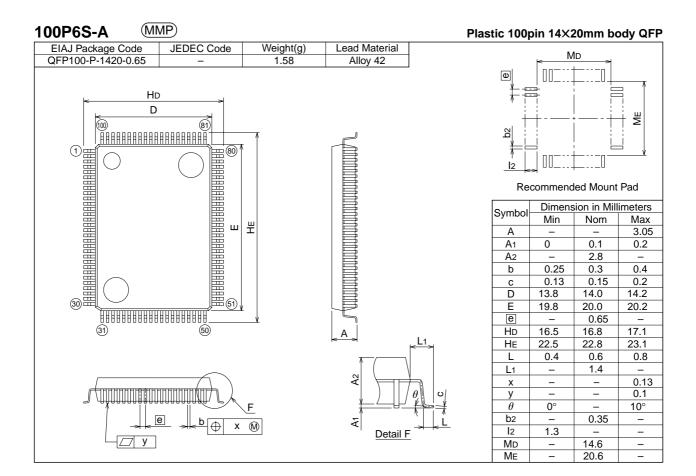
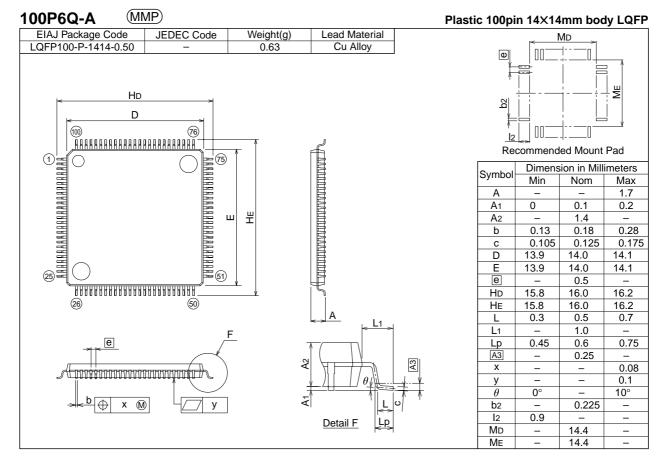




Figure 1.31.20. Example circuit application for the standard serial I/O mode

Differences between M30622MC and M30612MC

Type Name	M30622MC	M30612MC
Memory space	Memory expansion is possible 1.2M bytes mode 4M bytes mode	1M byte fixed
Timer B	6 channels	3 channels
Serial I/O	UART/clocked SI/O · · · · · 3 channel Clocked SI/O · · · · · · 2 channel	UART/clocked SI/O · · · · · 3 channels
IIC bus mode	UART2 used IIC bus interface can be performed with software	Impossible
Port function	P90 · · · · · TB0IN/CLK3 P91 · · · · TB1IN/SIN3 P92 · · · · TB2IN/SOUT3 P93 · · · · TB3IN/DA0 P94 · · · · TB4IN/DA1 P95 · · · · ANEXO/CLK4 P96 · · · · ANEX1/SOUT4 P97 · · · · ADTRG/SIN4 P15 · · · · D13/INT3 P16 · · · · D14/INT4 P17 · · · · D15/INT5 P71 · · · · RXD2/TA0IN/TB5IN	P90 · · · · · TB0IN P91 · · · · · TB1IN P92 · · · · TB2IN P93 · · · · DA0 P94 · · · · DA1 P95 · · · · ANEX0 P96 · · · · ANEX1 P97 · · · · ADTRG P15 · · · · D13 P16 · · · · D14 P17 · · · · D15 P71 · · · · RXD2/TA0IN
Interrupt cause	Internal 25 sources External 8 sources Software 4 sources (Added two Serial I/O, three timers and 3external interrupts)	Internal 20 sources External 5 sources Software 4 sources
Chip select	M30612MC type and the type as below can be switched (Besides 4M-byte mode is possible.) CS0: 0400016 to 3FFFF16 (fetch) 4000016 to FFFF16 (data/facth) CS1: 2800016 to 2FFF16 (data) CS2: 0800016 to 27FFF16 (data) CS3: 0400016 to 07FFF16 (data)	CS0: 3000016 to FFFF16 CS1: 2800016 to 2FFF16 CS2: 0800016 to 27FF16 CS3: 0400016 to 07FFF16
Three-phase inverter control circuit	PWM output for three-phase inverter can be performed using timer A4, A1 and A2. Output port is arranged to P72 to P75, P80 and P81.	Impossible
Read port P1	By setting to register, the state of port register can be read always.	The state of port when input mode. The state of port register when output mode.
P44/CS0 - P47/CS3 pin pull-up resistors	If a Vcc level is applied to the CNVss pin, bit 2 (PU11) of pull-up control register 1 turns to "1" when reset, and P44/ CS0 - P47/ CS3 turn involved in pull-up.	Bit 2 (PU11) of the pull-up control register 1 turns to "0" when reset, and P44/ CS0 - P47/ CS3 turn free from pull-up.

Chapter 2

Peripheral Functions Usage

2.1 Protect

2.1.1 Overview

'Protect' is a function that causes a value held in a register to be unchanged even when a program runs away. The following is an overview of the protect function:

(1) Registers affected by the protect function

The registers affected by the protect function are:

- (a) System clock control registers 0, 1 (addresses 000616 and 000716)
- (b) Processor mode registers 0, 1 (addresses 000416 and 000516)
- (c) Port P9 direction register (address 03F316), SI/Oi control register (i=3,4)(addresses 036216 and 036616)

The values in registers (1) through (3) cannot be changed in write-protect state. To change values in the registers, put the individual registers in write-enabled state.

(2) Protect register

Figure 2.1.1 shows protect register.

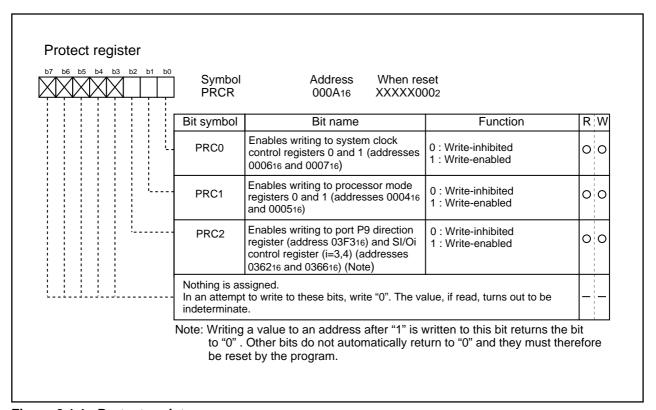


Figure 2.1.1. Protect register

2.1.2 Protect Operation

The following explains the protect operation. Figure 2.1.2 shows the set-up procedure.

- Operation (1) Setting "1" in the write-enable bit of system clock control registers 0 and 1 causes system clock control register 1 to be in write-enabled state.
 - (2) The contents of system clock control register 0 and that of system clock control register 1 are changed.
 - (3) Setting "0" in the write-enable bit of system control registers 0 and 1 causes system clock control register 0 and system control register 1 to be in write-inhibited state.
 - (4) To change the contents of processor mode register 0 and that of processor mode register 1, follow the same steps as in dealing with system clock control registers.
 - (5) The write-enable bit of port 9 direction register and SI/Oi control register (i=3,4) goes to "0" when the next write instruction is executed after write-enabled state is readied. Make changes in input/output and SI/Oi control register (i=3,4) immediately after the instruction that sets "1" in the write-enable bit of port P9 direction register and SI/Oi control register (i=3,4)(avoid causing an interrupt). Also take measures to prevent DMA transfer from being executed.

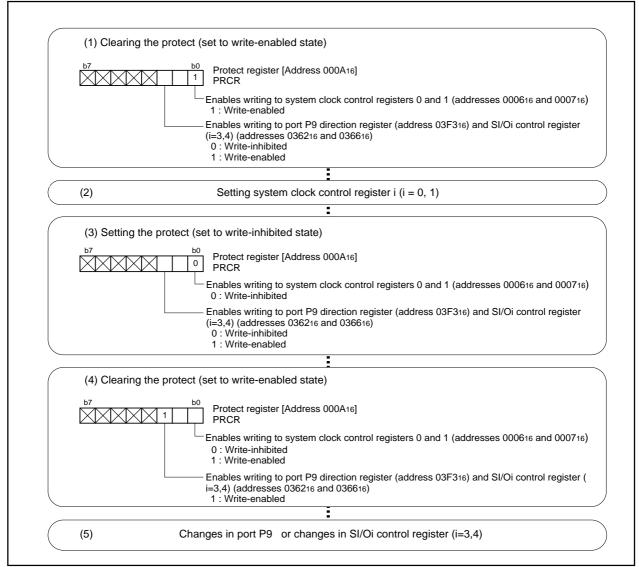


Figure 2.1.2. Set-up procedure for protect function

2.1.3 Precaution for Protect

(1) The write-enable bit of port 9 direction register and SI/Oi control register (i=3,4) goes to "0" when the next write instruction is executed after write-enabled state is readied. Make changes in input/output and SI/Oi control register (i=3,4) immediately after the instruction that sets "1" in the write-enable bit of port P9 direction register and SI/Oi control register (i=3,4)(avoid causing an interrupt). Also take measures to prevent DMA transfer from being executed.

2.2 Timer A

2.2.1 Overview

The following is an overview for timer A, a 16-bit timer.

(1) Mode

Timer A operates in one of the four modes:

(a) Timer mode

In this mode, the internal count source is counted. Two functions can be selected: the pulse output function that reverses output from a port every time an overflow occurs, or the gate function which controls the count start/stop according to the input signal from a port.

Timer mode operation	P286
Timer mode, gate function operation	P288
Timer mode, pulse output function operation	P290

(b) Event counter mode

This mode counts the pulses from the outside and the number of overflows in other timers. The freerun type, in which nothing is reloaded from the reload register, can be selected when an underflow occurs. The pulse output function can also be selected. Please refer to the timer mode explanation for details, as the operation is identical.

Event counter mode operation	P292
Event counter mode, free run type operation	P294

Furthermore, Timer A has a 2-phase pulse signal processing function which generates an up count or down count in the event counter mode, depending on the phase of the two input signals.

- Operation of the 2-phase pulse signal processing function in normal event counter mode P296

(c) One-shot timer mode

In this mode, the timer is started by the trigger and stops when the timer goes to "0". The trigger can be selected from the following 3 types: an external input signal, an overflow of the timer, or a software trigger. The pulse output function can also be selected. Please refer to the timer mode explanation for details, as the operation is identical.

- Operation in one-shot timer mode effected by an external trigger P302

(d) Pulse width modulation (PWM) mode

In this mode, the arbitrary pulses are successively output. Either a 16-bit fixed-period PWM mode or 8-bit variable-period mode can be selected. The trigger for initiating output can also be selected. Please refer to the one-shot timer mode explanation for details, as the operation is identical.

(2) Count source

The internal count source can be selected from f1, f8, f32, and fC32. Clocks f1, f8, and f32 are derived by dividing the CPU's main clock by 1, 8, and 32 respectively. Clock fC32 is derived by dividing the CPU's secondary clock by 32.

(3) Frequency division ratio

In timer mode or pulse width modulation mode, [the value set in the timer register + 1] becomes the frequency division ratio. In event counter mode, [the set value + 1] becomes the frequency division ratio when a down count is performed, or [FFFF16 - the set value + 1] becomes the frequency division ratio when an up count is performed. In one-shot timer mode, the value set in the timer register becomes the frequency division ratio.

The counter overflows (or underflows) when a count source equal to a frequency division ratio is input, and an interrupt occurs. For the pulse output function, the output from the port varies (the value in the port register does not vary).

(4) Reading the timer

Either in timer mode or in event counter mode, reading the timer register takes out the count at that moment. Read it in 16-bit units. The data either in one-shot timer mode or in pulse width modulation mode is indeterminate.

(5) Writing to the timer

To write to the timer register when a count is in progress, the value is written only to the reload register. When writing to the timer register when a count is stopped, the value is written both to the reload register and to the counter. Write a value in 16-bit units.

(6) Relation between the input/output to/from the timer and the direction register

With the output function of the timer, pulses are output regardless of the direction register of the relevant port. To input an external signal to the timer, set the direction register of the relevant port to input.

(7) Pins related to timer A

(a) TA0IN, TA1IN, TA2IN, TA3IN, TA4IN Input pins to timer A.

(b) TA0out, TA1out, TA2out, TA3out, TA4out Output pins from timer A. They become input pins to timer A when event counter mode is active.

(8) Registers related to timer A

Figure 2.2.1 shows the memory map of timer A-related registers. Figures 2.2.2 through 2.2.5 show timer A-related registers.

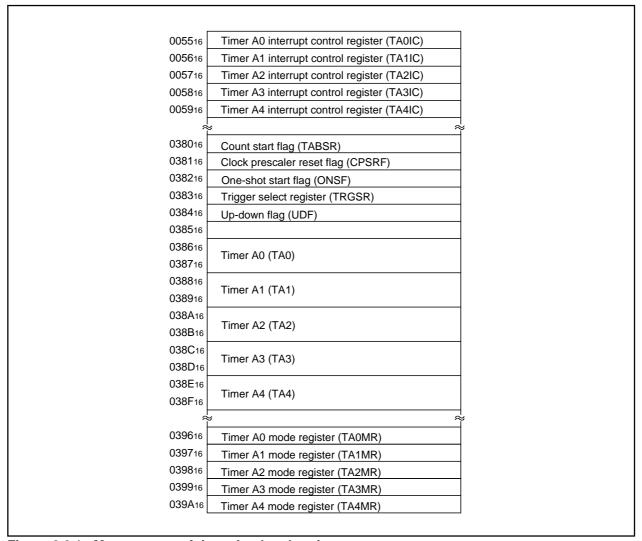


Figure 2.2.1. Memory map of timer A-related registers

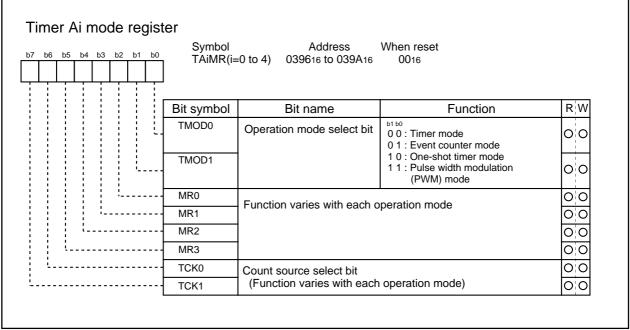


Figure 2.2.2. Timer A-related registers (1)

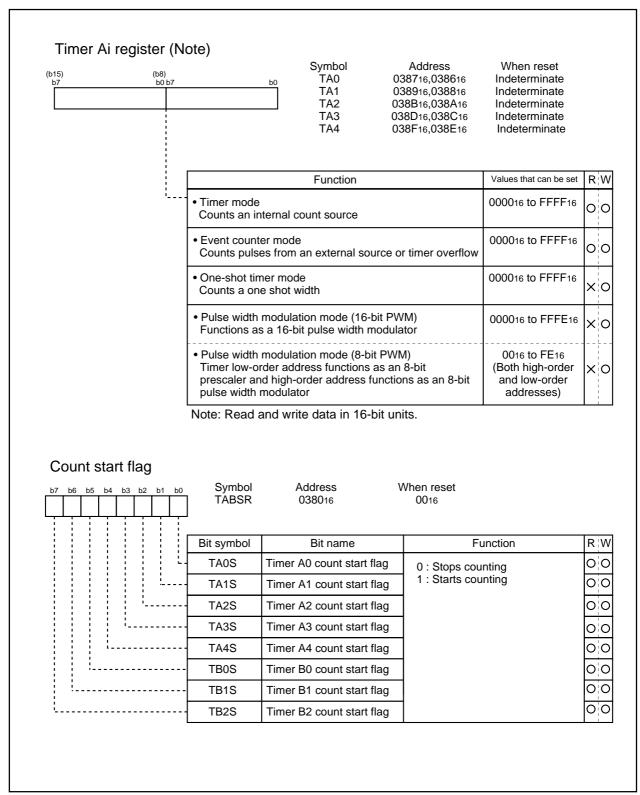


Figure 2.2.3. Timer A-related registers (2)

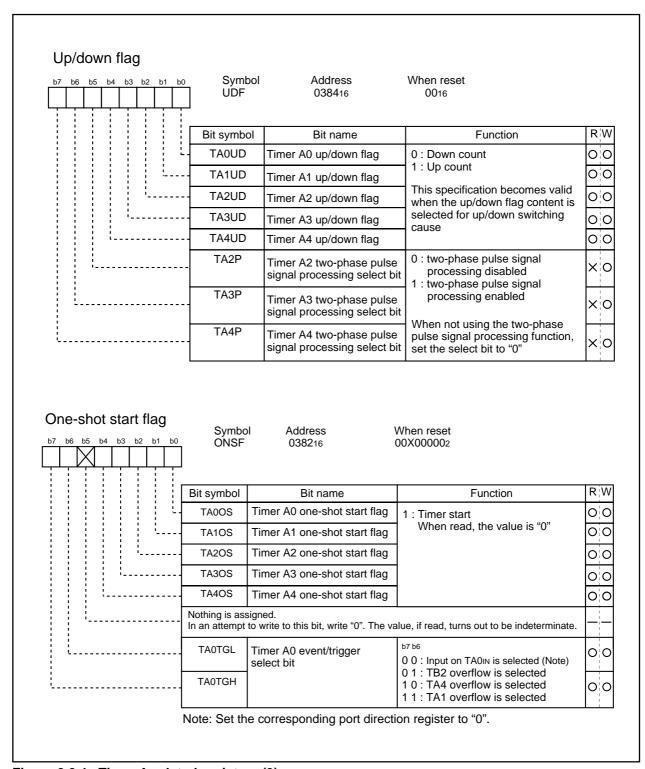


Figure 2.2.4. Timer A-related registers (3)

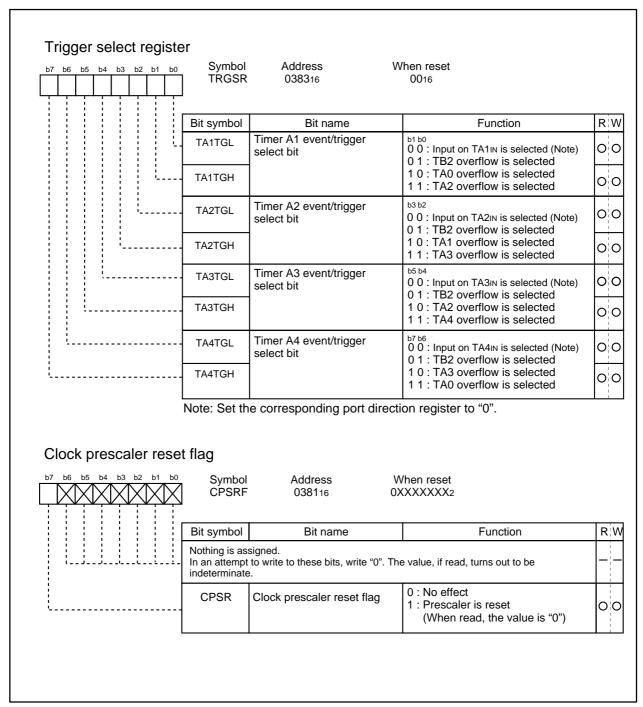


Figure 2.2.5. Timer A-related registers (4)

2.2.2 Operation of Timer A (timer mode)

In timer mode, choose functions from those listed in Table 2.2.1. Operations of the circled items are described below. Figure 2.2.6 shows the operation timing, and Figure 2.2.7 shows the set-up procedure.

Table 2.2.1. Choosed functions

Item		Set-up
Count source	0	Internal count source (f1 / f8 / f32 / fc32)
Pulse output function	0	No pulses output
		Pulses output
Gate function	0	No gate function
		Performs count only for the period in which the TAilN pin is at "L" level
		Performs count only for the period in which the TAin pin is at "H" level

Operation (1) Setting the count start flag to "1" causes the counter to perform a down count on the count source.

- (2) If an underflow occurs, the content of the reload register is reloaded, and the count continues. At this time, the timer Ai interrupt request bit goes to "1".
- (3) Setting the count start flag to "0" causes the counter to hold its value and to stop.

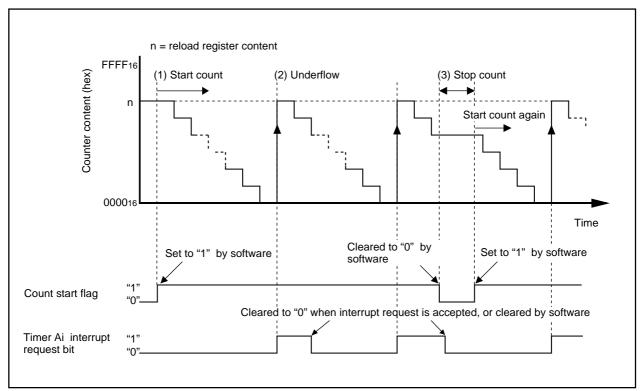


Figure 2.2.6. Operation timing of timer mode

Figure 2.2.7. Set-up procedure of timer mode

2.2.3 Operation of Timer A (timer mode, gate function selected)

In timer mode, choose functions from those listed in Table 2.2.2. Operations of the circled items are described below. Figure 2.2.8 shows the operation timing, and Figure 2.2.9 shows the set-up procedure.

Table 2.2.2. Choosed functions

Item		Set-up
Count source	0	Internal count source(f1 / f8 / f32 / fc32)
Pulse output function	0	No pulses output
		Pulses output
Gate function		No gate function
		Performs count only for the period in which the TAin pin is at "L" level
	0	Performs count only for the period in which the TAilN pin is at "H" level

Operation (1) When the count start flag is set to "1" and the TAilN pin inputs at "H" level, the counter performs a down count on the count source.

- (2) When the TAilN pin inputs at "L" level, the counter holds its value and stops.
- (3) If an underflow occurs, the content of the reload register is reloaded and the count continues. At this time, the timer Ai interrupt request bit goes to "1".
- (4) Setting the count start flag to "0" causes the counter to hold its value and to stop.

Note

 Make the pulse width of the signal input to the TAilN pin not less than two cycles of the count source.

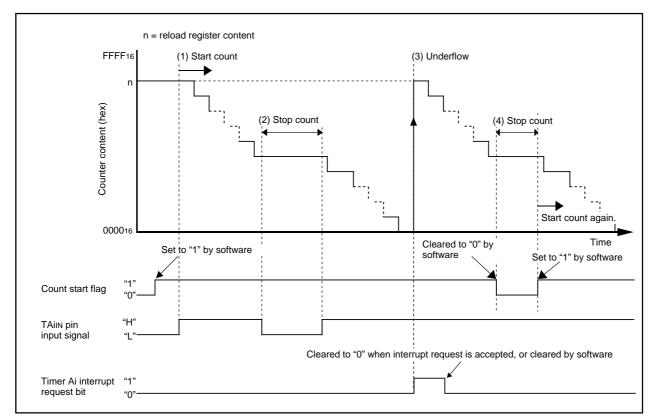


Figure 2.2.8. Operation timing of timer mode, gate function selected

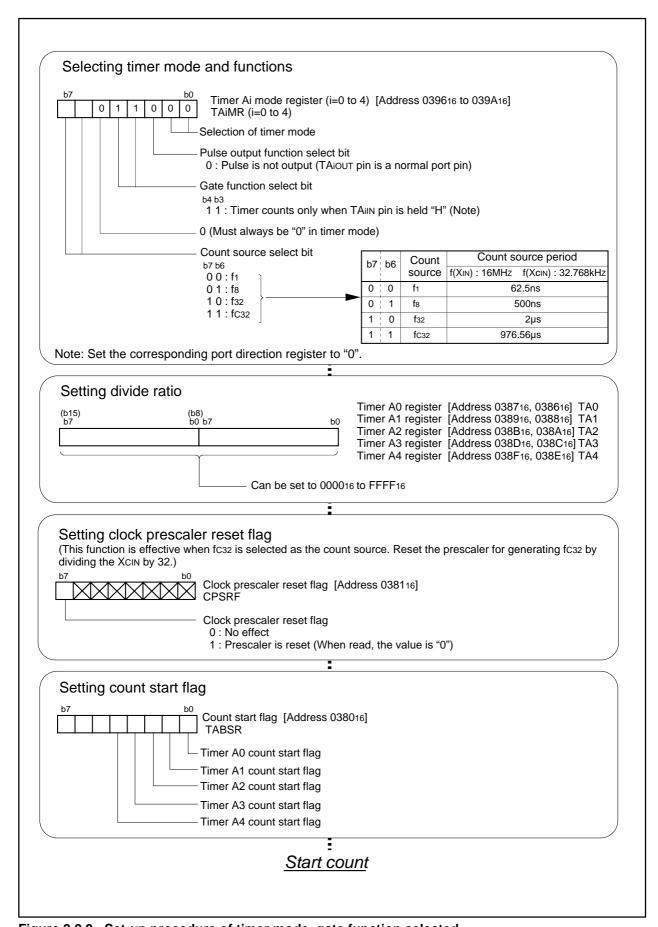


Figure 2.2.9. Set-up procedure of timer mode, gate function selected

2.2.4 Operation of Timer A (timer mode, pulse output function selected)

In timer mode, choose functions from those listed in Table 2.2.3. Operations of the circled items are described below. Figure 2.2.10 shows the operation timing, and Figure 2.2.11 shows the set-up procedure.

Table 2.2.3. Choosed functions

Item		Set-up
Count source	0	Internal count source(f1 / f8 / f32 / fc32)
Pulse output function		No pulses output
	0	Pulses output
Gate function	0	No gate function
		Performs count only for the period in which the TAin pin is at "L" level
		Performs count only for the period in which the TAilN pin is at "H" level

Operation (1) Setting the count start flag to "1" causes the counter to perform a down count on the count source.

- (2) If an underflow occurs, the content of the reload register is reloaded and the count continues. At this time, the timer Ai interrupt request bit goes to "1". Also, the output polarity of the TAIOUT pin reverses.
- (3) Setting the count start flag to "0" causes the counter to hold its value and to stop. Also, the TAiout pin outputs an "L" level.

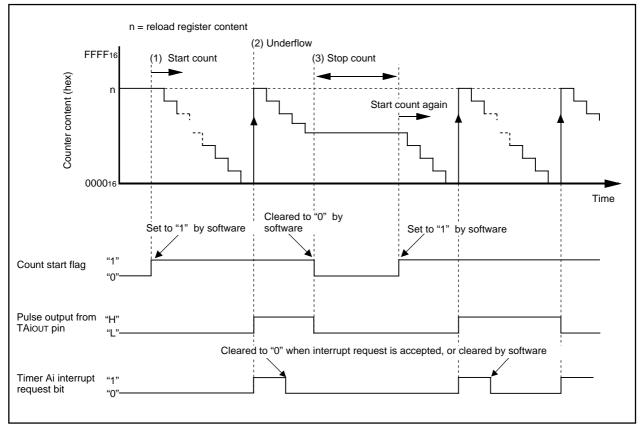


Figure 2.2.10. Operation timing of timer mode, pulse output function selected

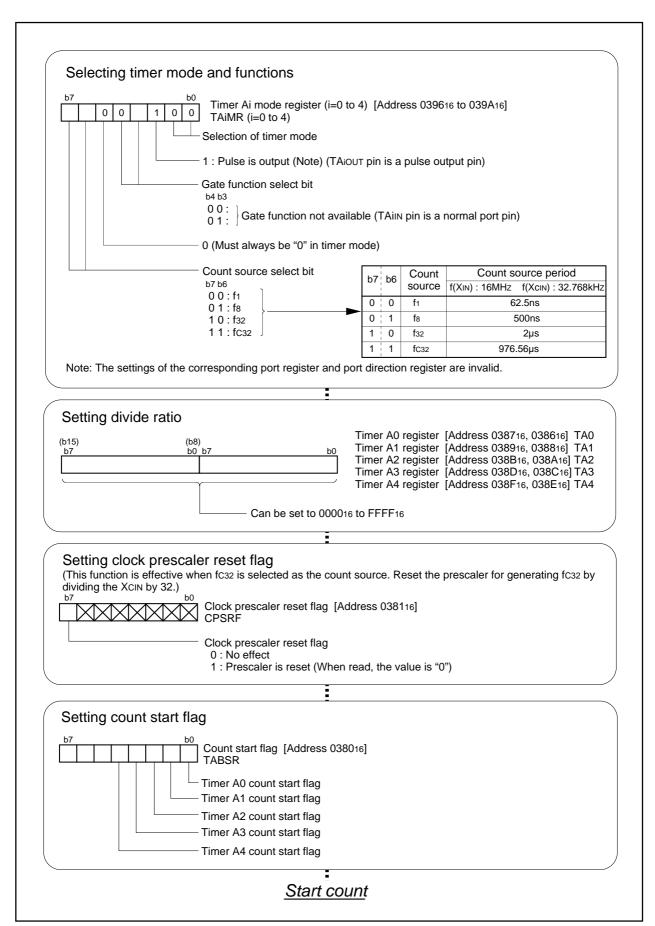


Figure 2.2.11. Set-up procedure of timer mode, pulse output function selected

2.2.5 Operation of Timer A (event counter mode, reload type selected)

In event counter mode, choose functions from those listed in Table 2.2.4. Operations of the circled items are described below. Figure 2.2.12 shows the operation timing, and Figure 2.2.13 shows the set-up procedure.

Table 2.2.4. Choosed functions

Item	Set-up		Item		Set-up					
Count source	0	Input signal to TAilN	Pulse output function	0	No pulses output					
			(counting falling edges)			Pulses output				
		Input signal to TAilN	Count operation type	0	Reload type					
							(counting rising edges)			Free-run type
				Timer overflow	Factor for switching	0	Content of up/down flag			
	(TB2/TAj overflow)	between up and down		Input signal to TAio∪⊤						

Note: j = i - 1, but j = 4 when i = 0.

Operation (1) Setting the count start flag to "1" causes the counter to count the falling edges of the count source.

- (2) If an underflow occurs, the content of the reload register is reloaded, and the count continues. At this time, the timer Ai interrupt request bit goes to "1".
- (3) If switching from an up count to a down count or vice versa while a count is in progress, the switch takes effect from the next effective edge of the count source.
- (4) Setting the count start flag to "0" causes the counter to hold its value and to stop.
- (5) If an overflow occurs, the content of the reload register is reloaded, and the count continues. At this time, the timer Ai interrupt request bit goes to "1".

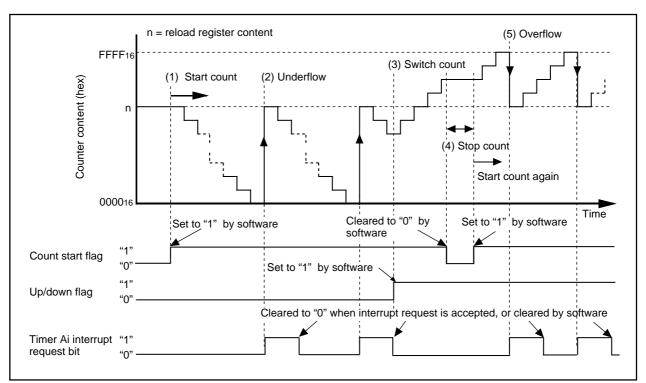


Figure 2.2.12. Operation timing of event counter mode, reload type selected

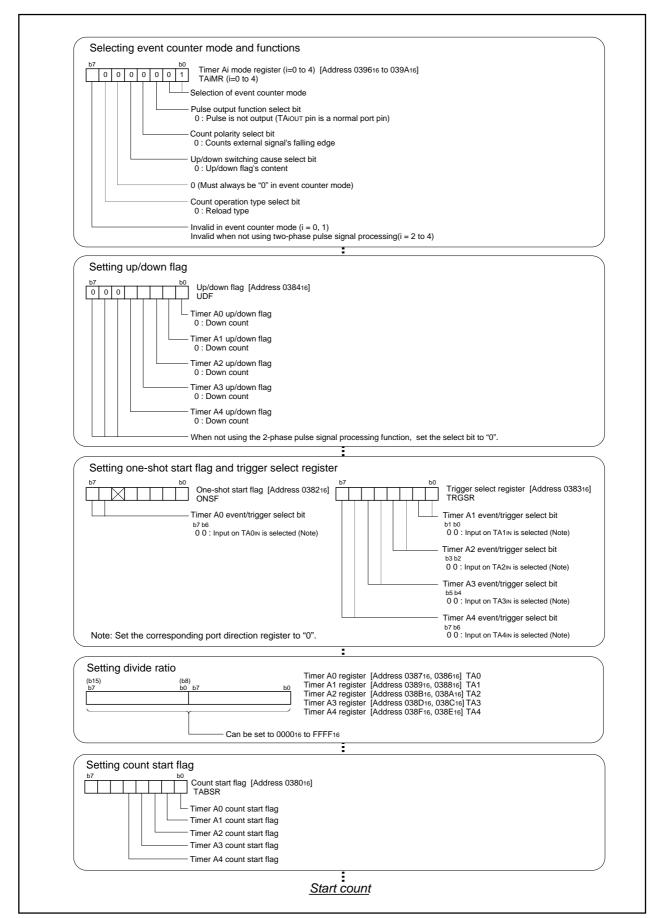


Figure 2.2.13. Set-up procedure of event counter mode, reload type selected

2.2.6 Operation of Timer A (event counter mode, free run type selected)

In event counter mode, choose functions from those listed in Table 2.2.5. Operations of the circled items are described below. Figure 2.2.14 shows the operation timing, and Figure 2.2.15 shows the set-up procedure.

Table 2.2.5. Choosed functions

Item		Set-up	Item		Set-up	
Count source	0	Input signal to TAilN	Pulse output function	0	No pulses output	
		(counting falling edges)		Pulses output		
		Input signal to TAilN	Count operation type		Reload type	
		(counting rising edges)		0	Free-run type	
		Timer overflow	Timer overflow	9	0	Content of up/down flag
		(TB2/TAj overflow)	between up and down		Input signal to TAiouT	

Note: j = i - 1, but j = 4 when i = 0

Operation (1) Setting the count start flag to "1" causes the counter to count the falling edges of the count source.

- (2) Even if an underflow occurs, the content of the reload register is not reloaded, but the count continues. At this time, the timer Ai interrupt request bit goes to "1".
- (3) If switching from an up count to a down count or vice versa while a count is in progress, the switch takes effect from the next effective edge of the count source.
- (4) Even if an overflow occurs, the content of the reload register is not reloaded, but the count continues. At this time, the timer Ai interrupt request bit goes to "1".

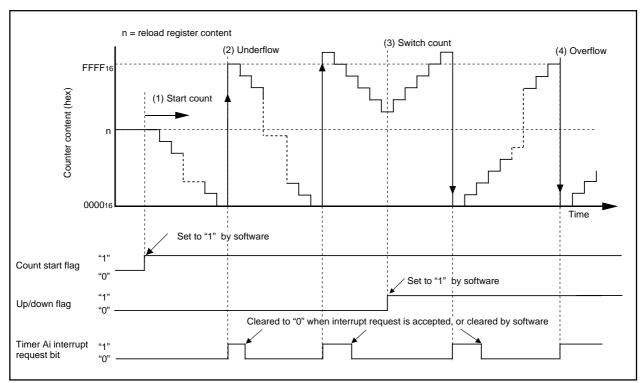


Figure 2.2.14. Operation timing of event counter mode, free run type selected

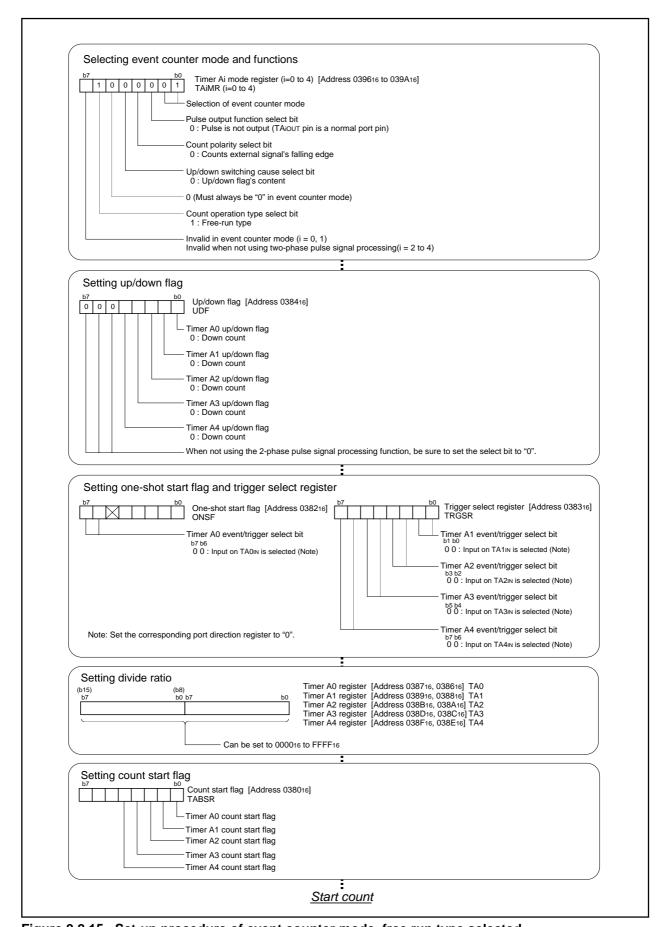


Figure 2.2.15. Set-up procedure of event counter mode, free run type selected

2.2.7 Operation of timer A (2-phase pulse signal process in event counter mode, normal mode selected)

In processing 2-phase pulse signals in event counter mode, choose functions from those listed in Table 2.2.6. Operations of the circled items are described below. Figure 2.2.16 shows the operation timing, and Figure 2.2.17 shows the set-up procedure.

Table 2.2.6. Choosed functions

Item		Set-up
Count operation type		Reload type
	0	Free run type
2-phase pulses	0	Normal processing
process (Note)		4-multiplication processing

Note: Timer A3 alone can be selected. Timer A2 is solely used for normal processes, and timer A4 is solely used for 4 multiplication processes.

- Operation (1) Setting the count start flag to "1" causes the counter to count effective edges of the count source.
 - (2) Even if an underflow occurs, the content of the reload register is not reloaded, but the count continues. At this time, the timer Ai interrupt request bit goes to "1".
 - (3) Even if an overflow occurs, the content of the reload register is not reloaded, but the count continues. At this time, the timer Ai interrupt request bit goes to "1".

Note • The up count or down count conditions are as follows:

If a rising edge is present at the TAiIN pin when the input signal level to the TAiOUT pin is "H", an up count is performed.

If a falling edge is present at the TAiIN pin when the input signal level to the TAiOUT pin is "H", a down count is performed.

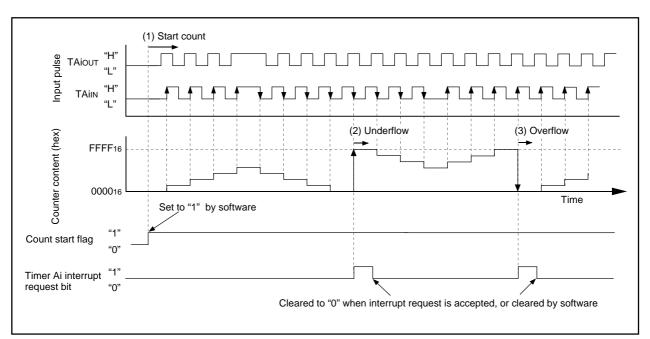


Figure 2.2.16. Operation timing of 2-phase pulse signal process in event counter mode, normal mode selected

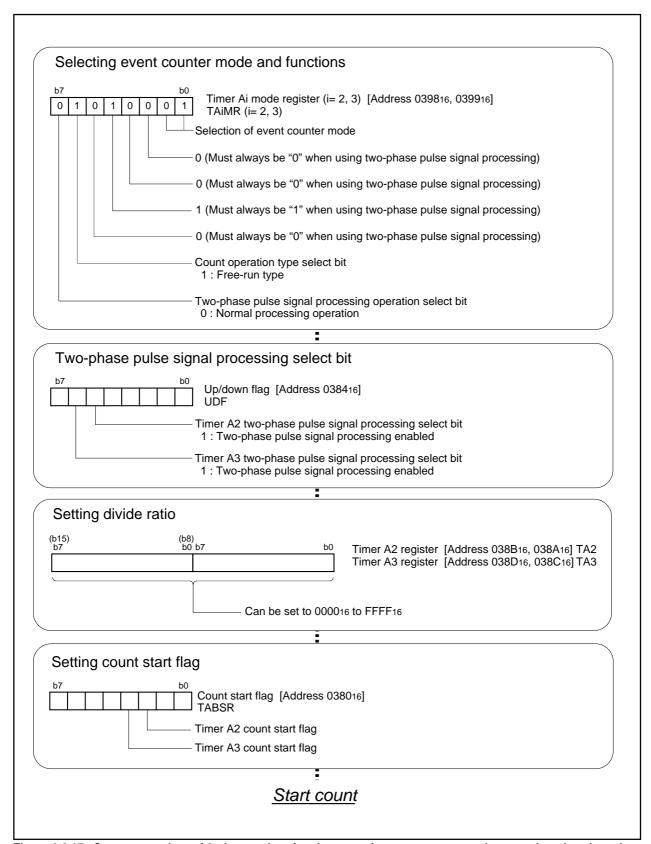


Figure 2.2.17. Set-up procedure of 2-phase pulse signal process in event counter mode, normal mode selected

2.2.8 Operation of timer A (2-phase pulse signal process in event counter mode, multiply-by-4 mode selected)

In processing 2-phase pulse signals in event counter mode, choose functions from those listed in Table 2.2.7. Operations of the circled items are described below. Figure 2.2.18 shows the operation timing, and Figure 2.2.19 shows the set-up procedure.

Table 2.2.7. Choosed functions

Item	Set-up		Item		Set-up
Count operation type		Reload type	Processing 2 phase		Normal processing
	0	Free run type	pulses (Note)	0	4-multiplication processing

Note: Timer A3 alone can be selected. Timer A2 is solely used for normal processes, and timer A4 is solely used for 4multiplication processes.

- Operation (1) Setting the count start flag to "1" causes the counter to count effective edges of the count source.
 - (2) Even if an underflow occurs, the content of the reload register is not reloaded, but the count continues. At this time, the interrupt request bit goes to "1".
 - (3) Even if an overflow occurs, the content of the reload register is not reloaded, but the count continues. At this time, the interrupt request bit goes to "1".

Note

• The up count or down count conditions are as follows:

Table 2.2.8. The up count or down count conditions

	Input signal to the TAio∪⊤ pin	Input signal to the TAiın pin		Input signal to the TAiou⊤ pin	Input signal to the TAiเก pin
Up count	"H" level	Rising	Down	"H" level	Falling
	"L" level	Falling	count	"L" level	Rising
	Rising	"L" level	1	Rising	"H" level
	Falling	"H" level	1	Falling	"L" level

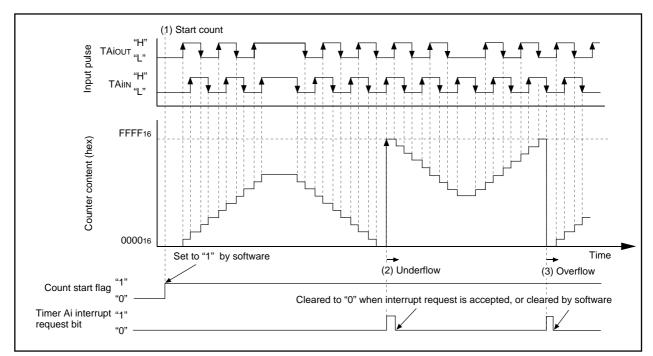


Figure 2.2.18. Operation timing of 2-phase pulse signal process in event counter mode, multiply-by-4 mode selected

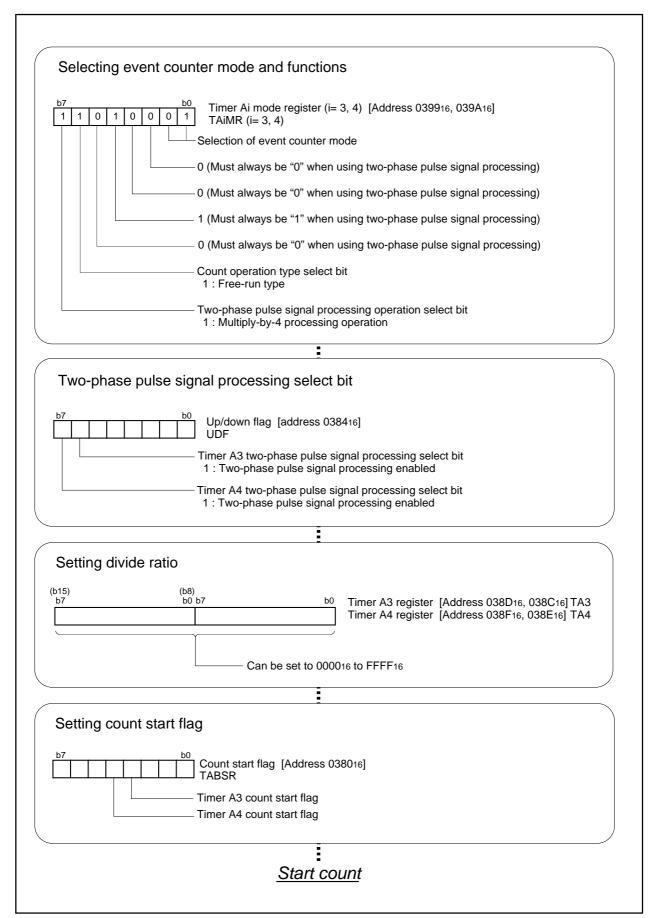


Figure 2.2.19. Set-up procedure of 2-phase pulse signal process in event counter mode, multiply-by-4 mode selected

2.2.9 Operation of Timer A (one-shot timer mode)

In one-shot timer mode, choose functions from those listed in Table 2.2.9. Operations of the circled items are described below. Figure 2.2.20 shows the operation timing, and Figure 2.2.21 shows the set-up procedure.

Table 2.2.9. Choosed functions

Item		Set-up		
Count source	0	Internal count source (f1 / f8 / f32 / fc32)		
Pulse output function		No pulses output		
	0	Pulses output		
Count start condition		External trigger input (falling edge of input signal to the TAin pin)		
		External trigger input (rising edge of input signal to the TAiın pin)		
		Timer overflow (TB2/TAj/TAk overflow)		
	0	Writing "1" to the one-shot start flag		

Note: j = i - 1, but j = 4 when i = 0; k = i + 1, but k = 0 when i = 4.

Operation (1) Setting the one-shot start flag to "1" with the count start flag set to "1" causes the counter to perform a down count on the count source. At this time, the TAiout pin outputs an "H" level.

- (2) The instant the value of the counter becomes "000016", the TAioUT pin outputs an "L" level, and the counter reloads the content of the reload register and stops counting. At this time, the timer Ai interrupt request bit goes to "1".
- (3) If a trigger occurs while a count is in progress, the counter reloads the value in the reload register again and continues counting. The reload timing is in step with the next count source input after the trigger.
- (4) Setting the count start flag to "0" causes the counter to stop and to reload the content of the reload register. Also, the TAio∪T pin outputs an "L" level. At this time, the timer Ai interrupt request bit goes to "1".

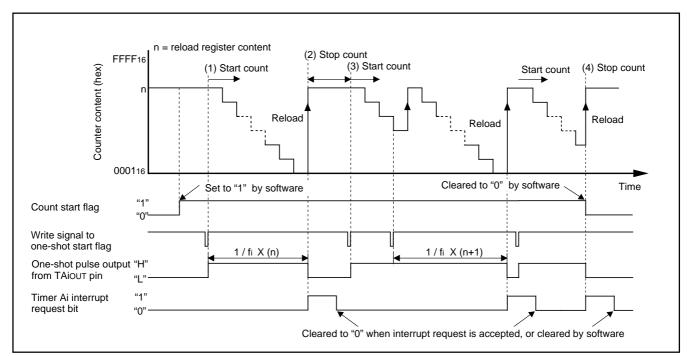


Figure 2.2.20. Operation timing of one-shot mode

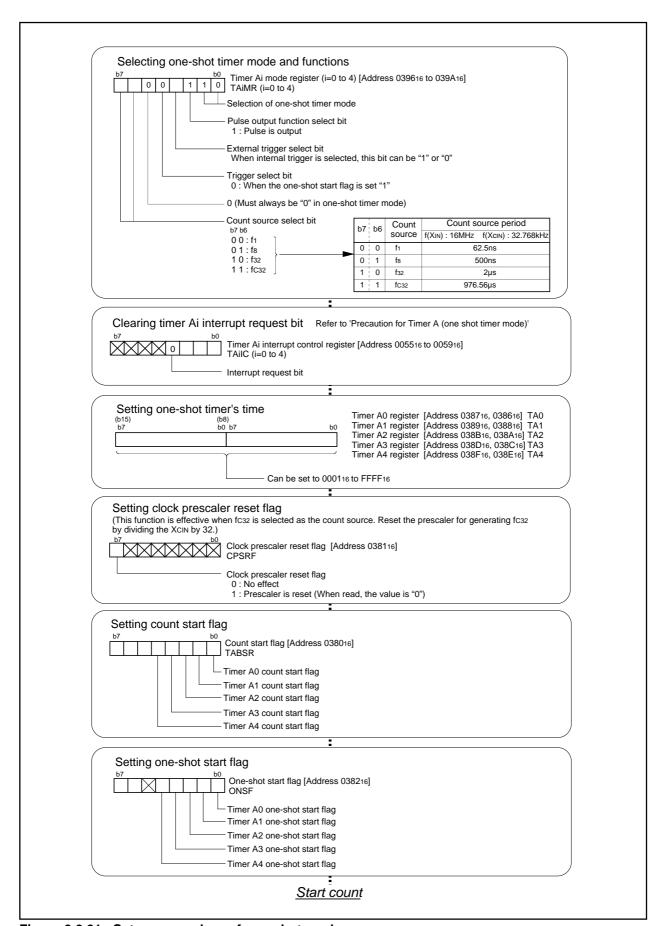


Figure 2.2.21. Set-up procedure of one-shot mode

2.2.10 Operation of Timer A (one-shot timer mode, external trigger selected)

In one-shot timer mode, choose functions from those listed in Table 2.2.10. Operations of the circled items are described below. Figure 2.2.22 shows the operation timing, and Figure 2.2.23 shows the set-up procedure.

Table 2.2.10. Choosed functions

Item		Set-up
Count source	0	Internal count source (f1 / f8 / f32 / fc32)
Pulse output function		No pulses output
	0	Pulses output
Count start condition		External trigger input (falling edge of input signal to the TAin pin)
	0	External trigger input (rising edge of input signal to the TAilN pin)
		Timer overflow (TB2/TAj/TAk overflow)
		Writing "1" to the one-shot start flag

Note: j = i - 1, but j = 4 when i = 0; k = i + 1, but k = 0 when i = 4.

Operation (1) If the TAilN pin input level changes from "L" to "H" with the count start flag set to "1", the counter performs a down count on the count source. At this time, the TAioUT pin output level goes to "H" level.

- (2) If the value of the counter becomes "000016", the TAiOUT pin outputs an "L" level, and the counter reloads the content of the reload register and stops counting. At this time, the timer Ai interrupt request bit goes to "1".
- (3) If a trigger occurs while a count is in progress, the counter reloads the value of the reload register again and continues counting. The reload timing is in step with the next count source input after the trigger.
- (4) Setting the count start flag to "0" causes the counter to stop and to reload the content of the reload register. Also, the TAiout pin outputs an "L" level. At this time, the timer Ai interrupt request bit goes to "1".

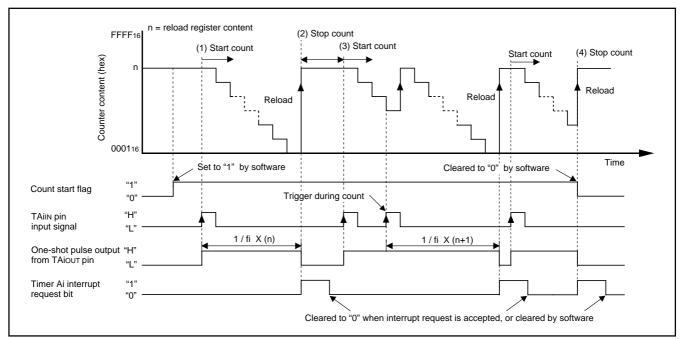


Figure 2.2.22. Operation timing of one-shot mode, external trigger selected

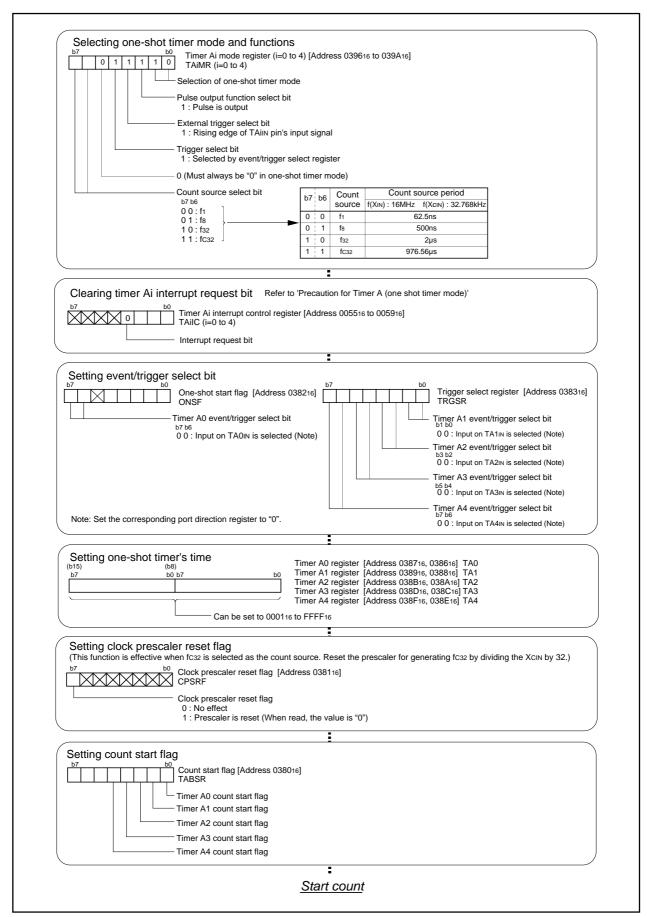


Figure 2.2.23. Set-up procedure of one-shot mode, external trigger selected

2.2.11 Operation of Timer A (pulse width modulation mode, 16-bit PWM mode selected)

In pulse width modulation mode, choose functions from those listed in Table 2.2.11. Operations of the circled items are described below. Figure 2.2.24 shows the operation timing, and Figure 2.2.25 shows the set-up procedure.

Table 2.2.11. Choosed functions

Item	Set-up		
Count source	0	Internal count source (f1 / f8 / f32 / fc32)	
PWM mode	0	16-bit PWM	
		8-bit PWM	
Count start condition		External trigger input (falling edge of input signal to the TAilN pin)	
	0	External trigger input (rising edge of input signal to the TAilN pin)	
		Timer overflow (TB2/TAj/TAk overflow)	

Note: j = i - 1, but j = 4 when i = 0; k = i + 1, but k = 0 when i = 4.

- Operation (1) If the TAilN pin input level changes from "L" to "H" with the count start flag set to "1", the counter performs a down count on the count source. Also, the TAiout pin outputs an "H" level.
 - (2) The TAIOUT pin output level changes from "H" to "L" when a set time period elapses. At this time, the timer Ai interrupt request bit goes to "1".
 - (3) The counter reloads the content of the reload register every time PWM pulses are output for one cycle, and continues counting.
 - (4) Setting the count start flag to "0" causes the counter to hold its value and to stop. Also, the TAiout outputs an "L" level.

Note

• The period of PWM pulses becomes (2¹⁶ – 1)/fi, and the "H" level pulse width becomes n/fi. If the timer Ai register is set to "000016", the pulse width modulator does not work, and the the TAIOUT pin output level remains at "L".

(fi : frequency of the count source f1, f8, f32, fC32; n : value of the timer)

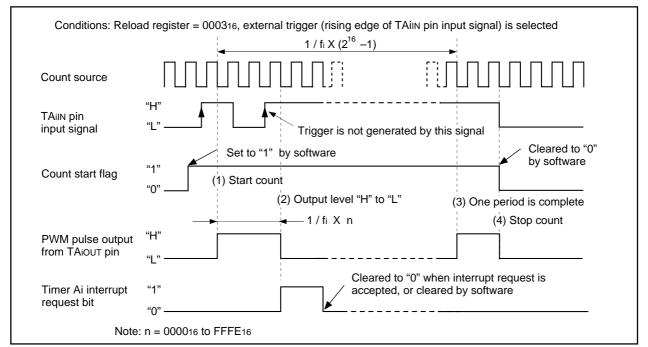


Figure 2.2.24. Operation timing of pulse width modulation mode, 16-bit PWM mode selected

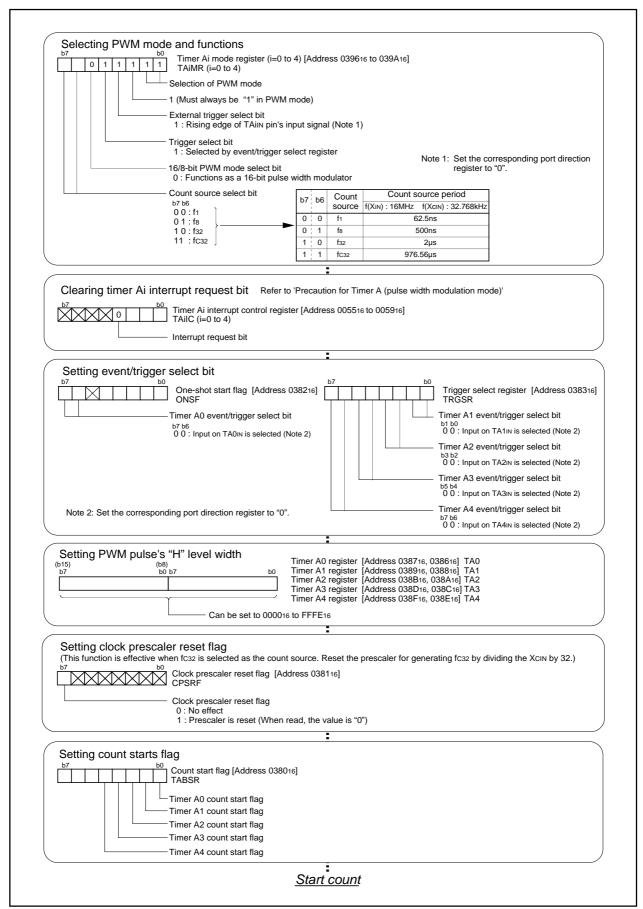


Figure 2.2.25. Set-up procedure of pulse width modulation mode, 16-bit PWM mode selected

2.2.12 Operation of Timer A (pulse width modulation mode, 8-bit PWM mode selected)

In pulse width modulation mode, choose functions from those listed in Table 2.2.12. Operations of the circled items are described below. Figure 2.2.26 shows the operation timing, and Figure 2.2.27 shows the set-up procedure.

Table 2.2.12. Choosed functions

Item		Set-up	
Count source	0	Internal count source (f1 / f8 / f32 / fc32)	
PWM mode		16-bit PWM	
	0	8-bit PWM	
Count start condition	0	External trigger input (falling edge of input signal to the TAilN pin)	
		External trigger input (rising edge of input signal to the TAilN pin)	
		Timer overflow (TB2/TAj/TAk overflow)	

Note: j = i - 1, but j = 4 when i = 0; k = i + 1, but k = 0 when i = 4.

Operation (1) If the TAilN pin input level changes from "H" to "L" with the count start flag set to "1", the counter performs a down count on the count source. Also, the TAiOUT pin outputs an "H" level.

- (2) The TAiOUT pin output level changes from "H" to "L" when a set time period elapses. At this time, the timer Ai interrupt request bit goes to "1".
- (3) The counter reloads the content of the reload register every time PWM pulses are output for one cycle, and continues counting.
- (4) Setting the count start flag to "0" causes the counter to hold its value and to stop. Also, the TAio∪T pin outputs an "L" level.

Note

- The period of PWM pulses becomes (m + 1) X (2⁸ − 1) / fi, and the "H" level pulse width becomes n X (m + 1) / fi. If "0016" is set in the eight higher-order bits of the timer Ai register, the pulse width modulator does not work, and the TAioUT pin output level remains at "L".
- When a trigger is generated, the TAiout pin outputs "L" level of same amplitude as "H" level of the set PWM pulse, after which it starts PWM pulse output.

(fi: frequency of the count source f1, f8, f32, fc32; n: value of the timer)

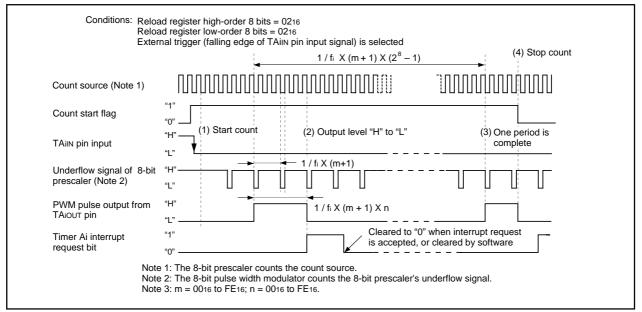


Figure 2.2.26. Operation timing of pulse width modulation mode, with 8-bit PWM mode selected

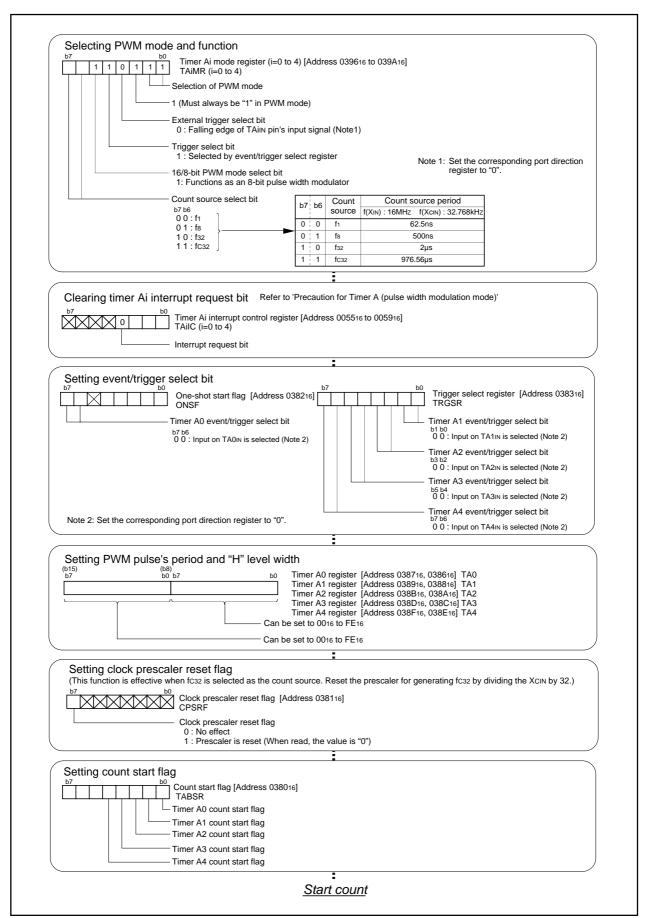


Figure 2.2.27. Set-up procedure of pulse width modulation mode, 8-bit PWM mode selected

2.2.13 Precautions for Timer A (timer mode)

- (1) To clear reset, the count start flag is set to "0". Set a value in the timer Ai register, then set the flag to "1".
- (2) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing shown in Figure 2.2.28 gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

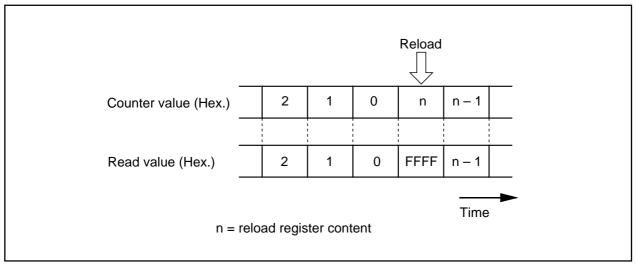


Figure 2.2.28. Reading timer Ai register

2.2.14 Precautions for Timer A (event counter mode)

- (1) To clear reset, the count start flag is set to "0". Set a value in the timer Ai register, then set the flag to "1".
- (2) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing shown in Figure 2.2.29 gets "FFFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
- (3) Please note the standards for the differences between the 2 pulses used in the 2-phase pulse signals input signals to the TAiIN pin and TAiOUT pin (i = 2, 3, 4), as shown in Figure 2.2.30.
- (4) When free run type is selected, if count is stopped, set a value in the timer Ai register again.

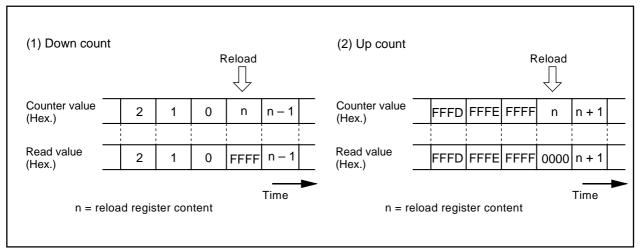


Figure 2.2.29. Reading timer Ai register

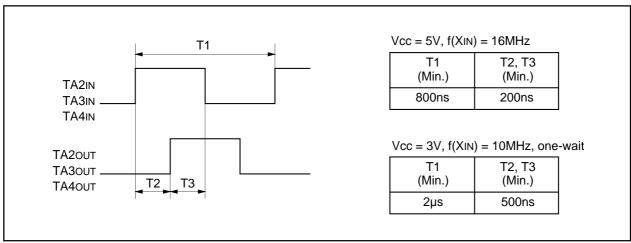


Figure 2.2.30. Standard of 2-phase pulses

2.2.15 Precautions for Timer A (one-shot timer mode)

- (1) At reset, the count start flag is set to "0". Set a value in the timer Ai register, then set the flag to "1".
- (2) Setting the count start flag to "0" while a count is in progress causes as follows:
 - The counter stops counting and a content of reload register is reloaded.
 - The TAiout pin outputs "L" level.
 - The interrupt request generated and the timer Ai interrupt request bit goes to "1".
- (3) The output from the one-shot timer synchronizes with the count source generated internally. Therefore, when an external trigger has been selected, a delay of one cycle of count source as a maximum occurs between the trigger input to the TAilN pin and the one-shot timer output.
- (4) The timer Ai interrupt request bit goes to "1" if the timer's operation mode is set using any of the following procedures:
 - Selecting one-shot timer mode after reset.
 - Changing operation mode from timer mode to one-shot timer mode.
 - Changing operation mode from event counter mode to one-shot timer mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(5) If a trigger occurs while a count is in progress, after the counter performs one down count following the reoccurrence of a trigger, the reload register contents are reloaded, and the count continues. To generate a trigger while a count is in progress, generate the second trigger after an elapse longer than one cycle of the timer's count source after the previous trigger occurred.

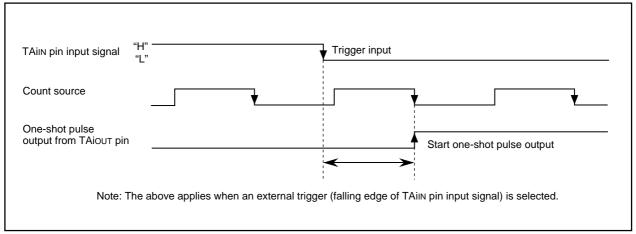


Figure 2.2.31. One-shot timer delay

2.2.16 Precautions for Timer A (pulse width modulation mode)

- (1) To clear reset, the count start flag is set to "0". Set a value in the timer Ai register, then set the flag to "1".
- (2) The timer Ai interrupt request bit becomes "1" if setting operation mode of the timer in compliance with any of the following procedures:
 - Selecting PWM mode after reset.
 - Changing operation mode from timer mode to PWM mode.
 - Changing operation mode from event counter mode to PWM mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(3) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiout pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to "1". If the TAiout pin is outputting an "L" level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes "1".

2.3 Timer B

2.3.1 Overview

The following is an overview for timer B, a 16-bit timer.

(1) Mode

Timer B operates in one of three modes:

(a) Timer mode

The internal count source is counted.

(b) Event counter mode

The number of pulses coming from outside and the number of the timer overflows are counted.

(c) Pulse period measurement/pulse width measurement mode

External pulse period or external pulse widths are measured. If pulse period measurement mode is selected, the periods of input pulses are continuously measured. If pulse width measurement mode is selected, widths of "H" level pulses and those of "L" level pulses are continuously measured.

(2) Count source

An internal count source can be selected from f1, f8, f32, and fC32. f1, f8, and f32 are clocks obtained by dividing the CPU main clock by 1, 8, and 32 respectively. fC32 is the clock obtained by dividing the CPU secondary clock by 32.

(3) Frequency division ratio

The frequency division ratio equals [the value set in the timer register + 1]. The counter underflows when a count source equal to a frequency division ratio is input, and an interrupt request occurs.

(4) Reading the timer

In timer mode or event counter mode, the count value at the time of reading the timer register will be read. Read the register in 16-bit increments. In both the pulse period measurement mode and pulse width measurement mode, an indeterminate value is read until the second effective edge is input after a count is started, otherwise, the measurement results are read.

(5) Writing to the timer

When writing to the timer register while a count is in progress, the value is written only to the reload register. When writing to the timer register while a count has stopped, the value is written both to the reload register and the count. Write the value in 16-bit increments. The timer register cannot be written to in either the pulse period measurement mode or the pulse width measurement mode.

(6) Input to the timer and the direction register

To input an external signal to the timer, set the direction register of the relevant port to input.

(7) Pins related to timer B

(a) TB0IN, TB1IN, TB2IN, TB3IN, TB4IN, TB5IN:Input pins to timer B.

(8) Registers related to timer B

Figure 2.3.1 shows the memory map of timer B-related registers. Figures 2.3.2 and 2.3.3 show timer B-related registers.

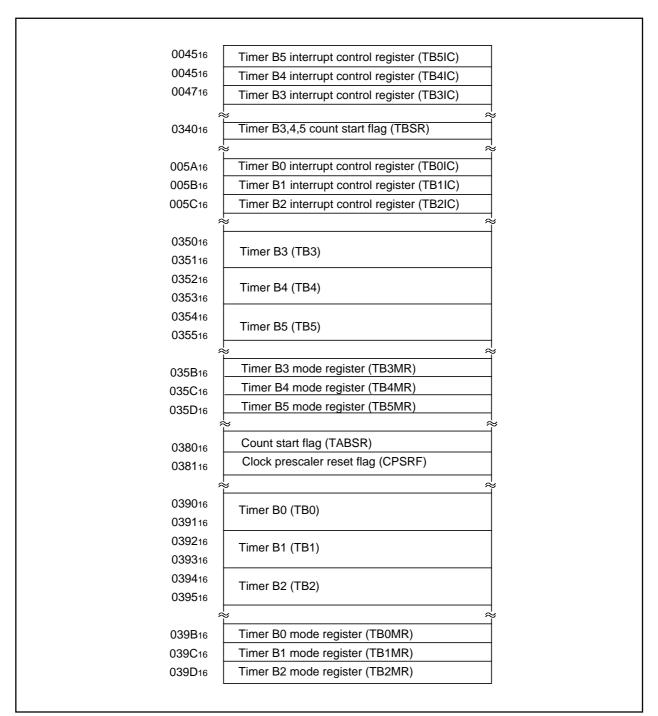


Figure 2.3.1. Memory map of timer B-related registers

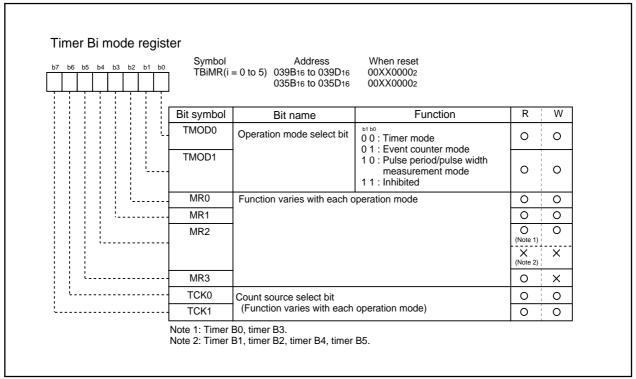


Figure 2.3.2. Timer B-related registers (1)

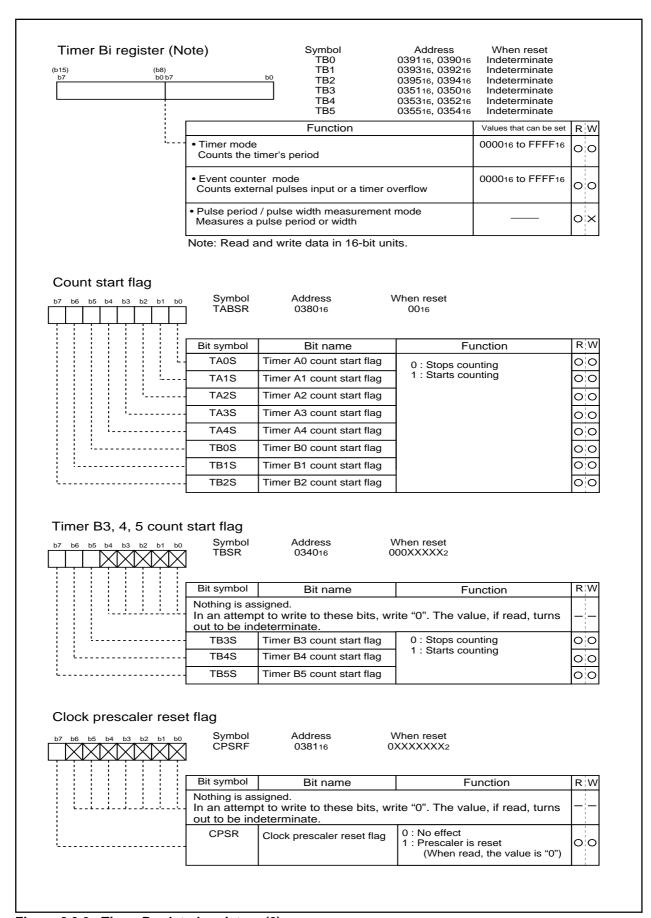


Figure 2.3.3. Timer B-related registers (2)

2.3.2 Operation of Timer B (timer mode)

In timer mode, choose functions from those listed in Table 2.3.1. Operations of the circled items are described below. Figure 2.3.4 shows the operation timing, and Figure 2.3.5 shows the set-up procedure.

Table 2.3.1. Choosed functions

Item		Set-up
Count source	0	Internal count source (f1 / f8 / f32 / fc32)

Operation (1) Setting the count start flag to "1" causes the counter to perform a down count on the count source.

- (2) If an underflow occurs, the content of the reload register is reloaded, and the counter continues counting. At this time, the timer Bi interrupt request bit goes to "1".
- (3) Setting the count start flag to "0" causes the counter to hold its value and to stop.

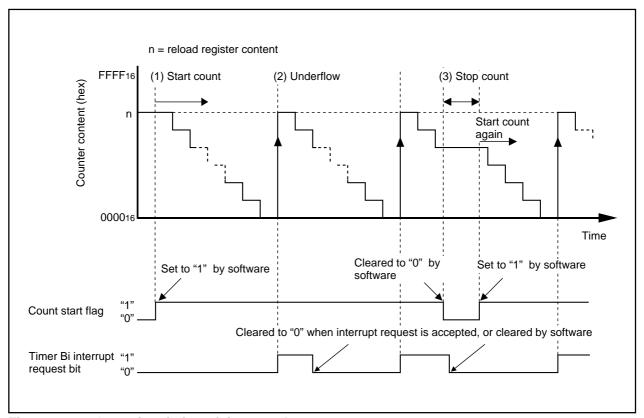


Figure 2.3.4. Operation timing of timer mode

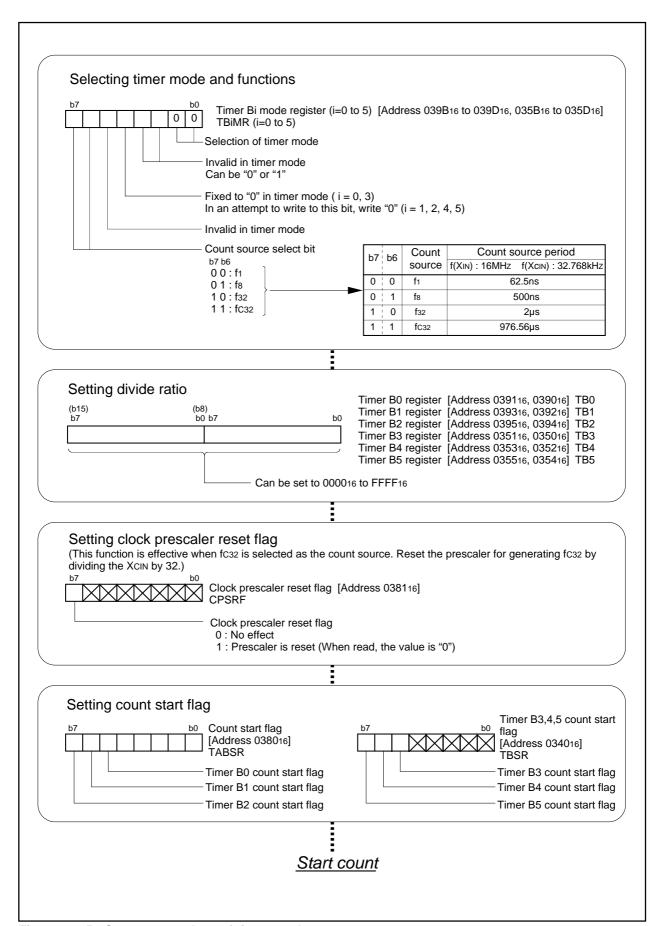


Figure 2.3.5. Set-up procedure of timer mode

2.3.3 Operation of Timer B (event counter mode)

In event counter mode, choose functions from those listed in Table 2.3.2. Operations of the circled items are described below. Figure 2.3.6 shows the operation timing, and Figure 2.3.7 shows the set-up procedure.

Table 2.3.2. Choosed functions

Item		Set-up				
Count source	0	Input signal to the TBilN pin (counting falling edges)				
		Input signal to the TBilN pin (counting rising edges)				
		Input signal to the TBiin pin (counting rising edges and falling edges)				
		Timer overflow(TBj overflow)				

Note: j = i - 1, but j = 2 when i = 0, j = 5 when i = 3

Operation (1) Setting the count start flag to "1" causes the counter to count the falling edges of the count source.

- (2) If an underflow occurs, the content of the reload register is reloaded, and the count continues. At this time, the timer Bi interrupt request bit goes to "1".
- (3) Setting the count start flag to "0" causes the counter to hold its value and to stop.

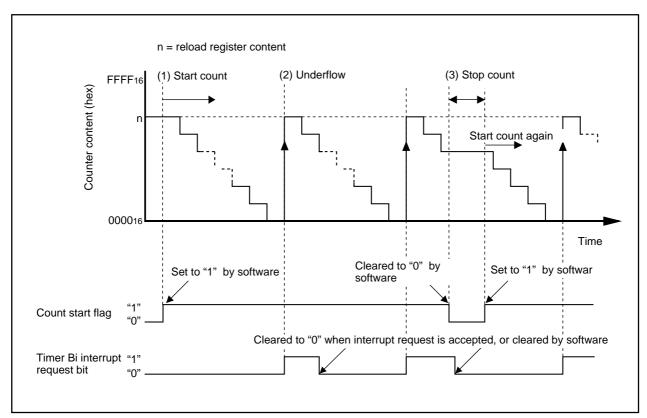


Figure 2.3.6. Operation timing of event counter mode

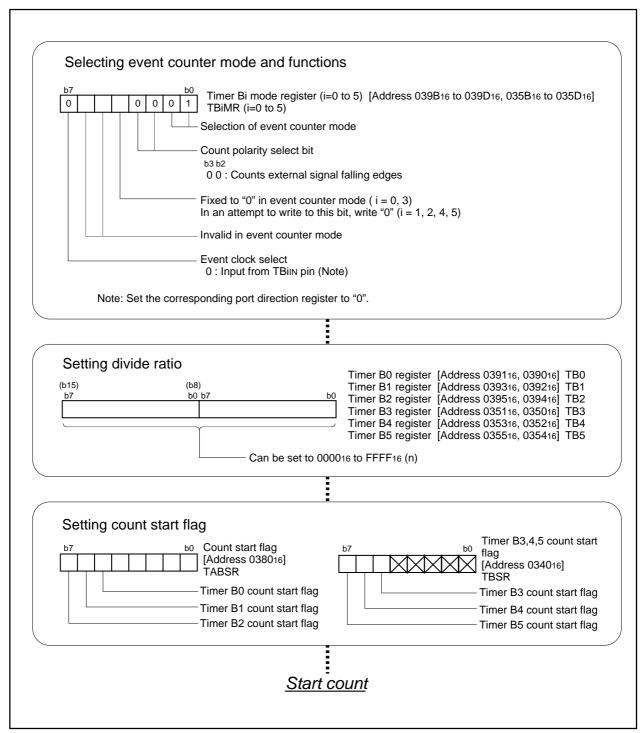


Figure 2.3.7. Set-up procedure of event counter mode

2.3.4 Operation of Timer B (pulse period measurement mode)

In pulse period/pulse width measurement mode, choose functions from those listed in Table 2.3.3. Operations of the circled items are described below. Figure 2.3.8 shows the operation timing, and Figure 2.3.9 shows the set-up procedure.

Table 2.3.3. Choosed functions

Item		Set-up
Count source	0	Internal count source (f1 / f8 / f32 / fc32)
Measurement	0	Pulse period measurement (interval between measurement pulse falling edge to falling edge)
mode		Pulse period measurement (interval between measurement pulse rising edge to rising edge)
		Pulse width measurement (interval between measurement pulse falling edge to rising edge, and between rising edge to falling edge)

Operation (1) Setting the count start flag to "1" causes the counter to start counting the count source.

- (2) If a measurement pulse changes from "H" to "L", the value of the counter goes to "000016", and measurement is started. In this instance, an indeterminate value is transferred to the reload register. The timer Bi interrupt request does not generate.
- (3) If a measurement pulse changes from "H" to "L" again, the value of the counter is transferred to the reload register, and the timer Bi interrupt request bit goes to "1". Then the value of the counter becomes "000016", and the measurement is started again.

Note

- The timer Bi interrupt request bit goes to "1" when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the timer Bi overflow flag within the interrupt routine.
- The value of the counter at the beginning of a count is indeterminate. Thus there can be instances in which the timer Bi overflow flag goes to "1" immediately after a count is performed.
- The timer Bi overflow flag goes to "0" if timer Bi mode register is written to when the count start flag is "1". This flag cannot be set to "1" by software.

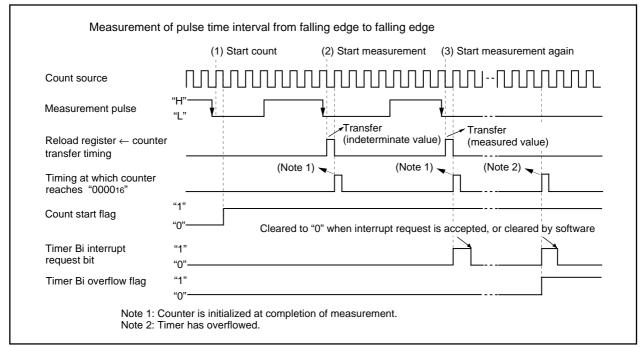


Figure 2.3.8. Operation timing of pulse period measurement mode

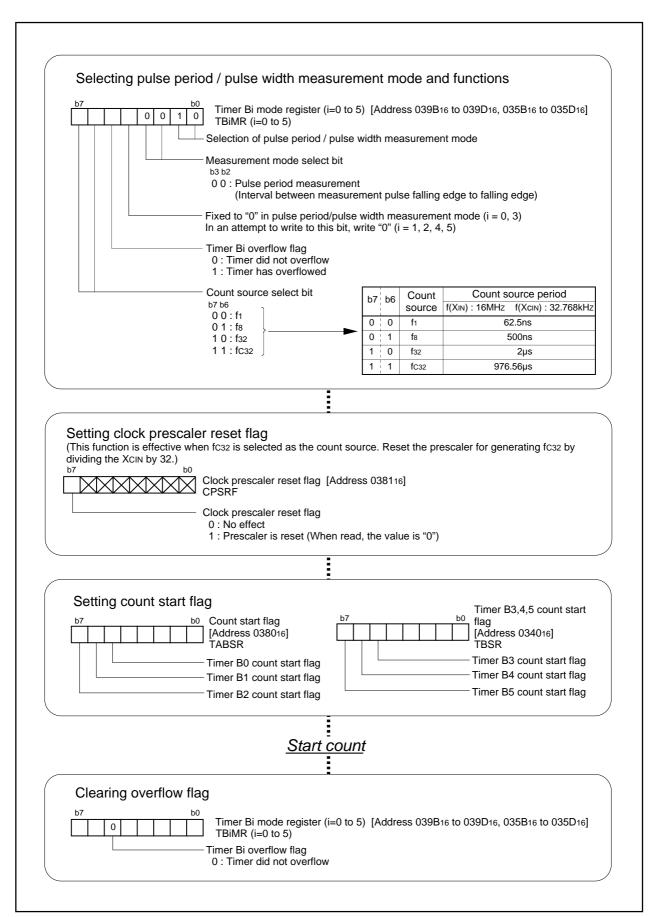


Figure 2.3.9. Set-up procedure of pulse period measurement mode

2.3.5 Operation of Timer B (pulse width measurement mode)

In pulse period/pulse width measurement mode, choose functions from those listed in Table 2.3.4. Operations of the circled items are described below. Figure 2.3.10 shows the operation timing, and Figure 2.3.11 shows the set-up procedure.

Table 2.3.4. Choosed functions

Item		Set-up				
Count source	0	Internal count source (f1 / f8 / f32 / fc32)				
Measurement		Pulse period measurement (interval between measurement pulse falling edge to falling edge)				
mode	Pulse period measurement (interval between measurement pulse rising edge to					
	0	Pulse width measurement (interval between measurement pulse falling edge to rising edge, and between rising edge to falling edge)				

Operation (1) Setting the count start flag to "1" causes the counter to start counting the count source.

- (2) If an effective edge of a pulse to be measured is input, the value of the counter goes to "000016", and measurement is started. In this instance, an indeterminate value is transferred to the reload register. The timer Bi interrupt request does not generate.
- (3) If an effective edge of a pulse to be measured is input again, the value of the counter is transferred to the reload register, and the timer Bi interrupt request bit goes to "1". Then the value of the counter becomes "000016", and measurement is started again.

Note

- The timer Bi interrupt request bit goes to "1" when an effective edge of a pulse to be measured is input or timer Bi is overflows. The factor of interrupt request can be determined by use of the timer Bi overflow flag within the interrupt routine.
- The value of the counter at the beginning of a count is indeterminate. Thus there can be instances in which the timer Bi overflow flag goes to "1" immediately after a count is performed.
- The timer Bi overflow flag goes to "0" if timer Bi mode register is written to when the count start flag is "1". This flag cannot be set to "1" by software.

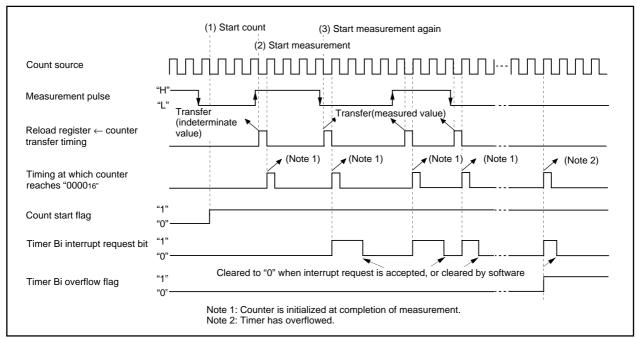


Figure 2.3.10. Operation timing of pulse width measurement mode

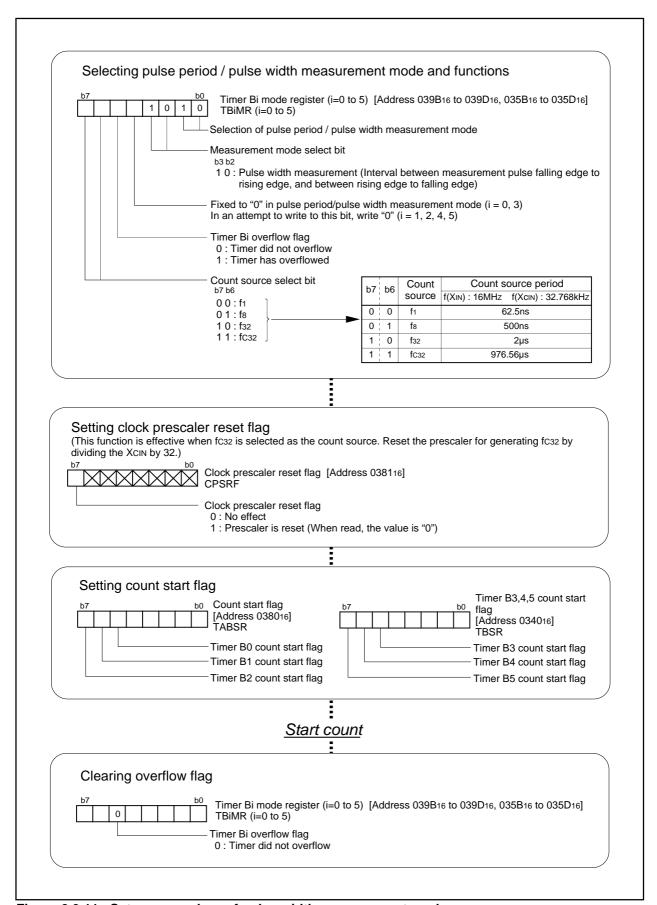


Figure 2.3.11. Set-up procedure of pulse width measurement mode

2.3.6 Precautions for Timer B (timer mode, event counter mode)

- (1) To clear reset, the count start flag is set to "0". Set a value in the timer Bi register, then set the flag to "1".
- (2) Reading the timer Bi register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Bi register with the reload timing shown in Figure 2.3.12 gets "FFFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.

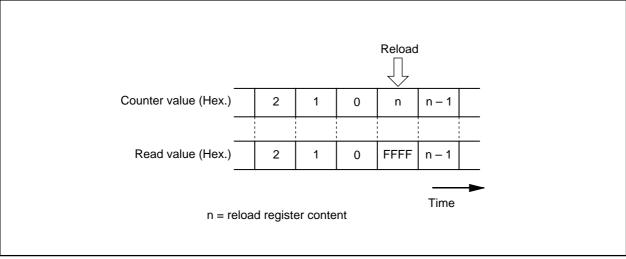


Figure 2.3.12. Reading timer Bi register

2.3.7 Precautions for Timer B (pulse period/pulse width measurement mode)

- (1) The timer Bi interrupt request bit goes to "1" when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the timer Bi overflow flag within the interrupt routine.
- (2) If the timer overflow occurs simultaneously with the input of a measurement pulse, and if the interrupt factor cannot be determined from the timer Bi overflow flag, connect the timers and count the number of overflows.
- (3) When reset, the timer Bi overflow flag goes to "1". This flag can be set to "0" by writing to the timer Bi mode register when the count start flag is "1".
- (4) Use the timer Bi interrupt request bit to detect only overflows. Use the timer Bi overflow flag only to determine the interrupt factor within the interrupt routine.
- (5) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.
- (6) The value of the counter is indeterminate at the beginning of a count. Therefore the timer Bi overflow flag may go to "1" immediately after a count is started.
- (7) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to "1".
- (8) If the input signal to the TBin pin is affected by noise, precise measurement may not be performed in some cases. It is recommended to see that measurements fall within a specific range by use of software.
- (9) For pulse width measurement, pulse widths are successively measured. Use software to check whether the measurement result is an "H" level width or an "L" level width.

2.4 Clock-Synchronous Serial I/O

2.4.1 Overview

Clock-synchronous serial I/O carries out 8-bit data communications in synchronization with the clock. The following is an overview of the clock-synchronous serial I/O.

(1) Transmission/reception format

8-bit data

(2) Transfer rate

If the internal clock is selected as the transfer clock, the divide-by-2 frequency, resulting from the bit rate generator division, becomes the transfer rate. The bit rate generator count source can be selected from the following: f1, f8, and f32. Clocks f1, f8, and f32 are derived by dividing the CPU's main clock by 1, 8, and 32 respectively.

Furthermore, if an external clock is selected as the transfer clock, the clock frequency input to the CLK pin becomes the transfer rate.

(3) Error detection

Only overrun error can be detected. Overrun error is an error that occurs when the next data is made ready before the reception buffer register is read.

(4) How to deal with an error

When receiving data, read an error flag and reception data simultaneously to determine which error has occurred. If the data read is erroneous, initialize the error flag and the UARTi receive buffer register, then receive the data again.

To initialize the UARTi receive buffer register

- 1. Set the receive enable bit to "0" (disable reception).
- 2. Set the serial I/O mode select bit to "0002" (invalid serial I/O).
- 3. Set the serial I/O mode select bit.
- 4. Set the receive enable bit to "1" again (enable reception).

To transmit data again due to an error on the reception side, set the UARTi transmit buffer register again, then transmit the data again.

To set the UARTi transmit buffer register again

- 1. Set the serial I/O mode select bits to "0002" (invalidate serial I/O).
- 2. Set the serial I/O mode select bits again.
- 3. Set the transmit enable bit to "1" (enable transmission), then set transmission data in the UARTi transmit buffer register.

(5) Function selection

For clock-synchronous serial I/O, the following functions can be selected:

(a) CTS/RTS function

In the \overline{CTS} function, an external IC can start transmission/reception by inputting an "H" level to the \overline{CTS} pin. The \overline{CTS} pin input level is detected when transmission/reception starts. Therefore, if the level is set to "L" during transmission/reception, it will stop from the next data.

The \overline{RTS} function informs an external IC that \overline{RTS} is reception-ready and has changed to "L". \overline{RTS} goes to "H" at the falling edge of the transfer clock.

The clock-synchronous serial I/O has four types of CTS/RTS functions to choose from:

CTS/RTS functions disabled
 CTS/RTS pin is a programmable I/O port.
 CTS function only enabled
 RTS function only enabled
 CTS/RTS pin performs the CTS function.
 CTS/RTS pin performs the RTS function.
 P60 pin works the RTS function, and P64 pin performs the CTS

function. When $\overline{\text{CTS}}/\overline{\text{RTS}}$ separation function is selected, $\overline{\text{CTS}}/$

RTS function cannot select simultaneously.

(b) Function for choosing polarity

This function switches the polarity of the transfer clock. The following operations are available:

- Data is input at the falling edge of the transfer clock, and is output at the rising edge.
- Data is input at the rising edge of the transfer clock, and is output at the falling edge.

(c) Function for choosing which bit to transmit first

This function is to choose whether to transmit data from bit 0 or from bit 7. Choose either of the following:

LSB first Data is transmitted from bit 0.
MSB first Data is transmitted from bit 7.

(d) Function for choosing successive reception mode

Successive reception mode is a mode in which reading the receive buffer register makes the reception-enabled status ready. In this mode, there is no need to write dummy data to the transmit buffer register so as to make the reception-enabled status ready. But at the time of starting reception, read the receive buffer register into a dummy manner.

Normal mode
 Writing dummy data to the transmit buffer register makes the

reception enabled status ready.

• Successive reception mode Reading the reception buffer register makes the reception-enabled

status ready.

(e) Function for outputting transfer clock to multiple pins

This function is to switch among pins to output the transfer clock. This function is effective only when selecting the internal clock. Switching among pins for outputting the transfer clock allows data transmission to two external ICs in a time-sharing manner.

(f) Data logic select function

This function is to reserve data when writing to transmit buffer register or reading from receive buffer register.

(g) Function for choosing a transmission interrupt factor

The timing to generate a transmission interrupt can be selected from the following: the instant the transmission buffer is emptied or the instant the transmission register is emptied. When transmission buffer empty timing is selected, an interrupt occurs when transmitted data is moved from the transmission buffer to the transmission register. Therefore, data can be transmitted in succession. When transmission register empty timing is selected, an interrupt occurs when data transmission is complete.

(h) TxD, RxD I/O polarity reverse function

This function is to reserve a polarity of TxD port output level and a polarity of RxD port input level.

Following are some examples in which various functions (a) through (g) are selected:

- Transmission Operation WITH: CTS function, transmission at falling edge of transfer clock, LSB
 First, interrupt at instant transmission buffer is emptied; WITHOUT transfer clock output to multiple
 pins function
- Transmission Operation WITH: CTS/RTS function disabled, transmission at falling edge of transfer clock, LSB First, interrupt at instant transmission is completed; WITH transfer clock output to multiple pins function (UART0 selection available)

(6) Input to the serial I/O and the direction register

To input an external signal to the serial I/O, set the direction register of the relevant port to input.

(7) Pins related to the serial I/O

CTS0, CTS1, CTS2 pins Input pins for the CTS function
 RTS0, RTS1, RTS2 pins Output pins for the RTS function
 CLK0, CLK1, CLK2 pins Input/output pins for the transfer clock
 RxD0, RxD1, RxD2 pins Input pins for data

• TxD0, TxD1, TxD2 pins Output pins for data (Since TxD2 pin is N-channel open drain, this pin

needs pull-up resistor.)

• CLKS1 pin Output pin for transfer clock. Can be used as transfer clock output pin in the transfer clock output to multiple pins function.

(8) Registers related to the serial I/O

Figure 2.4.1 shows the memory map of serial I/O-related registers, and Figures 2.4.2 to 2.4.6 show serial I/O-related registers.

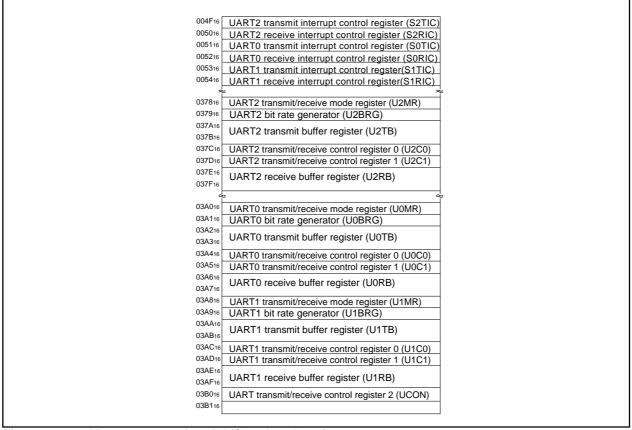


Figure 2.4.1. Memory map of serial I/O-related registers

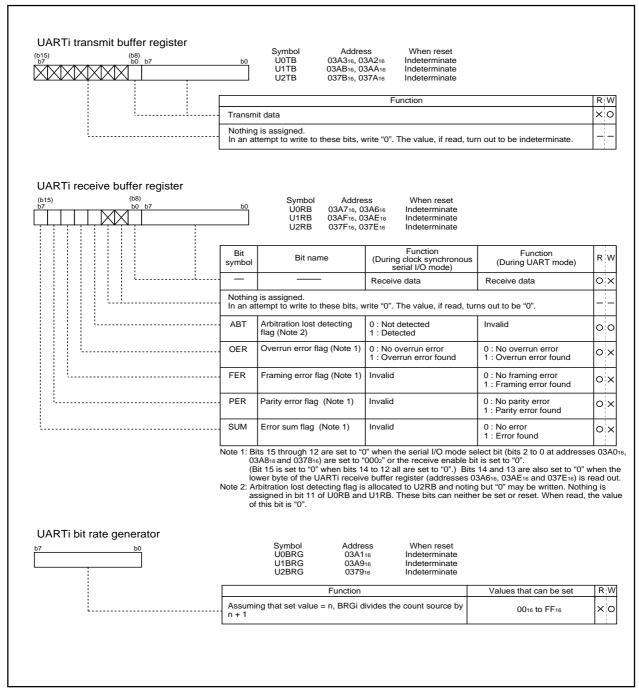
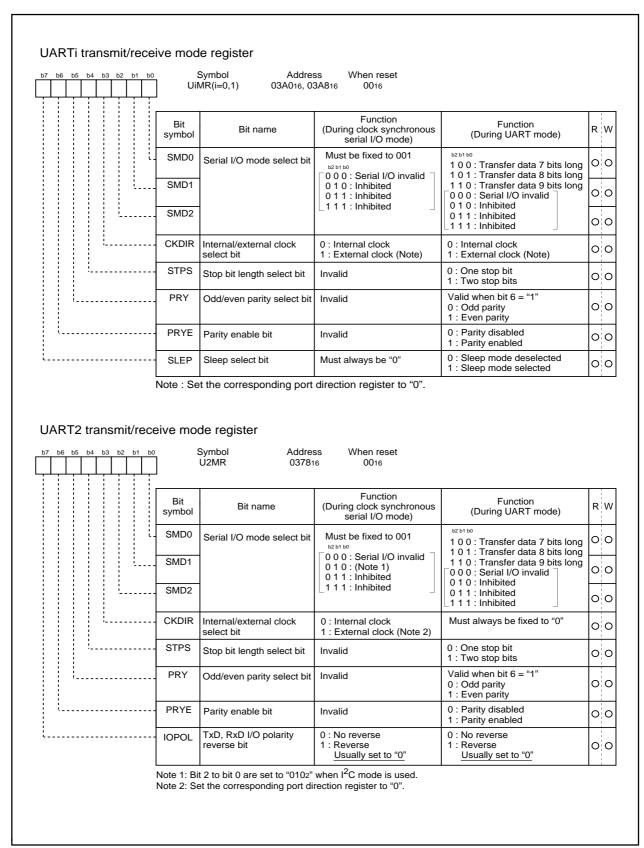
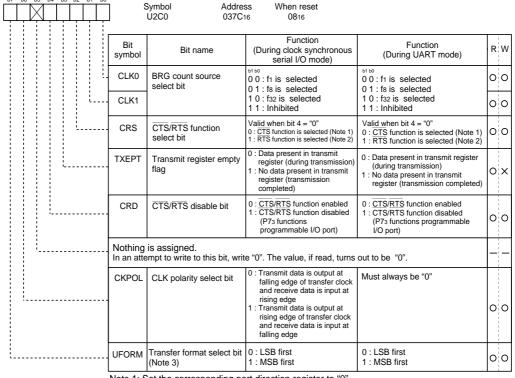


Figure 2.4.2. Serial I/O-related registers (1)




Figure 2.4.3. Serial I/O-related registers (2)

b7 b6 b5 b4 b3 b2 b1 b0		Symbol Addres C0(i=0,1) 03A416, 03			
	Bit symbol	Bit name	Function (During clock synchronous serial I/O mode)	Function (During UART mode)	R W
	CLK0	BRG count source select bit	0 0 : f1 is selected 0 1 : f8 is selected	0 0 : f1 is selected 0 1 : f8 is selected	0 0
	CLK1		1 0 : f32 is selected 1 1 : Inhibited	1 0 : f32 is selected 1 1 : Inhibited	
	CRS	CTS/RTS function select bit	Valid when bit 4 = "0" 0 : CTS function is selected (Note 1) 1 : RTS function is selected (Note 2)	Valid when bit 4 = "0" 0 : CTS function is selected (Note 1) 1 : RTS function is selected (Note 2)	00
	TXEPT	Transmit register empty flag	D: Data present in transmit register (during transmission) No data present in transmit register (transmission completed)	D : Data present in transmit register (during transmission) No data present in transmit register (transmission completed)	o ×
	CRD	CTS/RTS disable bit	0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P60 and P64 function as programmable I/O port)	0 : CTS/RTS function enabled 1 : CTS/RTS function disabled (P6o and P64 function as programmable I/O port)	0 0
	NCH	Data output select bit	0 : TXDi pin is CMOS output 1 : TXDi pin is N-channel open-drain output	TXDi pin is CMOS output TXDi pin is N-channel open-drain output	0
	CKPOL	CLK polarity select bit	Transmit data is output at falling edge of transfer clock and receive data is input at rising edge Transmit data is output at rising edge of transfer clock and receive data is input at falling edge	Must always be "0"	00
	UFORM	Transfer format select bit	0 : LSB first 1 : MSB first	Must always be "0"	0 0

Note 1: Set the corresponding port direction register to "0".

Note 2: The settings of the corresponding port register and port direction register are invalid.

UART2 transmit/receive control register 0

Note 1: Set the corresponding port direction register to "0"

Note 2: The settings of the corresponding port register and port direction register are invalid. Note 3: Only clock synchronous serial I/O mode and 8-bit UART mode are valid.

Figure 2.4.4. Serial I/O-related registers (3)

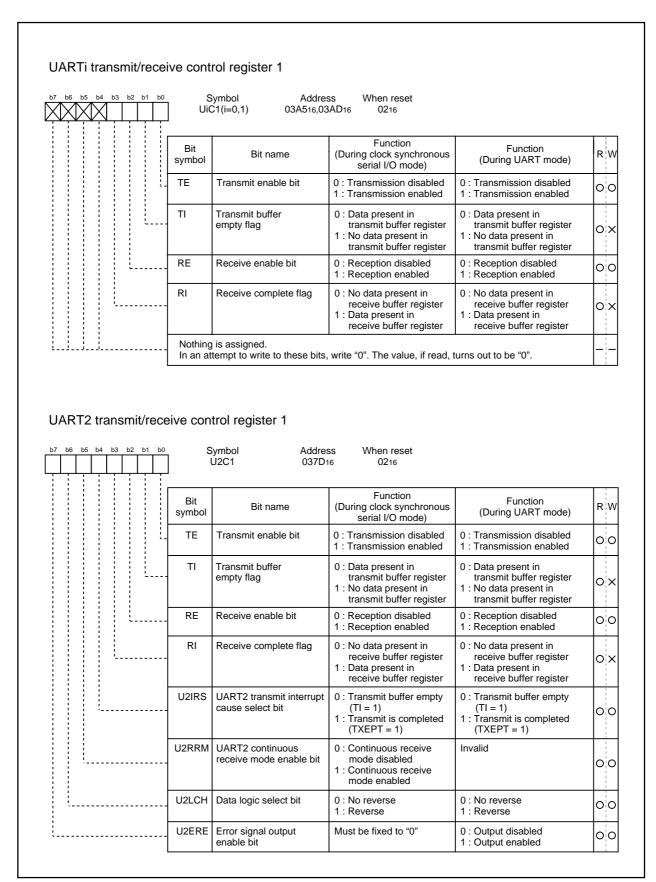


Figure 2.4.5. Serial I/O-related registers (4)

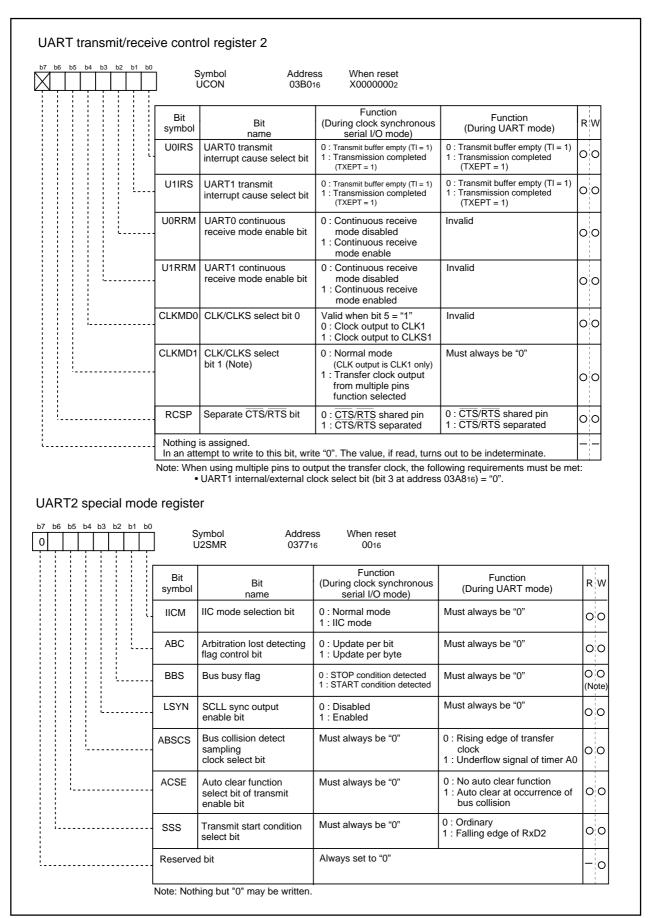


Figure 2.4.6. Serial I/O-related registers (5)

2.4.2 Operation of Serial I/O (transmission in clock-synchronous serial I/O mode)

In transmitting data in clock-synchronous serial I/O mode, choose functions from those listed in Table 2.4.1. Operations of the circled items are described below. Figure 2.4.7 shows the operation timing, and Figures 2.4.8 and 2.4.9 show the set-up procedures.

Table 2.4.1. Choosed functions

Item		Set-up	Item	Set-up	
Transfer clock	0	Internal clock (f1 / f8 / f32)	Transmission	0	Transmission buffer empty
source		External clock (CLKi pin)	interrupt factor		Transmission complete
CTS function	0	CTS function enabled	Output transfer clock	0	Not selected
	CTS function disabled to multiple pins (Note 1)				Selected
CLK polarity	o	Output transmission data at the falling edge of the	CTS / RTS separation function (Note 2)	0	Pin shared by CTS and RTS
		transfer clock			CTS and RTS separated
			Data logic select function	0	No reverse
		transfer clock	(Note 3)		Reverse
Transfer clock	0	LSB first	TxD, RxD I/O polarity reverse bit	0	No reverse
		MSB first	(Note 3)		Reverse

Note 1: This can be selected only when UART1 is used in combination with the internal clock. When this function is selected, neither UART1 CTS/RTS function, nor UART0 CTS/RTS separation function can be utilized. Set the UART1 CTS/RTS disable bit to "1".

Note 2: UART0 only. (UART1 CTS/RTS function cannot be used when this function is selected.)

Note 3: UART2 only.

- Operation (1) Setting the transmit enable bit to "1" and writing transmission data to the UARTi transmit buffer register makes data transmissible status ready.
 - (2) When input to the CTSi pin goes to "L" level, transmission starts (the CTSi pin must be controlled on the reception side).
 - (3) In synchronization with the first falling edge of the transfer clock, transmission data held in the UARTi transmit buffer register is transmitted to the UARTi transmit register. At this time, the UARTi transmit interrupt request bit goes to "1". Also, the first bit of the transmission data is transmitted from the TxDi pin. Then the data is transmitted bit by bit from the lower order in synchronization with the falling edges.
 - (4) When transmission of 1-byte data is completed, the transmit register empty flag goes to "1", which indicates that transmission is completed. The transfer clock stops at "H" level.
 - (5) If the next transmission data is set in the UARTi transmit buffer register while transmission is in progress (before the eighth bit has been transmitted), the data is transmitted in succession.

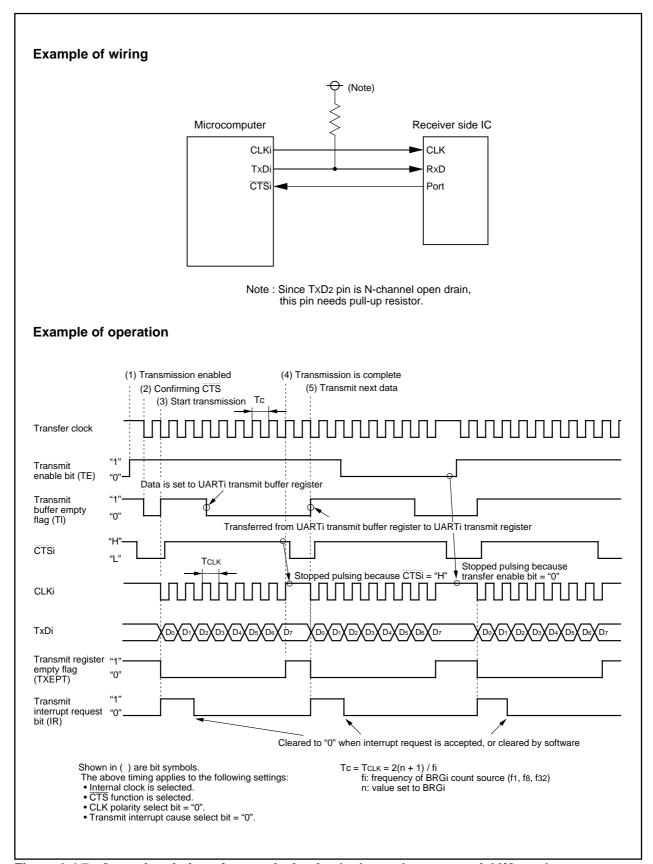


Figure 2.4.7. Operation timing of transmission in clock-synchronous serial I/O mode

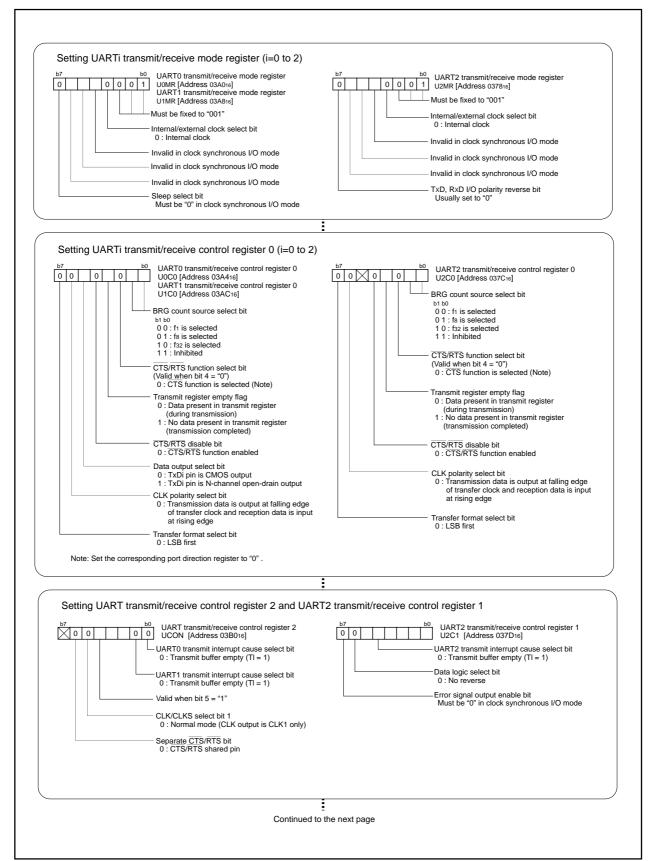


Figure 2.4.8. Set-up procedure of transmission in clock-synchronous serial I/O mode (1)

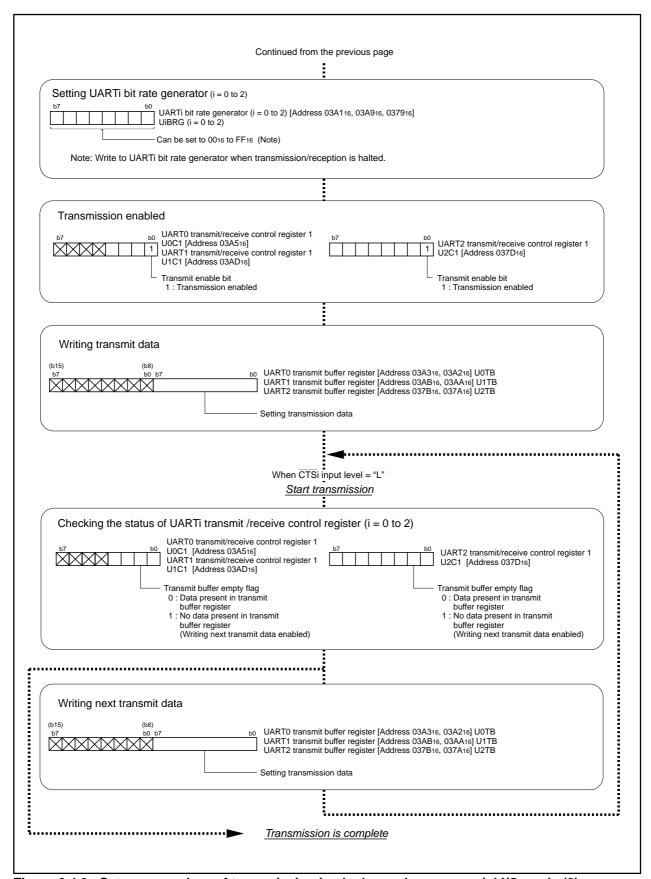


Figure 2.4.9. Set-up procedure of transmission in clock-synchronous serial I/O mode (2)

2.4.3 Operation of the Serial I/O (transmission in clock-synchronous serial I/O mode, transfer clock output from multiple pins function selected)

In transmitting data in clock-synchronous serial I/O mode, choose functions from those listed in Table 2.4.2. Operations of the circled items are described below. Figure 2.4.10 shows the operation timing, and Figures 2.4.11 and 2.4.12 show the set-up procedures.

Table 2.4.2. Choosed functions

Item		Set-up	Item	Set-up	
Transfer clock	0	Internal clock (f1 / f8 / f32)	Transmission		Transmission buffer empty
source		External clock (CLKi pin)	interrupt factor	0	Transmission complete
CTS function		CTS function enabled	Output transfer clock		Not selected
	0	CTS function disabled	to multiple pins (Note 1)		Selected
CLK polarity	0	Output transmission data at the falling edge of the	·	0	Pin shared by CTS and RTS
	transfer clock separation function (Note 2)				CTS and RTS separated
		Output transmission data at the rising edge of the	Data logic select function (Note 3)	0	No reverse
		transfer clock			Reverse
Transfer clock	0	LSB first	TxD, RxD I/O polarity reverse bit	0	No reverse
		MSB first	(Note 3)		Reverse

Note 1: This can be selected only when UART1 is used in combination with the internal clock. When this function is selected, neither UART1 CTS/RTS function, nor UART0 CTS/RTS separation function can be utilized. Set the UART1 CTS/RTS disable bit to "1".

Note 2: UART0 only. (UART1 CTS/RTS function cannot be used when this function is selected.) Note 3: UART2 only.

- Operation (1) Setting the transmit enable bit to "1" makes data transmissible status ready.
 - (2) When transmission data is written to the UART1 transmit buffer register, transmission data held in the UART1 transmit buffer register is transmitted to the UART1 transmit register in synchronization with the first falling edge of the transfer clock. At this time, the first bit of the transmission data is transmitted from the TxD1 pin. Then the data is transmitted bit by bit from the lower order in synchronization with the falling edges of the transfer clock.
 - (3) When transmission of 1-byte data is completed, the transmit register empty flag goes to "1", which indicates that the transmission is completed. The transfer clock stops at "H" level. At this time, the UART1 transmit interrupt request bit goes to "1".
 - (4) Setting CLK/CLKS select bit 1 to "1" and setting CLK/CLKS select bit 0 to "1" causes the CLKS1 pin to go to the transfer clock output pin. Change the transfer clock output pin when transmission is halted.

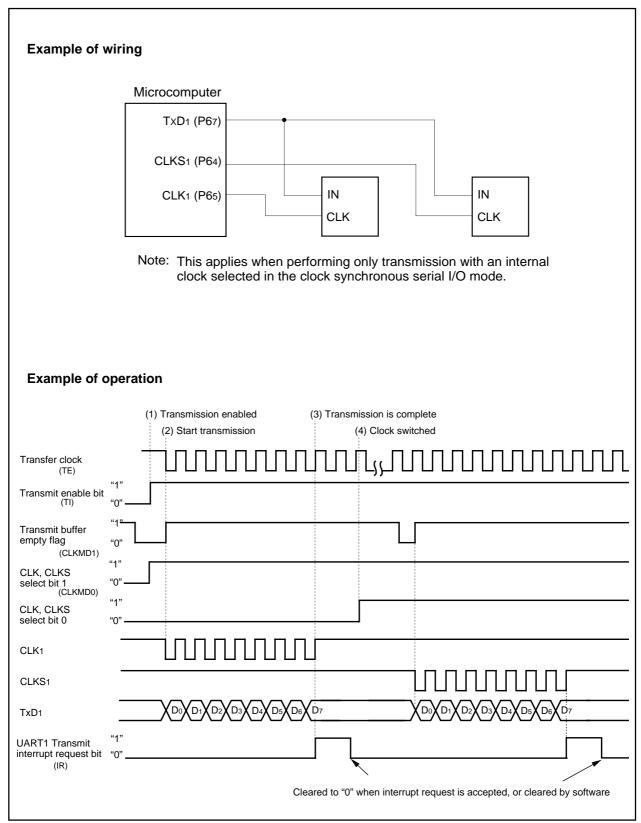


Figure 2.4.10. Operation timing of transmission in clock-synchronous serial I/O mode, transfer clock output from multiple pins function selected

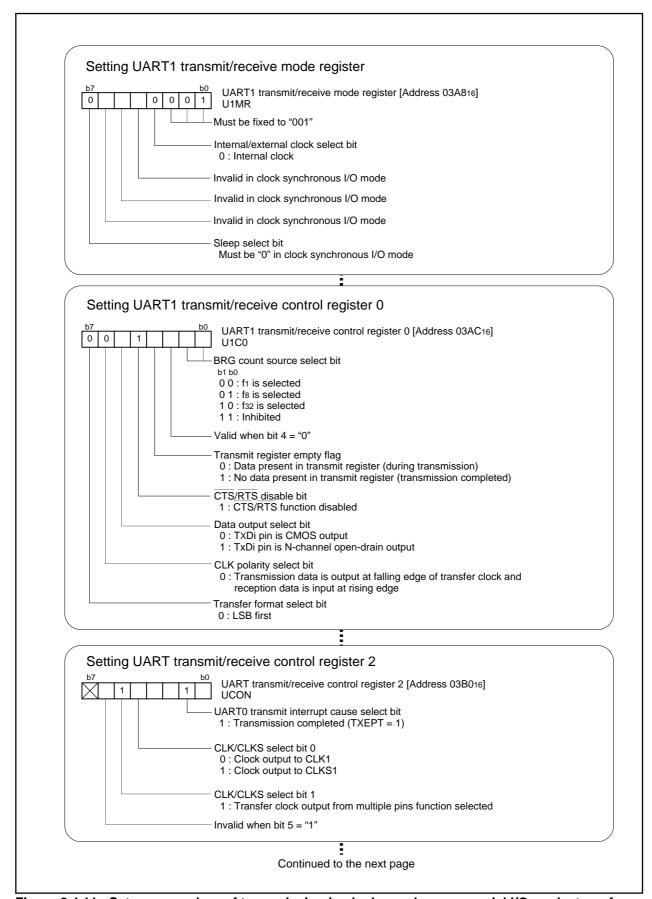


Figure 2.4.11. Set-up procedure of transmission in clock-synchronous serial I/O mode, transfer clock output from multiple pins function selected (1)

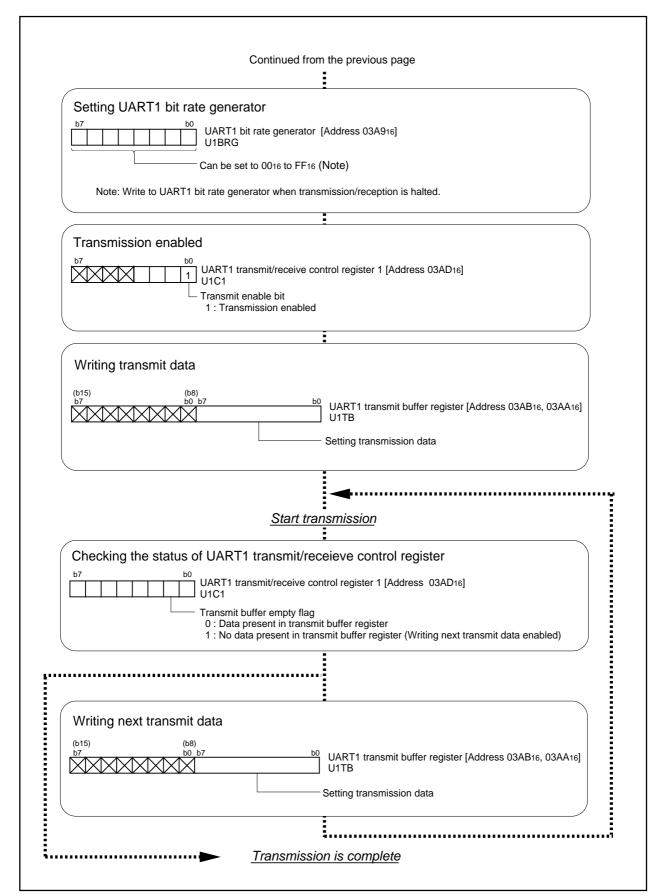


Figure 2.4.12. Set-up procedure of transmission in clock-synchronous serial I/O mode, transfer clock output from multiple pins function selected (2)

2.4.4 Operation of Serial I/O (reception in clock-synchronous serial I/O mode)

In receiving data in clock-synchronous serial I/O mode, choose functions from those listed in Table 2.4.3. Operations of the circled items are described below. Figure 2.4.13 shows the operation timing, and Figures 2.4.14 and 2.4.15 show the set-up procedures.

Table 2.4.3. Choosed functions

Item	Set-up		Item	Set-up	
Transfer clock	Internal clock (f1 / f8 / f32)		Continuous receive	0	Disabled
source	0	External clock (CLKi pin)	mode		Enabled
RTS function	0	RTS function enabled	Output transfer clock	0	Not selected
		RTS function disabled	to multiple pins (Note 1)		Selected
CLK polarity	Input reception data at the rising edge of the transfer clock Input reception data at the rising edge of the transfer clock Input reception data at the rising edge of the transfer clock Input reception data at the rising edge of the transfer clock			0	Pin shared by CTS and RTS
			CTS and RTS separated		
		Input reception data at the falling edge of the	Data logic select function	0	No reverse
		transfer clock	(Note 3)		Reverse
Transfer clock	0	LSB first	TxD, RxD I/O	0	No reverse
		MSB first	polarity reverse bit (Note 3)		Reverse

Note 1: This can be selected only when UART1 is used in combination with the internal clock. When this function is selected, neither UART1 CTS/RTS function, nor UART0 CTS/RTS separation function can be utilized. Set the UART1 CTS/RTS disable bit to "1".

Note 2: UART0 only. (UART1 CTS/RTS function cannot be used when this function is selected.) Note 3: UART2 only.

- Operation (1) Writing dummy data to the UARTi transmit buffer register, setting the receive enable bit to "1", and the transmit enable bit to "1", makes the data receivable status ready. At this time, the output from the RTSi pin goes to "L" level, which informs the transmission side that the data receivable status is ready (output the transfer clock from the IC on the transmission side after checking that the RTS output has gone to "L" level).
 - (2) In synchronization with the first rising edge of the transfer clock, the input signal to the RxDi pin is stored in the highest bit of the UARTi receive register. Then, data is taken in by shifting right the content of the UARTi reception data in synchronization with the rising edges of the transfer clock.
 - (3) When 1-byte data lines up in the UARTi receive register, the content of the UARTi receive register is transmitted to the UARTi receive buffer register. The transfer clock stops at "H" level. At this time, the receive complete flag and the UARTi receive interrupt request bit goes
 - (4) The receive complete flag goes to "0" when the lower-order byte of the UARTi buffer register is read.

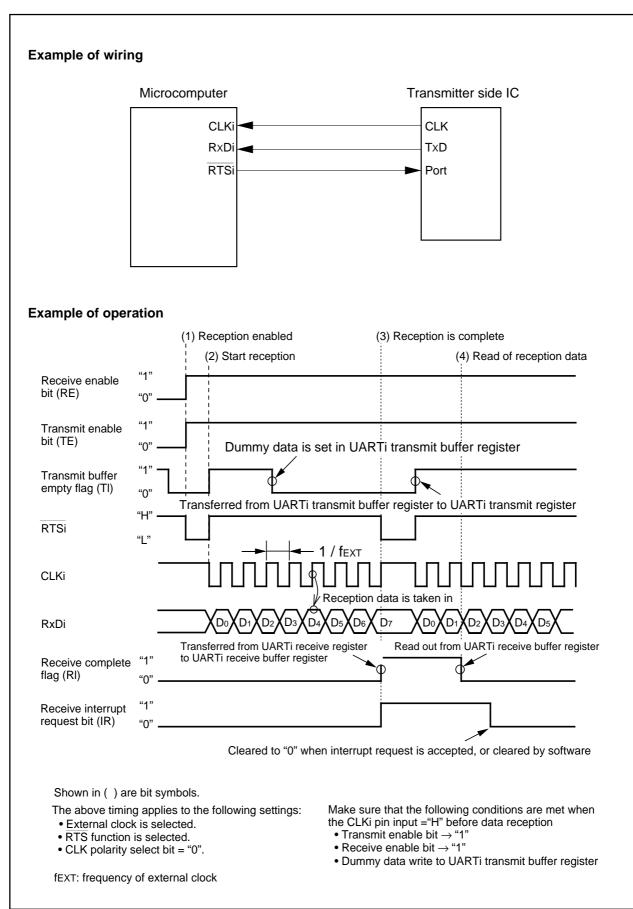


Figure 2.4.13. Operation timing of reception in clock-synchronous serial I/O mode

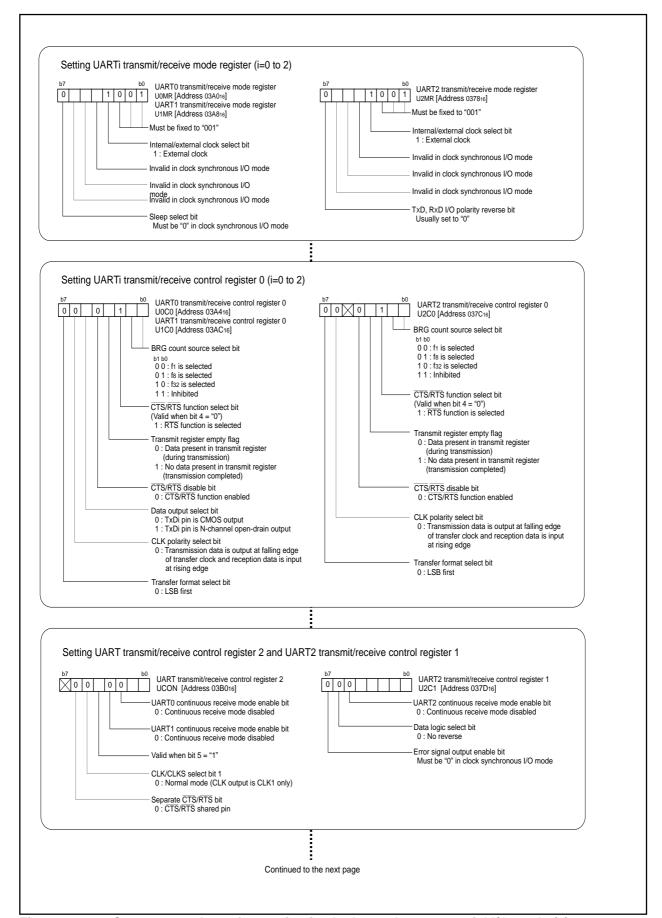


Figure 2.4.14. Set-up procedure of reception in clock-synchronous serial I/O mode (1)

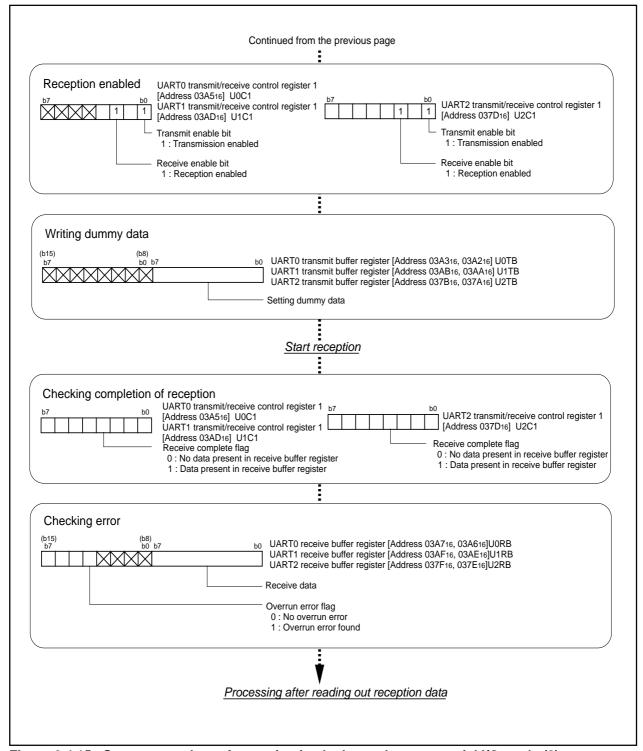


Figure 2.4.15. Set-up procedure of reception in clock-synchronous serial I/O mode (2)

2.4.5 Precautions for Serial I/O (in clock-synchronous serial I/O)

Transmission/reception

(1) With an external clock selected, and choosing the RTS function, the output level of the RTSi pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the RTSi pin goes to "H" when reception starts. So if the RTSi pin is connected to the CTSi pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the RTS function has no effect. Figure 2.4.16 shows an example of wiring.

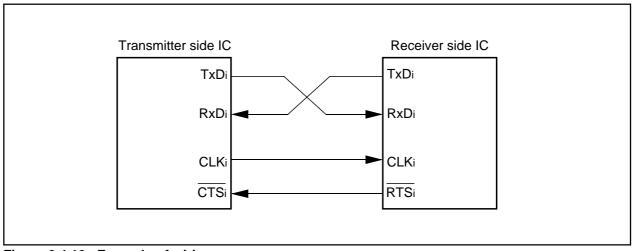


Figure 2.4.16. Example of wiring

Transmission

- (1) With an external clock selected, perform the following set-up procedure with the CLKi pin input level = "H" if the CLK polarity select bit = "0" or with the CLKi pin input level = "L" if the CLK polarity select bit = "1":
 - 1. Set the transmit enable bit (to "1")
 - 2. Write transmission data to the UARTi transmit buffer register
 - 3. "L" level input to the CTSi pin (when the CTS function is selected)
- Reception (1) In operating the clock-synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TxDi pin (transmission pin) when receiving data.
 - (2) With the internal clock selected, setting the transmit enable bit to "1" (transmission-enabled status) and setting dummy data in the UARTi transmission buffer register generates a shift clock
 - With the external clock selected, a shift clock is generated when the transmit enable bit is set to "1", dummy data is set in the UARTi transmit buffer register, and the external clock is input to the CLKi pin.
 - (3) In receiving data in succession, an overrun error occurs when the next reception data is made ready in the UARTi receive register with the receive complete flag set to "1" (before the content of the UARTi receive buffer register is read), and overrun error flag is set to "1". In this instance, the next data is written to the UARTi receive buffer register, so handle with this problem by writing programs on transmission side and reception side so that the previous data is transmitted again.
 - If an overrun error occurs, the UARTi receive interrupt request bit does not go to "1".
 - (4) To receive data in succession, set dummy data in the lower-order byte of the UARTi transmit buffer register every time reception is made.
 - (5) With an external clock selected, perform the following set-up procedure with the CLKi pin input level = "H" if the CLK polarity select bit = "0" or with the CLKi pin input level = "L" if the CLK polarity select bit = "1":
 - 1. Set receive enable bit (to "1")
 - 2. Set transmit enable bit (to "1")
 - 3. Write dummy data to the UARTi transmit buffer register
 - (6) Output from the RTS pin goes to "L" level as soon as the receive enable bit is set to "1". This is not related to the content of the transmit buffer empty flag or the content of the transmit enable bit.
 - Output from the RTS pin goes to "H" level when reception starts, and goes to "L" level when reception is completed. This is not related to the content of the transmit buffer empty flag or the content of the receive complete flag.

2.5 Clock-Asynchronous Serial I/O (UART)

2.5.1 Overview

UART handles communications by means of character-by-character synchronization. The transmission side and the reception side are independent of each other, so full-duplex communication is possible. The following is an overview of the clock-asynchronous serial I/O.

(1) Transmission/reception format

Figure 2.5.1 shows the transmission/reception format, and Table 2.5.1 shows the names and functions of transmission data.

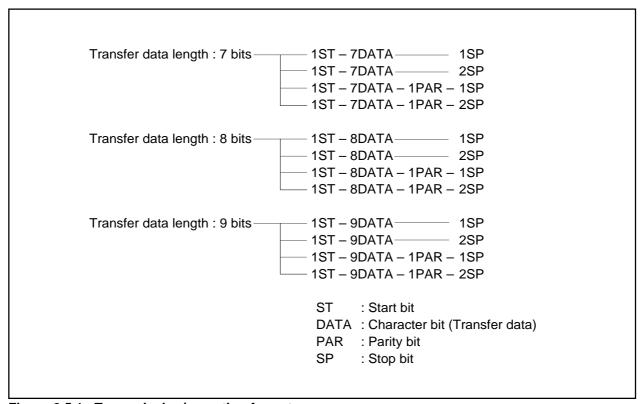


Figure 2.5.1. Transmission/reception format

Table 2.5.1. Transmission data names and functions

Name	Function
ST (start bit)	A 1-bit "L" signal to be added immediately before character bits. This bit signals the start of data transmission.
DATA (character bits)	Transmission data set in the UARTi transmit buffer register.
PAR (parity bit)	A signal to be added immediately after character bits so as to increase data reliability. The level of this signal so varies that the total number of 1's in character bits and this bit always becomes even or odd depending on which parity is chosen, even or odd.
SP (stop bit)	Either 1-bit or 2-bit "H" signal to be added immediately after character bits (after the parity bit if parity is checked). This / they signals the end of data transmission.

(2) Transfer rate

The divide-by-16 frequency, resulting from division in the bit rate generator (BRG), becomes the transfer rate. The count source for the transfer rate register can be selected from f1, f8, f32, and the input from the CLK pin. Clocks f1, f8, f32 are derived by dividing the CPU's main clock by 1, 8, and 32 respectively.

Table 2.5.2. Example of baud rate setting

Baud rate	BRG's	System clo	ck : 16MHz	System clock : 7.3728MHz		
(bps)	count source	BRG's set value : n	Actual time (bps)	BRG's set value : n	Actual time (bps)	
600	f8	207 (CF16)	601	95 (5F ₁₆)	600	
1200	f8	103 (6716)	1202	47 (2F16)	1200	
2400	f8	51 (3316)	2404	23 (1716)	2400	
4800	f1	207 (CF16)	4808	95 (5F ₁₆)	4800	
9600	f1	103 (6716)	9615	47 (2F16)	9600	
14400	f1	68 (4416)	14493	31 (1F ₁₆)	14400	
19200	f1	51 (3316)	19231	23 (1716)	19200	
28800	f1	34 (2216)	28571	15 (F ₁₆)	28800	
31250	f1	31 (1F ₁₆)	31250			

(3) An error detection

In clock-asynchronous serial I/O mode, detect errors are shown in Table 2.5.3.

Table 2.5.3. Error detection

Type of error	Description	When the flag turns on	How to clear the flag
Overrun error	 This error occurs when the next data lines up before the content of the UARTi receive buffer register is read. The next data is written to the UARTi receive buffer register. The UARTi receive interrupt request bit does not go to "1". 	The error is detected	Set the serial I/O mode select bits to "0002". Set the receive enable bit to "0".
Framing error	This error occurs when the stop bit falls short of the set number of stop bits.	when data is transferred from the UARTi receive register	 Set the serial I/O mode select bits to "0002". Set the receive enable bit to "0".
Parity error	With parity enabled, this error occurs when the total number of 1's in character bits and the parity bit is different from the specified number.	to the UARTi receive buffer register.	Read the lower-order byte of the UARTi receive buffer register.
Error-sum flag	This flag turns on when any error (overrun, framing, or parity) is detected.		When all error (overrun, framing, and parity) are removed, the flag is cleared.

(4) How to deal with an error

When receiving data, read an error flag and reception data simultaneously to determine which error has occurred. If the data read is erroneous, initialize the error flag and the UARTi receive buffer register, then receive the data again.

To initialize the UARTi receive buffer register

- 1. Set the receive enable bit to "0" (disable reception).
- 2. Set the receive enable bit to "1" again (enable reception).

To transmit data again due to an error on the reception side, set the UARTi transmit buffer register again, then transmit the data again.

To set the UARTi transmit buffer register again

- 1. Set the serial I/O mode select bits to "0002" (invalidate serial I/O).
- 2. Set the serial I/O mode select bits again.
- 3. Set the transmit enable bit to "1" (enable transmission), then set transmission data in the UARTi transmit buffer register.

(5) Functions selection

In operating UART, the following functions can be used:

(a) CTS/RTS function

CTS function is a function in which an external IC can start transmission/reception by means of inputting an "L" level to the CTS pin. The CTS pin input level is detected when transmission/reception starts, so if the level is gone to "H" while transmission/reception is in progress, transmission/reception stops at the next data.

RTS function is a function to inform an external IC that RTS pin output level has changed to "L" when reception is ready. RTS regoes to "H" at the falling edge of the transfer clock.

When using clock-asynchronous serial I/O, choose one of four types of CTS/RTS functions.

CTS/RTS functions disabled
 CTS/RTS pin is a programmable I/O port.
 CTS function only enabled
 RTS function only enabled
 CTS/RTS pin performs the RTS function.
 CTS/RTS separation function
 CTS/RTS function, and P64 pin performs the RTS function, and P64 pin performs the RTS function.

forms the CTS function. When CTS/RTS separation function is selected, CTS/RTS function cannot select

simultaneously.

(b) Sleep mode

Sleep mode is a mode in which data is transferred to a particular microcomputer among those connected by use of clock-asynchronous serial I/O devices.

(c) Data logic select function

This function is to reserve data when writing to transmit buffer register or reading from receive buffer register.

(d) TxD, RxD I/O polarity reverse function

This function receive a polarity of TxD port output level and a polarity of RxD port input level.

(e) Bus collision detection function

This function is to sample the output level of the TxD pin and the input level of the RxD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs.

The following are examples in which functions (a) to (e) are chosen:

Transmission WITH: CTS function, WITHOUT: other functions	. P358
Reception WITH: RTS function, WITHOUT: other functions	P362
Also, the SIM interface is used by adding some extra settings in UART2's clock-asynchronou	ıs serial
I/O mode. Direct or inverse format is selected by connecting SIM card.	

(6) Input to the serial I/O and the direction register

To input an external signal to the serial I/O, set the direction register of the relevant port to input.

(7) Pins related to the serial I/O

• CTS0, CTS1, CTS2 pins :Input pins for the CTS function
 • RTS0, RTS1, RTS2 pins :Output pins for the RTS function
 • CLK0, CLK1 pins :Input pins for the transfer clock

RxD0, RxD1, RxD2 pins
 TxD0, TxD1, TxD2 pins
 :Input pins for data
 :Output pins for data

Since TxD2 pin is N-channel open drain, this pin needs pull-up resistor.

(8) Registers related to the serial I/O

Figure 2.5.2 shows the memory map of serial I/O-related registers, and Figures 2.5.3 to 2.5.7 show UARTi-related registers.

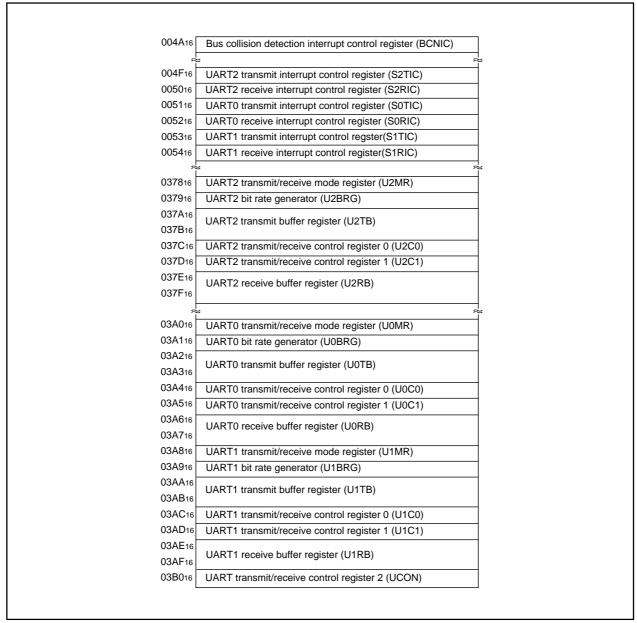


Figure 2.5.2. Memory map of UARTi-related registers

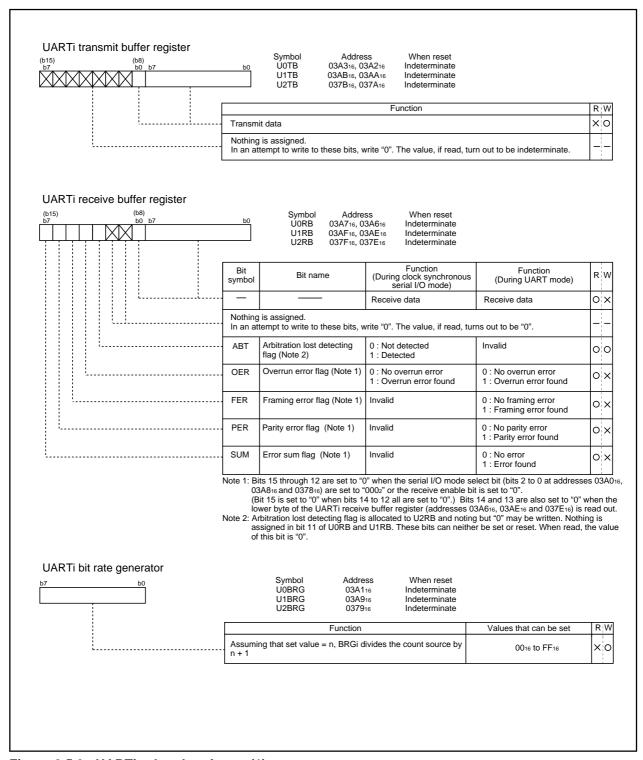


Figure 2.5.3. UARTi-related registers (1)

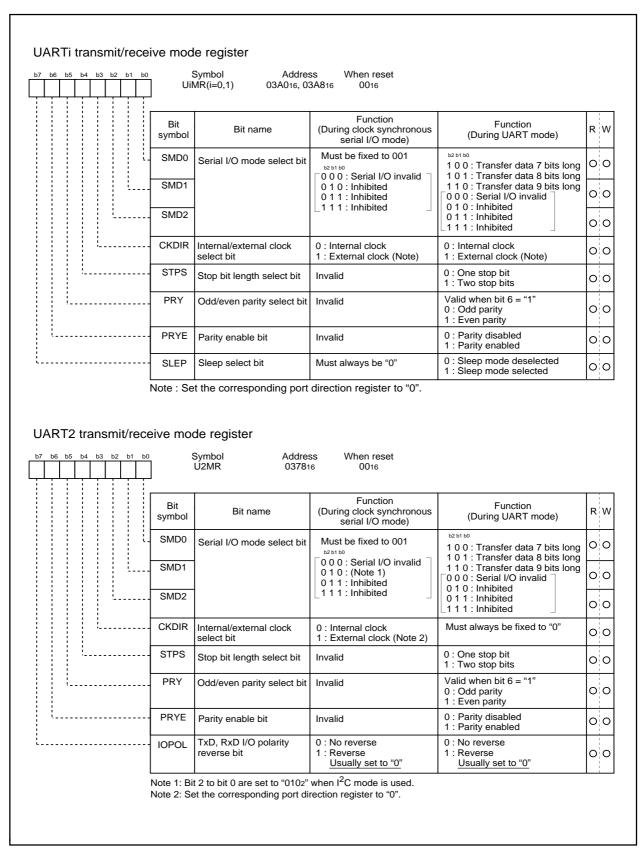


Figure 2.5.4. UARTi-related registers (2)

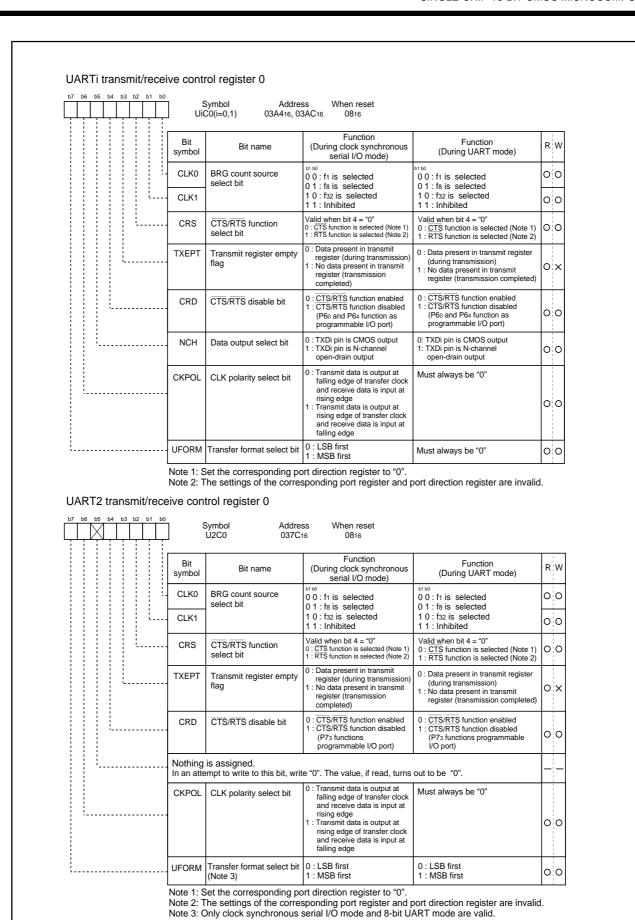


Figure 2.5.5. UARTi-related registers (3)

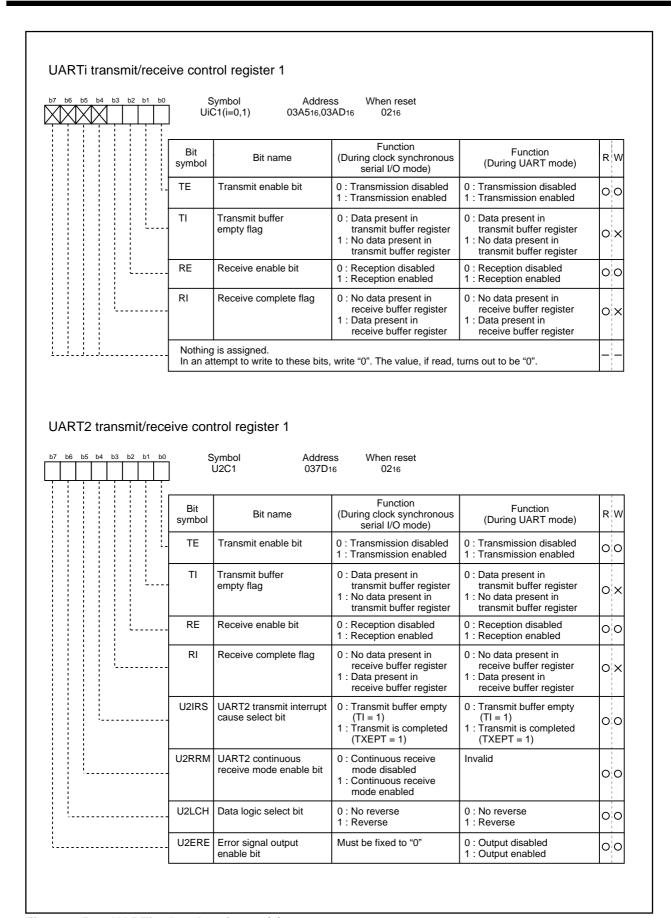


Figure 2.5.6. UARTi-related registers (4)

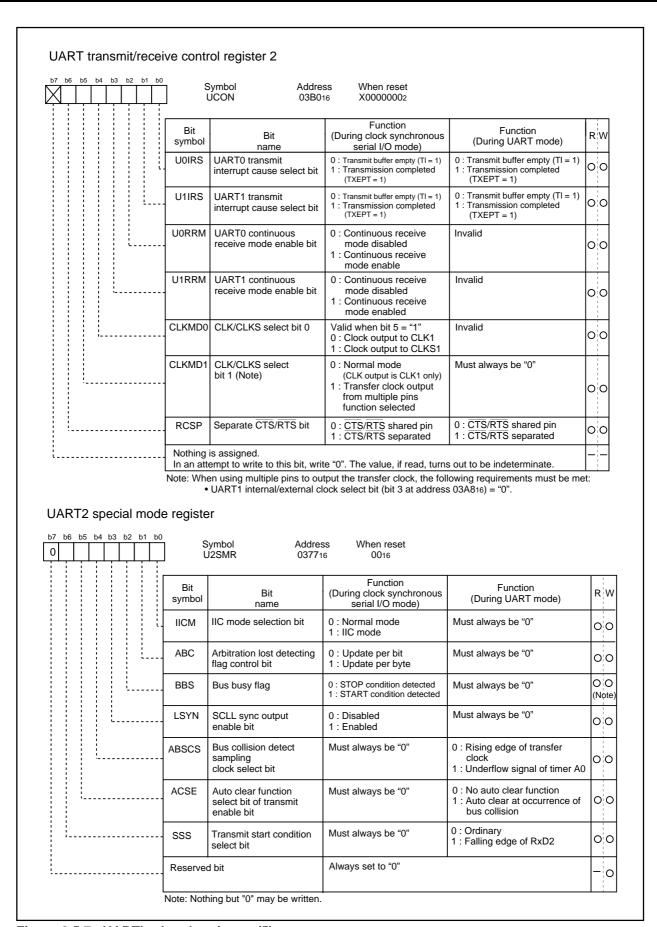


Figure 2.5.7. UARTi-related registers (5)

2.5.2 Operation of Serial I/O (transmission in UART mode)

In transmitting data in UART mode, choose functions from those listed in Table 2.5.4. Operations of the circled items are described below. Figure 2.5.8 shows the operation timing, and Figures 2.5.9 and 2.5.10 show the set-up procedures.

Table 2.5.4. Choosed functions

Item		Set-up	Item		Set-up
Transfer clock	0	Internal clock (f1 / f8 / f32)	Sleep mode	0	Sleep mode off
(Note 2)		External clock (CLKi pin)	(Note 2)		Sleep mode selected
CTS function	0	CTS function enabled	Data logic select function	0	No reverse
		CTS function disabled	(Note 3)		Reverse
Transmission	174110111100101110110110110110110110110110		l '	0	No reverse
interrupt factor	0	Transmission complete	polarity reverse bit (Note 3)		Reverse
CTS / RTS	0	Pin shared by CTS and RTS	Bus collision detection function	0	Not selected
separation function (Note 1)		CTS and RTS separate	(Note 3)		Selected

Note 1: UART0 only. (UART1 CTS/RTS function cannot be used when this function is selected.)

Note 2: UART0, UART1 only.

Note 3: UART2 only.

Operation (1) Setting the transmit enable bit to "1" and writing transmission data to the UARTi transmit buffer register readies the data transmissible status.

- (2) When input to the CTSi pin goes to "L", transmission starts (the CTSi pin needs to be controlled on the reception side).
- (3) Transmission data held in the UARTi transmit buffer register is transmitted to the UARTi transmit register. At this time, the first bit (the start bit) of the transmission data is transmitted from the TxDi pin. Then, data is transmitted, bit by bit, in sequence: LSB, ..., MSB, parity bit, and stop bit(s).
- (4) When the stop bit(s) is (are) transmitted, the transmit register empty flag goes to "1", which indicates that transmission is completed. At this time, the UARTi transmit interrupt request bit goes to "1". The transfer clock stops at "H" level.
- (5) If the transmission condition of the next data is ready when transmission is completed, a start bit is generated following to stop bit(s), and the next data is transmitted.

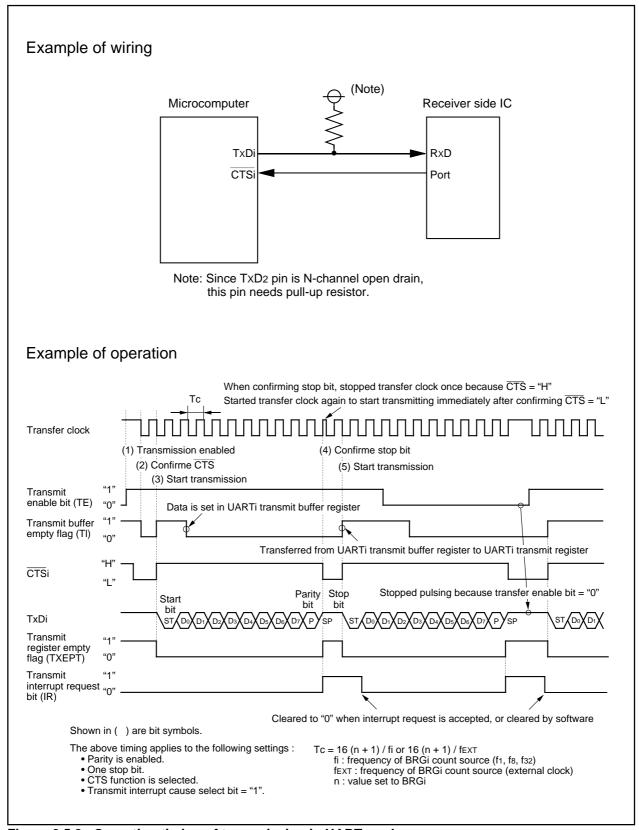


Figure 2.5.8. Operation timing of transmission in UART mode

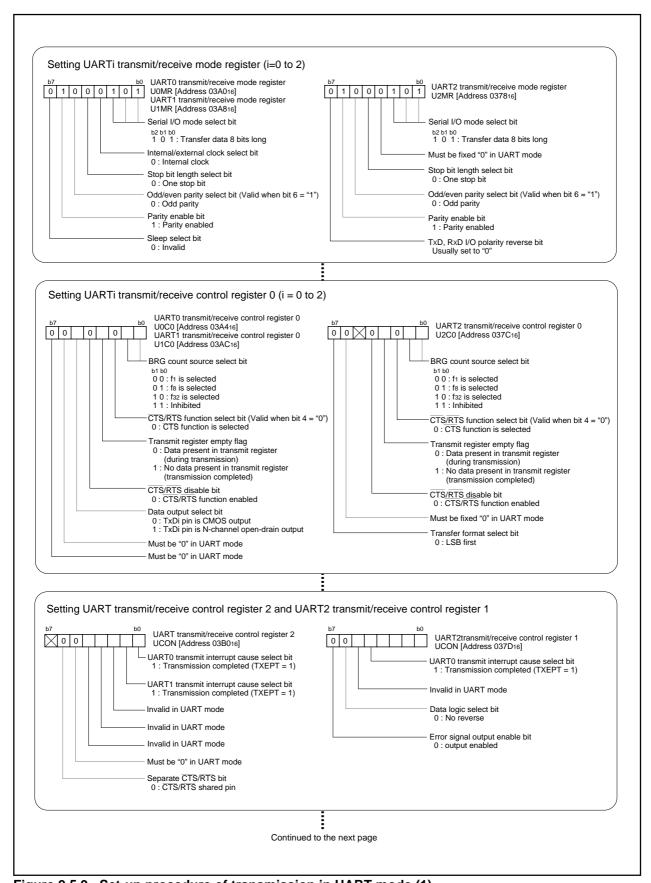


Figure 2.5.9. Set-up procedure of transmission in UART mode (1)

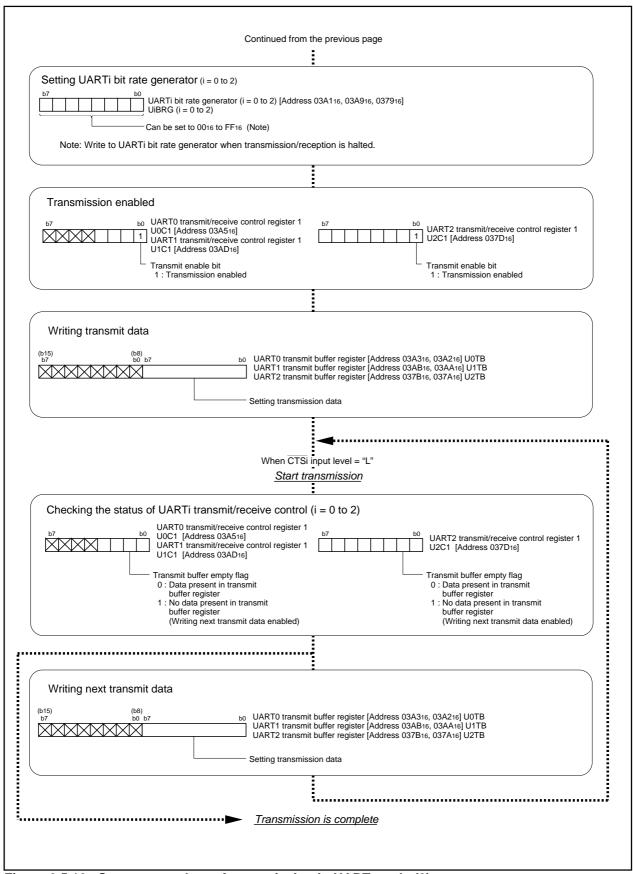


Figure 2.5.10. Set-up procedure of transmission in UART mode (2)

2.5.3 Operation of Serial I/O (reception in UART mode)

In receiving data in UART mode, choose functions from those listed in Table 2.5.5. Operations of the circled items are described below. Figure 2.5.11 shows the operation timing, and Figures 2.5.12 and 2.5.13 show the set-up procedures.

Table 2.5.5. Choosed functions

Item	Set-up		Item		Set-up
Transfer clock	0	Internal clock (f1 / f8 / f32)	Data logic select	0	No reverse
source (Note 2)		External clock (CLKi pin)	function (Note 3)		Reverse
RTS function	0	RTS function enabled	TxD, RxD I/O	0	No reverse
		RTS function disabled polarity reverse bit (Note 3)			Reverse
CTS / RTS separation function	0	Pin shared by CTS and RTS	Bus collision	0	Not selected
(Note 1)				Selected	
Sleep mode (Note 2)	0	Sleep mode off			
(NOTE 2)		Sleep mode selected			

Note 1: UART0 only. (UART1 CTS/RTS function cannot be used when this function is selected.)

Note 2: UART0, UART1 only.

Note 3: UART2 only.

- Operation (1) Setting the receive enable bit to "1" readies data-receivable status. At this time, output from the RTSi pin goes to "L" level to inform the transmission side that the receivable status is
 - (2) When the first bit (the start bit) of reception data is received from the RxDi pin, output from the RTS goes to "H" level. Then, data is received, bit by bit, in sequence: LSB,, MSB, and stop
 - (3) When the stop bit(s) is (are) received, the content of the UARTi receive register is transmitted to the UARTi receive buffer register.
 - At this time, the receive complete flag goes to "1" to indicate that the reception is completed, the UARTi receive interrupt request bit goes to "1", and output from the RTS pin goes to "L" level.
 - (4) The receive complete flag goes to "0" when the lower-order byte of the UARTi buffer register is read.

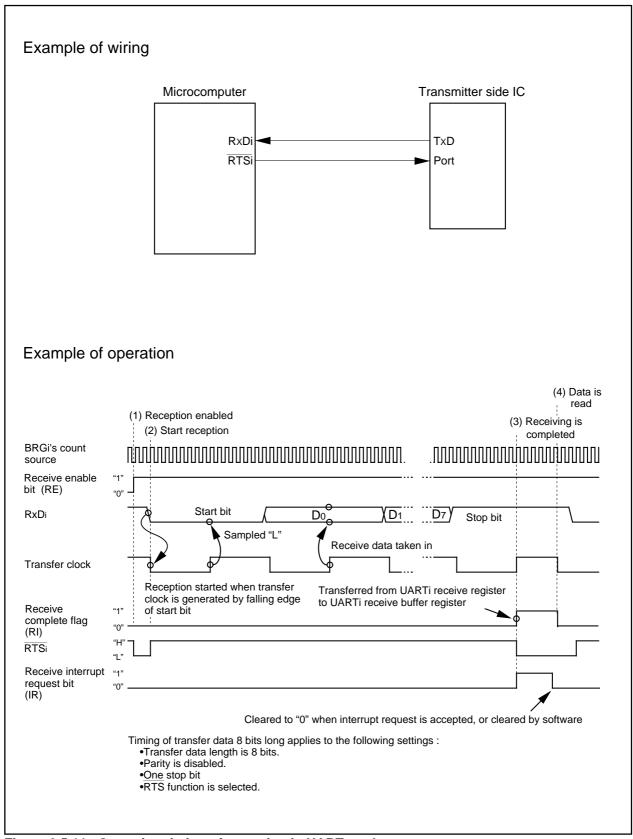


Figure 2.5.11. Operation timing of reception in UART mode

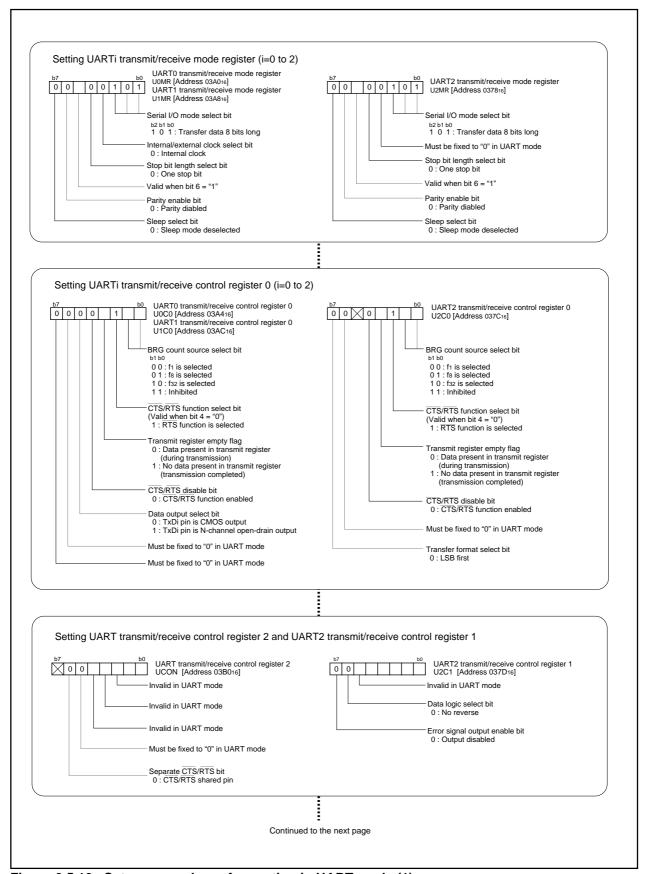


Figure 2.5.12. Set-up procedure of reception in UART mode (1)

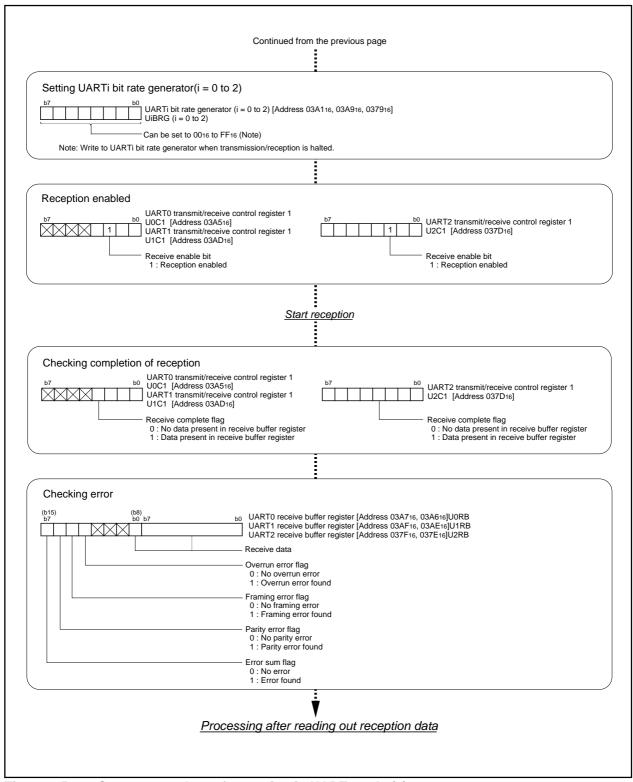


Figure 2.5.13. Set-up procedure of reception in UART mode (2)

2.5.4 Operation of Serial I/O (transmission used for SIM interface)

In transmitting data in UART mode (used for SIM interface), choose functions from those listed in Table 2.5.6. Operations of the circled items are described below. Figure 2.5.14 shows the operation timing, and Figures 2.5.15 and 2.5.16 show the set-up procedures.

Table 2.5.6. Choosed functions

Item	Set-up		
Transfer data	0	Direct format	
format		Inverse format	

- Operation (1) Setting the transmit enable bit and receive enable bit to "1" and writing transmission data to the UART2 transmit buffer register readies the data transmissible status. Set UART2 transfer interrupt is enabled.
 - (2) Transmission data held in the UART2 transmit buffer register is transmitted to the UART2 transmit register. At this time, the first bit (the start bit) of the transmission data is transmitted from the TxD2 pin. Then, data is transmitted, bit by bit, in sequence: LSB, ..., MSB, parity bit, and stop bit(s).
 - (3) When the stop bit(s) is (are) transmitted, the transmit register empty flag goes to "1", which indicates that transmission is completed. At this time, the UART2 transmit interrupt request bit goes to "1". The transfer clock stops at "H" level.
 - (4) If the transmission condition of the next data is ready when transmission is completed, a start bit is generated following to stop bit(s), and the next data is transmitted.
 - (5) If a parity error occurs, an L is output from the SIM card, and the RxD2 terminal turns to the "L" level. Check the RxD2 terminal's level within the UART2 transmission interrupt routine, and if it is found to be at the "L" level, then handle the error.

Note

- The parity error level is determined within a UART2 transmission interrupt. When a transmission interrupt request occurs, set the priority level of the transmission interrupt higher than those of other interrupts so that the interrupt routine can be immediately carried out. Either in the main routine or in an interrupt routine, the interrupt inhibition time has to be made as short as possible.
- Set the RxD2 terminal's direction register to input.

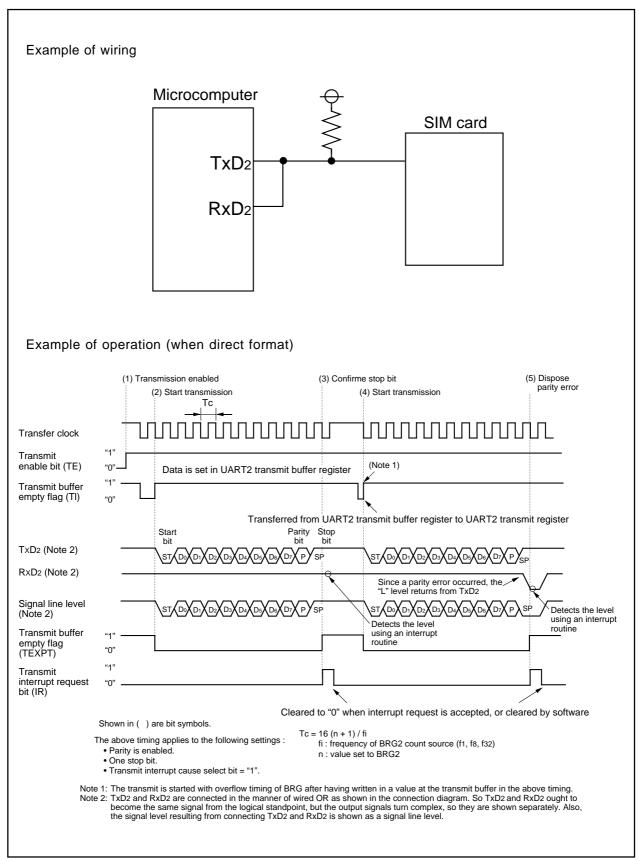


Figure 2.5.14. Operation timing of transmission in UART mode (used for SIM interface)

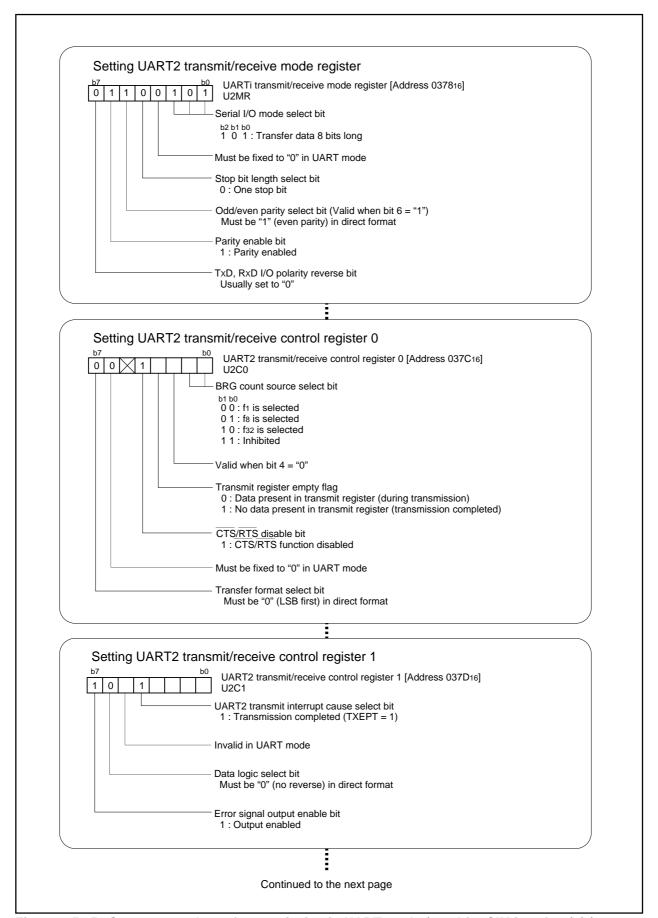


Figure 2.5.15. Set-up procedure of transmission in UART mode (used for SIM interface) (1)

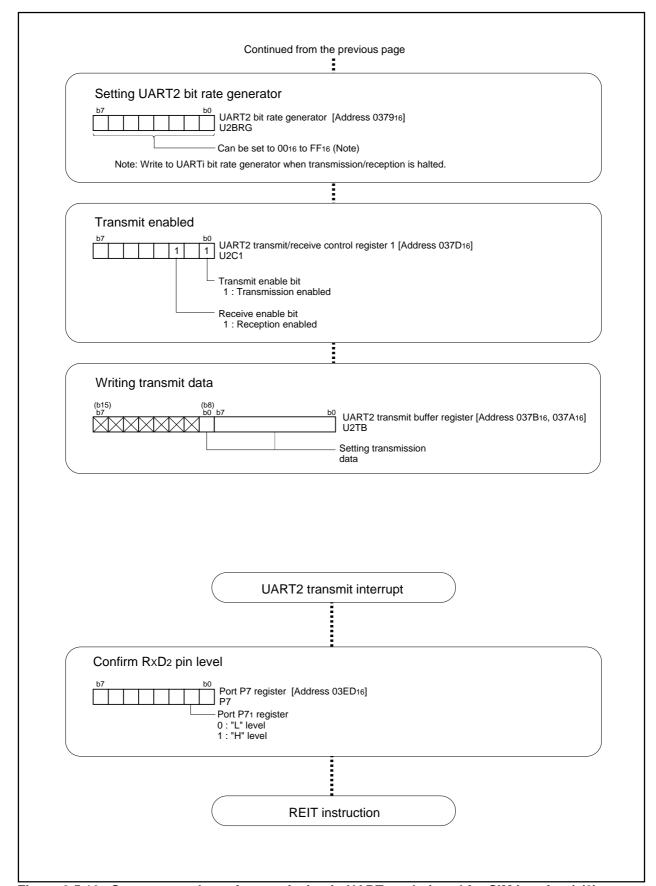


Figure 2.5.16. Set-up procedure of transmission in UART mode (used for SIM interface) (2)

2.5.5 Operation of Serial I/O (reception used for SIM interface)

In receiving data in UART mode (used for SIM interface), choose functions from those listed in Table 2.5.7. Operations of the circled items are described below. Figure 2.5.17 shows the operation timing, and Figures 2.5.18 and 2.5.19 show the set-up procedures.

Figure 2.5.7. Choosed functions

Item	Set-up		
Transfer data	0	Direct format	
format		Inverse format	

Operation (1) Setting the transmit enable bit and receive enable bit to "1" readies data-receivable status.

- (2) When the first bit (the start bit) of reception data is received from the RxD2 pin, data is received, bit by bit, in sequence: LSB,, MSB, and stop bit(s).
- (3) When the stop bit(s) is (are) received, the content of the UART2 receive register is transmitted to the UART2 receive buffer register.
 - At this time, the receive complete flag goes to "1" to indicate that the reception is completed, the UART2 receive interrupt request bit goes to "1".
- (4) The receive complete flag goes to "0" when the lower-order byte of the UART2 buffer register is read.
- (5) When the parity error is occurred, TxD2 pin goes to "L" level.

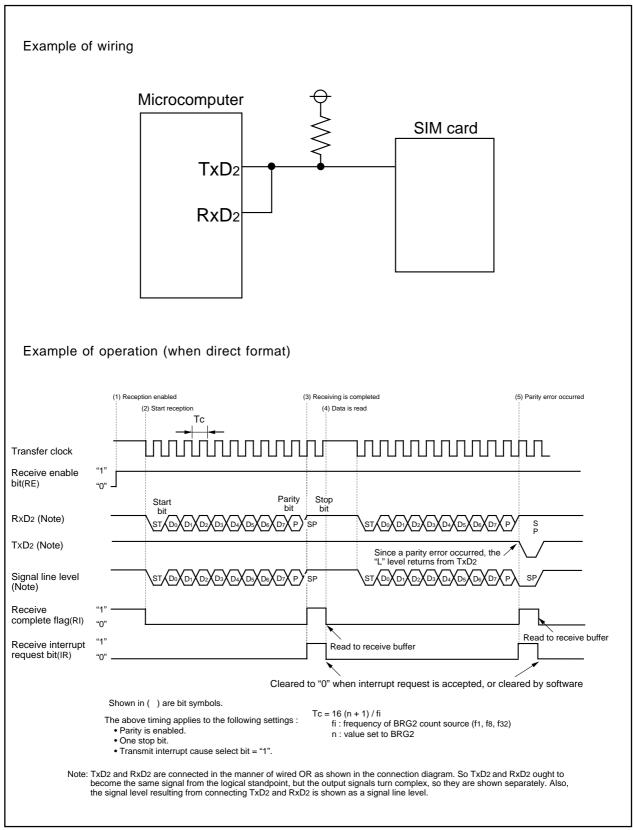


Figure 2.5.17. Operation timing of reception in UART mode (used for SIM interface)

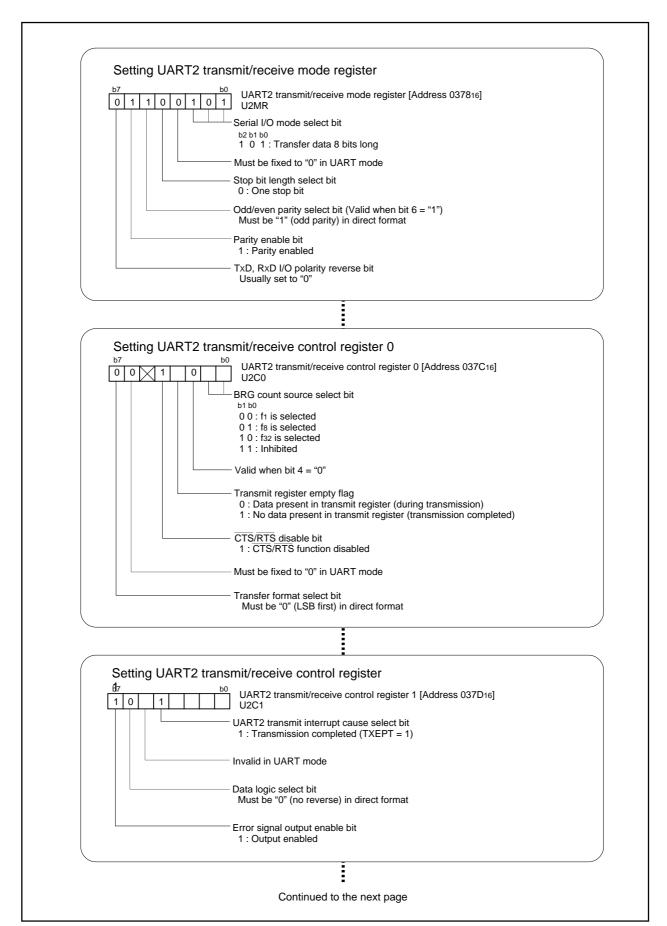


Figure 2.5.18. Set-up procedure of reception in UART mode (used for SIM interface) (1)

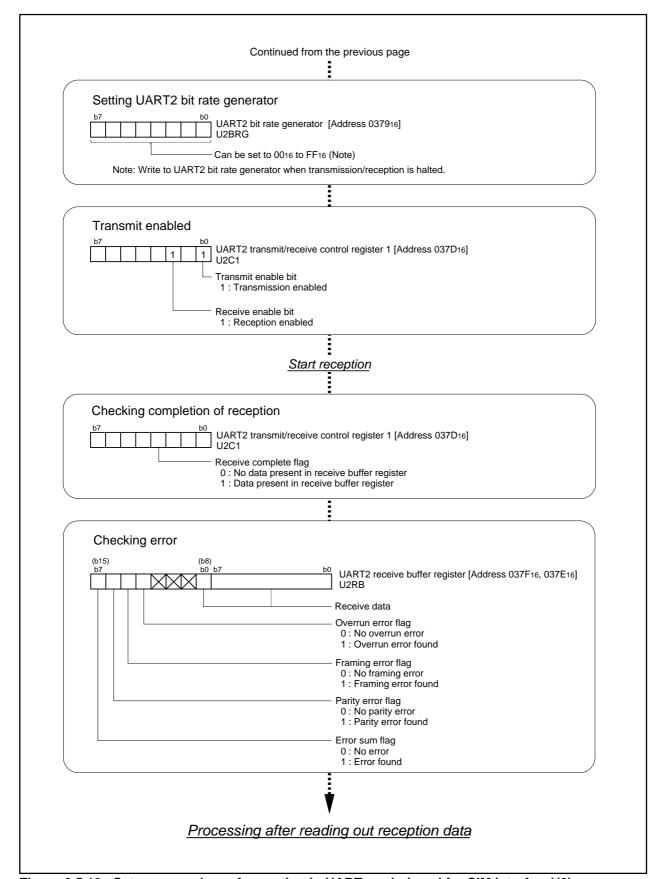


Figure 2.5.19. Set-up procedure of reception in UART mode (used for SIM interface)(2)

2.5.6 Clock Signals in used for the SIM Interface

In conforming to the SIM interface, the UART clock signal within the SIM card needs to conform to the UART2 clock signal within the microprocessor. Two examples are given here as means of generating a UART2 clock signal within the microprocessor.

- * In the case of setting a value equal to or less than (1/256 X 1/16) in the division rate of UART2 clock Choose f1 for the UART's source clock signal and set an optional value in the bit rate generator.
- * In the case of setting a value equal to or greater than (1/256 X 1/16) in the division rate of UART2 clock Set the bit rate generator to "0", turn the source clock signal to timer output and set an optional value in the timer.

Let F be the clock signal within the SIM card and D be the bit rate adjustment factor, then the formula for the UART clock signal becomes as follows. Figure 2.5.20 shows an example of connection.

• In the case of setting a value equal to or less than (1/256 X 1/16) in the division rate of UART2 clock UART2 clock signal within microprocessor = UART clock within SIM card

f1 x
$$\frac{1}{\text{Bit rate generator} + 1}$$
 x $\frac{1}{16}$ = f1 x $\frac{1}{\text{Timer Ai counter} + 1}$ x flip-flop x $\frac{1}{\text{F/D}}$

Let XIN = 16 MHz, timer Ai counter = 1, F = 372, and D = 1, then the value to be set in the bit rate generator becomes

16 x
$$\frac{1}{\text{Bit rate generator} + 1}$$
 x $\frac{1}{16}$ =16 X $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{372/1}$

Bit rate generator = 92

Table 2.5.8 shows an example of setting in the UART2 bit rate generator.

• In the case of setting a value equal to or greater than (1/256 X 1/16) in the division rate of UART2 clock UART2 clock signal within microprocessor = UART clock within SIM card

f1 x
$$\frac{1}{\text{Timer Aj counter} + 1}$$
 x flip-flop x $\frac{1}{\text{Bit rate generator} + 1}$ x $\frac{1}{16}$
= f1 x $\frac{1}{\text{Bit rate generator} + 1}$ x flip-flop x $\frac{1}{\text{F/D}}$

Let XIN= 16 MHz, timer Ai counter = 3, bit rate generator = 0, F = 1860, and D = 1, then the value to be set in the timer Aj counter becomes

$$16 \times \frac{1}{\text{Timer Aj counter} + 1} \times \frac{1}{2} \times \frac{1}{0+1} \times \frac{1}{16} = 16 \times \frac{1}{3+1} \times \frac{1}{2} \times \frac{1}{1860/1}$$

Timer Aj counter = 464

Table 2.5.9 shows an example of setting in the timer Aj counter.

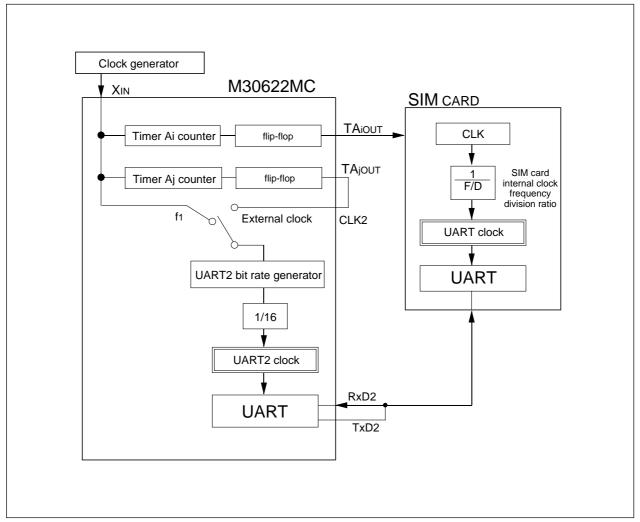


Figure 2.5.20. Example of connection

Table 2.5.8. UART2 bit rate adjustment factor

SIM card internal clock F(Hz)	Bit rate D	F/D	UART2 bit rate generator set value	SIM card internal clock F(Hz)	Bit rate D	F/D	UART2 bit rate generator set value
372	1	372	92	1116	1	1116	278
	2	186			2	558	
	4	93			4	279	
	8				8		
	16				16		
	1/2	744	185		1/2	2232	557
	1/4	1488	371		1/4	4464	1115
	1/8	2976	743		1/8	8928	2231
	1/16	5952	1487		1/16	17856	4463
	1/32	11904	2975		1/32	35712	8927
	1/64	23808	5951		1/64	71424	17855
558	1	558		1488	1	1488	371
	2	279			2	744	185
	4				4	372	92
	8				8	186	
	16				16	93	
	1/2	1116	278		1/2	2976	743
	1/4	2232	557		1/4	5952	1487
	1/8	4464	1115		1/8	11904	2975
	1/16	8928	2231		1/16	23808	5951
	1/32	17856	4463		1/32	47616	11903
	1/64	35712	8927		1/64	95232	23807
744	1	744	185	1860	1	1860	464
	2	372	92		2	930	
	4	186			4	465	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	8	93	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8		
	16				16		
	1/2	1488	371		1/2	3720	929
	1/4	2976	743		1/4	7440	1859
	1/8	5952	1487		1/8	14880	3719
	1/16	11904	2975		1/16	29760	7439
	1/32	23808	5951		1/32	59520	14879
	1/64	47616	11903		1/64	119040	29759

Combination impossible to deal with due to the current specifications of M30622MC

Combination in which the F/D itself does not become an integer

Setting example under the following conditions.

f(XIN)=16MHz

Timer Ai counter set value = 1

Table 2.5.9. TimerAi register adjustment factor

SIM card internal clock F(Hz)	Bit rate D	F/D	Timer Ai value	SIM card internal clock F(Hz)	Bit rate D	F/D	Timer Aj value
372	1	372	92	1116	1	1116	278
	2	186			2	558	
	4	93			4	279	
	8				8		
	16				16		
	1/2	744	185		1/2	2232	557
	1/4	1488	371		1/4	4464	1115
	1/8	2976	743		1/8	8928	2231
	1/16	5952	1487		1/16	17856	4463
	1/32	11904	2975		1/32	35712	8927
	1/64	23808	5951		1/64	71424	17855
558	1	558		1488	1	1488	371
	2	279			2	744	185
	4				4	372	92
	8				8	186	
	16				16	93	
	1/2	1116	278		1/2	2976	743
	1/4	2232	557		1/4	5952	1487
	1/8	4464	1115		1/8	11904	2975
	1/16	8928	2231		1/16	23808	5951
	1/32	17856	4463		1/32	47616	11903
	1/64	35712	8927		1/64	95232	23807
744	1	744	185	1860	1	1860	464
	2	372	92		2	930	
	4	186			4	465	
	8	93			8		
	16				16		
	1/2	1488	371		1/2	3720	929
	1/4	2976	743		1/4	7440	1859
	1/8	5952	1487		1/8	14880	3719
	1/16	11904	2975		1/16	29760	7439
	1/32	23808	5951		1/32	59520	14879
	1/64	47616	11903		1/64	119040	29759

Combination impossible to deal with due to the current specifications of ${\sf M30622MC}$

Combination in which the F/D itself does not become an integer

Setting example under the following conditions.

f(XIN)=16MHz

Timer Ai counter set value = 3, UARTi bit rate generator set value = 0

2.6 SI/O3, 4

2.6.1 Overview

SI/O3, 4 carries out 8-bit data communications in synchronization with the clock. The following is an overview of the SI/O3, 4.

(1) Transmission/reception format

8-bit data

(2) Transfer rate

If the internal clock is selected as the transfer clock, the divide-by-2 frequency, resulting from the bit rate generator division, becomes the transfer rate. The bit rate generator count source can be selected from the following: f1, f8, and f32. Clocks f1, f8, and f32 are derived by dividing the CPU's main clock by 1, 8, and 32 respectively.

Furthermore, if an external clock is selected as the transfer clock, the clock frequency input to the CLK pin becomes the transfer rate.

(3) Function selection

For SI/O3, 4, the following functions can be selected:

(a) Function for choosing which bit to transmit first

This function is to choose whether to transmit data from bit 0 or from bit 7. Choose either of the following:

- LSB first Data is transmitted from bit 0.
- MSB first Data is transmitted from bit 7.

(b) Choosing output level when not transferring

- Internal clock
 High-impedance output.
- External clock "H" or "L" output level is selected.

(6) Input to the serial I/O and the direction register

To input an external signal to the serial I/O, set the direction register of the relevant port to input.

(7) Pins related to the SI/O3, 4

- CLK3, CLK4 pins Input/output pins for the transfer clock
- SIN3, SIN4 pins Input pins for data
- SOUT3, SOUT4 pins Output pins for data

(8) Registers related to the SI/O3, 4

Figure 2.6.1 shows the memory map of SI/O3, 4-related registers, and Figures 2.6.2 show SI/O3, 4-related registers.

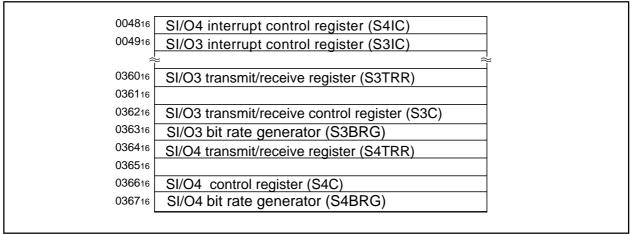


Figure 2.6.1. Memory map of serial I/O3, 4-related registers

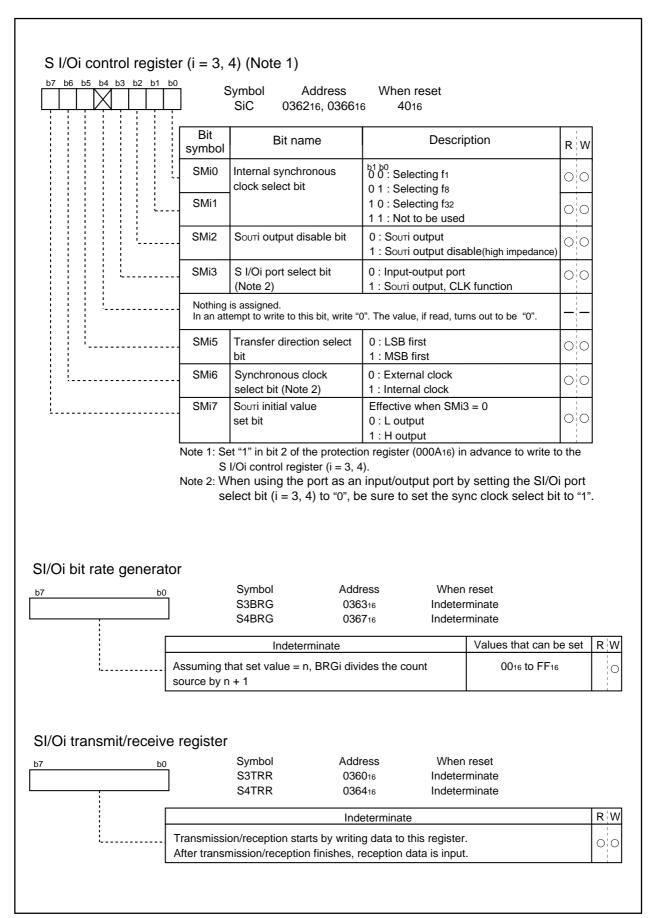


Figure 2.6.2. Serial I/O3, 4-related registers

2.6.2 Operation of SI/O3,4

In transmitting data in this mode, choose functions from those listed in Table 2.6.1. Operations of the circled items are described below. Figure 2.6.3 shows the operation timing, and Figures 2.6.4 and 2.6.5 show the set-up procedures.

Table 2.6.1. Choosed functions

Item	Set-up		Item		Set-up
Transfer clock	0	Internal clock (f1 / f8 / f32)	Souti initial value	0	Not used
source		External clock (CLKi pin)	set function		Used
Transfer clock	0	LSB first			
		MSB first			

- Operation (1) Transfer begins upon writing the SI/Oi transmit data. The transmit data is sent out from the Souti pin synchronously with falling edges of the transfer clock.
 - (2) When SOUT finishes sending one byte of data, the interrupt request bit is set to 1.
 - (3) After the transfer is completed, Sout holds the last data for a 1/2 transfer clock period before going to a high-impedance state.

Note

- Do not write data to the SI/Oi transmit/receive register (i = 3, 4; addresses 036016, 036416) during a transfer.
- Data can only be written to the SI/Oi transmit/receive register when the device is idle neither sending nor receiving data.

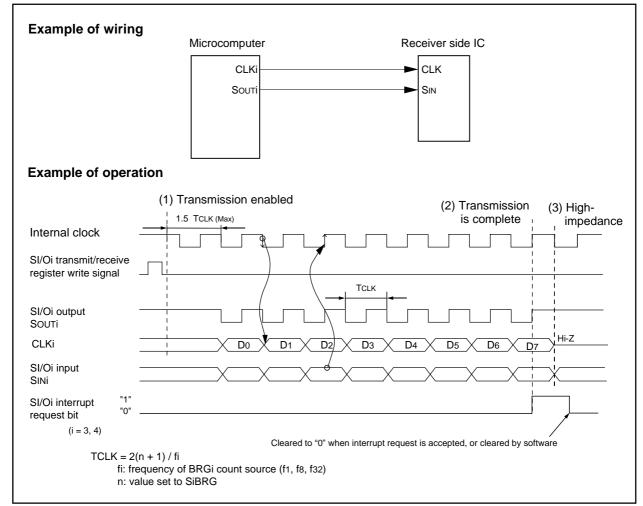


Figure 2.6.3. Operation timing of transmission in SI/O3, 4 mode

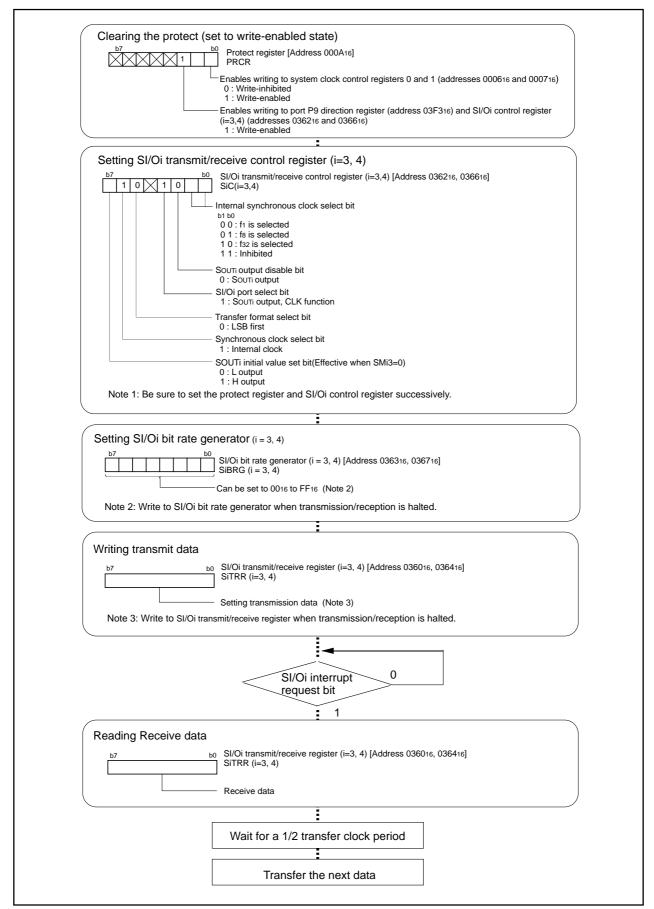


Figure 2.6.4. Set-up procedure of transmission in SI/O3, 4 mode

2.7 A-D Converter

2.7.1 Overview

The A-D converter used in the M16C/62 group operates on a successive conversion basis. The following is an overview of the A-D converter.

(1) Mode

The A-D converter operates in one of five modes:

(a) One-shot mode

Carries out A-D conversion on input level of one specified pin only once.

(b) Repetition mode

Repeatedly carries out A-D conversion on input level of one specified pin.

(c) One-shot sweep mode

Carries out A-D conversion on input level of two or more specified pins only once.

(d) Repeated sweep mode 0

Repeatedly carries out A-D conversion on input level of two or more pins.

(e) Repeated sweep mode 1

Repeatedly carries out A-D conversion on input level of two or more pins. This mode is different from the repeated sweep mode 0 in that weights can be assigned to specifing pins control the number of conversion times.

(2) Operation clock

The operation clock in 5 V operation can be selected from the following: fAD, divide-by-2 fAD, and divide-by-4 fAD. In 3 V operation, the selection is divide-by-2 fAD or divide-by-4. The fAD frequency is equal to that of the CPU's main clock.

(3) Conversion time

Number of conversion for A-D convertor varies depending on resolution as given. Table 2.7.1 shows relation between the A-D converter operation clock and conversion time.

Sample & Hold function selected:

33 AD cycles for 10-bit resolution, or 28 AD cycles for 8-bit resolution

No Sample & Hold function:

59 AD cycles for 10-bit resolution, or 49 AD cycles for 8-bit resolution

Table 2.7.1. Conversion time every operation clock

Frequency selection	n bit 1		1	
Frequency selection	n bit 0	0	0 1	
A-D converter's ope	eration clock	$\phi AD = \frac{fAD}{4} \qquad \phi AD = \frac{fAD}{2}$		φAD = fAD
Min. conversion	8-bit mode	28 X		
cycles (Note 1)	10-bit mode	33 X		
Min. conversion time (Note 2)	8-bit mode	11.2µs 5.6µs		2.8µs
	10-bit mode	13.2µs	6.6µs	3.3µs

Note 1: The number of conversion cycles per one analog input pin.

Note 2: The conversion time per one analog input pin (when fAD = f(XIN) = 10 MHz)

(4) Functions selection

(a) Sample & Hold function

Sample & Hold function samples input voltage when A-D conversion starts and carries out A-D conversion on the voltage sampled. When A-D conversion starts, input voltage is sampled for 3 cycles of the operation clock. When the Sample & Hold function is selected, set the operation clock for A-D conversion to 1 MHz or higher.

(b) 8-bit A-D to 10-bit A-D switching function

Either 8-bit resolution or 10-bit resolution can be selected. When 8-bit resolution is selected, the 8 higher-order bits of the 10-bit A-D are subjected to A-D conversion. The equations for 10-bit resolution and 8-bit resolution are given below:

10-bit resolution (Vref X n /
$$2^{10}$$
) – (Vref X 0.5 / 10^{10}) (n = 1 to 1023), 0 (n = 0)

8-bit resolution (Vref X n /
$$2^8$$
) – (Vref X 0.5 / 2^{10}) (n = 1 to 255), 0 (n = 0)

(c) A-D conversion by external trigger

The user can select software or an external pin input to start A-D conversion.

(d) External operation amplifier connection function

The selected A-D convertor pin input voltage can be output from the ANEX0 pin. By connecting an operation amplifier between the ANEX1 pin and ANEX0 pin when using this function, the input voltage to all A-D conversion pins can be amplified with one operation amplifier.

(e) Expanded analog input pins function

A-D conversion can be done for voltage input from either the ANEX0 pin or the ANEX1 pin.

(f) Connecting or cutting Vref

Cutting Vref allows decrease of the current flowing into the A-D converter. To decrease the microcomputer's power consumption, cut Vref. To carry out A-D conversion, start A-D conversion 1 µs or longer after connecting Vref.

The following are exsamples in which functions (a) through (f) are selected:

One-shot mode	P388
One-shot mode, trigger by ADTRG	P390
One-shot mode, software trigger, expanded analog input	P392
One-shot mode, software trigger, external operation amplifier connected	P394
Repeat mode, software trigger	P396
One-shot sweep mode, software trigger	P398
Repeated sweep mode 0, software trigger	P400
Repeated sweep mode 1, software trigger	P402

(5) Input to A-D converter and direction register

To use the A-D converter, set the direction register of the relevant port to input.

(6) Pins related to A-D converter

(a) ANo pin through AN7 pin Input pins of the A-D converter

(b) AVcc pin Power source pin of the analog section

(c) VREF pin(d) AVss pinInput pin of reference voltageGND pin of the analog section

(e) ANEX0 pin and ANEX1 pin Expanded input pins of the A-D converter (f) ADTRG pin Trigger input pin of the A-D converter

(7) A-D converter and related registers

Figure 2.7.1 shows the memory map of A-D converter-related registers, and Figures 2.7.2 through 2.7.4 show A-D converter-related registers.

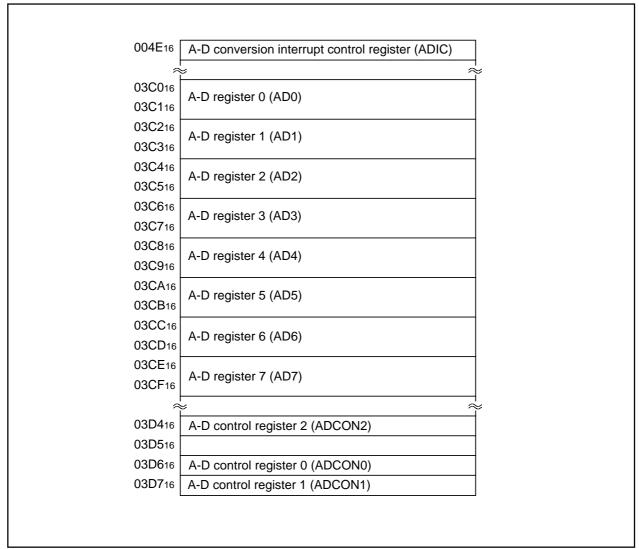


Figure 2.7.1. Memory map of A-D converter-related registers

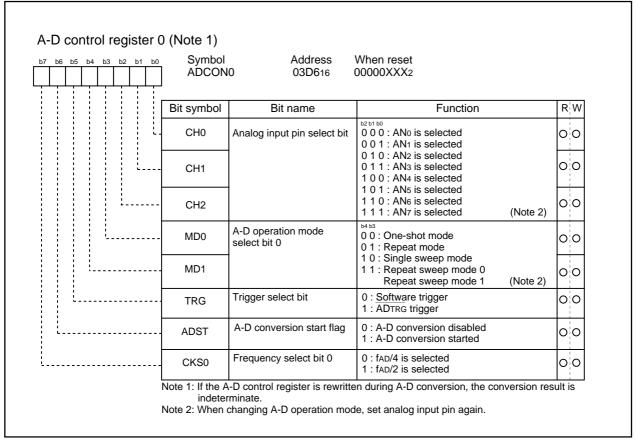


Figure 2.7.2. A-D converter-related registers (1)



Figure 2.7.3. A-D converter-related registers (2)

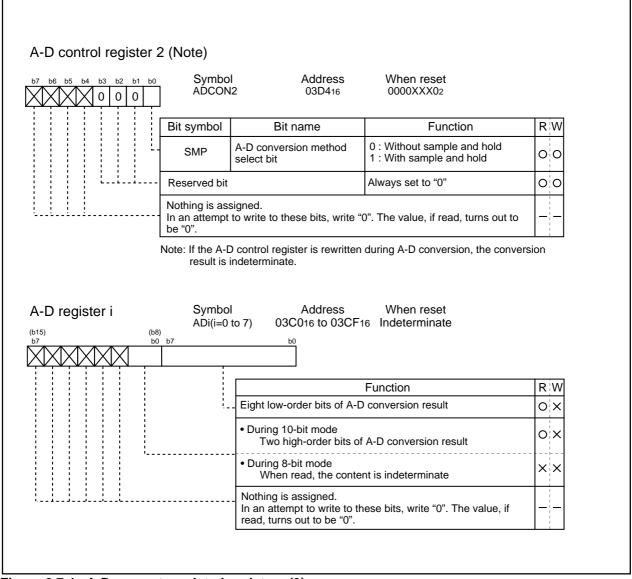


Figure 2.7.4. A-D converter-related registers (3)

2.7.2 Operation of A-D converter (one-shot mode)

In one-shot mode, choose functions from those listed in Table 2.7.2. Operations of the circled items are described below. Figure 2.7.5 shows the operation timing, and Figure 2.7.6 shows the set-up procedure.

Item	Set-up		Item	Set-up	
Operation clock	0	Divided-by-4 fad / divided-	Expanded analog	0	Not used
φAD		by-2 fad / fad	input pin		Either ANEX0 pin or ANEX1 pin
Resolution	0	8-bit / 10-bit			ANEXT PIII
Analog input pin	0	One of ANo pin to AN7 pin			External operation amplifier connection mode
Trigger for starting	0	Software trigger	Sample & Hold		Not activated
A-D conversion		Trigger by ADTRG		O	Activated

- Operation (1) Setting the A-D conversion start flag to "1" causes the A-D converter to begin operating.
 - (2) After A-D conversion is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register i. At this time, the A-D conversion interrupt request bit goes to "1". Also, the A-D conversion start flag goes to "0", and the A-D converter stops operating.

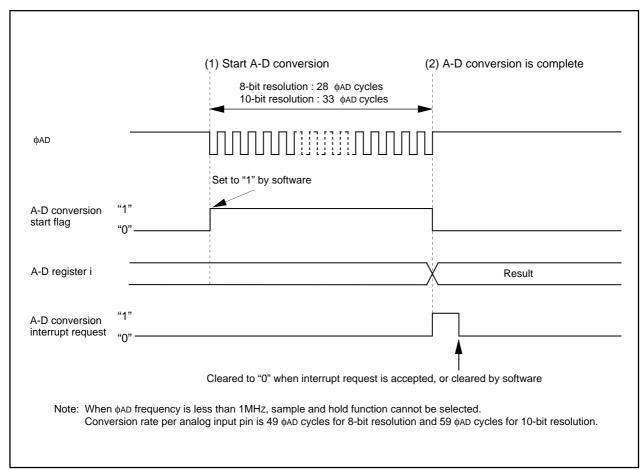


Figure 2.7.5. Operation timing of one-shot mode

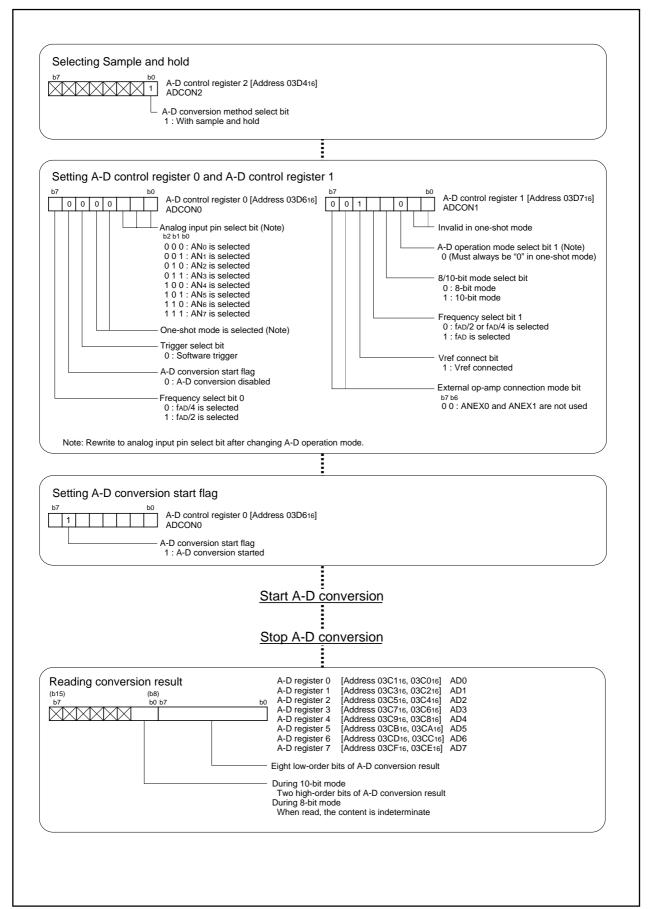


Figure 2.7.6. Set-up procedure of one-shot mode

2.7.3 Operation of A-D Converter (in one-shot mode, an external trigger selected)

In one-shot mode, choose functions from those listed in Table 2.7.3. Operations of the circled items are described below. Figure 2.7.7 shows timing chart, and Figure 2.7.8 shows the set-up procedure.

Table	273	Choosed	functions
Iable	Z.1.J.	CHUUSEU	TUHCHOUS

Item	Set-up		Item	Set-up	
Operation clock	0	Divided-by-4 fad / divided-	Expanded analog	0	Not used
φAD		by-2 fad / fad	input pin		Either ANEX0 pin or ANEX1 pin
Resolution	0	8-bit / 10-bit			'
Analog input pin	0	One of ANo pin to AN7 pin			External operation amplifier connection mode
Trigger for starting		Software trigger	Sample & Hold		Not activated
A-D conversion	0	Trigger by ADTRG		0	Activated

Operation (1) If the level of the ADTRG changes from "H" to "L" with the A-D conversion start flag set to "1", the A-D converter begins operating.

- (2) After A-D conversion is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register i. At this time, the A-D conversion interrupt request bit goes to "1". Also the A-D converter stops operating.
- (3) If the level of the ADTRG pin changes from "H" to "L", the A-D converter carries out conversion from step (1) again. If the level of the ADTRG pin changes from "H" to "L" while conversion is in progress, the A-D converter stops the A-D conversion in process, and carries out conversion from step (1) again.

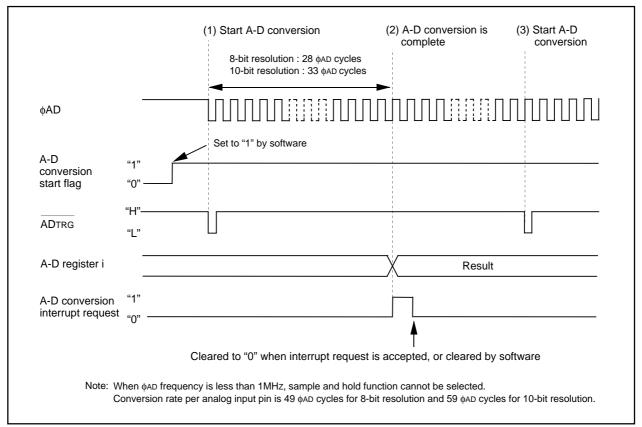


Figure 2.7.7. Operation timing of one-shot mode, with an external trigger selected

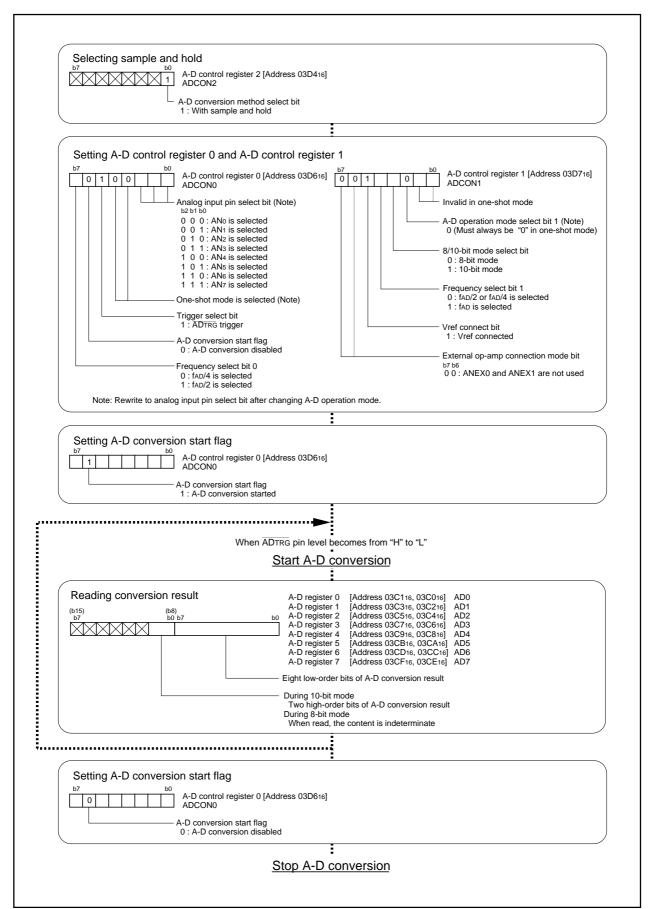


Figure 2.7.8. Set-up procedure of one-shot mode, with an external trigger selected

2.7.4 Operation of A-D Converter (in one-shot mode, expanded analog input pin selected)

In one-shot mode, choose functions from those listed in Table 2.7.4. Operations of the circled items are described below. Figure 2.7.9 shows timing chart, and Figure 2.7.10 shows the set-up procedure.

Item	Set-up		Item	Set-up	
Operation clock	0	Divided-by-4 fAD / divided-	Expanded analog		Not used
φAD		by-2 fad / fad	input pin	0	Either ANEX0 pin or ANEX1 pin
Resolution	0	8-bit / 10-bit			'
Analog input pin	0	One of ANo pin to AN7 pin	-		External operation amplifier connection mode
Trigger for starting	0	Software trigger	Sample & Hold		Not activated
A-D conversion		Trigger by ADTRG		0	Activated

Table 2.7.4. Choosed functions

- Operation (1) Setting the A-D conversion start flag to "1" causes the A-D converter to start the conversion on voltage input to the ANEXi pin.
 - (2) After the A-D conversion of voltage input to the ANEXi pin is completed, the content of the successive comparison register (conversion result) is transmitted to the A-D register. At the same time, the A-D conversion interrupt request bit goes to "1". Also, the A-D conversion start flag goes to "0", and the A-D converter stops operating.

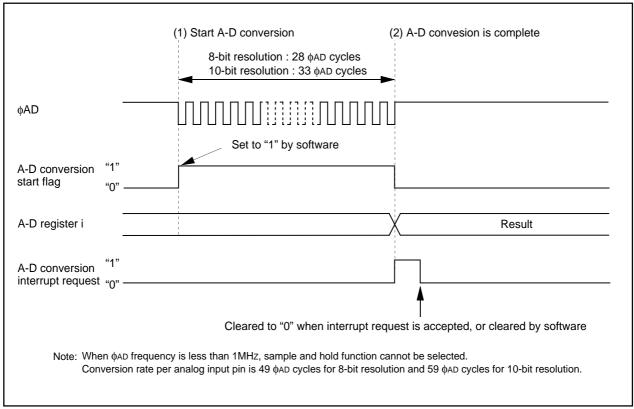


Figure 2.7.9. Operation timing of one-shot mode, with expanded analog input pin selected

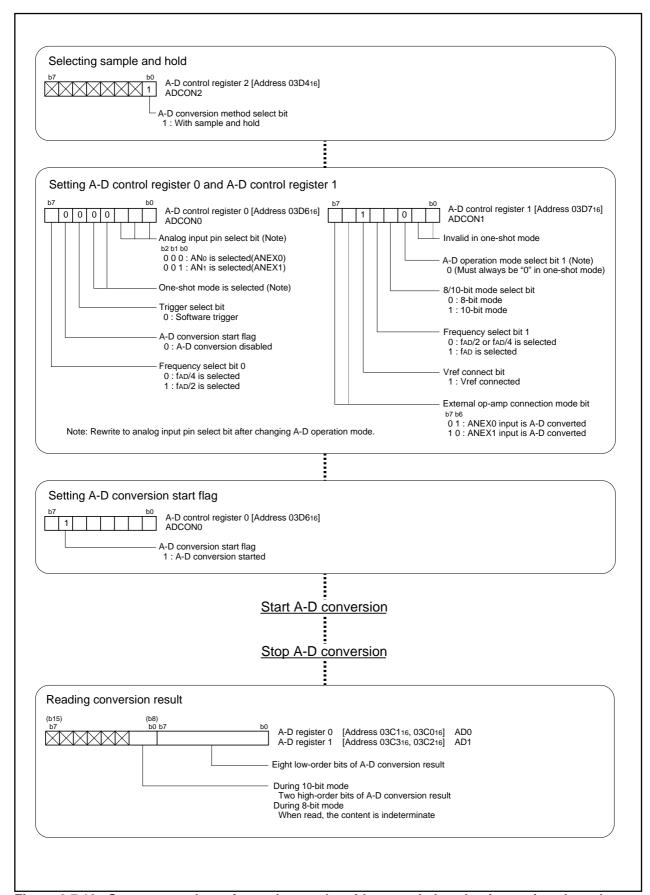


Figure 2.7.10. Set-up procedure of one-shot mode, with expanded analog input pin selected

2.7.5 Operation of A-D Converter (in one-shot mode, external op-amp connection mode selected)

In one-shot mode, choose functions from those listed in Table 2.7.5. Operations of the circled items are described below. Figure 2.7.11 shows timing chart, and Figure 2.7.12 shows the set-up procedure.

Table	275	Chancad	functions
Iable	Z.1.3.	CHOOSEG	TUITCHOUS

Item	Set-up		Item	Set-up	
Operation clock	0	Divided-by-4 fad / divided-	Expanded analog		Not used
φAD		by-2 fad / fad	input pin		Either ANEX0 pin or ANEX1 pin
Resolution	0	8-bit / 10-bit			ANEXT PIII
Analog input pin	0	One of ANo pin to AN7 pin		0	External operation amplifier connection mode
Trigger for starting A-D conversion	0	Software trigger	Sample & Hold		Not activated
A-D conversion		Trigger by ADTRG		0	Activated

- Operation (1) Setting the A-D conversion start flag to "1" causes voltage input to the ANi pin to be output from the ANEX0 pin. The A-D conversion is carried out on voltage input to the ANEX1 pin (connect an operation amplifier between the ANEX0 pin and the ANEX1 pin).
 - (2) After the A-D conversion is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register i corresponding to the ANi pin. At this time, the A-D conversion interrupt request bit goes to "1".

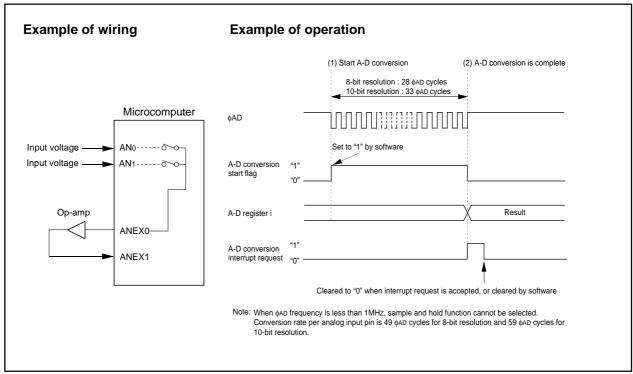


Figure 2.7.11. Operation timing of one-shot mode, with external op-amp connection mode selected

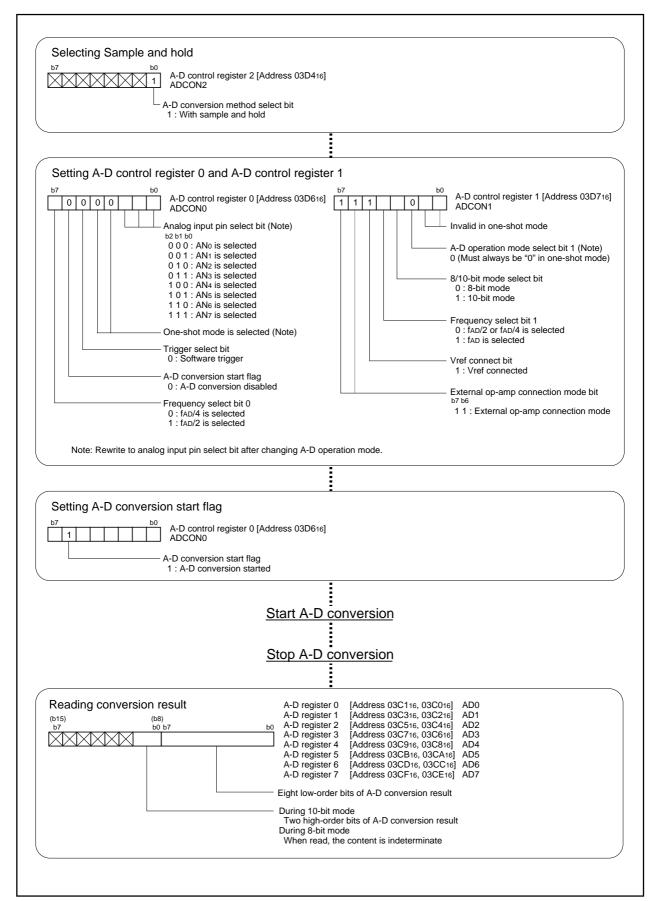


Figure 2.7.12. Set-up procedure of one-shot mode, with external op-amp connection mode selected

2.7.6 Operation of A-D Converter (in repeat mode)

In repeat mode, choose functions from those listed in Table 2.7.6. Operations of the circled items are described below. Figure 2.7.13 shows timing chart, and Figure 2.7.14 shows the set-up procedure.

Table	276	Chanser	I functions
Iable	Z-1-O-	CHIOOSEC	

Item	Set-up		Item	Set-up	
Operation clock	0	Divided-by-4 fad / divided-	Expanded analog	0	Not used
φAD		by-2 fad / fad	input pin		Either ANEX0 pin or ANEX1 pin
Resolution	0	8-bit / 10-bit			ANEXT PIII
Analog input pin	0	One of ANo pin to AN7 pin			External operation amplifier connection mode
Trigger for starting A-D conversion	0	Software trigger	Sample & Hold		Not activated
A-D conversion		Trigger by ADTRG		0	Activated

Operation (1) Setting the A-D conversion start flag to "1" causes the A-D converter to start operating.

- (2) After the first conversion is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register i. The A-D conversion interrupt request bit does not go to "1".
- (3) The A-D converter continues operating until the A-D conversion start flag is set to "0" by software. The conversion result is transmitted to A-D register i every time a conversion is completed.

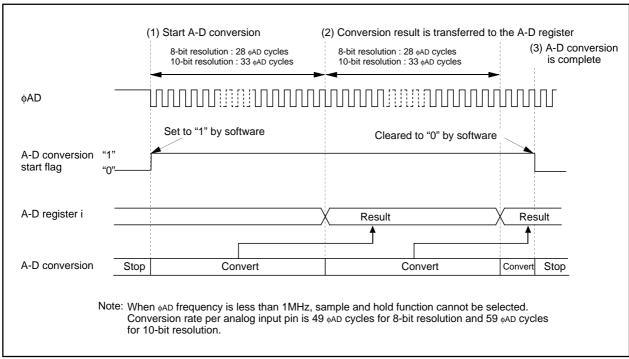


Figure 2.7.13. Operation timing of repeat mode

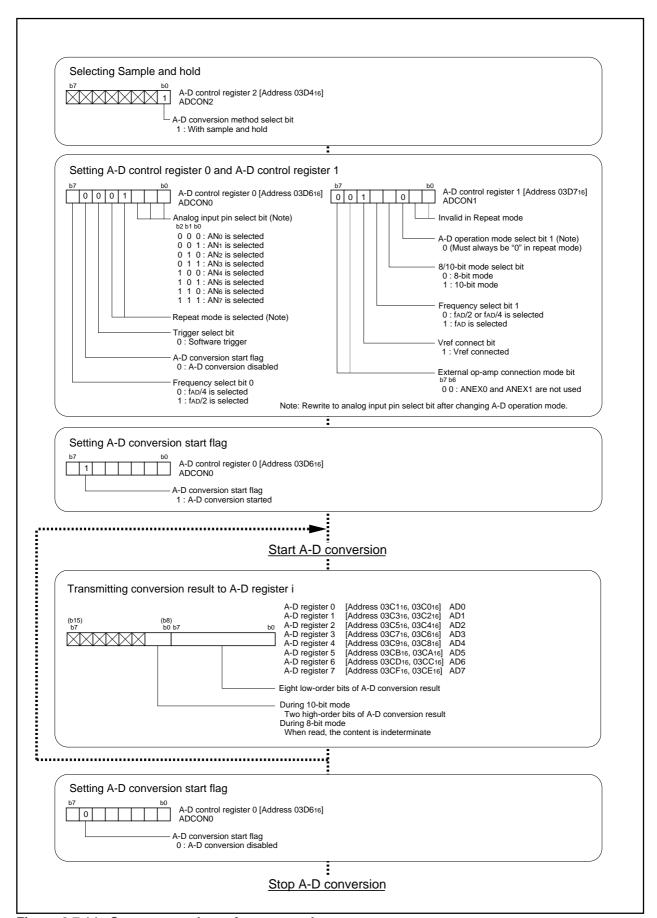


Figure 2.7.14. Set-up procedure of repeat mode

2.7.7 Operation of A-D Converter (in single sweep mode)

In single sweep mode, choose functions from those listed in Table 2.7.7. Operations of the circled items are described below. Figure 2.7.15 shows timing chart, and Figure 2.7.16 shows the set-up procedure.

Table 2.7.7.	Chassad	functions
Table 2.7.7.	Cnoosea	tunctions

Item	Set-up		Item Set-up		Set-up
Operation clock AD		Divided-by-4 fad / divided-	Trigger for starting A-	0	Software trigger
		by-2 fad / fad	D conversion		Trigger by ADTRG
Resolution	0	8-bit / 10-bit	Expanded analog	0	Not used
Analog input pin	0	ANo and AN1 (2 pins) / ANo to AN3 (4 pins) / ANo to AN5	input pin		External ope-amp connection mode
	(6 pins) / ANo to AN7 (8 pins		Sample & Hold		Not activated
					Activated

- Operation (1) Setting the A-D conversion start flag to "1" causes the A-D converter to start the conversion on voltage input to the ANo pin.
 - (2) After the A-D conversion of voltage input to the ANo pin is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register 0. The A-D converter converts all analog input pins selected by the user. The conversion result is transmitted to A-D register i corresponding to each pin, every time conversion on one pin is completed.
 - (3) When the A-D conversion on all the analog input pins selected is completed, the A-D conversion interrupt request bit goes to "1". At this time, the A-D conversion start flag goes to "0". The A-D converter stops operating.

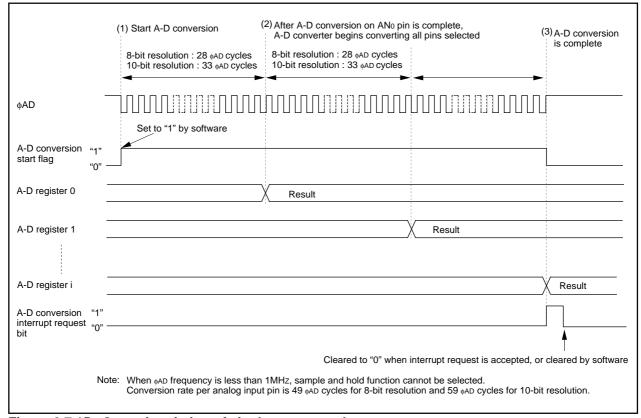


Figure 2.7.15. Operation timing of single sweep mode

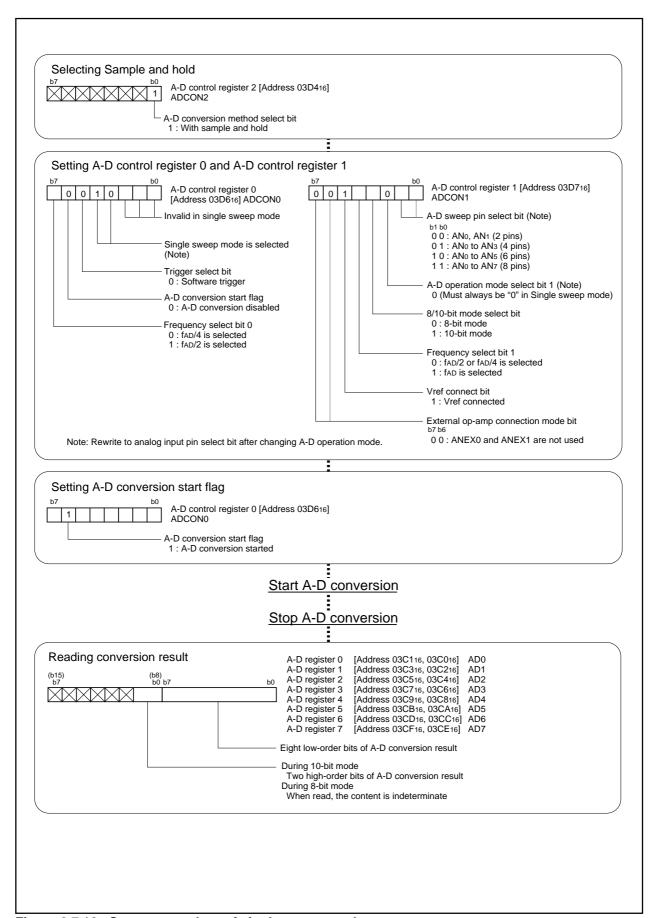


Figure 2.7.16. Set-up procedure of single sweep mode

2.7.8 Operation of A-D Converter (in repeat sweep mode 0)

In repeat sweep 0 mode, choose functions from those listed in Table 2.7.8. Operations of the circled items are described below. Figure 2.7.17 shows timing chart, and Figure 2.7.18 shows the set-up procedure.

Tah	2 ما	7 8	Choose	d fun	ctions
ıav	IC 2	. / .0.	CHUUSE	eu iuii	LIIOIIS

Item	Set-up		Item		Set-up
		Divided-by-4 fAD / divided-	Trigger for starting	0	Software trigger
		by-2 fad / fad	A-D conversion		Trigger by ADTRG
Resolution	0	8-bit / 10-bit	Expanded analog	0	Not used
Analog input pin	ANo and AN1 (2 pins) / AN0 O to AN3 (4 pins) / AN0 to AN5		input pin		External ope-amp connection mode
	(6 pins) / ANo to ANo (8 pins)	Sample & Hold		Not activated	
				0	Activated

- Operation (1) Setting the A-D conversion start flag to "1" causes the A-D converter to start the conversion on voltage input to the ANo pin.
 - (2) After the A-D conversion of voltage input to the ANo pin is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register 0.
 - (3) The A-D converter converts all pins selected by the user. The conversion result is transmitted to A-D register i corresponding to each pin every time A-D conversion on the pin is completed. The A-D conversion interrupt request bit does not go to "1".
 - (4) The A-D converter continues operating until the A-D conversion start flag is set to "0" by software.

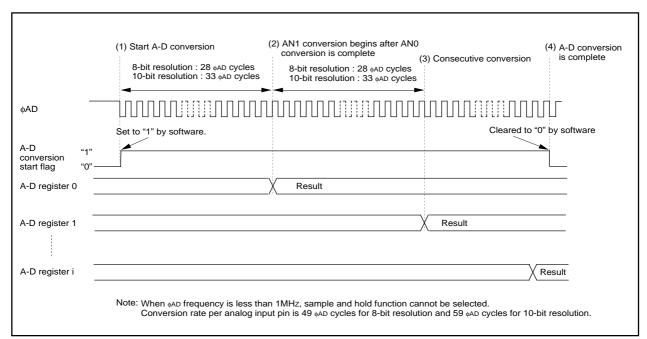


Figure 2.7.17. Operation timing of repeat sweep 0 mode

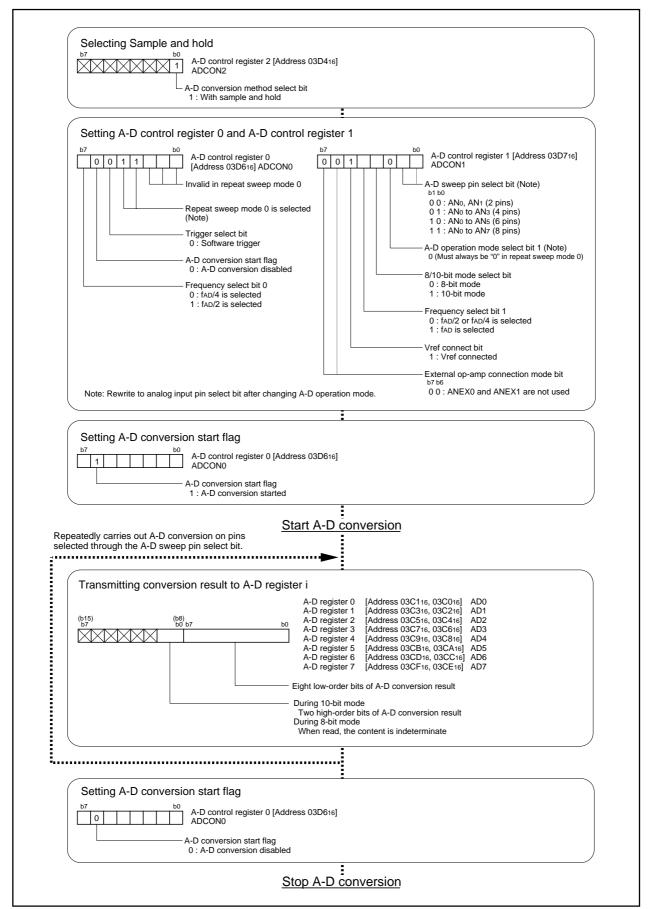


Figure 2.7.18. Set-up procedure of repeat sweep 0 mode

2.7.9 Operation of A-D Converter (in repeat sweep mode 1)

In repeat sweep 1 mode, choose functions from those listed in Table 2.7.9. Operations of the circled items are described below. Figure 2.7.19 shows ANi pin's sweep sequence, Figure 2.7.20 shows timing chart, and Figure 2.7.21 shows the set-up procedure.

	Table	279	Choosed	functions
--	-------	-----	---------	------------------

Item	Set-up		Item	Set-up	
Operation clock \$\phiAD\$	0	Divided-by-4 fad / divided-	Trigger for starting	0	Software trigger
		by-2 fad / fad	A-D conversion		Trigger by ADTRG
Resolution	0	8-bit / 10-bit	Expanded analog	0	Not used
Analog input pin	O pins) / ANo		input pin		External ope-amp connection mode
		ANo to AN3 (4 pins)	Sample & Hold		Not activated
				0	Activated

Operation

- (1) Setting the A-D conversion start flag to "1" causes the A-D converter to start the conversion on voltage input to the ANo pin.
- (2) After the A-D conversion on voltage input to the ANo pin is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register 0.
- (3) Every time the A-D converter carries out A-D conversion on a selected analog input pin, the A-D converter carries out A-D conversion on only one unselected pin, and then the A-D converter carries out A-D conversion from the AN0 pin again. (See Figure 2.7.19.) The conversion result is transmitted to A-D register i every time conversion on a pin is completed. The A-D conversion interrupt request bit does not go to "1".
- (4) The A-D converter continues operating until software goes the A-D conversion start flag to "0".

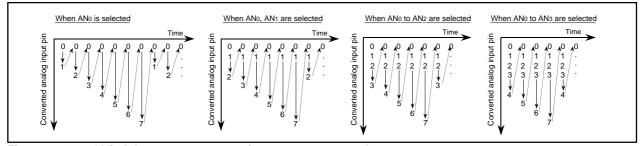


Figure 2.7.19. ANi pin's sweep sequence in repeat sweep mode

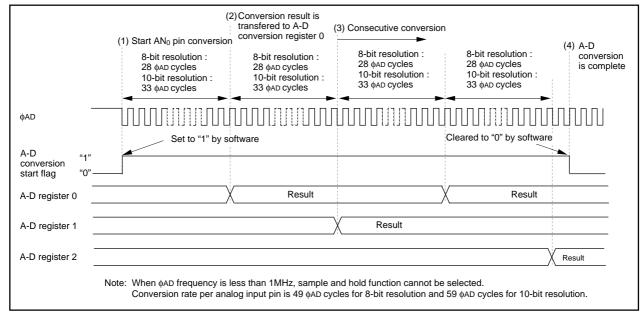


Figure 2.7.20. Operation timing of repeat sweep 1 mode

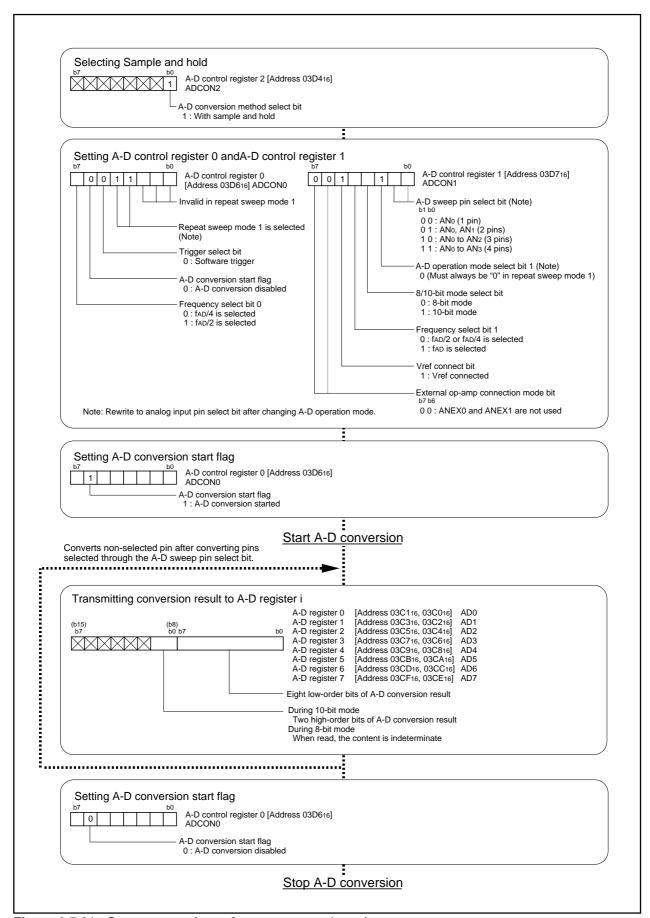


Figure 2.7.21. Set-up procedure of repeat sweep 1 mode

2.7.10 Precautions for A-D Converter

- (1) Write to each bit (except bit 6) of A-D control register 0, to each bit of A-D control register 1, and to bit 0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs). In particular, when the Vref connection bit is changed from 0 to 1, start A-D conversion after an elapse of 1 μs or longer.
- (2) To reduce conversion error due to noise, connect a voltage to the AVcc pin and to the Vref pin from an independent source. It is recommended to connect a capacitor between the AVss pin and the AVcc pin, between the AVss pin and the Vref pin, and between the AVss pin and the analog input pin (ANi). Figure 2.7.22 shows the an example of connecting the capacitors to these pins.

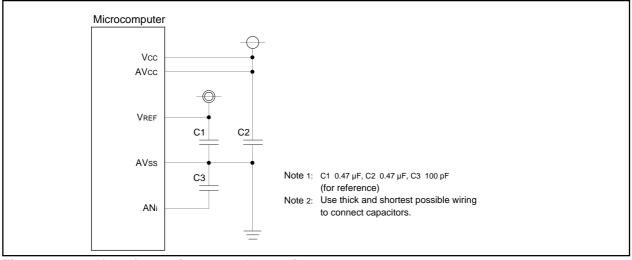


Figure 2.7.22. Use of capacitors to reduce noice

- (3) Set the direction register of the following ports to input: the port corresponding to a pin to be used as an analog input pin and external trigger input pin (P97).
- (4) In using a key-input interrupt, none of the 4 pins (AN4 through AN7) can be used as an A-D conversion port (if the A-D input voltage goes to "L" level, a key-input interrupt occurs).
- (5) If using the A-D converter with Vcc = 2.7V to 4.0 V: Use only a divided frequency for fAD (undivided fAD is not allowed). Select without the Sample & Hold feature. Select 8-bit mode.
- (6) Rewrite to analog input pin after changing A-D operation mode. The two cannot be set at the same time.
- (7) When using the one-shot or single sweep mode Confirm that A-D conversion is complete before reading the A-D register. (Note: When A-D conversion interrupt request bit is set, it shows that A-D conversion is completed.)
- (8) When using the repeat mode or repeat sweep mode 0 or 1
 Use the undivided main clock as the internal CPU clock.
- (9) Use ϕ AD under 10 MHz. When XIN is over 10 MHz, divide it.

2.7.11 Method of A-D Conversion (10-bit mode)

- (1) The A-D converter compares the reference voltage (Vref) generated internally based on the contents of the successive comparison register with the analog input voltage (VIN) input from the analog input pin. Each bit of the comparison result is stored in the successive comparison register until analog-to-digital conversion (successive comparison method) is complete. If a trigger occurs, the A-D converter carries out the following:
 - 1. Fixes bit 9 of the successive comparison register.

Compares Vref with Vin: [In this instance, the contents of the successive comparison register are "10000000002" (default).]

Bit 9 of the successive comparison register varies depending on the comparison result as follows.

If Vref < VIN, then "1" is assigned to bit 9.

If Vref > VIN, then "0" is assigned to bit 9.

2. Fixes bit 8 of the successive comparison register.

Sets bit 8 of the successive comparison register to "1", then compares Vref with VIN. Bit 8 of the successive comparison register varies depending on the comparison result as follows:

If Vref < VIN, then "1" is assigned to bit 8.

If Vref > VIN, then "0" is assigned to bit 8.

3. Fixes bit 7 through bit 0 of the successive comparison register.

Carries out step 2 above on bit 7 through bit 0.

After bit 0 is fixed, the contents of the successive comparison register (conversion result) are transmitted to A-D register i.

Vref is generated based on the latest content of the successive comparison register. Table 2.7.10 shows the relationship of the successive comparison register contents and Vref. Table 2.7.11 shows how the successive comparison register and Vref vary while A-D conversion is in progress. Figure 2.7.23 shows theoretical A-D conversion characteristics.

Table 2.7.10. Relationship of the successive comparison register contents and Vref

Successive approximation register : n	Vref (V)				
0	0				
1 to1023	VREF x n - VREF 2048				

Table 2.7.11. Variation of the successive comparison register and Vref while A-D conversion is in progress (10-bit mode)

	Successive approximation register	Vref change
A-D converter stopped	b9 b0 1 0 0 0 0 0 0 0 0 0 0	VREF [V]
1st comparison	1 0 0 0 0 0 0 0 0 0	$\frac{\text{VREF}}{2} - \frac{\text{VREF}}{2048} \text{ [V]}$
◆ 2nd comparison	ns 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} - \frac{V_{REF}}{2048} [V] \begin{pmatrix} n_9 = 1 & + & \frac{V_{REF}}{4} \\ n_9 = 0 & - & \frac{V_{REF}}{4} \end{pmatrix}$
3rd comparison ⊥	n9 n8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{\text{VREF}}{2} \pm \frac{\text{VREF}}{4} \pm \frac{\text{VREF}}{8} - \frac{\text{VREF}}{2048} \text{ [V]} \begin{pmatrix} \text{ns} = 1 & + & \frac{\text{VREF}}{8} \\ \text{ns} = 0 & - & \frac{\text{VREF}}{8} \end{pmatrix}$
↓ 10th comparison	n9 n8 n7 n6 n5 n4 n3 n2 n1 0	$\frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} \pm \frac{V_{REF}}{8} \pm \dots \pm \frac{V_{REF}}{1024} - \frac{V_{REF}}{2048}$ [V]
Conversion complete	This data transfers to the bit 0	
+ 1	N9 N8 N7 N6 N5 N4 N3 N2 N1 N0	$\frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} \pm \frac{V_{REF}}{8} \pm \dots \pm \frac{V_{REF}}{1024} - \frac{V_{REF}}{2048} [V]$

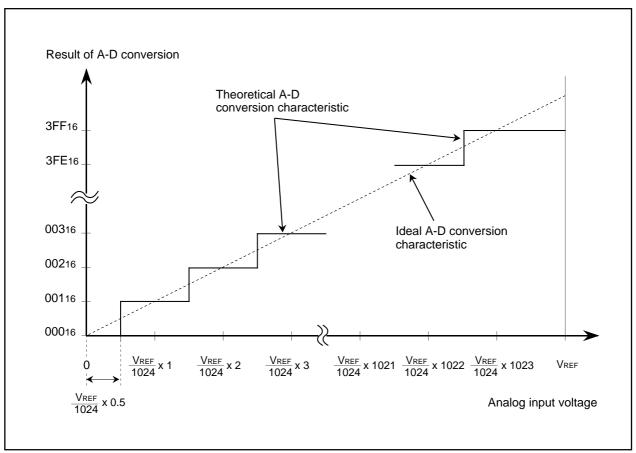


Figure 2.7.23. Theoretical A-D conversion characteristics (10-bit mode)

2.7.12 Method of A-D Conversion (8-bit mode)

(1) In 8-bit mode, 8 higher-order bits of the 10-bit successive comparison register becomes A-D conversion result. Hence, if compared to a result obtained by using an 8-bit A-D converter, the voltage compared is different by 3 VREF/2048 (see what are underscored in Table 2.7.12), and differences in stepping points of output codes occur as shown in Figure 2.7.24.

Table 2.7.12. The comparison voltage in 8-bit mode compared to 8-bit A-D converter

		8-bit mode	8-bit A-D converter
	n = 0	0	0
Comparison voltage Vref	n = 1 to 255	$\frac{\text{VREF}}{2^8}$ x n - $\frac{\text{VREF}}{2^{10}}$ x 0.5	$\frac{\text{VREF}}{2^8} \times \text{n} - \frac{\text{VREF}}{2^8} \times 0.5$

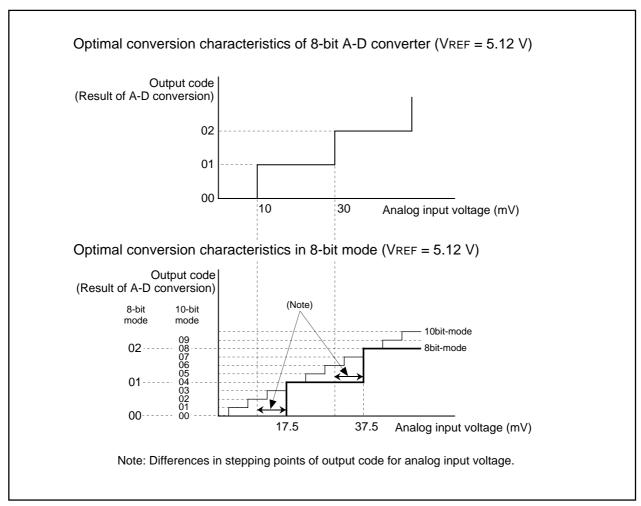


Figure 2.7.24. The level conversion characteristics of 8-bit mode and 8-bit A-D converter

Table 2.7.13. Variation of the successive comparison register and Vref while A-D conversion is in progress (8-bit mode)

pre	gress (o-bit filode)	
	Successive approximation register	Vref change
A-D converter stopped 1st comparison 2nd comparison 3rd comparison 4 8th comparison Conversion complete	b9	$ \frac{V_{REF}}{2} [V] $ $ \frac{V_{REF}}{2} - \frac{V_{REF}}{2048} [V] $ $ \frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} - \frac{V_{REF}}{2048} [V] \begin{bmatrix} n_{9} = 1 & + \frac{V_{REF}}{4} \\ n_{9} = 0 & - \frac{V_{REF}}{4} \end{bmatrix} $ $ \frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} \pm \frac{V_{REF}}{8} - \frac{V_{REF}}{2048} [V] \begin{bmatrix} n_{8} = 1 & + \frac{V_{REF}}{8} \\ n_{8} = 0 & - \frac{V_{REF}}{8} \end{bmatrix} $ $ \frac{V_{REF}}{2} \pm \frac{V_{REF}}{4} \pm \frac{V_{REF}}{8} \pm \dots \pm \frac{V_{REF}}{256} - \frac{V_{REF}}{2048} [V] $

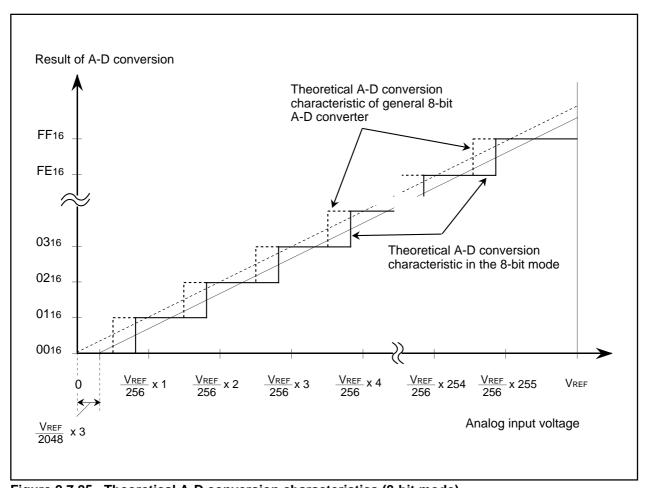


Figure 2.7.25. Theoretical A-D conversion characteristics (8-bit mode)

2.7.13 Absolute Accuracy and Differential Non-Linearity Error

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A-D conversion characteristics, and actual A-D conversion result. When measuring absolute accuracy, the voltage at the middle point of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A-D conversion characteristics, is used as an analog input voltage. For example, if 10-bit resolution is used and if VREF (reference voltage) = 5.12 V, then 1-LSB width becomes 5 mV, and 0 mV, 5 mV, 10 mV, 15 mV, 20 mV, are used as analog input voltages. If analog input voltage is 25 mV, "absolute accuracy = $\pm 3 \text{LSB}$ " refers to the fact that actual A-D conversion falls on a range from "00216" to "00816" though an output code, "00516", can be expected from the theoretical A-D conversion characteristics. Zero error and full-scale error are included in absolute accuracy.

Also, all the output codes for analog input voltage between VREF and AVcc becomes "3FF16".

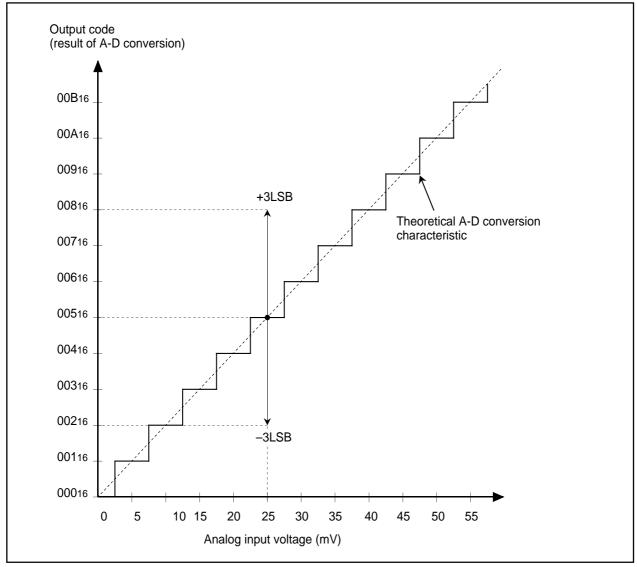


Figure 2.7.26. Absolute accuracy (10-bit resolution)

• Differential non-linearity error

Differential non-linearity error refers to the difference between 1-LSB width based on the theoretical A-D conversion characteristics (an analog input width that can meet the expectation of outputting an equal code) and an actually measured 1-LSB width (analog input voltage width that outputs an equal code). If 10-bit resolution is used and if VREF (reference voltage) = 5.12 V, "differential non-linearity error = \pm 1LSB" refers to the fact that 1-LSB width actually measured falls on a range from 0 mV to 10 mV though 1-LSB width based on the theoretical A-D conversion characteristics is 5 mV (see 8.2 A-D converter's standard characteristics).

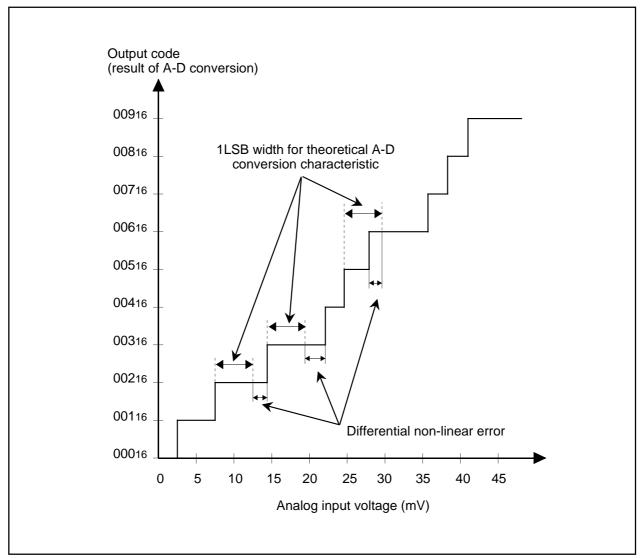


Figure 2.7.27. Differential non-linearity error (10-bit resolution)

2.7.14 Internal Equivalent Circuit of Analog Input

Figure 2.7.28 shows the internal equivalent circuit of analog input.

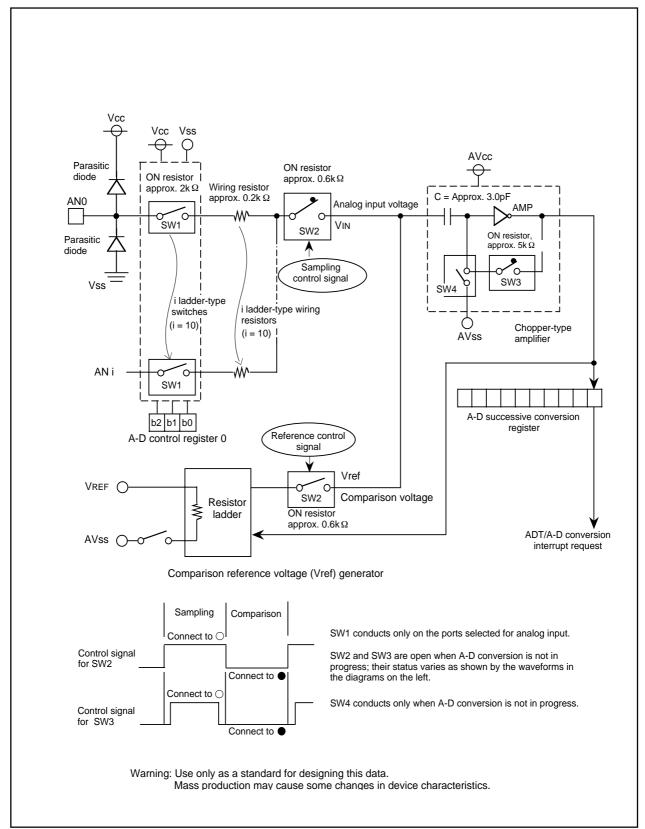


Figure 2.7.28. Internal equivalent circuit to analog input

2.7.15 Sensor's Output Impedance under A-D Conversion

To carry out A-D conversion properly, charging the internal capacitor C shown in Figure 2.7.29 has to be completed within a specified period of time. With T as the specified time, time T is the time that switches SW2 and SW3 are connected to O in Figure 2.7.28. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A-D converter be X, and the A-D converter's resolution be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

Vc is generally Vc = VIN
$$\{1 - e^{-\frac{t}{C(R0 + R)}}\}$$

And when t = T, $Vc=VIN - \frac{X}{Y}VIN=VIN(1 - \frac{X}{Y})$

$$e^{-\frac{T}{C(R0 + R)}} = \frac{X}{Y}$$

$$-\frac{T}{C(R0 + R)} = ln \frac{X}{Y}$$
Hence, $R0 = -\frac{T}{C \cdot ln \frac{X}{Y}}$

With the model shown in Figure 2.7.29 as an example, when the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A-D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A-D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB. When f(XIN) = 10 MHz, T = 0.3 us in the A-D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

$$T$$
 = 0.3 $\mu s,~R$ = 7.8 $k\Omega,~C$ = 3 pF, X = 0.1, and Y = 1024 . Hence,

R0 =
$$-\frac{0.3 \times 10^{-6}}{3.0 \times 10^{-12} \cdot \ln \frac{0.1}{1024}}$$
 -7.8 ×10³ ÷ 3.0 × 10³

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A-D converter turns out to be approximately 3.0 k Ω . Tables 2.7.14 and 2.7.15 show output impedance values based on the LSB values.

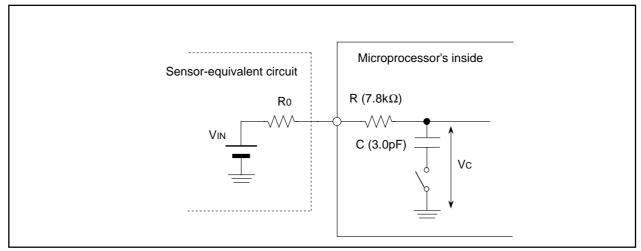


Figure 2.7.29 A circuit equivalent to the A-D conversion terminal

Tables 2.7.14. Relation between output impedance and precision (error) of A-D converter (10-bit mode) Reference value

f(Xin)	Cycle	Sampling time	R	C (n.F.)	Resolution	R0
(MHz)	0.4	0.0	7.0	(pF)	(LSB)	0.0
10	0.1	0.3	7.8	3.0	0.1	3.0
		(3 x cycle,			0.3	4.5
		Sample & hold			0.5	5.3
		bit is			0.7	5.9
		enabled)			0.9	6.4
					1.1	6.8
					1.3	7.2
					1.5	7.5
					1.7	7.8
					1.9	8.1
10	0.1	0.2	7.8	3.0	0.3	0.4
		(2 x cycle,			0.5	0.9
		Sample & hold			0.7	1.3
		bit is			0.9	1.7
		disabled)			1.1	2.0
					1.3	2.2
					1.5	2.4
					1.7	2.6
					1.9	2.8

Tables 2.7.15. Relation between output impedance and precision (error) of A-D converter (8-bit mode) Reference value

f(Xin) (MHz)	Cycle	Sampling time	R	C (pF)	Resolution (LSB)	R0
10	0.1	0.3	7.8	3.0	0.1	4.9
		(3 x cycle,	_		0.3	7.0
		Sample & hold			0.5	8.2
		bit is			0.7	9.1
		enabled)			0.9	9.9
					1.1	10.5
					1.3	11.1
					1.5	11.7
					1.7	12.1
					1.9	12.6
10	0.1	0.2	7.8	3.0	0.1	0.7
		(2 x cycle,			0.3	2.1
		Sample & hold			0.5	2.9
		bit is			0.7	3.5
		disabled)			0.9	4.0
					1.1	4.4
					1.3	4.8
					1.5	5.2
					1.7	5.5
					1.9	5.8

2.8 D-A Converter

2.8.1 Overview

The D-A converter used in the M16C/62 group is based on the 8-bit R-2R technique.

(1) Output voltage

The D-A converter outputs voltage within a range from 0 V to VREF. The output voltage is determined by VREF/(256) X the D-A register contents.

The D-A converter is not effected by the Vref connection bit of the A-D converter.

(2) Conversion time

 $tsu = 3 \mu s$

(3) Output from the D-A converter and the direction register

To use the D-A converter, do not set the direction register of the relevant port to output.

(4) Pins related to the D-A converter

• DAo pin, DA1 pin Output pins of the D-A converter

• AVcc pin The power source pin of the analog section

VREF pin Input pin of the reference voltage
 AVss pin The GND pin of the analog section

(5) Registers related to the D-A converter

Figure 2.8.1 shows the memory map of D-A converter-related registers, and Figure 2.8.2 shows D-A converter-related registers.

(6) Note

D-A output pins shared with P93 and P94. The two pins are input ports and floating at the reset.

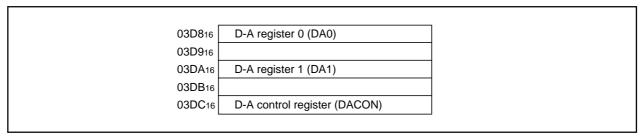


Figure 2.8.1. Memory map of D-A converter-related registers

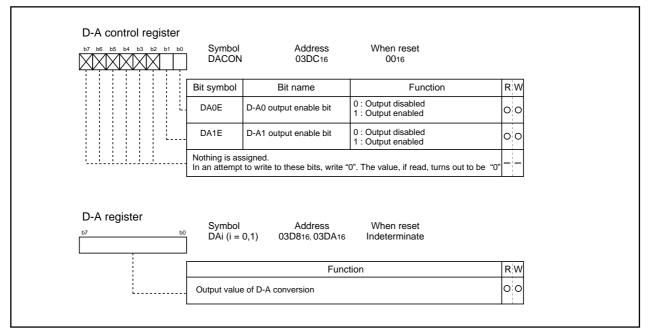


Figure 2.8.2. D-A converter-related registers

2.8.2 D-A Converter Operation

The following is the D-A converter operation. Figure 2.8.3 shows the set-up procedure.

Operation (1) Writing a value to the D-A register starts D-A conversion.

- (2) Setting the D-Ai output enable bit to "1" outputs an analog signal on the DAi pin.
- (3) The D-A converter continues outputting an analog signal until the D-A output enable bit is set to "0".

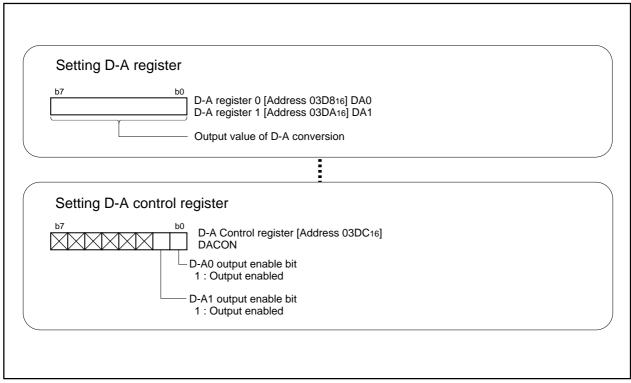


Figure 2.8.3. Set-up procedure of D-A converter

2.9 DMAC

2.9.1 Overview

DMAC transfers one data item held in the source address to the destination address every time a transfer request is generated. The following is a DMAC overview.

(1) Source address and destination address

Both the register which indicates a source and the register which indicates a destination comprise of 24 bits, so that each can cover a 1M bytes space. After transfer of one bit of data is completed, the address in either the source register or the destination register can be incremented. However, both registers cannot be incremented. The links between the source and destination are as follows:

- (a) A fixed address from an arbitrary 1M bytes space
- (b) An arbitrary 1M bytes space from a fixed address
- (c) A fixed address from another fixed address

(2) The number of bits of data transferred

The number of bit of data indicated by the transfer counter is transferred. If a 16-bit transfer is selected, up to 128 K bytes can be transferred. If an 8-bit transfer is selected, up to 64K bytes can be transferred. The transfer counter is decremented each time one bit of data is transferred, and a DMA interrupt request occurs when the transfer counter underflows.

(3) DMA transfer factor

The DMA transfer factor can be selected from the following 25 factors: falling edge/two edges of INTO/INT1 pin, timer A0 interrupt request through timer A4 interrupt request, timer B0 interrupt request through timer B5 interrupt request, UART0 transmission interrupt request, UART0 reception interrupt request, UART1 transmission/UART1 reception interrupt request, UART2 transmission interrupt request, UART2 reception interrupt request, SI/O 3, 4 interrupt request, A-D conversion interrupt request, and software trigger.

When software trigger is selected, DMA transfer is generated by writing "1" to software DMA interrupt request bit. When other factor is selected, DMA transfer is generated by generating corresponding interrupt request.

(4) Channel priority

If DMA0 transfer request and DMA1 transfer request occur simultaneously, priority is given to DMA0.

(5) Writing to a register

When writing to the source register or the destination register with DMA enabled, the content of the register with a fixed address will change at the time of writing. Therefore, the user should not write to a register with a fixed address when the DMA enable bit is set to "1". The contents of the register with 'forward direction' selected, and the transfer counter, are changed when reloaded. A reload occurs either when the transfer counter underflows, or when the DMA enable bit is re-enabled, after having been disabled.

The reload register can be written to, as in normal conditions.

(6) Reading to a register

The reload register can be read to, as in normal conditions.

(7) Switching function

(a) Switching between one-shot transfer and repeated transfer

'One-shot transfer' refers to a mode in which DMA is disabled after the transfer counter underflows. 'Repeated transfer' refers to a mode in which a reload is carried out after the transfer counter underflows. The reload is carried out for the transfer counter and on the address pointer subjected to forward direction.

The following are examples of operation in which the options listed are selected.

(8) Registers related to DMAC

Figure 2.9.1 shows the memory map of DMAC-related registers, and Figures 2.9.2 and 2.9.3 show DMAC-related registers.

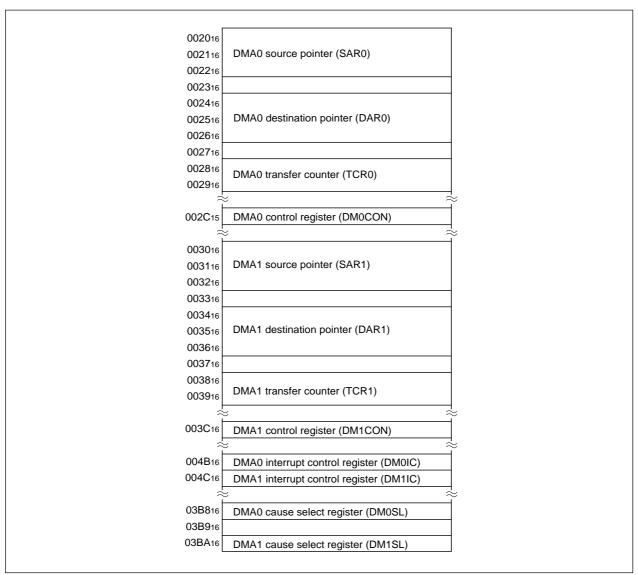


Figure 2.9.1. Memory map of DMAC-related registers

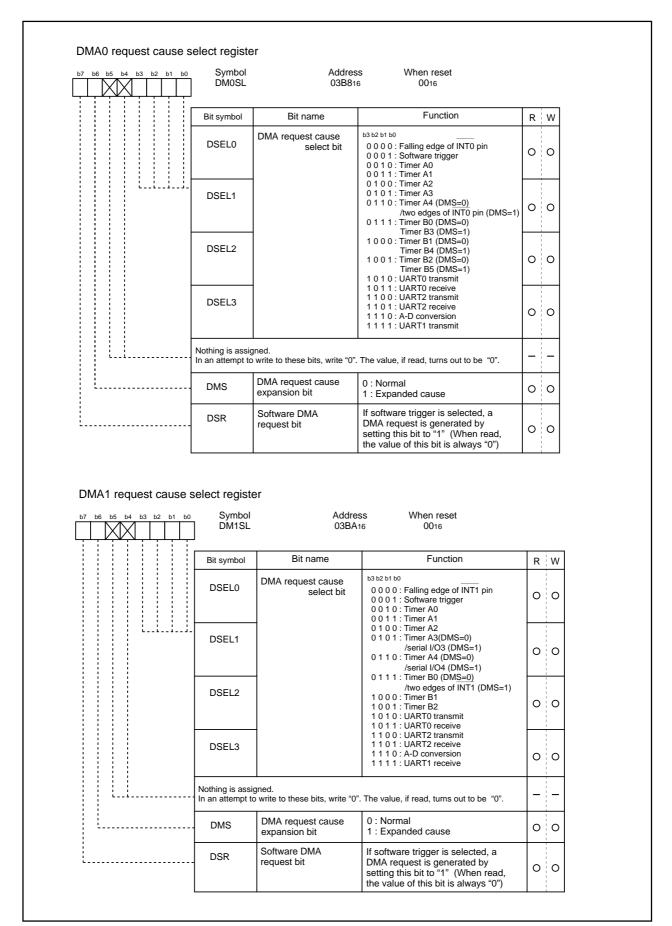


Figure 2.9.2. DMAC-related registers (1)

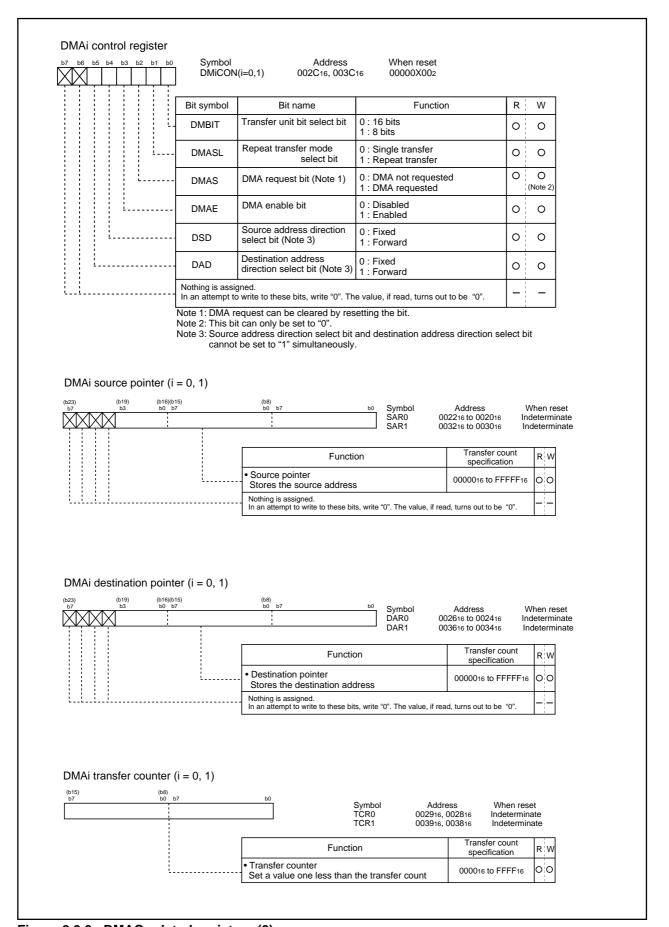


Figure 2.9.3. DMAC-related registers (2)

2.9.2 Operation of DMAC (one-shot transfer mode)

In one-shot transfer mode, choose functions from the items shown in Table 2.9.1. Operations of the circled items are described below. Figure 2.9.4 shows an example of operation and Figure 2.9.5 shows the set-up procedure.

Table 2.9.1. Choosed functions

Item		Set-up
Transfer space	0	Fixed address from an arbitrary 1 M bytes space
		Arbitrary 1 M bytes space from a fixed address
		Fixed address from fixed address
Unit of transfer	0	8 bits
		16 bits

Operation (1) When software trigger is selected, setting software DMA request bit to "1" generates a DMA transfer request signal.

- (2) If DMAC is active, data transfer starts, and the contents of the address indicated by the DMAi forward-direction address pointer are transferred to the address indicated by the DMAi destination pointer. When data transfer starts directly after DMAC becomes active, the value of the DMAi transfer counter reload register is reloaded to the DMAi transfer counter, and the value of the DMAi source pointer is reloaded by the DMAi forward-direction address pointer. Each time a DMA transfer request signal is generated, 1 byte of data is transferred. The DMAi transfer counter is down counted, and the DMAi forward-direction address pointer is up counted.
- (3) If the DMA transfer counter underflows, the DMA enable bit changes to "0" and DMA transfer is completed. The DMA interrupt request bit changes to "1" simultaneously.

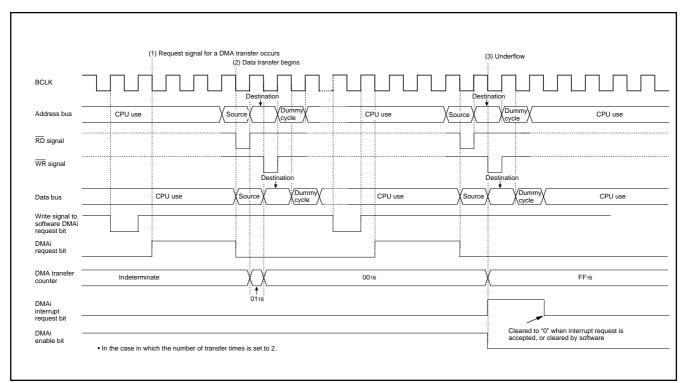


Figure 2.9.4. Example of operation of one-shot transfer mode

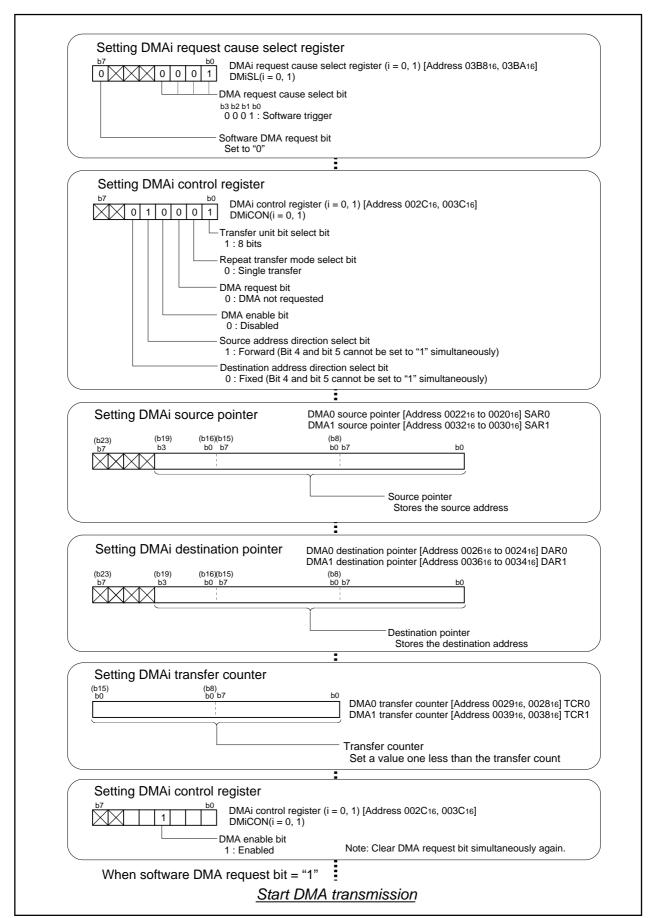


Figure 2.9.5. Set-up procedure of one-shot transfer mode

2.9.3 Operation of DMAC (repeated transfer mode)

In repeat transfer mode, choose functions from the items shown in Table 2.9.2. Operations of the circled items are described below. Figure 2.9.6 shows an example of operation and Figure 2.9.7 shows the set-up procedure.

Table	292	Choosed	functions
Iabie	Z.J.Z.	CHOUSEU	TUITCHOUS

Item		Set-up		
Transfer space		Fixed address from an arbitrary 1 M bytes space		
	0	Arbitrary 1 M bytes space from a fixed address		
		Fixed address from fixed address		
Unit of transfer		8 bits		
	0	16 bits		

- Operation (1) When software trigger is selected, setting software DMA request bit to "1" generates a DMA transfer request signal.
 - (2) If DMAC is active, data transfer starts, and the contents of the address indicated by the DMAi forward-direction address pointer are transferred to the address indicated by the DMAi destination pointer. When data transfer starts directly after DMAC becomes active, the value of the DMAi transfer counter reload register is reloaded to the DMAi transfer counter, and the value of the DMAi source pointer is reloaded by the DMAi forward-direction address pointer. Each time a DMA transfer request signal is generated, 2 byte of data is transferred. The DMAi transfer counter is down counted, and the DMAi forward-direction address pointer is up counted.
 - (3) Though DMAi transfer counter is underflowed, DMA enable bit is still "1". The DMA interrupt request bit changes to "1" simultaneously.
 - (4) After DMAi transfer counter is underflowed, when the next DMA request is generated, DMA transfer is repeated from (1).

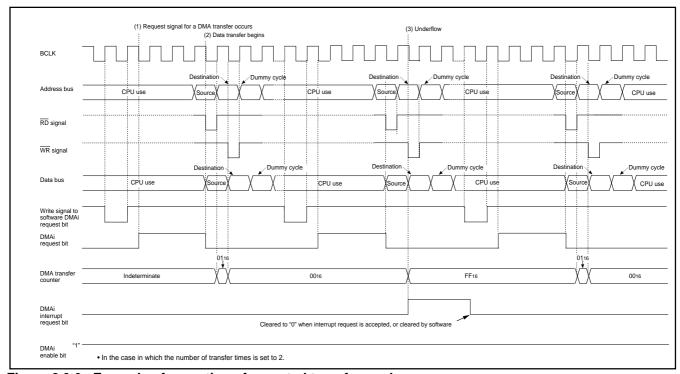


Figure 2.9.6. Example of operation of repeated transfer mode

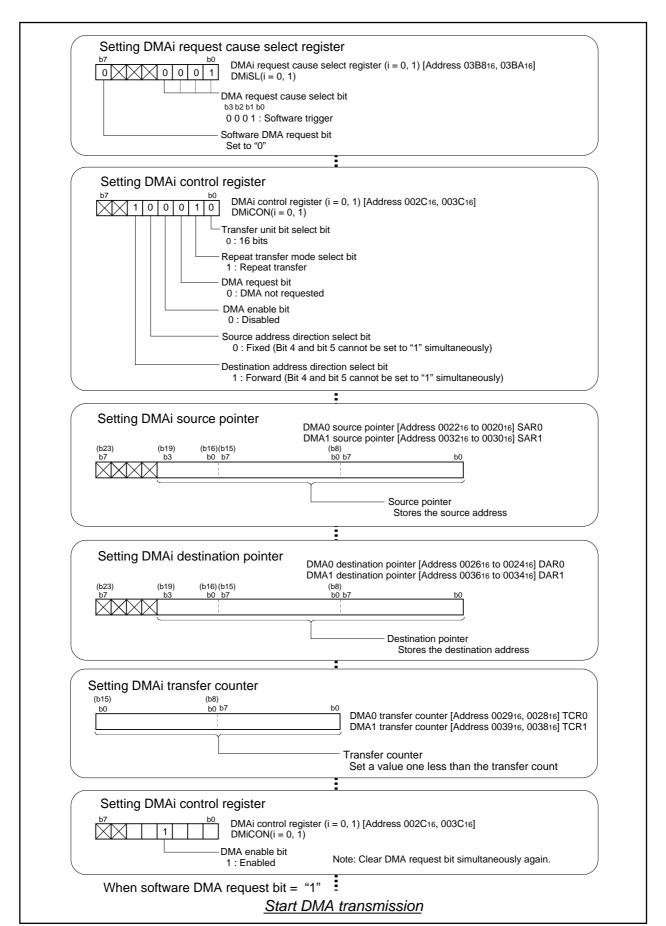


Figure 2.9.7. Set-up procedure of repeated transfer mode

2.10 CRC Calculation Circuit

2.10.1 Overview

Cyclic Redundancy Check (CRC) is a method that compares CRC code formed from transmission data by use of a polynomial generation with CRC check data so as to detect errors in transmission data. Using the CRC calculation circuit allows generation of CRC code. A polynomial counter is used for the polynomial generation of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$).

(1) Registers related to CRC calculation circuit

Figure 2.10.1 shows the memory map of CRC-related registers, and Figure 2.10.2 shows CRC- related registers.

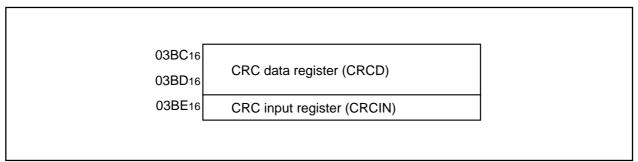


Figure 2.10.1. Memory map of CRC-related registers

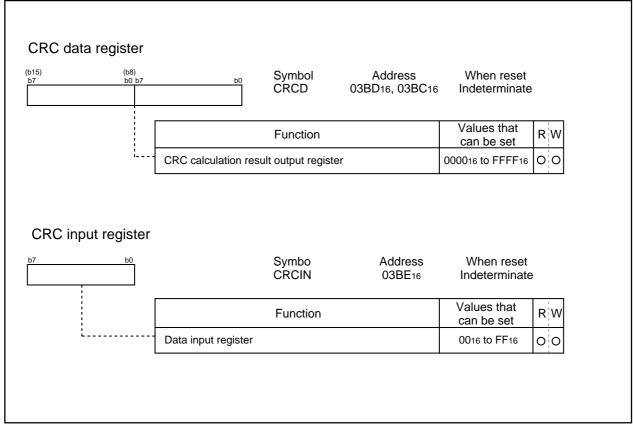


Figure 2.10.2. CRC-related registers

2.10.2 Operation of CRC Calculation Circuit

The following describes the operation of the CRC calculation. Figure 2.10.3 shows an example of calculation data 012316 using the CRC calculation circuit.

Operation (1) The CRC calculation circuit sets an initial value in the CRC data register.

- (2) Writing 1 byte data to the CRC input register generates CRC code based on the data register. CRC code generation for 1 byte data finishes in two machine cycles.
- (3) The CRC calculation circuit detects an error by means of comparing the CRC-checking data with the content of the CRC data register, after the next data is written to the CRC input register.
- (4) The content of CRC data register after all data is written becomes CRC code.

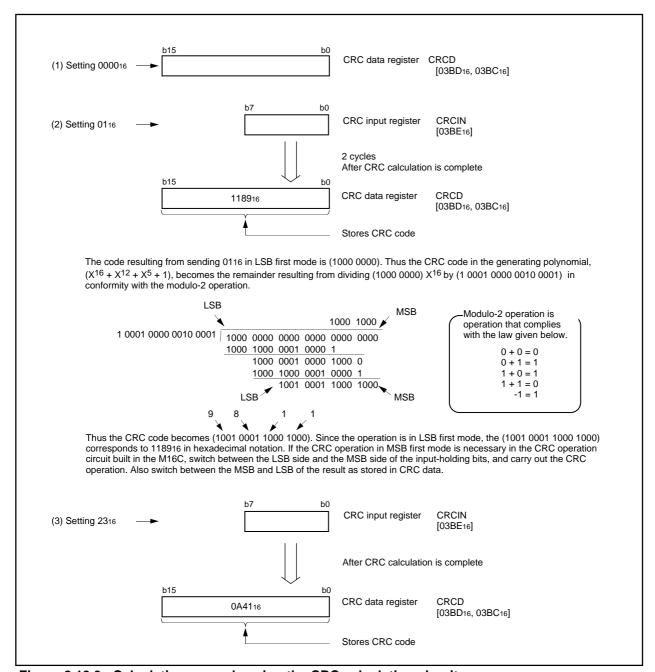


Figure 2.10.3. Calculation example using the CRC calculation circuit

2.11 Watchdog Timer

2.11.1 Overview

The watchdog timer can detect a runaway program using its 15-bit timer prescaler. The following is an overview of the watchdog timer.

(1) Watchdog timer start procedure

When reset, the watchdog timer is in stopped state. Writing to the watchdog timer start register initializes the watchdog timer to 7FFF16 and causes it to start performing a down count. The watchdog timer, once started operating, cannot be stopped by any means other than stopping conditions.

(2) Watchdog timer stop conditions

The watchdog timer stops in any one of the following states:

- (a) Period in which the CPU is in stopped state
- (b) Period in which the CPU is in waiting state
- (c) Period in which the microcomputer is in hold state

(3) Watchdog timer initialization

The watchdog timer is initialized to 7FFF16 in the cases given below, and begins a down count.

- (a) When the watchdog timer writes to the watchdog timer start register while a count is in progress
- (b) When the watchdog timer underflows

(4) Runaway detection

When the watchdog timer underflows, a watchdog timer interrupt occurs. In writing a program, write to the watchdog timer start register before the watchdog timer underflows. The watchdog timer interrupt occurs regardless of the status of the interrupt enable flag (I flag). In processing a watchdog timer interrupt, set the software reset bit to "1" to reset software.

(5) Watchdog timer cycle

The watchdog timer cycle varies depending on the BCLK and the frequency division ratio of the prescaler selected.

Table 2.11.1. The watchdog timer cycle

CM07	CM06	CM17	CM16	BCLK	WDC7	Period
0	0 0		0	16MHz	0	Approx. 32.8ms (Note)
0	0	0	U	TOIVIE	1	Approx. 262.1ms (Note)
0	0	0	1	8MHz	0	Approx. 65.5ms (Note)
	U	0	'	OIVII IZ	1	Approx. 524.3ms (Note)
0	0	1	0	4MHz	0	Approx. 131.1ms (Note)
	U	'		4101112	1	Approx. 1.049s (Note)
0	0	1	1	1MHz	0	Approx. 524.3ms (Note)
	U	'	ı	TIVITIZ	1	Approx. 4.194s (Note)
0			lanca li al	ON41.1-	0	Approx. 262.1ms (Note)
0	1	Invalid	Invalid	2MHz	1	Approx. 2.097s (Note)
1	Invalid	Invalid	Invalid	32kHz	Invalid	Approx. 2s (Note)

Note: An error due to the prescaler occurs.

(6) Registers related to the watchdog timer

Figure 2.11.1 shows the memory map of watchdog timer-related registers, and Figure 2.11.2 shows watchdog timer-related registers.

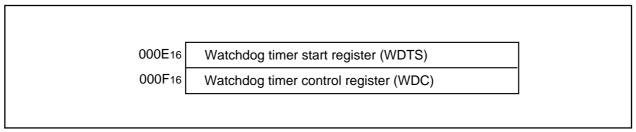


Figure 2.11.1. Memory map of watchdog timer-related registers

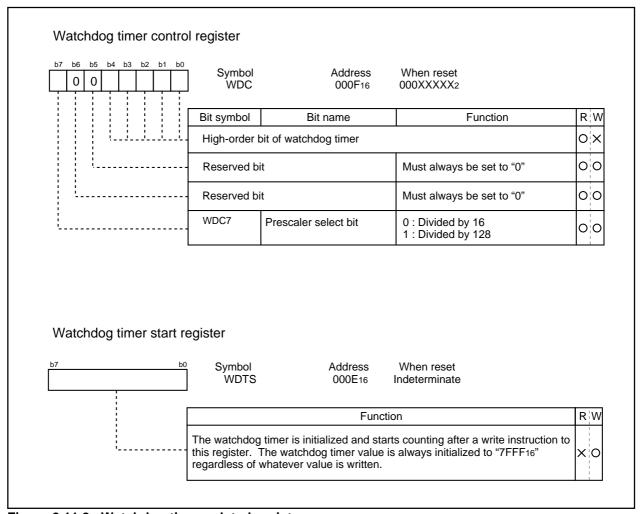


Figure 2.11.2. Watchdog timer-related registers

2.11.2 Operation of Watchdog Timer

The following is an operation of the watchdog timer. Figure 2.11.3 shows the operation timing, and Figure 2.11.4 shows the set-up procedure.

Operation (1) Writing to the watchdog timer start register initializes the watchdog timer to 7FFF16 and causes it to start a down count.

- (2) With a count in progress, writing to the watchdog timer start register again initializes the watchdog timer to 7FFF16 and causes it to resume counting.
- (3) Either executing the WAIT instruction or going to the stopped state causes the watchdog timer to hold the count in progress and to stop counting. The watchdog timer resumes counting after returning from the execution of the WAIT instruction or from the stopped state.
- (4) If the watchdog timer underflows, it is initialized to 7FFF16 and continues counting. At this time, a watchdog timer interrupt occurs.

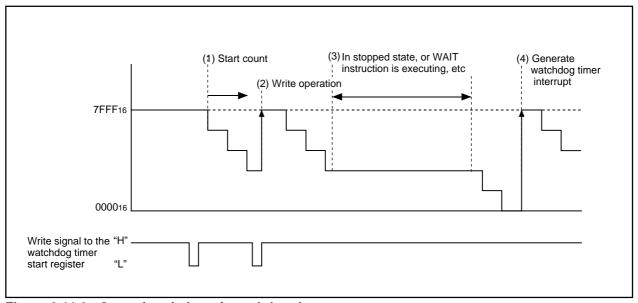


Figure 2.11.3. Operation timing of watchdog timer

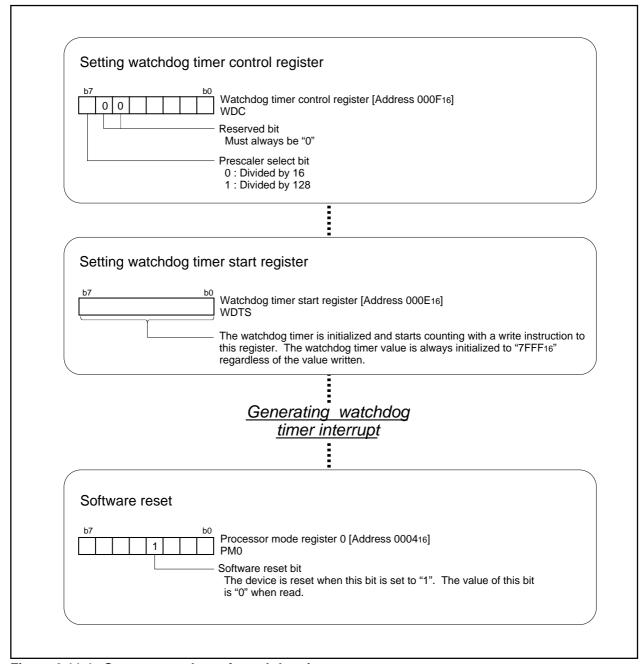


Figure 2.11.4. Set-up procedure of watchdog timer

2.12 Address Match Interrupt

2.12.1 Overview

The address match interrupt is used for correcting a ROM or for a simplified debugging-purpose monitor. The following is an overview of the address match interrupt.

(1) Enabling/disabling the address match interrupt

The address match interrupt enable bit can be used to enable and disable an address match interrupt. It is affected neither by the processor interrupt priority level (IPL) nor the interrupt enable flag (I flag).

(2) Timing of the address match interrupt

An interrupt occurs immediately before executing the instruction in the address indicated by the address match interrupt register. Set the first address of the instruction in the address match interrupt register. Setting a half address of an instruction or an address of tabulated data does not generate an address match interrupt.

The first instruction of an interrupt routine does not generate an address match interrupt either.

(3) Returning from an address match interrupt

The return address put in the stack when an address match interrupt occurs depends on the instruction not yet executed (the instruction the address match interrupt register indicates). The return address is not put in the stack. For this reason, to return from an address match interrupt, either rewrite the content of the stack and use the REIT instruction or use the POP instruction to restore the stack to the state as it was before the interrupt occurred and return by use of a jump instruction.

Figure 2.12.1 shows unexecuted instructions and corresponding the stacked addresses.

<Instructions whose address is added to by 2 when an address match interrupt occurs>

- 16-bit operation code instructions
- 8-bit operation code instructions given below

ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest			
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest			
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMM82,0	dest				
CMP.B:S	#IMM8,dest	PUSHM	src	POPM	dest			
JMPS	#IMM8	JSRS	#IMM8					
MOV.B:S	#IMM,dest (However, dest = A0/A1)							

<Instructions whose address is added to by 1 when an address match interrupt occurs>

• Instructions other than those listed above

Figure 2.12.1. Unexecuted instructions and corresponding stacked addresses

(4) How to determine an address match interrupt

Address match interrupts can be set at two different locations. However, both location will have the same vector address. Therefore, it is necessary to determine which interrupt has occurred; address match interrupt 0 or address match interrupt 1. Using the content of the stack, etc., determine which interrupt has occurred according to the first part of the address match interrupt routine.

(5) Registers related to the address match interrupt

Figure 2.12.2 shows the memory map of address match interrupt-related registers, and Figure 2.12.3 shows address match interrupt-related registers.

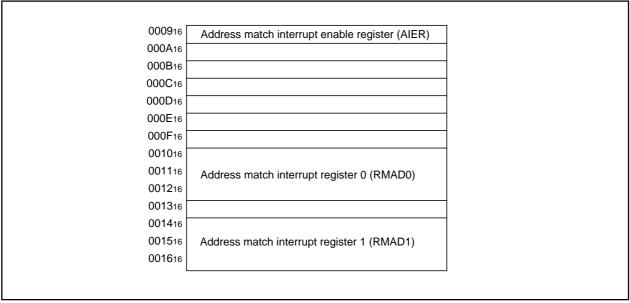


Figure 2.12.2. Memory map of address match interrupt-related registers

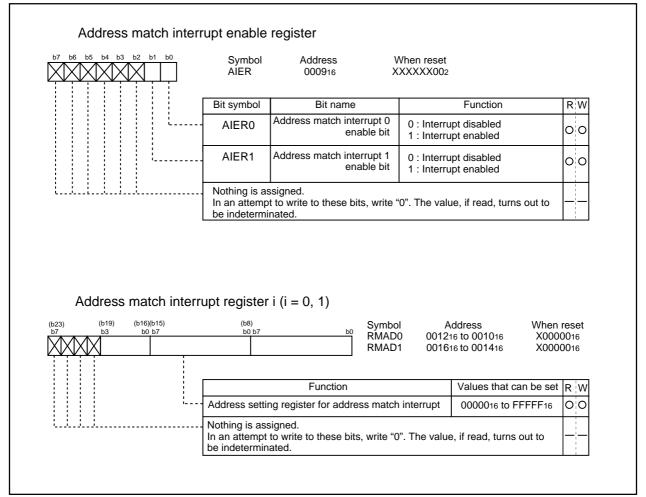


Figure 2.12.3. Address match interrupt-related registers

2.12.2 Operation of Address Match Interrupt

The following is an operation of address match interrupt. Figure 2.12.4 shows the set-up procedure of address match interrupt, and Figure 2.12.5 shows the overview of the address match interrupt handling routine.

- Operation (1) The address match interrupt handling routine sets an address to be used to cause the address match interrupt register to generate an interrupt.
 - (2) Setting the address match enable flag to "1" enables an interrupt to occur.
 - (3) An address match interrupt occurs immediately before the instruction in the address indicated by the address match interrupt register as a program is executed.

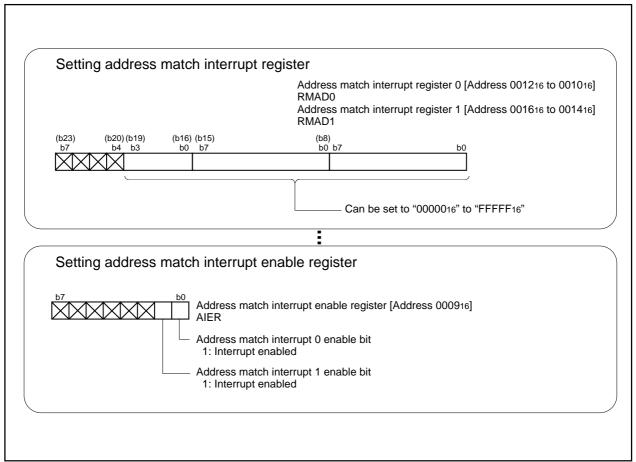


Figure 2.12.4. Set-up procedure of address match interrupt

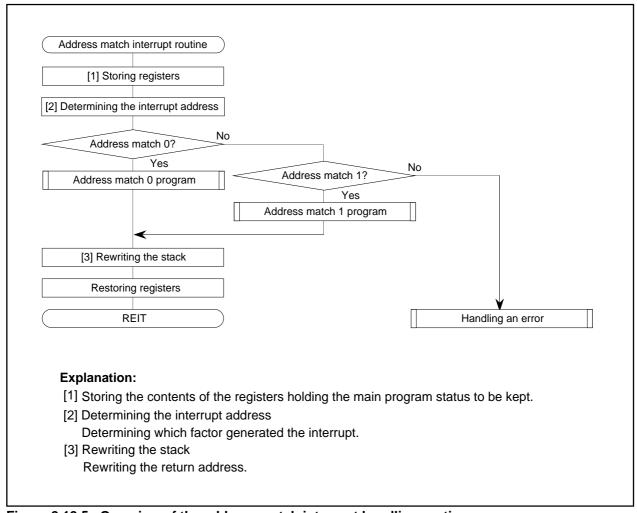


Figure 2.12.5. Overview of the address match interrupt handling routine

2.13 Key-Input Interrupt

2.13.1 Overview

Key-input interrupt occurs when a falling edge is input to P104 through P107. The following is an overview of the key-input interrupt:

(1) Enabling/disabling the key-input interrupt

The key-input interrupt can be enabled and disabled using the key-input interrupt register. The key-input interrupt is affected by the interrupt priority level (IPL) and the interrupt enable flag (I flag).

(2) Occurrence timing of the key-input interrupt

With key-input interrupt acceptance enabled, pins P104 through P107, which are set to input, become key-input interrupt pins ($\overline{\text{KI}_0}$ through $\overline{\text{KI}_3}$). A key-input interrupt occurs when a falling edge is input to a key-input interrupt pin. At this moment, the level of other key-input interrupt pins must be "H". No interrupt occurs when the level of other key-input interrupt pins is "L".

(3) How to determine a key-input interrupt

A key-input interrupt occurs when a falling edge is input to one of four pins, but each pin has the same vector address.

Therefore, read the input level of pins P104 through P107 in the key-input interrupt routine to determine the interrupted pin.

(4) Registers related to the key-input interrupt

Figure 2.13.1 shows the memory map of key-input interrupt-related registers, and Figure 2.13.2 shows key-input interrupt-related registers.

Figure 2.13.1. Memory map of key-input interrupt-related registers

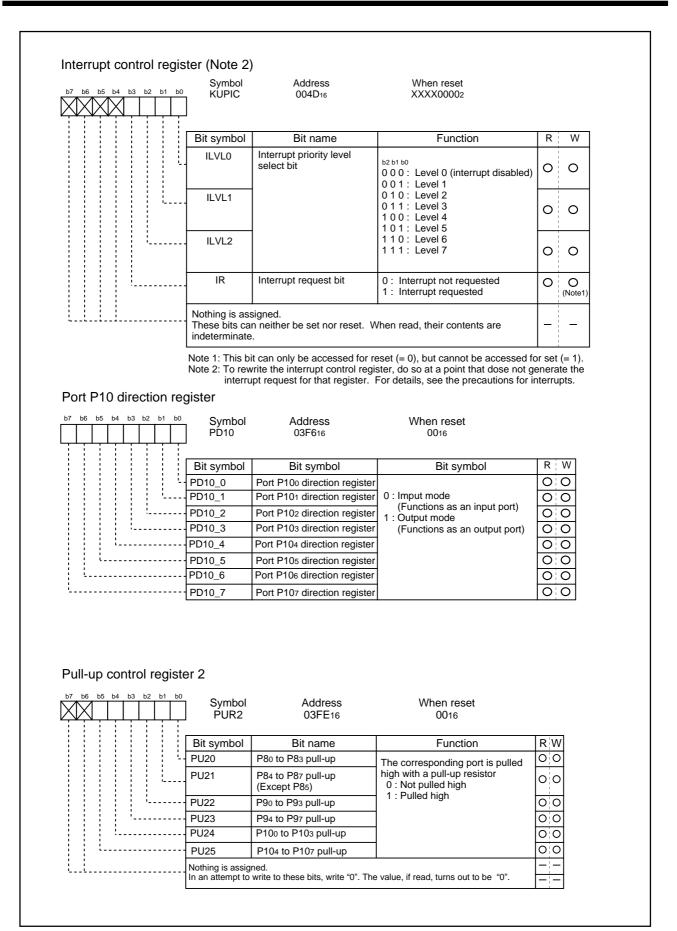


Figure 2.13.2. key-input interrupt-related registers

2.13.2 Operation of Key-Input Interrupt

The following is an operation of key-input interrupt. Figure 2.13.3 shows an example of a circuit that uses the key-input interrupt, Figure 2.13.4 shows an example of operation of key-input interrupt, and Figure 2.13.5 shows the setting procedure of key-input interrupt.

- Operation (1) Set the direction register of the ports to be changed to key-input interrupt pins to input, and set the pull-up function.
 - (2) Setting the key-input interrupt control register and setting the interrupt enable flag makes the interrupt-enabled state ready.
 - (3) If a falling edge is input to either $\overline{\text{Klo}}$ through $\overline{\text{Kls}}$, the key-input interrupt request bit goes to "1".

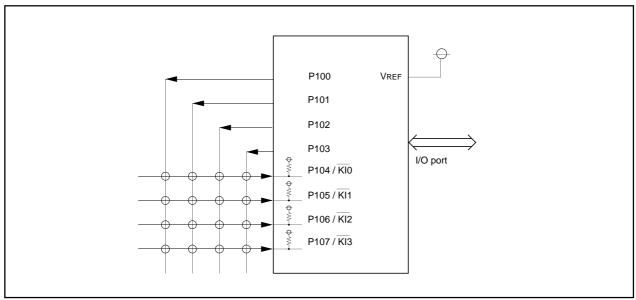


Figure 2.13.3. Example of circuit using the key-input interrupt

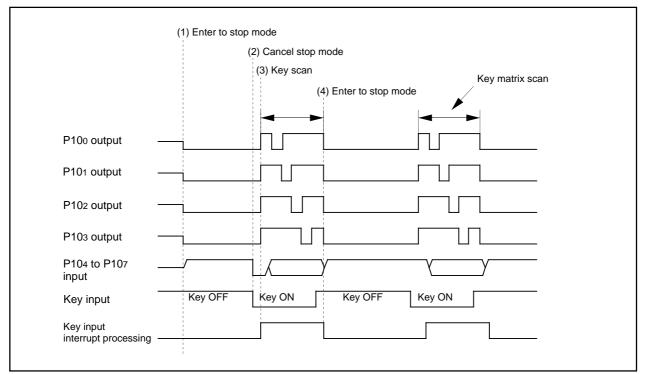


Figure 2.13.4. Example of operation of key-input interrupt

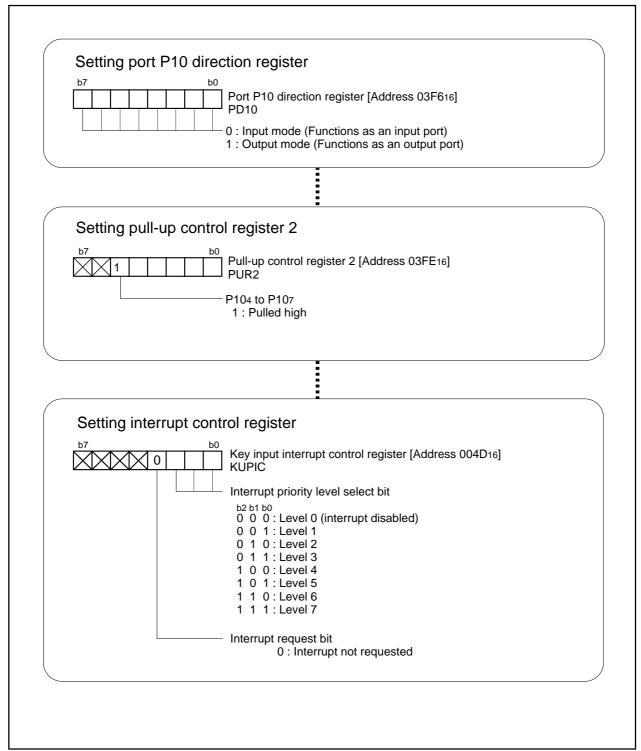


Figure 2.13.5. Set-up procedure of key-input interrupt

2.14 Power Control

2.14.1 Overview

'Power Control' refers to the reduction of CPU power consumption by stopping the CPU and oscillators, or decreasing the operation clock. The following is a description of the three available power control modes:

(1) Modes

Power control is available in three modes.

(a) Normal operation mode

High-speed mode

Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the BCLK selected. Each peripheral function operates according to its assigned clock.

Medium-speed mode

Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the BCLK. The CPU operates according to the BCLK selected. Each peripheral function operates according to its assigned clock.

Low-speed mode

fc becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. Each peripheral function operates according to its assigned clock.

• Low power consumption mode

The main clock operating in low-speed mode is stopped. The CPU operates according to the fc clock. The fc clock is supplied by the secondary clock. The only peripheral functions that operate are those with the sub-clock selected as the count source.

(b) Wait mode

The CPU operation is stopped. The oscillators do not stop.

(c) Stop mode

All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three modes listed here, is the most effective in decreasing power consumption.

Figure 2.14.1 is the state transition diagram of the above modes.

(2) Switching the driving capacity of the oscillation circuit

Both the main clock and the secondary clock have the ability to switch the driving capacity. Reducing the driving capacity after the oscillation stabilizes allows for further reduction in power consumption.

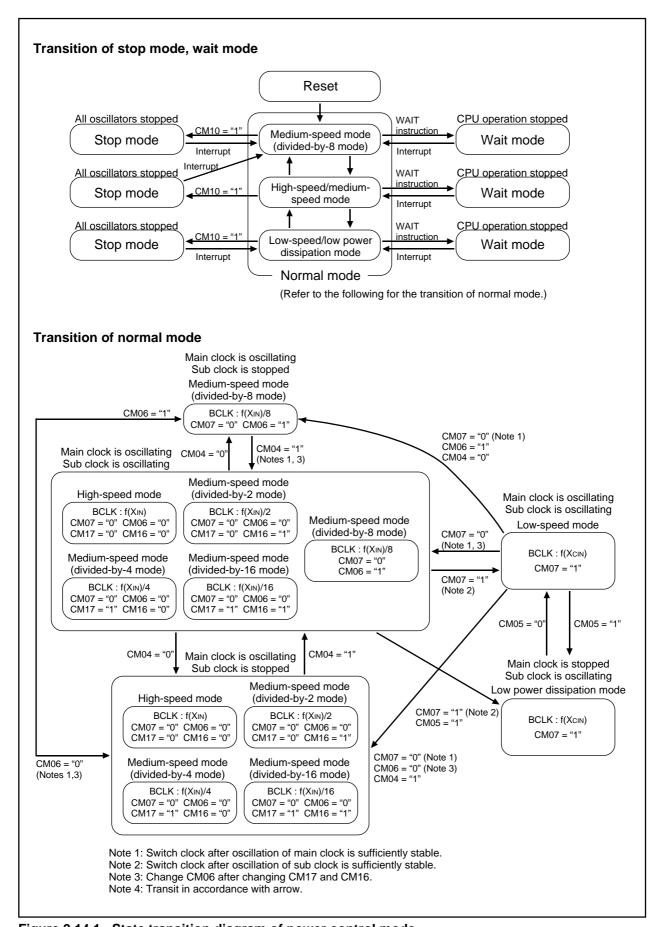


Figure 2.14.1. State transition diagram of power control mode

(3) Clearing stop mode and wait mode

The stop mode and wait mode can be cleared by generating an interrupt request, or by resetting hardware. Set the priority level of the interrupt to be used for clearing, higher than the processor interrupt priority level (IPL), and enable the interrupt enable flag (I flag). When an interrupt clears a mode, that interrupt is processed. Table 2.14.1 shows the interrupts that can be used for clearing a stop mode and wait mode.

(4) BCLK in returning from wait mode or stop mode

(a) Returning from wait mode

The processor immediately returns to the BCLK, which was in use before entering wait mode.

(b) Returning from stop mode

CM06 is set to "1" when the device enters stop mode after selecting the main clock for BCLK. CM17, CM16, and CM07 do not change state. In this case, when restored from stop mode, the device starts operating in divided-by-8 mode.

When the device enters stop mode after selecting the subclock for BCLK, CM06, CM17, CM16, and CM07 all do not change state. In this case, when restored from stop mode, the device starts operating in low-speed mode.

Table 2.14.1. Interrupts available for clearing stop mode and wait mode

Interrupt for clearing	Wait		
interrupt for cleaning	CM02 = 0	CM02 = 1	Stop mode
Bus collision detection interrupt	Possible	Note 1	Note 1
DMA0 interrupt	Impossible	Impossible	Impossible
DMA1 interrupt	Impossible	Impossible	Impossible
Key input interrupt	Possible	Possible	Possible
A-D interrupt	Note 3	Impossible	Impossible
UART0 transmit interrupt	Possible	Note 1	Note 1
UART0 receive interrupt	Possible	Note 1	Note 1
UART1 transmit interrupt	Possible	Note 1	Note 1
UART1 receive interrupt	Possible	Note 1	Note 1
UART2 transmit interrupt	Possible	Note 1	Note 1
UART2 receive interrupt	Possible	Note 1	Note 1
SI/O3 interrupt	Possible	Note 4	Note 4
SI/O4 interrupt	Possible	Note 4	Note 4
Timer A0 interrupt	Possible	Note 2	Note 2
Timer A1 interrupt	Possible	Note 2	Note 2
Timer A2 interrupt	Possible	Note 2	Note 2
Timer A3 interrupt	Possible	Note 2	Note 2
Timer A4 interrupt	Possible	Note 2	Note 2
Timer B0 interrupt	Possible	Note 2	Note 2
Timer B1 interrupt	Possible	Note 2	Note 2
Timer B2 interrupt	Possible	Note 2	Note 2
Timer B3 interrupt	Possible	Note 2	Note 2
Timer B4 interrupt	Possible	Note 2	Note 2
Timer B5 interrupt	Possible	Note 2	Note 2
INT0 interrupt	Possible	Possible	Possible
INT1 interrupt	Possible	Possible	Possible
INT2 interrupt	Possible	Possible	Possible
INT3 interrupt	Possible	Possible	Possible
INT4 interrupt	Possible	Possible	Possible
INT5 interrupt	Possible	Possible	Possible
NMI interrupt	Possible	Possible	Possible

Note 1: Can be used when an external clock in clock synchronous serial I/O mode is selected.

Note 2: Can be used when the external signal is being counted in event counter mode.

Note 3: Can be used in one-shot mode and one-shot sweep mode.

Note 4: Can be used when an external clock.

(5) Sequence of returning from stop mode

Sequence of returning from stop mode is oscillation start-up time and interrupt sequence. When interrupt is generated in stop mode, CM10 becomes "0" and clearing stop mode. Starting oscillation and supplying BCLK execute the interrupt sequence as follow:

In the interrupt sequence, the processor carries out the following in sequence given:

- (a) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016. The interrupt request bit of the interrupt written in address 0000016 will then be set to "0".
- (b) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
- (c) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer assignment flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
- (d) Saves the content of the temporary register (Note) within the CPU in the stack area.
- (e) Saves the content of the program counter (PC) in the stack area.
- (f) Sets the interrupt priority level of the accepted instruction in the IPL.

Note: This register cannot be utilized by the user.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.

Figure 2.14.2 shows the sequence of returning from stop mode.

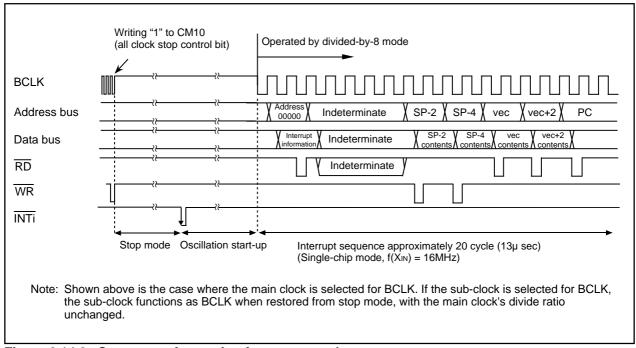


Figure 2.14.2. Sequence of returning from stop mode

(6) Registers related to power control

Figure 2.14.3 shows the memory map of power control-related registers, and Figure 2.14.4 shows power control-related registers.

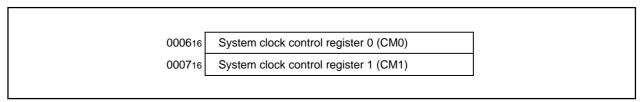


Figure 2.14.3. Memory map of power control-related registers

System clock control	register 0	(Note 1)		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol CM0	Address 000616	When reset 4816	
	Bit symbol	Bit name	Function	RW
	CM00	Clock output function select bit	0 0 : I/O port P57 0 1 : fc output	00
	CM01	(Valid only in single-chip mode)	1 0 : f8 output 1 1 : f32 output	00
	CM02	WAIT peripheral function clock stop bit	0 : Do not stop peripheral function clock in wait mode 1 : Stop peripheral function clock in wait mode (Note 8)	00
	CM03	XCIN-XCOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	00
	CM04	Port Xc select bit	0 : I/O port 1 : Xcin-Xcouт generation	00
	CM05	Main clock (XIN-XOUT) stop bit (Note 3, 4, 5)	0 : On 1 : Off	00
	CM06	Main clock division select bit 0 (Note 7)	0 : CM16 and CM17 valid 1 : Division by 8 mode	00
	CM07	System clock select bit (Note 6)	0 : Xin, Xout 1 : Xcin, Xcout	00

- Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register.
- Note 1: Set Dit 0 of the protect register (address 5000×16) to 1 before writing to this register.

 Note 2: Changes to "1" when shiffing to stop mode and at a reset.

 Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop mode and operating with XIN, set this bit to "0". When main clock oscillation is operating by itself, set system clock select bit (CM07) to "1" before setting this bit to "1".

 Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.
- Note 5: If this bit is set to "1", XOUT turns "H". The built-in feedback resistor remains being connected, so XIN turns pulled up to XOUT ("H") via the feedback resistor.
- Note 6: Set port Xc select bit (CM04) to "1" and stabilize the sub-clock oscillating before setting to this bit from "0" to "1". Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to "0" and stabilize the main clock oscillating before setting this bit from "1" to "0".
- Note 7: This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.
- Note 8: fc32 is not included.

System clock control register 1 (Note 1)

b7	b6			0	0	0		Symbol CM1	Address 000716	When reset 2016							
	į			į				Bit symbol	Bit name	Function	RW						
								CM10	All clock stop control bit (Note4)	0 : Clock on 1 : All clocks off (stop mode)	00						
								Reserved	bit	Always set to "0"	00						
								<u></u>		¦ '						Reserved	bit
						Reserved	bit	Always set to "0"	00								
									Reserved	bit	Always set to "0"	00					
		1						CM15	XIN-XOUT drive capacity select bit (Note 2)	0 : LOW 1 : HIGH	00						
	<u>.</u>							CM16	Main clock division select bit 1 (Note 3)	0 0 : No division mode 0 1 : Division by 2 mode	00						
i.								CM17	, ,	1 0 : Division by 4 mode 1 1 : Division by 16 mode							

- Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register.

 Note 2: This bit changes to "1" when shifting from high-speed/medium-speed mode to stop mode and at a reset. When shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.

 Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is "0". If "1", division mode is
- fixed at 8.
- Note 4: If this bit is set to "1", XOUT turns "H", and the built-in feedback resistor is cut off. XCIN and XCOUT turn highimpedance state.

Figure 2.14.4. Power control-related registers

2.14.2 Stop Mode Set-Up

Settings and operation for entering stop mode are described here.

Operation (1) Enables the interrupt used for returning from stop mode.

- (2) Sets the interrupt enable flag (I flag) to "1".
- (3) Clearing the protection and setting all clock stop control bit to "1" stops oscillation and causes the processor to go into stop mode.

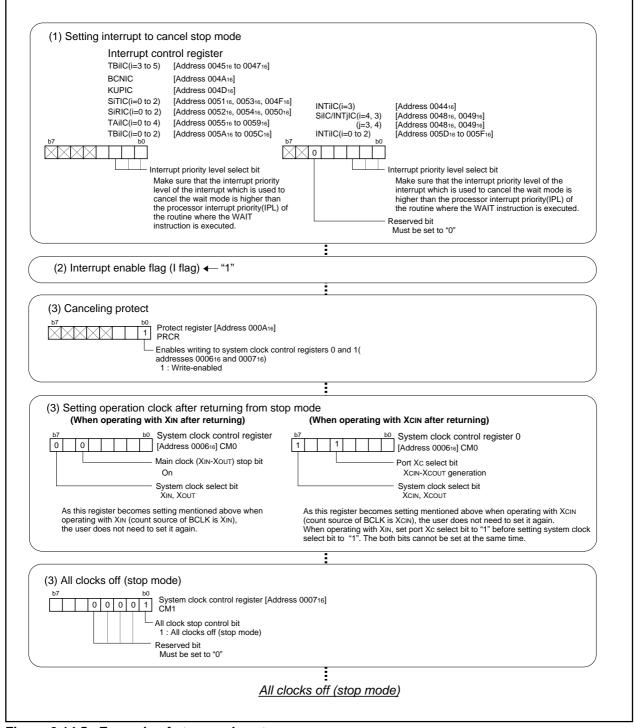


Figure 2.14.5. Example of stop mode set-up

2.14.3 Wait Mode Set-Up

Settings and operation for entering wait mode are described here.

Operation (1) Enables the interrupt used for returning from wait mode.

- (2) Sets the interrupt enable flag (I flag) to "1".
- (3) Clears the protection and changes the content of the system clock control register.
- (4) Executes the WAIT instruction.

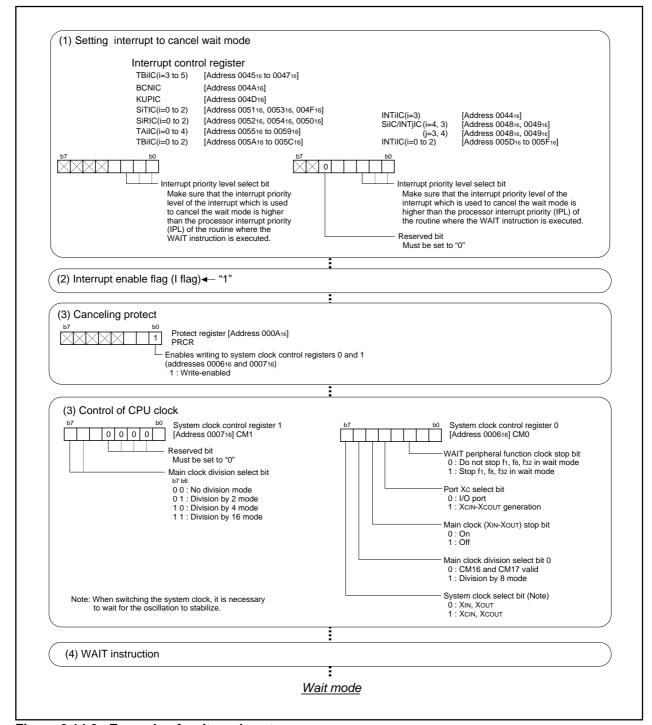


Figure 2.14.6. Example of wait mode set-up

2.14.4 Precautions in Power Control

- (1) The processor does not switch to stop mode when the $\overline{\text{NMI}}$ pin is at "L" level.
- (2) When returning from stop mode by hardware reset, RESET pin must be set to "L" level until main clock oscillation is stabilized.
- (3) When switching to either wait mode or stop mode, instructions occupying four bytes either from the WAIT instruction or from the instruction that sets the all clock stop control bit to "1" within the instruction queue are prefetched and then the program stops. So put at least four NOPs in succession either to the WAIT instruction or to the instruction that sets the all clock stop control bit to "1".
- (4) Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which the count source is going to be switched must be oscillating stably. Allow a wait time in software for the oscillation to stabilize before switching over the clock.
- (5) Suggestions to reduce power consumption

Ports

The processor retains the state of each programmable I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that float. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

(a) A-D converter

A current always flows in the VREF pin. When entering wait mode or stop mode, set the Vref connection bit to "0" so that no current flows into the VREF pin.

(b) D-A converter

The processor retains the D-A state even when entering wait mode or stop mode. Disable the output from the D-A converter then work on the programmable I/O ports. Set D-A register to "0016".

(c) Stopping peripheral functions

In wait mode, stop non-used wait peripheral functions using the peripheral function clock stop bit.

(d) Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

(e) External clock

When using an external clock input for the CPU clock, set the main clock stop bit to "1". Setting the main clock stop bit to "1" causes the Xout pin not to operate and the power consumption goes down (when using an external clock input, the clock signal is input regardless of the content of the main clock stop bit).

2.15 Programmable I/O Ports

2.15.1 Overview

Eighty-seven programmable I/O ports and one input-only port are available. I/O pins also serve as I/O pins for built-in peripheral functions.

Each port has a direction register that defines the I/O direction and also has a port register for I/O data. In addition, each port has a pull-up control register that defines pull-up in terms of 4 bits. The input-only port has neither direction register nor pull-up control bit.

The following is an overview of the programmable I/O ports:

(1) Writing to a port register

With the direction register set to output, the level of the written values from each relevant pin is output by writing to a port register. The output level conforms to CMOS output. Port P70 and P71 are N channel open drain. Writing to the port register, with the direction register set to input, inputs a value to the port register, but nothing is output to the relevant pins. The output level remains floating.

(2) Reading a port register

With the direction register set to output, reading a port register takes out the content of the port register, not the content of the pin. With the direction register set to input, reading the port register takes out the content of the pin.

(3) Effect of the protection register

Data written to the direction register of P9 is affected by the protection register. The direction register of P9 cannot be easily rewritten.

(4) Input-only port

P85 is used as the input-only port, it also serves as $\overline{\text{NMI}}$. P85 has no direction register. Pull-up cannot be set to this port. As $\overline{\text{NMI}}$ cannot be disabled, an $\overline{\text{NMI}}$ interrupt occurs if a falling edge is input to P85. Use P85 for reading the level input at this time only.

(5) Setting pull-up

The pull-up control bit allows setting of the pull-up, in terms of 4 bits, either in use or not in use. For the four bits chosen, pull-up is effective only in the ports whose direction register is set to input. Pull-up is not effective in ports whose direction register is set to output.

Do not set pull-up of corresponding pin when XCIN/XCOUT is set or a port is used as A-D input. Pull-up can be set for P0 to P3, P40 to P43, P5 in only single-chip mode. Pull-up cannot be set for P0 to P3, P40 to P43, P5 in memory expansion and microprocessor modes.

(6) I/O functions of built-in peripheral devices

Table 2.15.1 shows relation between ports and I/O functions of built-in peripheral devices.

Table 2.15.1. Relation between ports and I/O functions of built-in peripheral devices

Port	Internal peripheral device I/O pins
P15 to P17	Input pins for external interrupt
P6	I/O pins for serial I/O communication
P70	I/O pins for serial I/O communication/Timer A I/O pin
P71	I/O pins for serial I/O communication/Timer A I/O pins/Timer B input pin
P72 to P73	I/O pins for serial I/O communication/Timer A I/O pins/Three-phase motor control output pins
P74 to P75	Timer A I/O pins/Three-phase motor control output pins
P76 to P77	Timer A I/O pins
P80, P81	Timer A I/O pins
P82 to P84	Input pins for external interrupt
P86, P87	Sub-clock oscillation circuit I/O pins
P90 to P92	Timer B input pins
P93, P94	D-A converter output pins
P95, P96	A-D converter extended input pins
P97	A-D trigger input pin
P100 to P103	A-D converter input pins
P104 to P107	A-D converter input pins / key-input interrupt function input pins

(7) Examples of working on non-used pins

Table 2.15.2 contains examples of working on non-used pins. There are shown here for mere examples. In practical use, make suitable changes and perform sufficient evaluation in compliance with you application.

(a) Single-chip mode

Table 2.15.2. Examples of working on unused pins in single-chip mode

Pin name	Connection
Ports P0 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open. (Note 1, Note 3)
XOUT (Note 2)	Open
NMI	Connect to Vcc via a resistor
AVcc	Connect to Vcc
AVSS, VREF, BYTE	Connect to Vss

Note 1: If setting these pins in output mode and opening them, ports are in input mode until switched into output mode by use of software after reset. Thus the voltage levels of the pins become unstable, and there can be instances in which the power source current increases while the ports are in input mode.

In view of an instance in which the contents of the direction registers change due to a runaway generated by noise or other causes, setting the contents of the direction registers periodically by use of software increases program reliability.

- Note 2: When an external clock is input to the XIN pin.
- Note 3: Output "L" if port P70 and P71 are set to output mode. Port P70 and P71 are N channel open drain.

(b) Memory expansion mode, microprocessor mode

Table 2.15.3. Examples of working on unused pins in memory expansion mode or microprocessor mode

Pin name	Connection
Ports P6 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss or Vcc via a resistor; or after setting for output mode, leave these pins open. (Note 1, Note 2, Note 5)
BHE, ALE, HLDA	Open (Note 3)
XOUT (Note 4), BCLK (Note 6)	Open
HOLD, RDY, NMI	Connect via resistor to Vcc (pull-up)
AVcc	Connect to VCC
AVSS, VREF	Connect to Vss

- Note 1: If setting these pins in output mode and opening them, ports are in input mode until switched into output mode by use of software after reset. Thus the voltage levels of the pins become unstable, and there can be instances in which the power source current increases while the ports are in input mode.
 - In view of an instance in which the contents of the direction registers change due to a runaway generated by noise or other causes, setting the contents of the direction registers periodically by use of software increases program reliability.
- Note 2: Make wiring as short as possible (not more than 2 cm from the microcomputer's pins) in working on non-used pins.
- Note 3: When a Vss level is connected to the CNVss pin, these pins are input ports until the processor mode is switched by use of software after reset. Thus the voltage levels of the pins destabilize, and there can be an increase in the power source current while these pins are input ports.
- Note 4: When an external clock is input to the XIN pin.
- Note 5: Output "L" if port P70 and P71 are set to output mode. Port P70 and P71 are N channel open drain.
- Note 6: When the BCLK output disable bit (bit 7 at address 000416) is set to "1", connect to VCC via a resistor (pull-up).

(8) Registers related to the programmable I/O ports

Figure 2.15.1 shows the memory map of programmable I/O ports-related registers, and Figures 2.15.2 to 2.15.4 show programmable I/O ports-related registers.

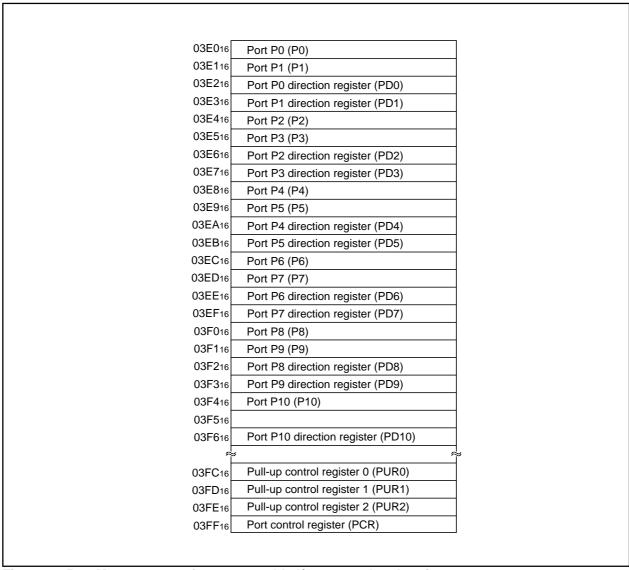


Figure 2.15.1. Memory map of programmable I/O ports-related registers

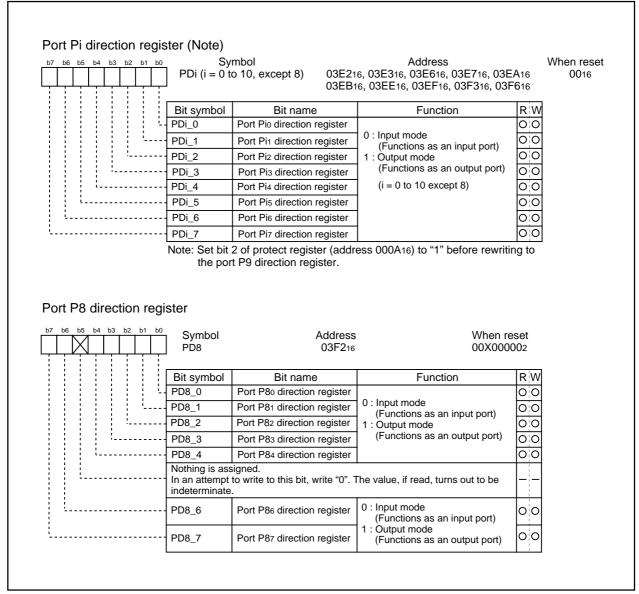


Figure 2.15.2. Programmable I/O ports-related registers (1)

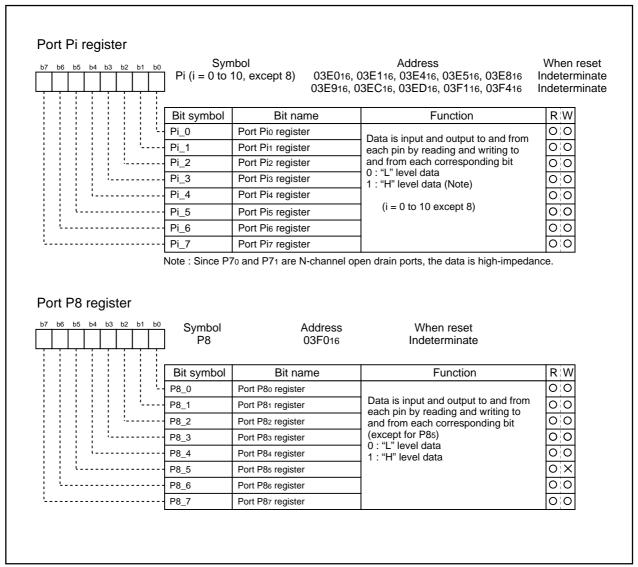


Figure 2.15.3. Programmable I/O ports-related registers (2)

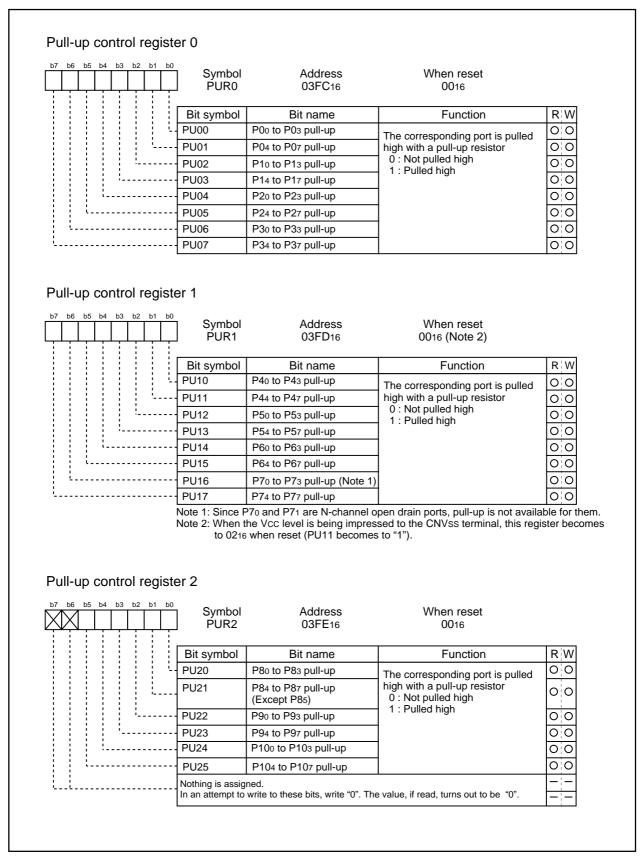


Figure 2.15.4. Programmable I/O ports-related registers (3)

Chapter 3

Examples of Peripheral functions Applications

This chapter presents applications in which peripheral functions built in the M16C/62 are used. They are shown here as examples. In practical use, make suitable changes and perform sufficient evaluation. For basic use, see Chapter 2 How to Use Peripheral Functions.

Here follows the list of applications that appear in this chapter.

• 3.1 Long-period timers F	2456
• 3.2 Variable-period variable-duty PWM output F	2460
• 3.3 Delayed one-shot output F	² 464
• 3.4 Buzzer output F	2468
• 3.5 Solution for external interrupt pins shortage F	2470
• 3.6 Memory to memory DMA transfer F	2472
• 3.7 Controlling power using stop mode F	2476
• 3.8 Controlling power using wait mode	2480

3.1 Long-Period Timers

Overview In this process, Timer A0 and Timer A1 are connected to make a 16-bit timer with a 16-bit prescaler. Figure 3.1.1 shows the operation timing, Figure 3.1.2 shows the connection diagram, and Figures 3.1.3 and 3.1.4 show the set-up procedure.

Use the following peripheral functions:

- Timer mode of timer A
- Event counter mode of timer A

Specifications

- (1) Set timer A0 to timer mode, and set timer A1 to event counter mode.
- (2) Perform a count on count source f1 using timer A0 to count for 1 ms, and perform a count on timer A0 using timer A1 to count for 1 second.
- (3) Connect a 16-MHz oscillator to XIN.

Operation (1) Setting the count start flag to "1" causes the counter to begin counting. The counter of timer A0 performs a down count on count source f1.

- (2) If the counter of timer A0 underflows, the counter reloads the content of the reload register and continues counting. At this time, the timer A0 interrupt request bit goes to "1". The counter of timer A1 performs a down count on underflows in timer A0.
- (3) If the counter of timer A1 underflows, the counter reloads the content of the reload register and continues counting. At this time, the timer A1 interrupt request bit goes to "1".

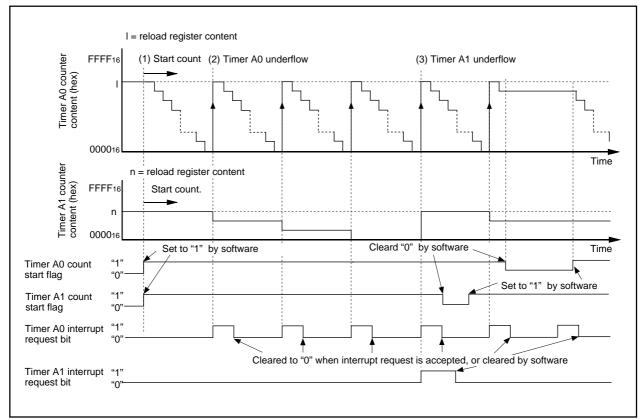


Figure 3.1.1. Operation timing of long-period timers

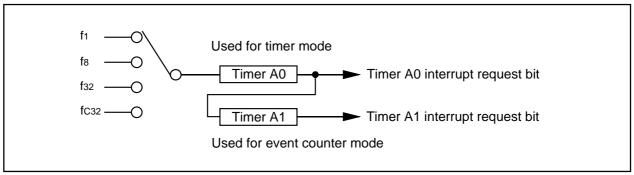


Figure 3.1.2. Connection diagram of long-period timers

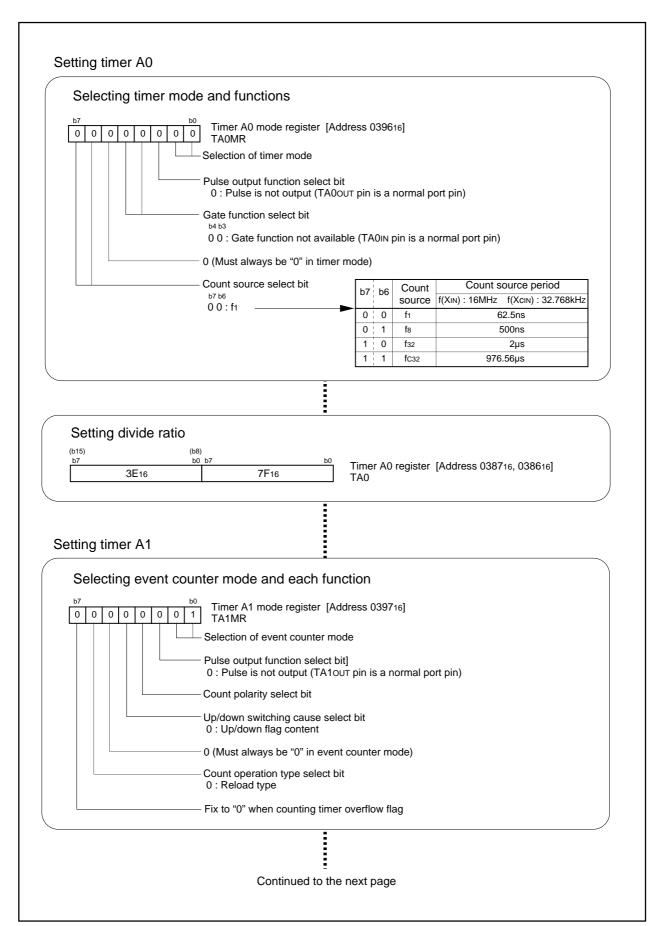


Figure 3.1.3. Set-up procedure of long-period timers (1)

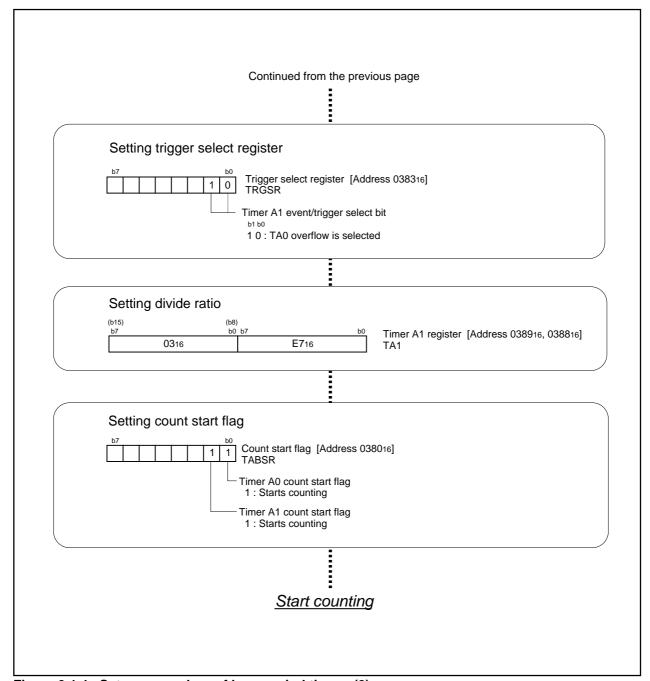


Figure 3.1.4. Set-up procedure of long-period timers (2)

3.2 Variable-Period Variable-Duty PWM Output

Overview In this process, Timer A0 and A1 are used to generate variable-period, variable-duty PWM output. Figure 3.2.1 shows the operation timing, Figure 3.2.2 shows the connection diagram, and Figures 3.2.3 and 3.2.4 show the set-up procedure.

Use the following peripheral functions:

- Timer mode of timer A
- One-shot timer mode of timer A

Specifications

- (1) Set timer A0 in timer mode, and set timer A1 in one-shot timer mode with pulse-output function.
- (2) Set 1 ms, the PWM period, to timer A0. Set 500 μ s, the width of PWM "H" pulse, to timer A1. Both timer A0 and timer A1 use f1 for the count source.
- (3) Connect a 16-MHz oscillator to XIN.
- Operation (1) Setting the count start flag to "1" causes the counter of timer A0 to begin counting. The counter of timer A0 performs a down count on count source f1.
 - (2) If the counter of timer A0 underflows, the counter reloads the content of the reload register and continues counting. At this time, the timer A0 interrupt request bit gose to "1".
 - (3) An underflow in timer A0 triggers the counter of timer A1 and causes it to begin counting. When the counter of timer A1 begins counting, the output level of the TA10UT pin gose to "H".
 - (4) As soon as the count of the counter of timer A1 becomes "000016", the output level of TA1out pin gose to "L", and the counter reloads the content of the reload register and stops counting. At the same time, the timer A1 interrupt request bit gose to "1".

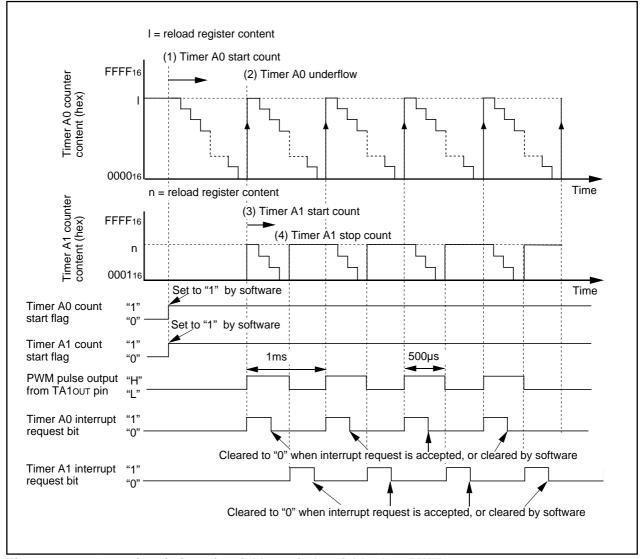


Figure 3.2.1. Operation timing of variable-period variable-duty PWM output

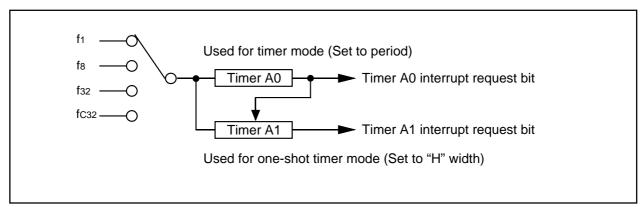


Figure 3.2.2. Connection diagram of variable-period variable-duty PWM output

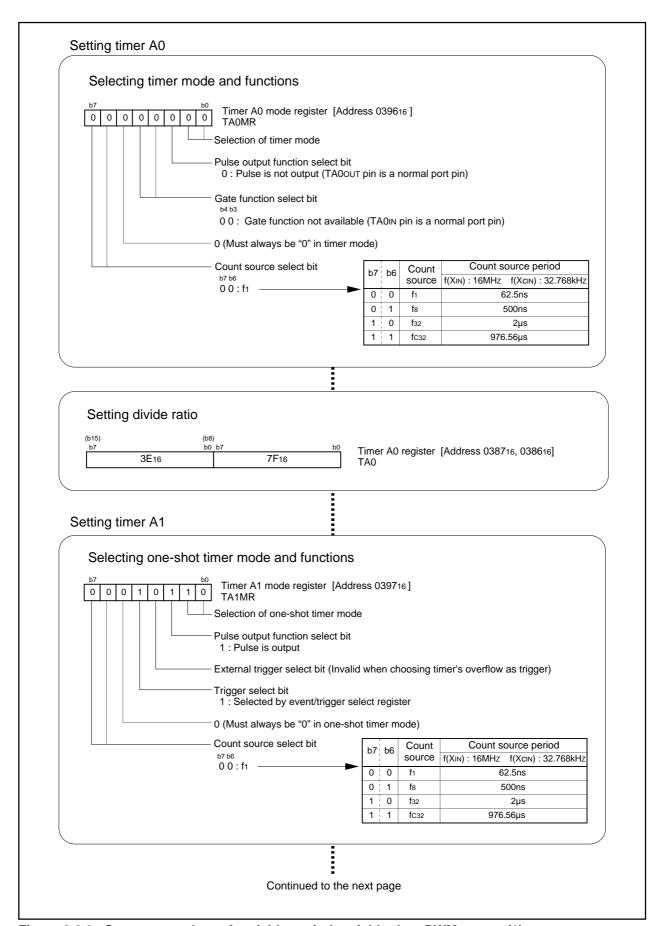


Figure 3.2.3. Set-up procedure of variable-period variable-duty PWM output (1)

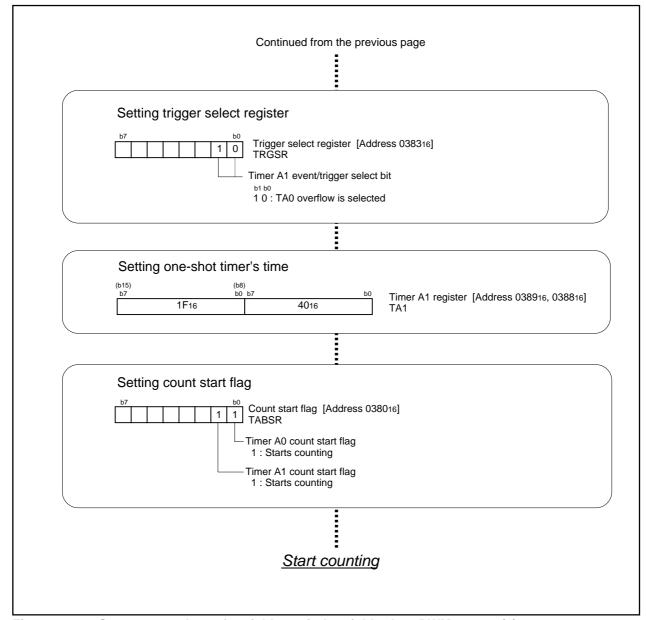


Figure 3.2.4. Set-up procedure of variable-period variable-duty PWM output (2)

3.3 Delayed One-Shot Output

Overview The following are steps of outputting a pulse only once after a specified elapse since an external trigger is input. Figure 3.3.1 shows the operation timing, Figure 3.3.2 shows the connection diagram, and Figures 3.3.3 and 3.3.4 show the set-up procedure.

Use the following peripheral function:

One-shot timer mode of timer A

Specifications

- (1) Set timer A0 in one-shot timer mode, and set timer A1 in one-shot timer mode with pulseoutput function.
- (2) Set 1 ms, an interval before a pulse is output, in timer A0; and set 50 μ s, a pulse width, in timer A1. Both timer A0 and timer A1 use f1 for the count source.
- (3) Connect a 16-MHz oscillator to XIN.
- Operation (1) Setting the trigger select bit to "1" and setting the count start flag to "1" enables the counter of timer A0 to count.
 - (2) If an effective edge, selected by use of the external trigger select bit, is input to the TA0IN pin, the counter begins a down count. The counter of timer A0 performs a down count on count source f1.
 - (3) As soon as the counter of timer A0 becomes "000016", the counter reloads the content of the reload register and stops counting. At this time, the timer A0 interrupt request bit gose to "1".
 - (4) An underflow in timer A0 triggers the counter of timer A1 and causes it to begin counting. When timer A1 begins counting, the output level of the TA10UT pin gose to "H".
 - (5) As soon as the counter of timer A1 becomes "000016", the output level of the TA10UT pin gose to "L", the counter reloads the content of the reload register, and stops counting. At this time, timer A1 interrupt request bit gose to "1".

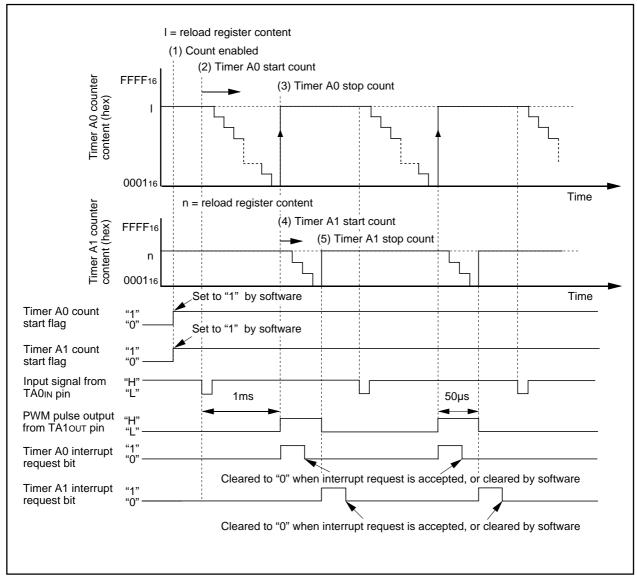


Figure 3.3.1. Operation timing of delayed one-shot output

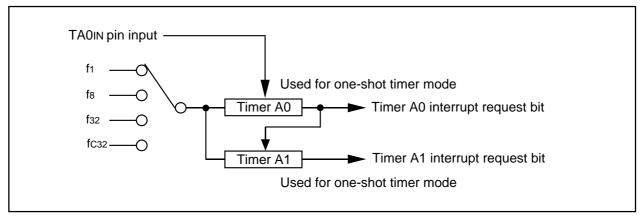


Figure 3.3.2. Connection diagram of delayed one-shot output

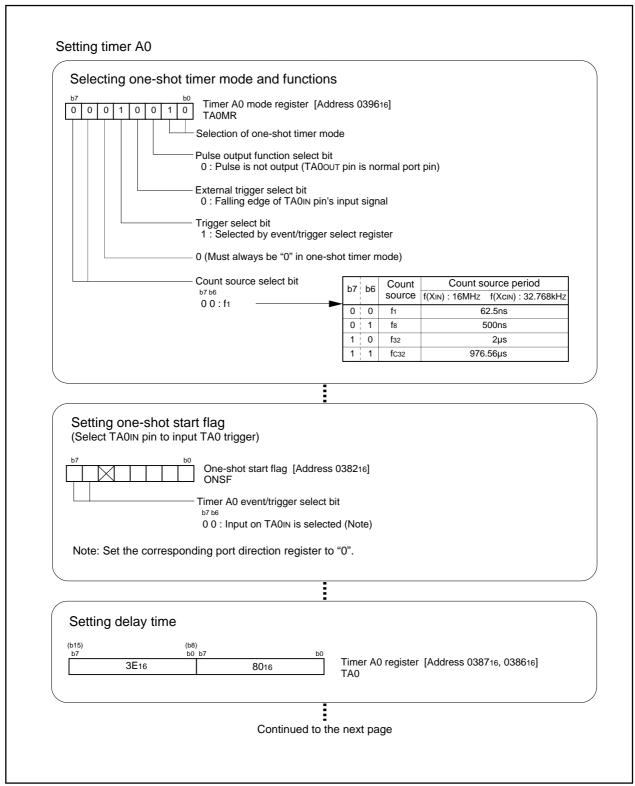


Figure 3.3.3. Set-up procedure of delayed one-shot output (1)

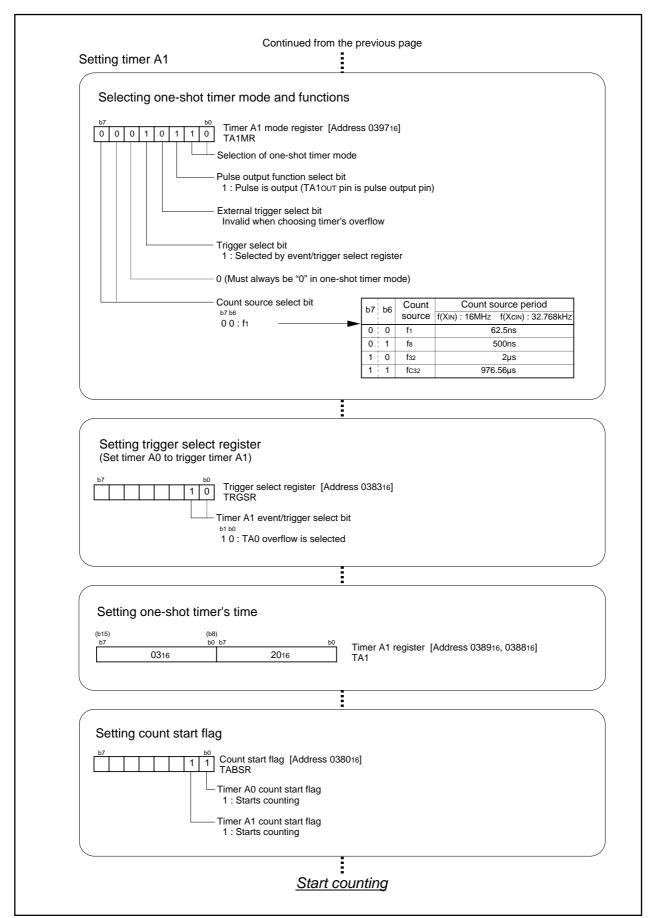


Figure 3.3.4. Set-up procedure of delayed one-shot output (2)

3.4 Buzzer Output

Overview The timer mode is used to make the buzzer ring. Figure 3.4.1 shows the operation timing, and Figure 3.4.2 shows the set-up procedure.

Use the following peripheral function:

• The pulse-outputting function in timer mode of timer A.

Specifications

- (1) Sound a 2-kHz buzz beep by use of timer A0.
- (2) Effect pull-up in the relevant port by use of a pull-up resistor. When the buzzer is off, set the port high-impedance, and stabilize the potential resulting from pulling up.
- (3) Connect a 16-MHz oscillator to XIN.

- Operation (1) The microcomputer begins performing a count on timer A0. Timer A0 has disabled interrupts.
 - (2) The microcomputer begins pulse output by setting the pulse output function select bit to "Pulse output effected". P70 changes into TA0ouT pin and outputs 2-kHz pulses.
 - (3) The microcomputer stops outputting pulses by setting the pulse output function select bit to "Pulse output not effected". P70 goes to an input pin, and the output from the pin becomes high-impedance.

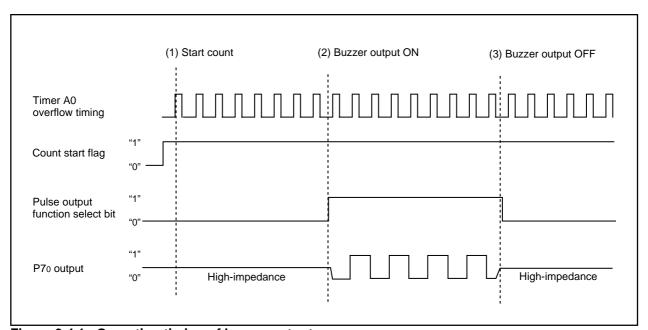


Figure 3.4.1. Operation timing of buzzer output

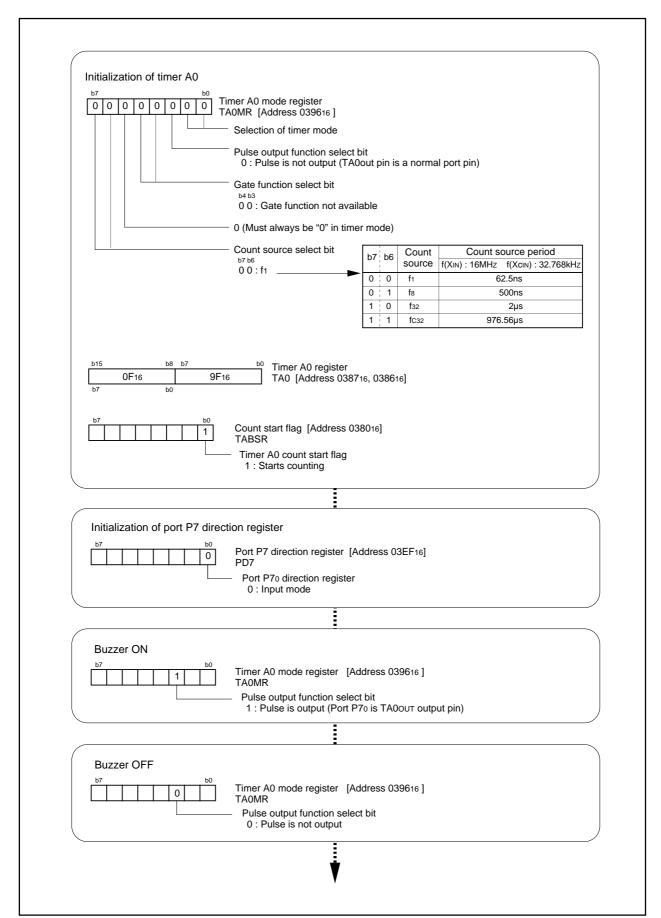


Figure 3.4.2. Set-up procedure of buzzer output

3.5 Solution for External Interrupt Pins Shortage

Overview The following are solution for external interrupt pins shortage. Figure 3.5.1 shows the set-up procedure.

Use the following peripheral function:

• Event counter mode of timer A

Specifications

(1) Inputting a falling edge to the TA0IN pin generates a timer A0 interrupt.

Operation

- (1) Set timer A0 to event counter mode, set timer to "0", and set interrupt priority levels in timer A0.
- (2) Inputting a falling edge to the TA0IN pin generates a timer A0 interrupt.

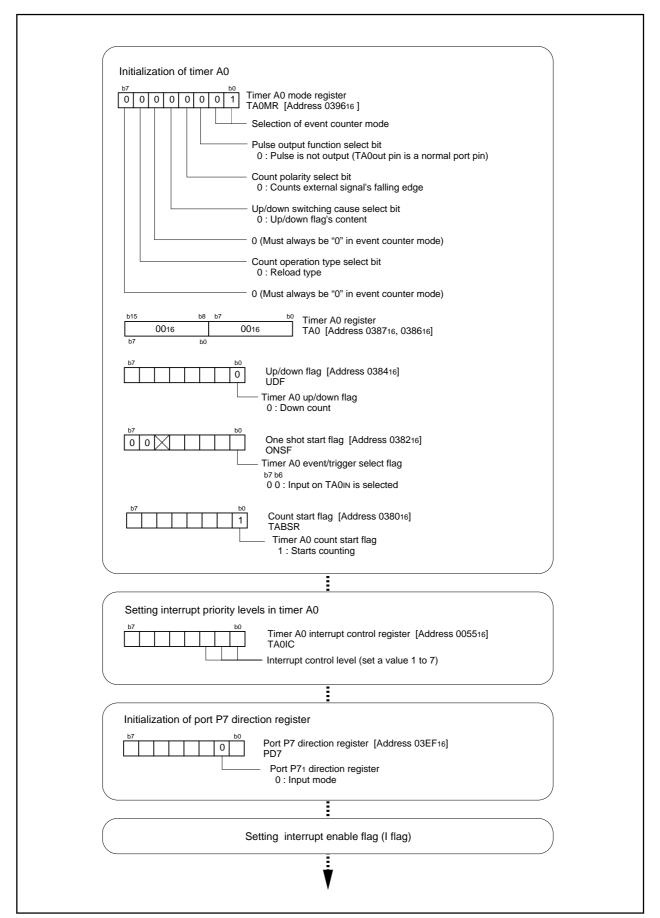


Figure 3.5.1. Set-up procedure of solution for a shortage of external interrupt pins

3.6 Memory to Memory DMA Transfer

Overview The following are steps for changing both source address and destination address to transfer data from memory to another. The DMA transfer utilizes the workings that assign a higher priority to the DMA0 transfer if transfer requests simultaneously occur in two DMA channels. Figure 3.6.1 shows the operation timing, Figure 3.6.2 shows the block diagram, and Figures 3.6.3 and 3.6.4 show the set-up procedure.

Use the following peripheral functions:

- Timer mode of timer A
- Two DMAC channels
- One-byte temporary RAM (address 080016)

Specifications

- (1) Transfer the content of memory extending over 128 bytes from address A000016 to a 128byte area starting from address C000016. Transfer the content every time a timer A0 interrupt request occurs.
- (2) Use DMA0 for a transfer from the source to built-in memory, and DMA1 for a transfer from built-in memory to the destination.

Operation (1) A timer A interrupt request occurs. Though both a DMA0 transfer request and a DMA1 transfer request occur simultaneously, the former is executed first.

- (2) DMA0 receives a transfer request and transfers data from the source to the built-in memory. At this time, the source address is incremented.
- (3) Next, DMA1 receives a transfer request and transfers data involved from built-in memory to the destination. At this time, the destination address is incremented.

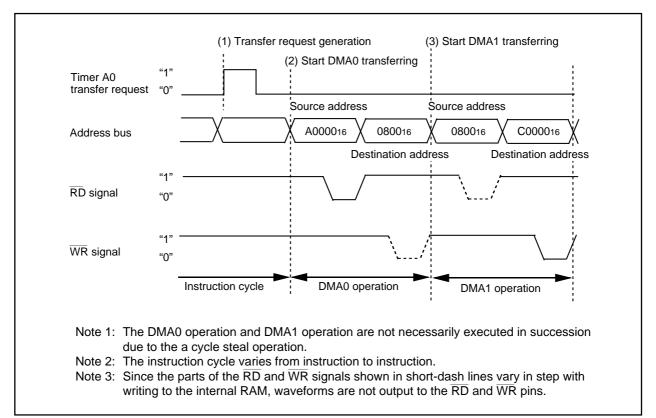


Figure 3.6.1. Operation timing of memory to memory DMA transfer

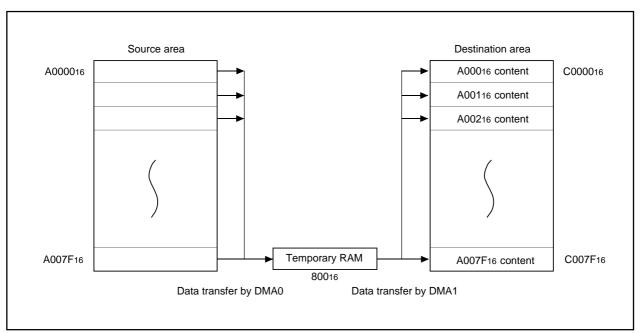


Figure 3.6.2. Block diagram of memory to memory DMA transfer

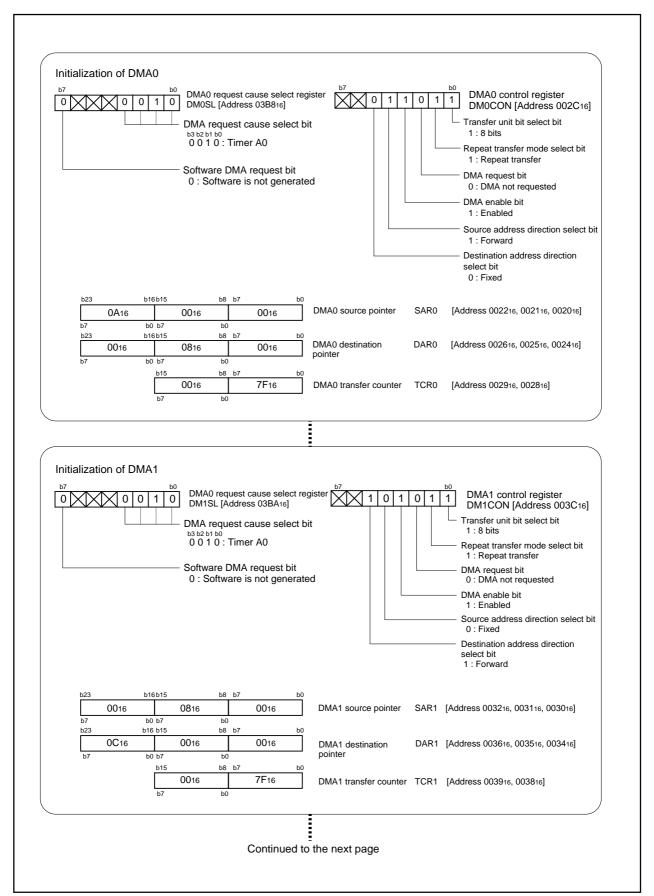


Figure 3.6.3. Set-up procedure of memory to memory DMA transfer (1)

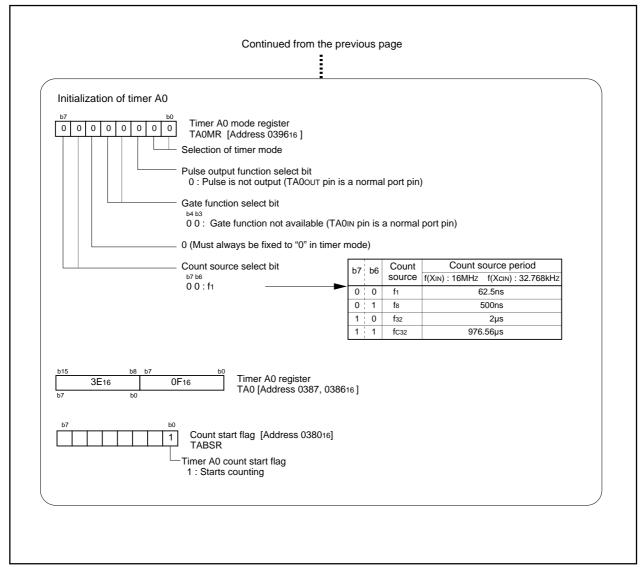


Figure 3.6.4. Set-up procedure of memory to memory DMA transfer (2)

3.7 Controlling Power Using Stop Mode

Overview

The following are steps for controlling power using stop mode. Figure 3.7.1 shows the operation timing, Figure 3.7.2 shows an example of circuit, and Figures 3.7.3 and 3.7.4 show the set-up procedure.

Use the following peripheral functions:

- Key-input interrupts
- Stop mode
- Pull-up function

Specifications

- (1) Use P100 through P103 for the scan output pins of a key matrix. Use the input pins (KI0 through KI3) of the key-input interrupt function for the key-input reading pins. The pull-up function is also used.
- (2) If a key-input interrupt request occurs, clear the stop mode and read a key.

Operation

- (1) Enable a key-input interrupt and set the pull-up function to pins Klo through Klo. Change the output of P100 through P103 to "L" and enter stop mode.
 - (2) If a key is pressed, "L" is input to one of pins Klo through Klo to clear stop mode. A key-input interrupt occurs to execute the key-input interrupt handling routine.
 - (3) Sequentially set P100 through P103 to "L" to determine which key was pressed.
- (4) When the process to determine the key pressed is completed, change the output from P100 through P103 to "L" again and enter stop mode.

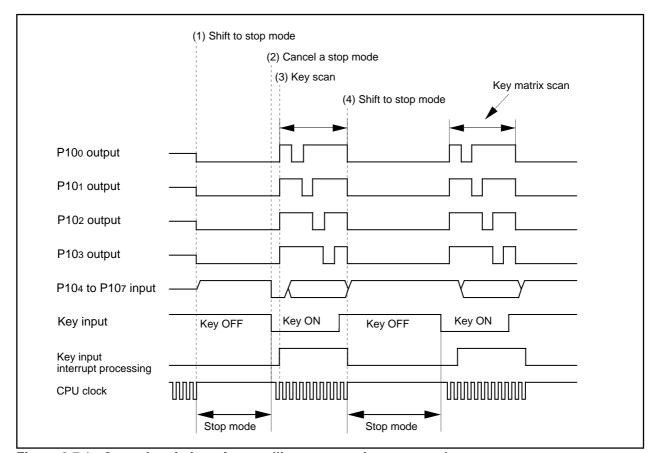


Figure 3.7.1. Operation timing of controlling power using stop mode

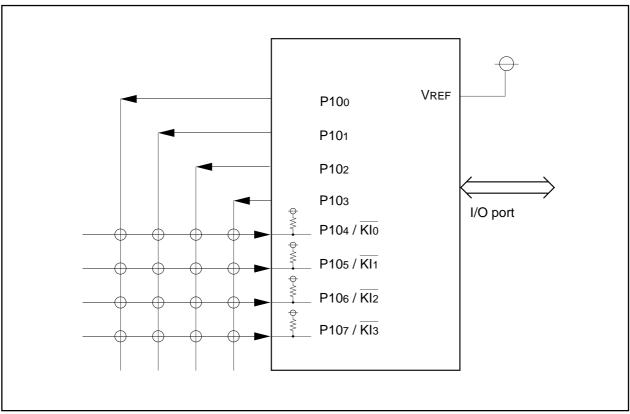


Figure 3.7.2. Example of circuit of controling power using stop mode

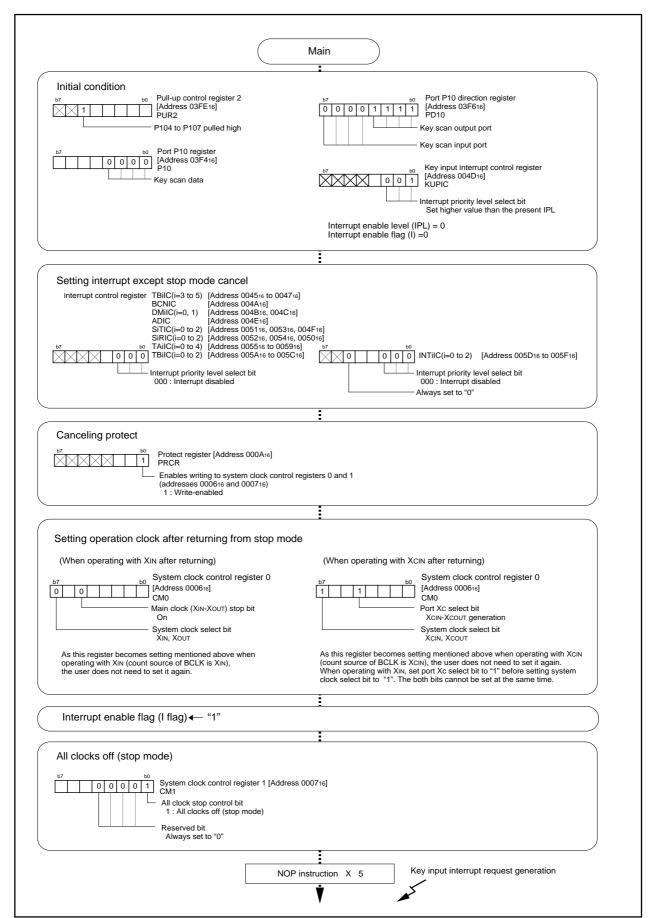


Figure 3.7.3. Set-up procedure of controlling power using stop mode (1)

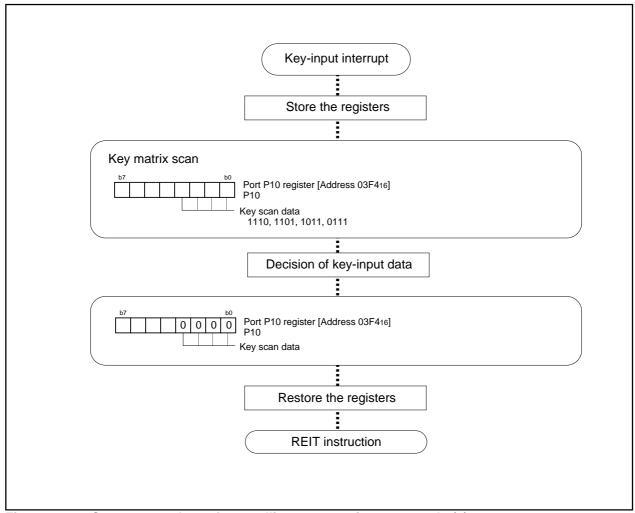


Figure 3.7.4. Set-up procedure of controlling power using stop mode (2)

3.8 Controling Power Using Wait Mode

Overview The following are steps for controling power using wait mode. Figure 3.8.1 shows the operation timing, and Figures 3.8.2 to 3.8.4 show the set-up procedure.

Use the following peripheral functions:

- Timer mode of timer B
- Wait mode

A flag named "F-WIT" is used in the set-up procedure. The purpose of this flag is to decide whether or not to clear wait mode. If F_WIT = "1" in the main program, the wait mode is entered; if F_WIT = "0", the wait mode is cleared.

Specifications

- (1) Connect a 32.768-kHz oscillator to XCIN to serve as the timer count source. As interrupts occur every one second, which is a count the timer reaches, the controller returns from wait mode and count the clock using a program.
- (2) Clear wait mode if a INTO interrupt request occurs.

Operation (1) Switch the system clock from XIN to XCIN to get low-speed mode.

- (2) Stop XIN and enter wait mode. In this instance, enable the timer B2 interrupt and the INTO interrupt.
- (3) When a timer B2 interrupt request occurs (at 1-second intervals), start supplying the BCLK from XCIN.

At this time, count the clock within the routine that handles the timer B2 interrupts and enter wait mode again.

(4) If a INTO interrupt occurs, start supplying the BCLK from XCIN. Start the XIN oscillation within the INTO interrupt, and switch the system clock to XIN.

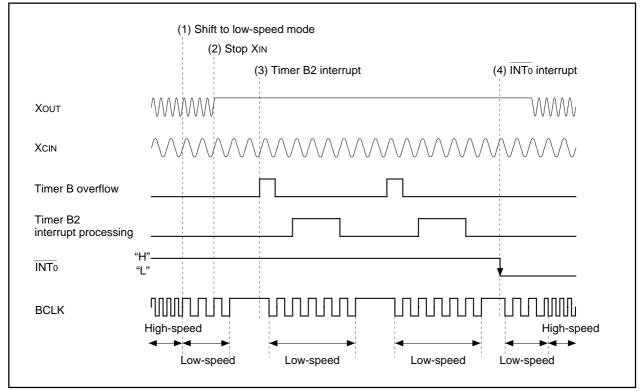


Figure 3.8.1. Operation timing of controling power using wait mode

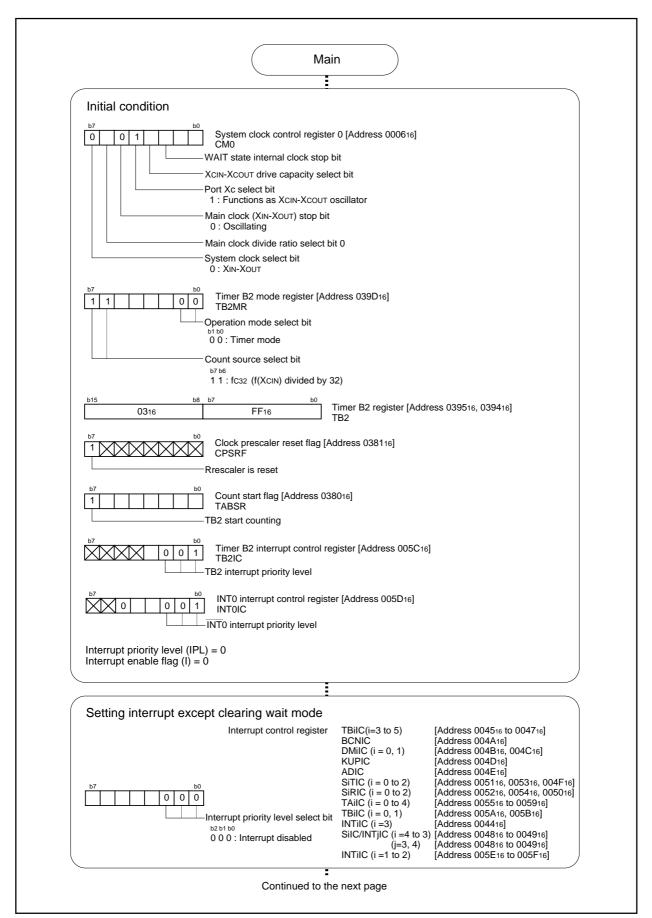


Figure 3.8.2. Set-up procedure of controlling power using wait mode (1)

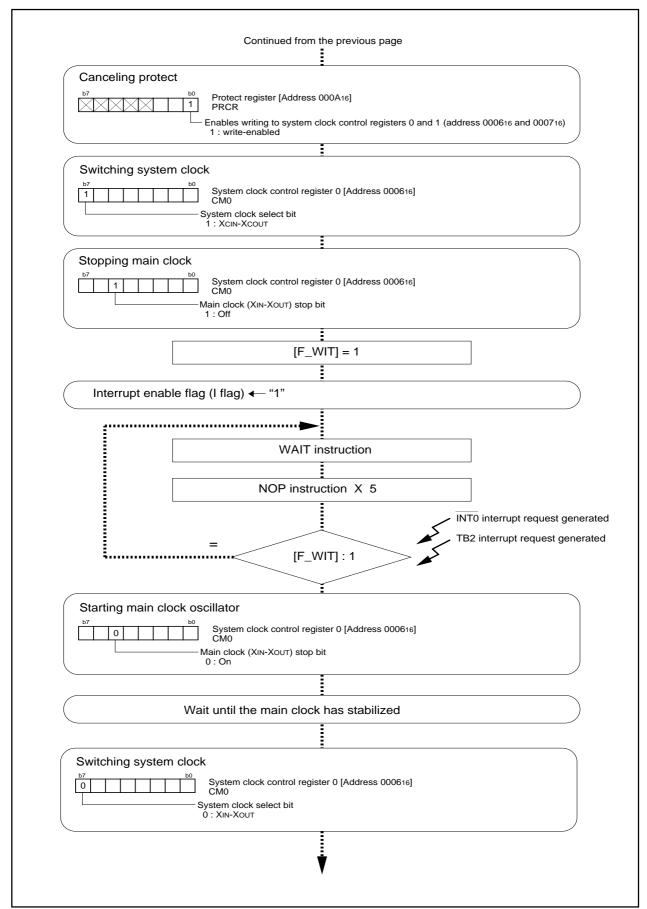


Figure 3.8.3. Set-up procedure of controlling power using wait mode (2)

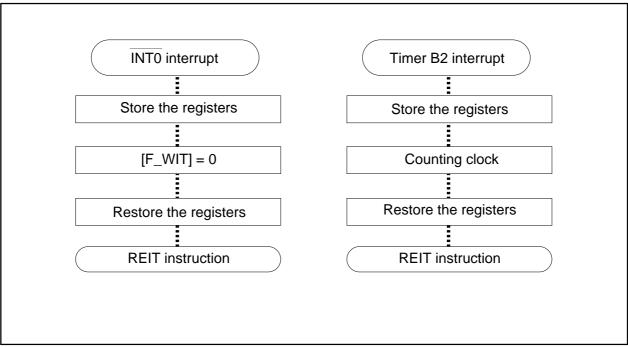


Figure 3.8.4. Set-up procedure of controlling power using wait mode (3)

Chapter 4

Interrupt

4.1 Overview of Interrupt

4.1.1 Type of Interrupts

Figure 4.1.1 lists the types of interrupts.

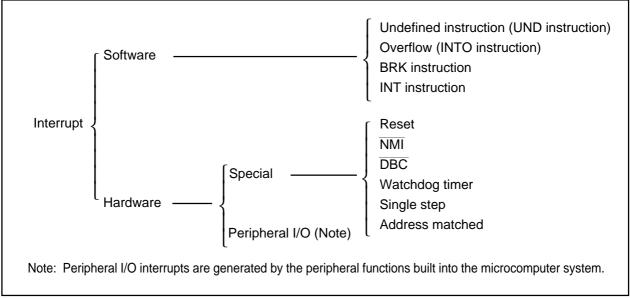


Figure 4.1.1. Classification of interrupts

Maskable interrupt:
 An interrupt which can be enabled (disabled) by the interrupt enable flag

(I flag) or whose interrupt priority **can be changed** by priority level.

• Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable

flag (I flag) or whose interrupt priority cannot be changed by priority level.

4.1.2 Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

Undefined instruction interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

Overflow interrupt

An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to "1". The following are instructions whose O flag changes by arithmetic:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

BRK interrupt

A BRK interrupt occurs when executing the BRK instruction.

INT interrupt

An INT interrupt occurs when assiging one of software interrupt numbers 0 through 63 and executing the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts, so executing the INT instruction allows executing the same interrupt routine that a peripheral I/O interrupt does.

The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is involved.

So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to "0" and select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt request. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a shift.

4.1.3 Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are non-maskable interrupts.

Reset

Reset occurs if an "L" is input to the RESET pin.

• NMI interrupt

An \overline{NMI} interrupt occurs if an "L" is input to the \overline{NMI} pin.

• DBC interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances.

Watchdog timer interrupt

Generated by the watchdog timer.

Single-step interrupt

This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug flag (D flag) set to "1", a single-step interrupt occurs after one instruction is executed.

Address match interrupt

An address match interrupt occurs immediately before the instruction held in the address indicated by the address match interrupt register is executed with the address match interrupt enable bit set to "1". If an address other than the first address of the instruction in the address match interrupt register is set, no address match interrupt occurs. For address match interrupt, see 2.11 Address match Interrupt.

(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 0 through 31 the INI instruction uses. Peripheral I/O interrupts are maskable interrupts.

Bus collision detection interrupt

This is an interrupt that the serial I/O bus collision detection generates.

DMA0 interrupt, DMA1 interrupt

These are interrupts DMA generates.

Key-input interrupt

A key-input interrupt occurs if an "L" is input to the KI pin.

A-D conversion interrupt

This is an interrupt that the A-D converter generates.

• UART0, UART1 and UART2 transmission interrupt

These are interrupts that the serial I/O transmission generates.

• UART0, UART1 and UART2 reception interrupt

These are interrupts that the serial I/O reception generates.

Timer A0 interrupt through timer A4 interrupt

These are interrupts that timer A generates

Timer B0 interrupt through timer B2 interrupt

These are interrupts that timer B generates.

• INTO interrupt through INT2 interrupt

An INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin.

4.1.4 Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and variable vector table in which addresses can be varied by the setting.

Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of interrupt routine in each vector table. Table 4.1.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Table 4.1.1. Interrupts assigned to the fixed vector tables and addresses of vector tables

Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction
BRK instruction	FFFE416 to FFFE716	If the vector contains FF16, program execution starts from
		the address shown by the vector in the variable vector table
Address match	FFFE816 to FFFEB16	There is an address-matching interrupt enable bit
Single step (Note)	FFFEC16 to FFFEF16	Do not use
Watchdog timer	FFFF016 to FFFF316	
DBC (Note)	FFFF416 to FFFF716	Do not use
NMI	FFFF816 to FFFFB16	External interrupt by input to NMI pin
Reset	FFFFC16 to FFFFF16	

Note: Interrupts used for debugging purposes only.

Variable vector tables

The addresses in the variable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the variable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 4.1.2 shows the interrupts assigned to the variable vector tables and addresses of vector tables.

Table 4.1.2. Interrupts assigned to the variable vector tables and addresses of vector tables

Software interrupt number	Vector table address Address (L) to address (H)	Interrupt source	Remarks		
Software interrupt number 0	+0 to +3 (Note 1)	BRK instruction	Cannot be masked I flag		
Software interrupt number 4	+16 to +19 (Note 1)	ĪNT3			
Software interrupt number 5	+20 to +23 (Note 1)	Timer B5			
Software interrupt number 6	+24 to +27 (Note 1)	Timer B4			
Software interrupt number 7	+28 to +31 (Note 1)	Timer B3			
Software interrupt number 8	+32 to +35 (Note 1)	SI/O4/INT5 (Note 2)			
Software interrupt number 9	+36 to +39 (Note 1)	SI/O3/INT4 (Note 2)			
Software interrupt number 10	+40 to +43 (Note 1)	Bus collision detection			
Software interrupt number 11	+44 to +47 (Note 1)	DMA0			
Software interrupt number 12	+48 to +51 (Note 1)	DMA1			
Software interrupt number 13	+52 to +55 (Note 1)	Key input interrupt			
Software interrupt number 14	+56 to +59 (Note 1)	A-D			
Software interrupt number 15	+60 to +63 (Note 1)	UART2 transmit/NACK (Note 3)			
Software interrupt number 16	+64 to +67 (Note 1)	UART2 receive/ACK (Note 3)			
Software interrupt number 17	+68 to +71 (Note 1)	UART0 transmit			
Software interrupt number 18	+72 to +75 (Note 1)	UART0 receive			
Software interrupt number 19	+76 to +79 (Note 1)	UART1 transmit			
Software interrupt number 20	+80 to +83 (Note 1)	UART1 receive			
Software interrupt number 21	+84 to +87 (Note 1)	Timer A0			
Software interrupt number 22	+88 to +91 (Note 1)	Timer A1			
Software interrupt number 23	+92 to +95 (Note 1)	Timer A2			
Software interrupt number 24	+96 to +99 (Note 1)	Timer A3			
Software interrupt number 25	+100 to +103 (Note 1)	Timer A4			
Software interrupt number 26	+104 to +107 (Note 1)	Timer B0			
Software interrupt number 27	+108 to +111 (Note 1)	Timer B1			
Software interrupt number 28	+112 to +115 (Note 1)	Timer B2			
Software interrupt number 29	+116 to +119 (Note 1)	ĪNT0			
Software interrupt number 30	+120 to +123 (Note 1)	INT1	1		
Software interrupt number 31	+124 to +127 (Note 1)	INT2			
Software interrupt number 32	+128 to +131 (Note 1)				
to Software interrupt number 63	to +252 to +255 (Note 1)	Software interrupt	Cannot be masked I flag		

Note 1: Address relative to address in interrupt table register (INTB).

Note 2: It is selected by interrupt request cause bit (bit 6, 7 in address 035F16).

Note 3: When IIC mode is selected, NACK and ACK interrupts are selected.

4.2 Interrupt Control

Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the priority to be accepted. What is described here does not apply to non-maskable interrupts.

Enable or disable a non-maskable interrupt using the interrupt enable flag (I flag), interrupt priority level selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the IPL are located in the flag register (FLG).

Table 4.2.1 shows the memory map of the interrupt control registers, and Table 4.2.2 shows the interrupt control registers.

004416	INT3 interrupt control register (INT3IC)
004516	Timer B5 interrupt control register (TB5IC)
004616	Timer B4 interrupt control register (TB4IC)
04716	Timer B3 interrupt control register (TB3IC)
004816	SI/O4 interrupt control register (S4IC)
	INT5 interrupt control register (INT5IC)
004916	SI/O3 interrupt control register (S4IC)
	INT4 interrupt control register (INT4IC)
004A16	Bus collision detection interrupt control register (BCNIC)
004B ₁₆	DMA0 interrupt control register (DM0IC)
004C16	DMA1 interrupt control register (DM1IC)
004D16	Key input interrupt control register(KUPIC)
004E16	A-D conversion interrupt control register (ADIC)
004F16	UART2 transmit interrupt control register (S2TIC)
005016	UART2 receive interrupt control register (S2RIC)
005116	UART0 transmit interrupt control register (S0TIC)
005216	UART0 receive interrupt control register (S0RIC)
005316	UART1 transmit interrupt control regster(S1TIC)
005416	UART1 receive interrupt control register(S1RIC)
005516	Timer A0 interrupt control register (TA0IC)
005616	Timer A1 interrupt control register (TA1IC)
005716	Timer A2 interrupt control register (TA2IC)
005816	Timer A3 interrupt control register (TA3IC)
005916	Timer A4 interrupt control register (TA4IC)
005A16	Timer B0 interrupt control register (TB0IC)
005B ₁₆	Timer B1 interrupt control register (TB1IC)
005C ₁₆	Timer B2 interrupt control register (TB2IC)
005D16	INT0 interrupt control register (INT0IC)
005E16	INT1 interrupt control register (INT1IC)
005F16	INT2 interrupt control register (INT2IC)

Table 4.2.1. Memory map of the interrupt control registers

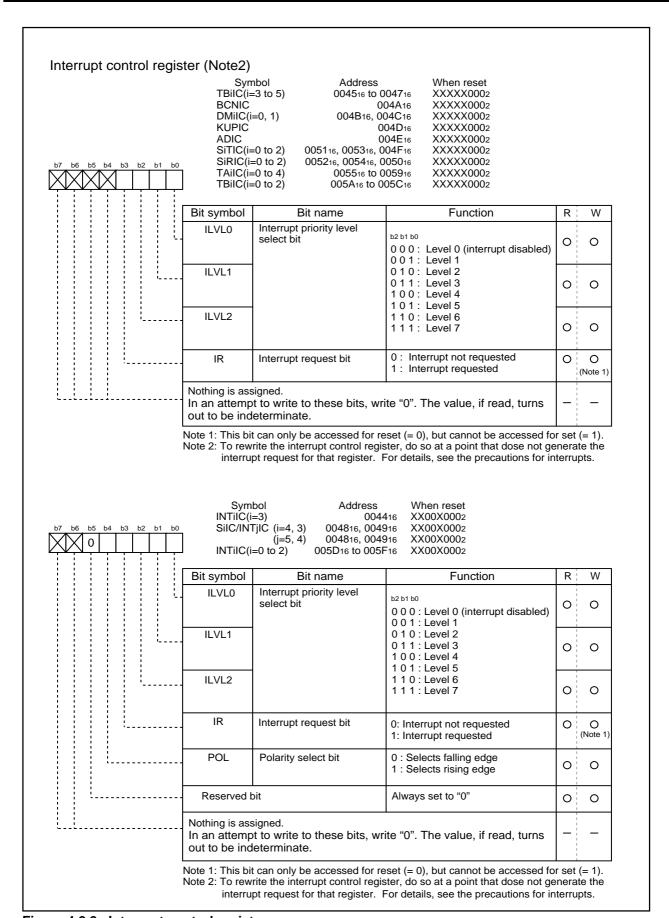


Figure 4.2.2. Interrupt control registers

4.2.1 Interrupt Enable Flag

The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this flag to "1" enables all maskable interrupts; setting it to "0" disables all maskable interrupts. This flag is set to "0" after reset.

The content is changed when the I flag is changed causes the acceptance of the interrupt request in the following timing:

- When changing the I flag using the REIT instruction, the acceptance of the interrupt takes effect as the REIT instruction is executed.
- When changing the I flag using one of the FCLR, FSET, POPC, and LDC instructions, the acceptance of the interrupt is effective as the next instruction is executed.

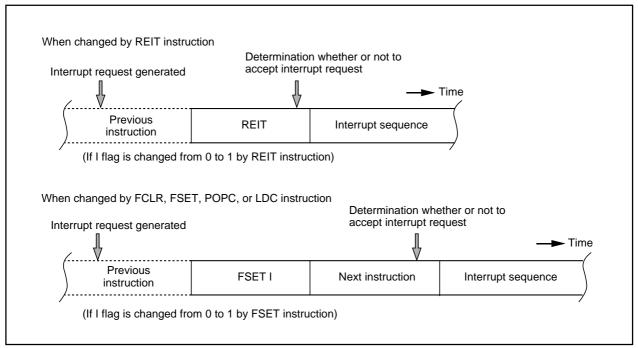


Figure 4.2.3. The timing of reflecting the change in the I flag to the interrupt

4.2.2 Interrupt Request Bit

The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is accepted and jumps to the corresponding interrupt vector, the request bit is set to "0" by hardware. The interrupt request bit can also be set to "0" by software. (Do not set this bit to "1").

4.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)

Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL. Therefore, setting the interrupt priority level to "0" disables the interrupt.

Table 4.2.1 shows the settings of interrupt priority levels and Table 4.2.2 shows the interrupt levels enabled, according to the consist of the IPL.

The following are conditions under which an interrupt is accepted:

- · interrupt enable flag (I flag) = 1
- · interrupt request bit = 1
- · interrupt priority level > IPL

The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are independent, and they are not affected by one another.

Table 4.2.1. Settings of interrupt priority levels

Interrupt po		Interrupt priority level	Priority order
b2 b1 b		Laval O (intamount dia abla d)	
0 0	0	Level 0 (interrupt disabled)	
0 0	1	Level 1	Low
0 1	0	Level 2	
0 1	1	Level 3	
1 0	0	Level 4	
1 0	1	Level 5	
1 1	0	Level 6	
1 1	1	Level 7	High

Table 4.2.2. Interrupt levels enabled according to the contents of the IPL

	IPL		Enabled interrupt priority levels
IPL2	IPL1	IPL ₀	
0	0	0	Interrupt levels 1 and above are enabled
0	0	1	Interrupt levels 2 and above are enabled
0	1	0	Interrupt levels 3 and above are enabled
0	1	1	Interrupt levels 4 and above are enabled
1	0	0	Interrupt levels 5 and above are enabled
1	0	1	Interrupt levels 6 and above are enabled
1	1	0	Interrupt levels 7 and above are enabled
1	1	1	All maskable interrupts are disabled

When either the IPL or the interrupt priority level is changed, the new level is reflected to the interrupt in the following timing:

- When changing the IPL using the REIT instruction, the reflection takes effect as of the instruction that is executed in 2 clock cycles after the last clock cycle in volved in the REIT instruction.
- When changing the IPL using either the POPC, LDC or LDIPL instruction, the reflection takes effect as of the instruction that is executed in 3 cycles after the last clock cycle involved in the instruction used.
- When changing the interrupt priority level using the MOV or similar instruction, the reflection takes
 effect as of the instruction that is executed in 2 clock cycles after the last clock cycle involved in
 the instruction used.

4.2.4 Rewrite the interrupt control register

To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

NOP ; Four NOP instructions are required when using HOLD function.

NOP

FSET I ; Enable interrupts.

Example 2:

INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

MOV.W MEM, R0 ; Dummy read. FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC FLG ; Push Flag register onto stack

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

POPC FLG ; Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions: AND, OR, BCLR, BSET

4.3 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

- (1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 0000016.
- (2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
- (3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
- (4) Saves the content of the temporary register (Note 1) within the CPU in the stack area.
- (5) Saves the content of the program counter (PC) in the stack area.
- (6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.

Note: This register cannot be utilized by the user.

4.3.1 Interrupt Response Time

'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 4.3.1 shows the interrupt response time.

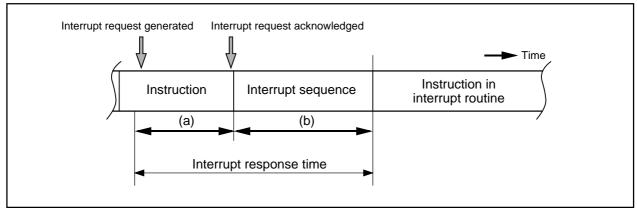


Figure 4.3.1. Interrupt response time

Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the DIVX instruction (without wait).

Time (b) is as shown in Table 4.3.1.

Table 4.3.1. Time required for executing the interrupt sequence

Interrupt vector address	Stack pointer (SP) value	16-Bit bus, without wait	8-Bit bus, without wait
Even	Even	18 cycles (Note 1)	20 cycles (Note 1)
Even	Odd	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Even	19 cycles (Note 1)	20 cycles (Note 1)
Odd (Note 2)	Odd	20 cycles (Note 1)	20 cycles (Note 1)

Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence interrupt or of a single-step interrupt.

Note 2: Locate an interrupt vector address in an even address, if possible.

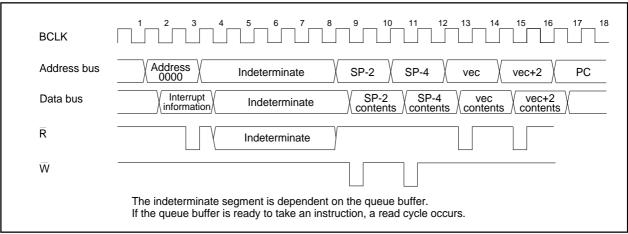


Figure 4.3.2. Time required for executing the interrupt sequence

4.3.2 Variation of IPL when Interrupt Request is Accepted

If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL. If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown in Table 4.3.2 is set in the IPL.

Table 4.3.2. Relationship between interrupts without interrupt priority levels and IPL

Interrupt sources without priority levels	Value set in the IPL
Watchdog timer, NMI	7
Reset	0
Other	Not changed

4.3.3 Saving Registers

In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter (PC) are saved in the stack area.

First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8 lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the program counter. Figure 4.3.3 shows the state of the stack as it was before the acceptance of the interrupt request, and the state the stack after the acceptance of the interrupt request.

Save other necessary registers at the beginning of the interrupt routine using software. Using the PUSHM instruction alone can save all the registers except the stack pointer (SP).

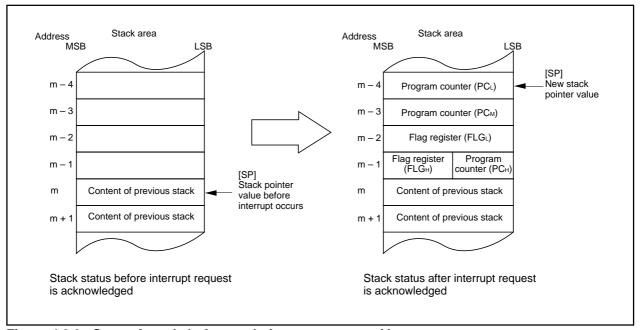


Figure 4.3.3. State of stack before and after acceptance of interrupt request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the content of the stack pointer, at the time of acceptance of an interrupt request, is even or odd. If the content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at a time. Figure 4.3.4 shows the operation of the saving registers.

Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the stack pointer indicated by the U flag. Otherwise, it is the interrupt stack pointer (ISP).

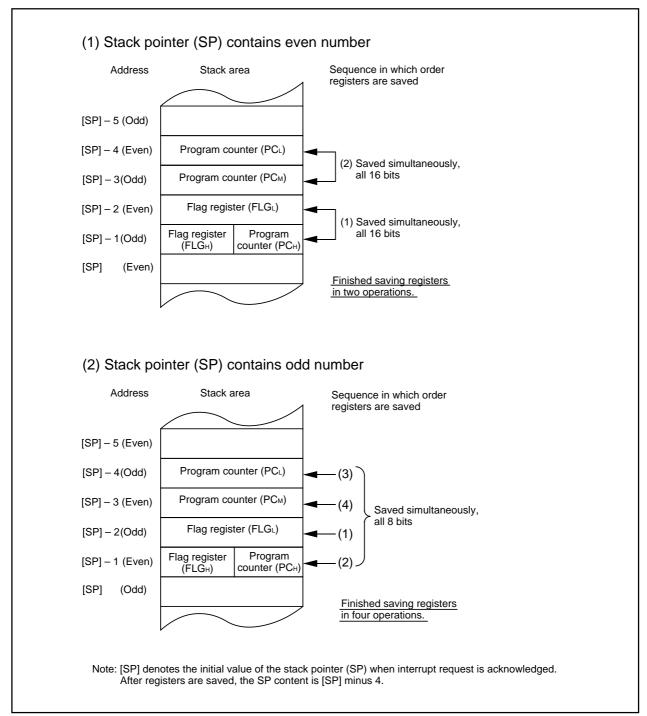


Figure 4.3.4. Operation of saving registers

4.4 Returning from an Interrupt Routine

Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register (FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter (PC), both of which have been saved in the stack area. Then control returns to the program that was being executed before the acceptance of the interrupt request, so that the suspended process resumes.

Return the other registers saved by software within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

4.5 Interrupt Priority

If there are two or more interrupt requests occurring at a point in time within a single sampling (checking whether interrupt requests are made), the interrupt assigned a higher priority is accepted.

Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware priority is accepted (see Figure 4.5.1).

Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority), watchdog timer interrupt, etc. are regulated by hardware.

Figure 4.5.2 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.



Figure 4.5.1. Maskable interrupts priorities (peripheral I/O interrupts)

Reset > $\overline{\text{NMI}}$ > $\overline{\text{DBC}}$ > Watchdog timer > Peripheral I/O > Single step > Address match

Figure 4.5.2. Hardware interrupts priorities

4.6 Multiple Interrupts

The state when control branched to an interrupt routine is described below:

- The interrupt enable flag (I flag) is set to "0" (the interrupt is disabled).
- · The interrupt request bit of the accepted interrupt is set to "0".
- The processor interrupt priority level (IPL) is assigned to the same interrupt priority level as assigned to the accepted interrupt.

Setting the interrupt enable flag (I flag) to "1" within an interrupt routine allows an interrupt request assigned a priority higher than the IPL to be accepted. Figure 4.6.1 shows the scheme of multiple interrupts. An interrupt request that is not accepted because of low priority will be held. If the condition following is met when the REIT instruction returns the IPL and the interrupt priority is determined, then the interrupt request being held is accepted.

Interrupt priority level of the interrupt request being held > Returned the IPL

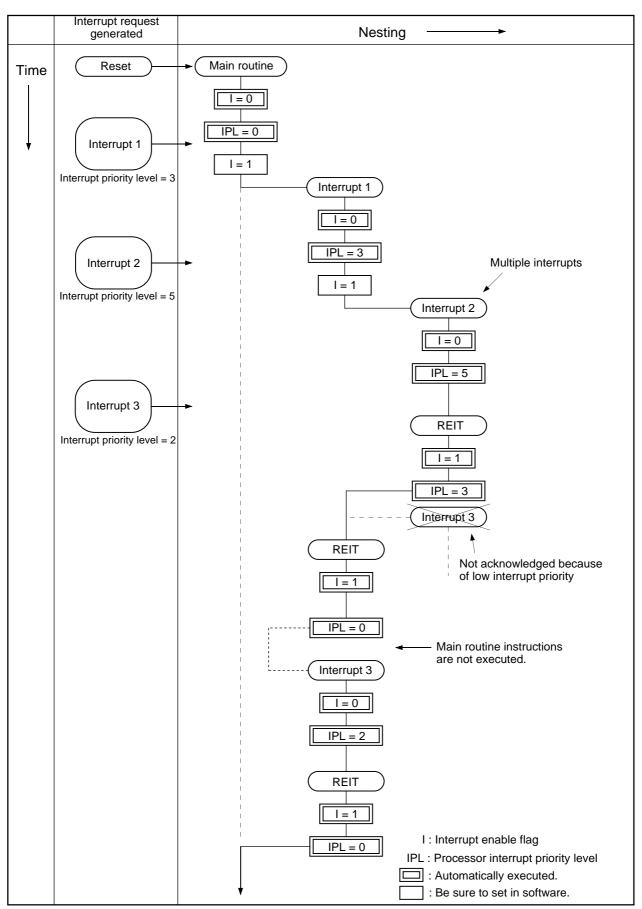


Figure 4.6.1. Multiple interrupts

4.7 Precautions for Interrupts

(1) Reading address 0000016

 When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.

The interrupt request bit of the certain interrupt written in address 0000016 will then be set to "0".

Reading address 0000016 by software sets enabled highest priority interrupt source request bit to "0".

Though the interrupt is generated, the interrupt routine may not be executed.

Do not read address 0000016 by software.

(2) Setting the stack pointer

• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt. When using the $\overline{\text{NMI}}$ interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the $\overline{\text{NMI}}$ interrupt is prohibited.

(3) The NMI interrupt

- •The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if unused.
- The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
- Do not reset the CPU with the input to the NMI pin being in the "L" state.
- Do not attempt to go into stop mode with the input to the NMI pin being in the "L" state. With the input to
 the NMI being in the "L" state, the CM10 is fixed to "0", so attempting to go into stop mode is turned
 down.
- Do not attempt to go into wait mode with the input to the \overline{NMI} pin being in the "L" state. With the input to the \overline{NMI} pin being in the "L" state, the CPU stops but the oscillation does not stop, so no power is saved. In this instance, the CPU is returned to the normal state by a later interrupt.
- Signals input to the NMI pin require an "L" level of 1 clock or more, from the operation clock of the CPU.

(4) External interrupt

- Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INTo through INT2 regardless of the CPU operation clock.
- When the polarity of the INTo to INT2 pins is changed, the interrupt request bit is sometimes set to "1".
 After changing the polarity, set the interrupt request bit to "0". Figure 4.7.1 shows the procedure for changing the INT interrupt generate factor.

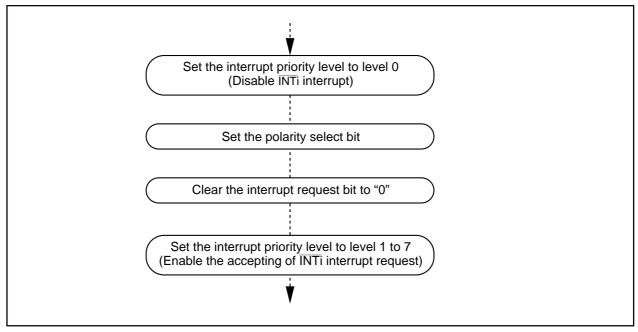


Figure 4.7.1. Switching condition of INT interrupt request

(5) Rewrite the interrupt control register

• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TAOIC int. priority level and int. request bit.

NOP ; Four NOP instructions are required when using HOLD function.

NOP

FSET I ; Enable interrupts.

Example 2:

INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

MOV.W MEM, R0 ; Dummy read. FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC FLG ; Push Flag register onto stack

FCLR I ; Disable interrupts.

AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.

POPC FLG ; Enable interrupts.

The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions: AND, OR, BCLR, BSET

Chapter 5

External Buses

5.1 Overview of External Buses

Memory and I/O external expansion can be attained in either the memory expansion mode or the micro-processor mode. When accessing an external area in either mode, 8-bit data bus width or 16-bit data bus width can be selected, based on the BYTE pin level. 16-bit width is used to access an internal area, regardless of the level of the BYTE pin.

Fix the BYTE pin either to "H" or "L" level. 8-bit and 16-bit data bus widths cannot be used together in an external area.

Addresses (A0 through A19) for accessing a memory space of up to 1M bytes, as well as chip selects (\overline{CSO}) through \overline{CSO} which indicate areas resulting from dividing a 1M bytes space into four, can be output in both the memory expansion mode and microprocessor mode.

Table 5.1.1. Memory space expansion mode and memory spaces

Expansion mode	Accesible memory space
Normal mode	Up to 1M byte
Expansion mode 1	Up to 1.2M byte
Expansion mode 2	Up to 4M byte

5.2 Data Access

5.2.1 Data Bus Width

If the voltage level input to the BYTE pin is "H", the external data bus width becomes 8 bits, and P10 (/ D8) through P17 (/D15) can be used as I/O ports (Figure 5.2.1).

If the voltage level input to the BYTE pin is "L", the external data bus width becomes 16 bits, and P10 (/D8) through P17 (/D15) operate as a data bus (D8 through D15) (Figure 5.2.1).

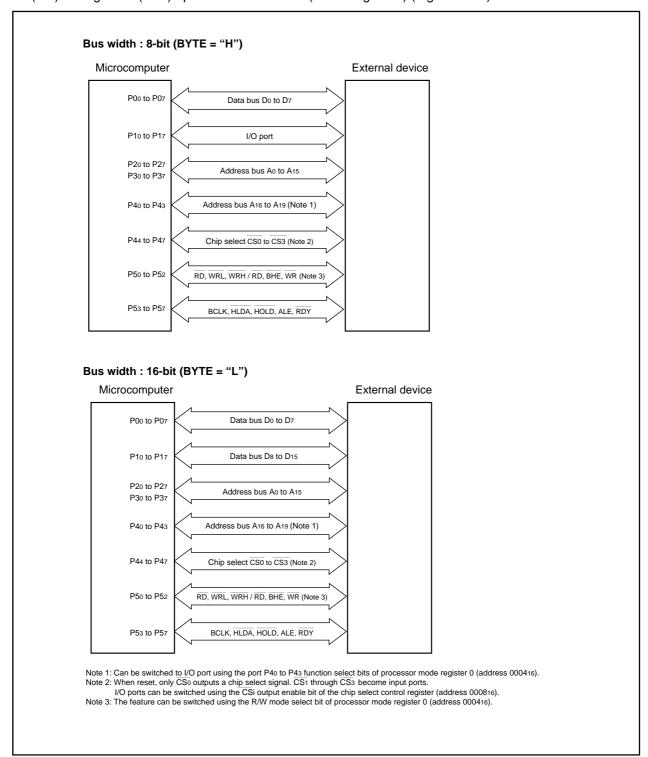


Figure 5.2.1. Level of BYTE pin and external data bus width

5.2.2 Chip Selects and Address Bus

Chip selects (P44/ $\overline{\text{CSO}}$ through P47/ $\overline{\text{CS3}}$) are output in areas resulting from dividing a 1-M byte memory space into four. To use the chip select, the chip select output must be enabled by setting the chip select control register. Figure 5.2.2 shows addresses in which chip selects become active ("L"). Since the extent of the internal area and the external area in memory expansion mode is different from those in microprocessor mode, there is a difference between areas for which $\overline{\text{CSO}}$ is output. When an internal ROM/RAM area is being accessed, no chip select is output, and the address bus does not change (the address of the external area that was accessed previously is held).

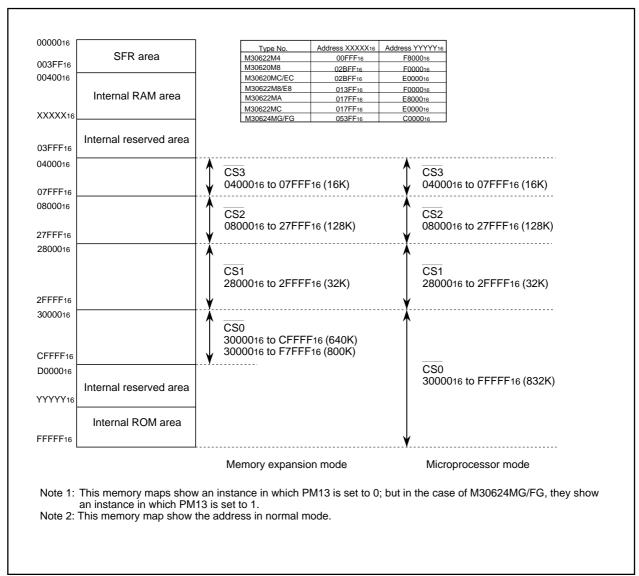


Figure 5.2.2. Addresses in which chip selects turn active ("L")

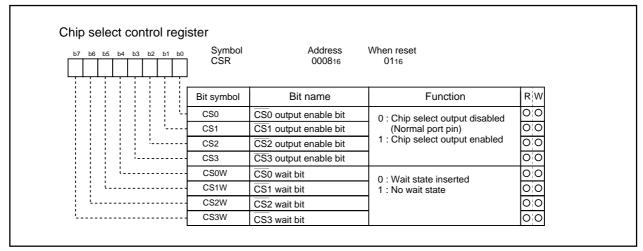


Figure 5.2.3. Chip select control register

5.2.3 Bus Types

The M16C/62 Group has two types of buses: a separate bus where separate pins are used for address output and data input/output and a multiplexed bus where pins are time- multiplexed and switched between address output and data input/output to save the number of pins used.

A separate bus is used to access devices such as ROM and RAM which have separate buses. The areas accessed via separate buses can be allocated for programs and data.

A multiplexed bus is used to access devices such as ASSPs which have multiplexed buses. The areas accessed via a multiplexed bus can only be allocated for data. Programs cannot be located in these areas.

The area accessed via a multiplex bus can be selected from three types of area $\overline{CS2}$ area, $\overline{CS1}$ area, and entire space by setting the multiplexed bus select bits (bits 4 and 5) of the processor mode register 0 (address 000416). However, the entire space cannot be selected when operating in the microprocessor mode. Areas not accessed via multiplexed bus are accessed through separate buses.

When accessing an area set for access via a multiplexed bus the data bus is 8 bits wide, the data bus D0 to D7 is multiplexed with address bus A0 to A7.

If the data bus is 16 bits wide, the data bus D₀ to D₇ is multiplexed with address bus A₁ to A₈. In either case, the bus is switched between data and address separated only in time.

In the latter case, however, the addresses of connected devices are mapped into even addresses (every other addresses) of the M16C/62. Therefore, be sure to access the M16C/62's even addresses in length of bytes when accessing a connected device.

5.2.4 R/W Modes

The read/write signal that is output when accessing an external area can be selected between the $\overline{RD}/\overline{BHE/WR}$ and the $\overline{RD/WRH/WRL}$ modes by setting the R/W mode select bit (bit 2) of the processor mode register 0 (address 000416). Use the $\overline{RD/BHE/WR}$ mode to access a 16-bit wide RAM and the $\overline{RD/WRH/WRL}$ mode to access an 8-bit wide RAM.

When the M16C/62 is reset, the RD/BHE/WR mode is selected by default. To switch over the R/W mode, change the RD/BHE/WR to the RD/WRH/WRL mode before accessing an external RAM.

Refer to the connection examples of RD/BHE/WR and RD/WRH/WRL shown in Section 5.4, "Connection Examples."

5.3 Memory Space Expansion Features

Here follows the description of the memory space expansion function.

- (1) Normal Mode 1M byte memory space
- (2) Memory space expansion mode1 1.2M byte memory space
- (3) Memory space expansion mode2 4M byte memory space

Use bits 5 and 4(PM15,PM14) of processor mode register 1 to select a desired mode. Figure 5.3.1 shows the processor mode register 1.

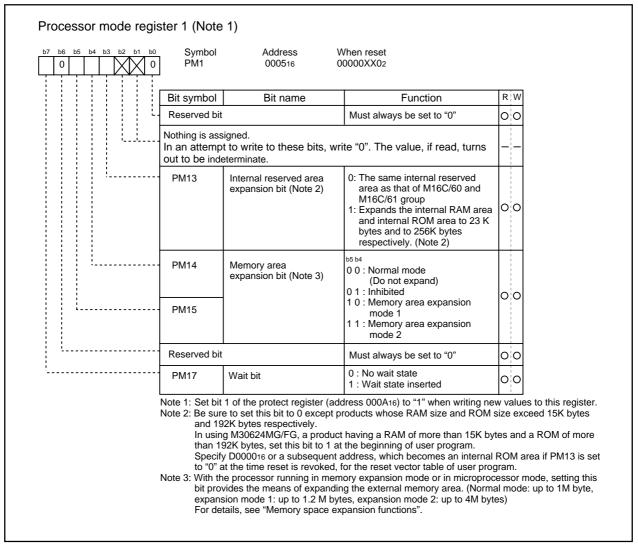


Figure 5.3.1. Processor mode register 1

5.3.1 Normal Mode

In normal mode, a maximum 1 Mbyte of memory space can be accessed in memory expansion and microprocessor modes. Programs and data can be located in any external area.

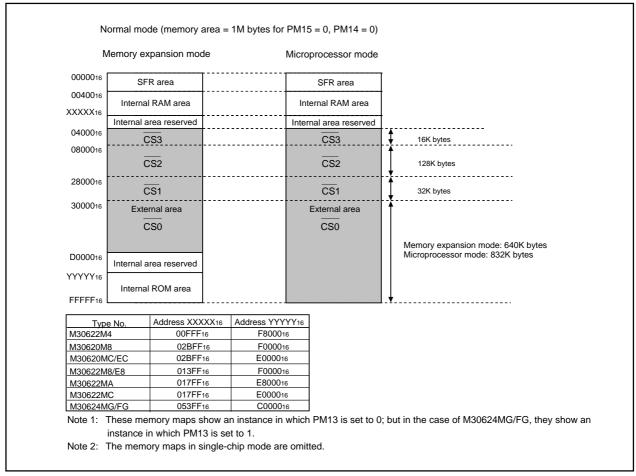


Figure 5.3.2. Memory Map in Nomal Mode

5.3.2 Memory Space Expansion Mode 1

In memory space extension mode 1, the accessible area is extended to the memory space that can be accessed in normal mode plus 176 Kbytes. This 176-Kbyte area ranges from address 0400016 to address 2FFFF16.

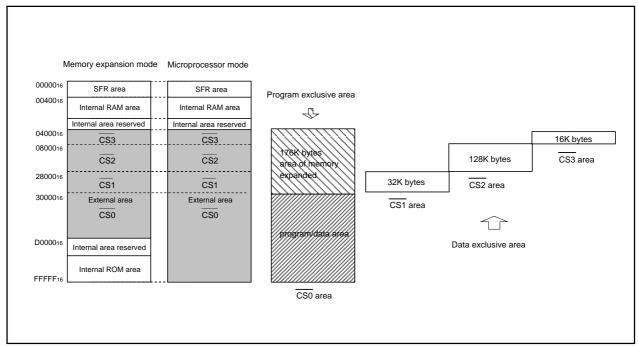


Figure 5.3.3. Memory Map in Memory space expansion mode 1

When fetching a program from the area consisting of these addresses 0400016 through 2FFF16, the CPU reads program code from memory locations selected by the $\overline{CS0}$ chip select signal. Also, when accessing this area for data, the CPU accesses memory locations selected by the $\overline{CS1}$, $\overline{CS2}$, or $\overline{CS3}$ chip select signal.

In areas following address 3000016, for both program fetch and data access, the CPU accesses memory locations selected by the $\overline{CS0}$ chip select signal.

5.3.3 Memory Space Expansion Mode 2

In memory space extension mode 2, the maximum 1 Mbyte of memory space accessible in normal mode is extended to 4 Mbytes. The extended area consists of a 512 Kbytes of area at addresses 4000016 through BFFFF16 selectable by \overline{CSO} . With this area comprising one bank, a total of seven banks from bank 0 to bank 6 can be used exclusively for data access.

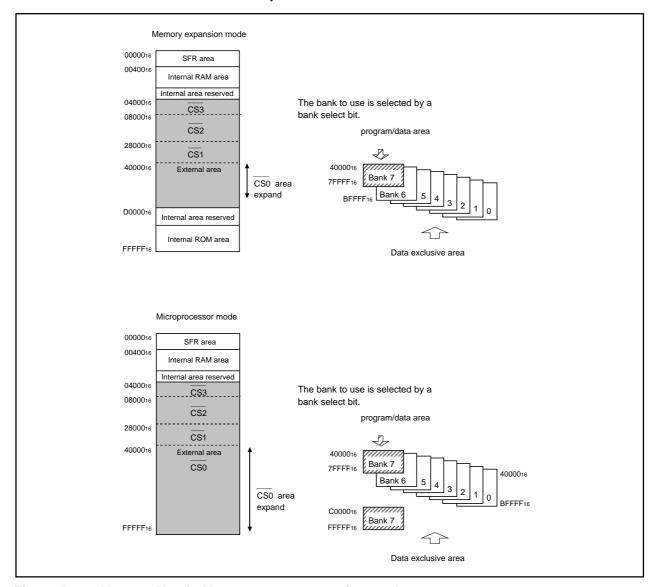


Figure 5.3.4. Memory Map in Memory space expansion mode 2

In memory expansion mode, in addition to the seven banks from bank 0 to bank 6, another bank, bank 7, comprised of a 256 Kbytes of area from address 4000016 to address 7FFFF16 can be used. In microprocessor mode, in addition to the seven banks from bank 0 to bank 6, another bank, bank 7, comprised of a 256 Kbytes of area from address C000016 to address FFFFF16 can be used. Programs and data can be placed in bank 7.

To choose each bank, use the Data bank register's bank select bits (bits 3, 4, and 5 at address 0000B16). When accessing this extended area for data, the device outputs a chip select signal from the $\overline{\text{CS0}}$ pin and a bank number from the $\overline{\text{CS1}}$, $\overline{\text{CS2}}$, and $\overline{\text{CS3}}$ pins each that has been set by the bank select bits.

When fetching a program from the area of bank 7 comprised of addresses 4000016 through 7FFFF16, the

device automatically outputs bank 7 (1, 1, 1) from the $\overline{CS1}$, $\overline{CS2}$, and $\overline{CS3}$ pins each, no matter what bank number has been set by the bank select bits. When accessing this same area for data, choose bank 7 by setting the bank select bits first. For the area of bank 7 comprised of addresses C000016 through FFFFF16, the device automatically outputs bank 7 (1, 1, 1) from the $\overline{CS1}$, $\overline{CS2}$, and $\overline{CS3}$ pins each, for either program fetch or data access.

When accessing the area comprised of addresses 0400016 through 3FFFF16, for both program fetch and data access, the device outputs the same chip select signal from the $\overline{CS1}$, $\overline{CS2}$, and $\overline{CS3}$ pins each as output conventionally.

Figure 5.3.5 shows the Data bank register.

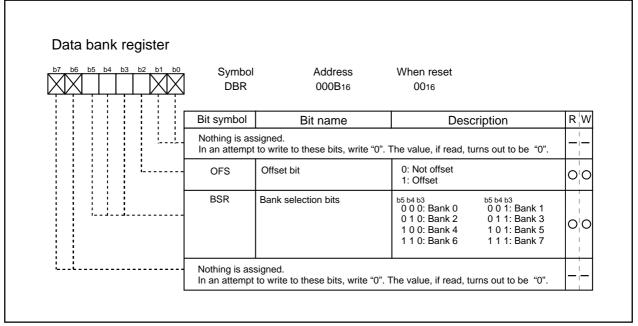


Figure 5.3.5. Data bank register

When alternately accessing areas across the bank boundary, you need to rewrite the bank select bits each time. In this case, you can avoid this inconvenience by setting the Data bank register's offset bit (bit 2 at address 0000B16) to 1, because this allows you to access said areas without having to rewrite the bank select bits.

(1)4-Mbyte ROM and 128-Kbyte SRAM Connection Example

Figure 5.3.6 shows how to connect 4-Mbyte ROM and 128-Kbyte SRAM in microprocessor mode. Locate the 4-Mbyte ROM in the $\overline{\text{CSO}}$ area that has been extended in memory space extension mode 2 and the 128-Kbyte SRAM in the $\overline{\text{CS2}}$ area.

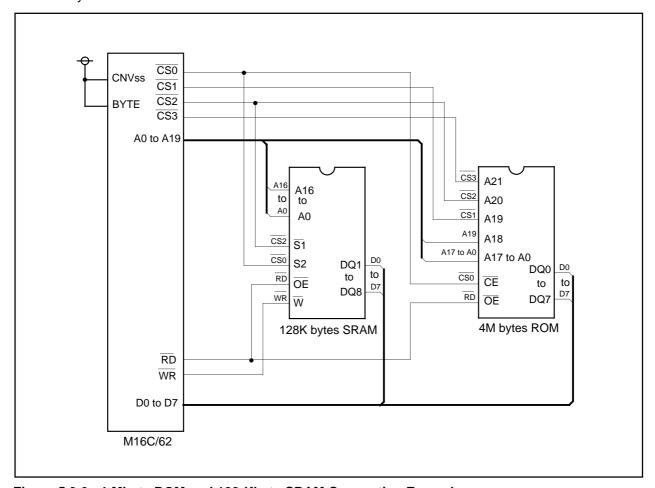


Figure 5.3.6. 4-Mbyte ROM and 128-Kbyte SRAM Connection Example

Connect CS0 to the 4-Mbyte ROM's chip enable pin and $\overline{CS1}$, $\overline{CS2}$, and CS to the address pins A19, A20, and A21, respectively. Connect the M16C's A19 to the 4-Mbyte ROM's A18, leaving the M16C's A18 unused.

In the above diagram, an SRAM with two chip select signal inputs is used. When using memory with only one chip select signal input, you need to have an external circuit to decode the address.

Addresses in 4-Mbyte ROM with regard to M16C settings are shown in Table 5.3.1.

Table 5.3.1. Address of 4M-byte ROM

Setting of M16C/62

Bank No.	Access area	Chip se	lect(bank no	.) output			Address o	utput		
		CS3	CS2	CS1	A19	A18	A17	A16	A15 to A0	
	40000	0	0	0	0	1	0	0	0000	000000
	80000	0	0	0	1	0	0	0	0000	010000
0						▶ B				
	BFFFF	0	0	0	1	0	1	1	FFFF	07FFFF
			0			7	•			
1	40000	0	0	1	0	1	0	0	0000	080000
'	BFFFF	0	0	1	1	0	1	1	FFFF	0FFFFF
0	40000	0	1	0	0	1	0	0	0000	100000
2	BFFFF	0	1	0	1	0	1	1	FFFF	17FFFF
3	40000	0	1	1	0	1	0	0	0000	180000
3	BFFFF	0	1	1	1	0	1	1	FFFF	1FFFFF
4	40000	1	0	0	0	1	0	0	0000	200000
4	BFFFF	1	0	0	1	0	1	1	FFFF	27FFFF
-	40000	1	0	1	0	1	0	0	0000	280000
5	BFFFF	1	0	1	1	0	1	1	FFFF	2FFFFF
6	40000	1	1	0	0	1	0	0	0000	300000
0	BFFFF	1	1	0	1	0	1	1	FFFF	37FFFF
	40000	1	1	1	0	1	0	0	0000	380000
7	7FFFF	1	1	1	0	1	1	1	FFFF	3BFFFF
'	C0000	1	1	1	1	1	0	0	0000	3C0000
	FFFFF	1	1	1	1	1	1	1	FFFF	3FFFFF
		A21	A20	A19	A18	N.C.	A17	A16	A15 to A0	4M bytes ROM
	4M bytes ROM address input									access areas

4M bytes ROM access areas

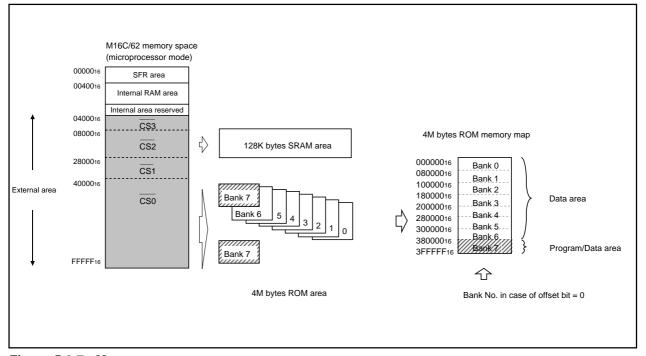


Figure 5.3.7. Memory map

The area in 4-Mbyte ROM ranging from address 00000016 to address 37FFFF16 is a data-only area. No program can be placed in this area. The 512-Kbyte area in 4-Mbyte ROM from address 38000016 to address 3FFFF16 can be used to locate both programs and data.

(2)2-Mbyte ROM and 256-Kbyte SRAM Connection Example

Figure 5.3.8 shows how to connect 2-Mbyte ROM and 256-Kbyte SRAM in microprocessor mode. Locate both the 2-Mbyte ROM and 256-Kbyte SRAM in the CS0 area that has been extended in memory space extension mode 2.

Specifically, locate the 2-Mbyte ROM in the area comprised of banks 4 though 7 and the 256-Kbyte SRAM in the area of bank 0.

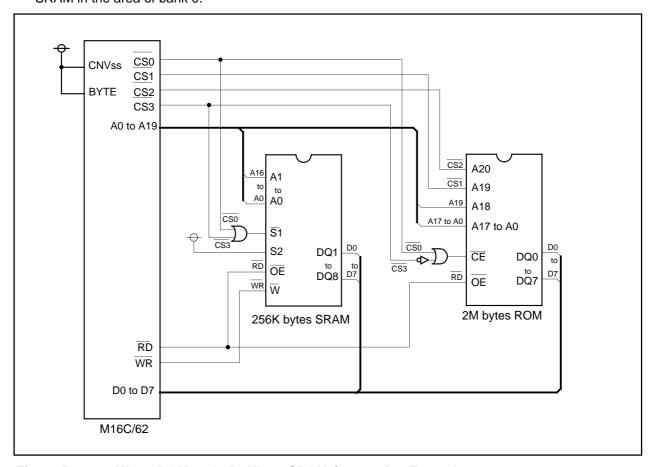


Figure 5.3.8. 2-Mbyte ROM and 256-Kbyte SRAM Connection Example

Enter the signal decoded from outputs $\overline{\text{CS0}}$ and $\overline{\text{CS3}}$ to the 2-Mbyte ROM's chip enable pin. Connect $\overline{\text{CS1}}$ and $\overline{\text{CS2}}$ to the address pins A19 and A20. Connect the M16C's A19 to the 2-Mbyte ROM's A18, leaving the M16C's A18 unused.

Enter the signal decoded from outputs $\overline{\text{CS0}}$ and $\overline{\text{CS3}}$ to the 256-Kbyte SRAM's chip enable pin. Access areas in 2-Mbyte ROM and 256-Kbyte SRAM with regard to M16C settings are shown in Table 5.3.2.

Table 5.3.2. Access area of 2M-byte ROM and 256K-byte SRAM

Setting of M16C/62

		M16C pin output												
Bank No. Access area Chip sel				ct out	put	Address output								
Daille 110. 7100035 area			E	Bank No).			, ladi coo	output					
		CS0	CS3	CS2	CS1	A19	A18	A17	A16	A15 to A0				
	40000	0	0	0	0	0	1	0	0	0000	0	1	000000	CDAM
0	7FFFF	0	0	0	0	0	1	1	1	FFFF	U	'	03FFFF SRAM	SKAM
4	40000	0	1	0	0	0	1	0	0	0000			000000	
-	BFFFF	0	1	0	0	1	0	1	1	FFFF			07FFFF	ROM
5	40000	0	1	0	1	0	1	0	0	0000			080000	
5	BFFFF	0	1	0	1	1	0	1	1	FFFF			0FFFFF	
6	40000	0	1	1	0	0	1	0	0	0000	1	0	100000	
	BFFFF	0	1	1	0	1	0	1	1	FFFF	1	U	17FFFF	
	40000	0	1	1	1	0	1	0	0	0000			180000	
7	7FFFF	0	1	1	1	0	1	1	1	FFFF			1BFFFF	
'	C0000	0	1	1	1	1	1	0	0	0000			1C0000	
	FFFFF	0	1	1	1	1	1	1	1	FFFF			1FFFFF	
				A20	A19	A18	N.C.	A17	A16	A15 to A0	SRAM	ROM	real Address	
		Address input of 2M-byte ROM and 256K-byteSRAM							С	S	icai Auui855			

Access area and input of Memory

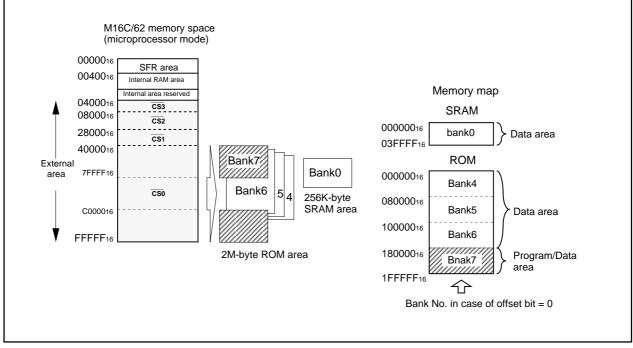


Figure 5.3.9. Memory map

The area in 2-Mbyte ROM ranging from address 00000016 to address 17FFFF16 is a data-only area. No program can be placed in this area. The 512-Kbyte area in 2-Mbyte ROM from address 18000016 to address 1FFFF16 can be used to locate both programs and data.

5.4 Connection Examples

5.4.1 16-bit Memory to 16-bit Width Data Bus Connection Example

Figure 5.4.1 shows an example of connecting M5M51016BTP (16-bits SRAM) to a 16-bit data bus.In this diagram, when reset the microcomputer starts operating in single-chip mode. Change this mode to memory expansion mode in a program.

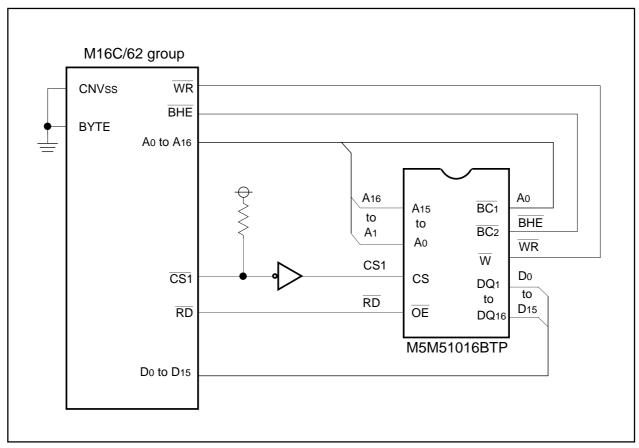


Figure 5.4.1. Example of connecting M5M51016BTP to a 16-bit data bus

5.4.2 8-bit Memory to 16-bit Width Data Bus Connection Example

Figure 5.4.2 shows an example of connecting two M5M5278's (8-bits SRAM) to a 16-bit data bus.In this diagram, when reset the microcomputer starts operating in single-chip mode. Change this mode to memory expansion mode in a program.

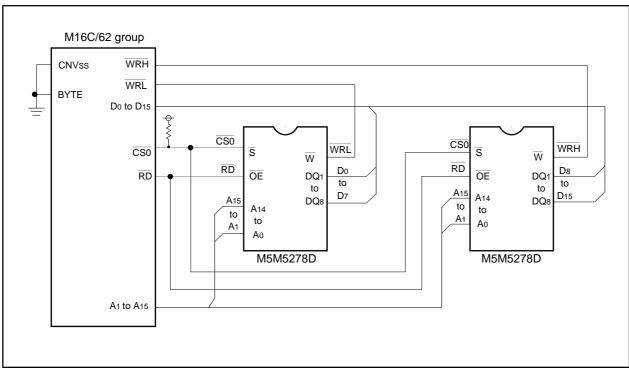


Figure 5.4.2. Example of connecting two M5M5278's to a 16-bit data bus

Figure 5.4.3 shows how to connect two Am29LV008B (8-bits flash memory). In 16-bit bus mode, the $\overline{BHE}/\overline{WRH}$ pin functions as \overline{BHE} . When connecting 8-bit flash memory chips to the 16-bit bus, make sure the microcomputer's \overline{WRL} pin is connected to the \overline{WR} pins on both flash memory chips, and that data is written to the flash memory in units of 16 bits beginning with an even address.

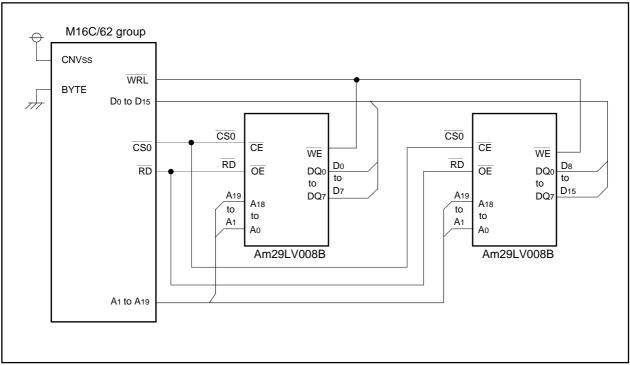


Figure 5.4.3. Example of connecting two Am29LV008B's to a 16-bit data bus

5.4.3 8-bit Memory to 8-bit Width Data Bus Connection Example

Figure 5.4.4 shows an example of connecting two M5M5278's (8-bits SRAM) to an 8-bit data bus.In this diagram, when reset the microcomputer starts operating in single-chip mode. Change this mode to memory expansion mode in a program.

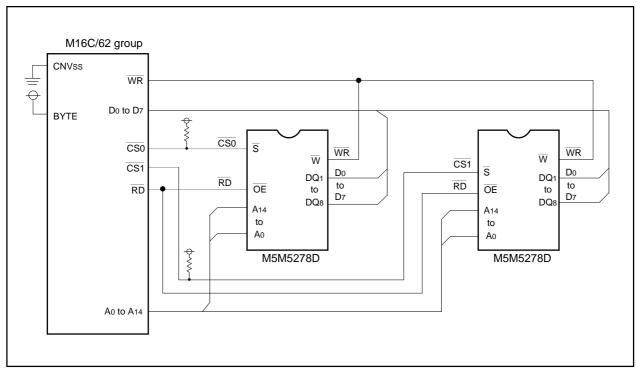


Figure 5.4.4. Example of connecting two M5M5278's to an 8-bit data bus

5.4.4 Two 8-bit and 16-Bit Memory to 16-Bit Width Data Bus Connection Example

Figure 5.4.5 shows an example of connecting M5M28F102 (16-bit flash memory) and two M5M5278's (8-bits SRAM) to a 16-bit data bus.

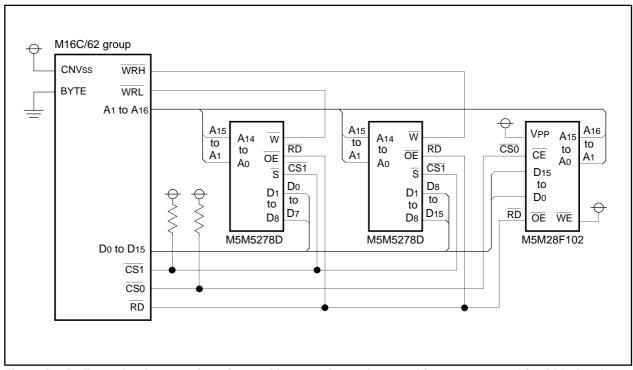


Figure 5.4.5. Example of connection of two 8-bit memories and one 16-bit memory to 16-bit width data bus

5.4.5 16-Bit Width Data Bus Connection Example in Memory Space Expansion Mode 1

Figure 5.4.6 shows how to connect the M5M29GB/T160 (16-Mbit flash memory), M5M51016B (1-Mbit SRAM) when operating with a 3 V power supply voltage in microprocessor mode.

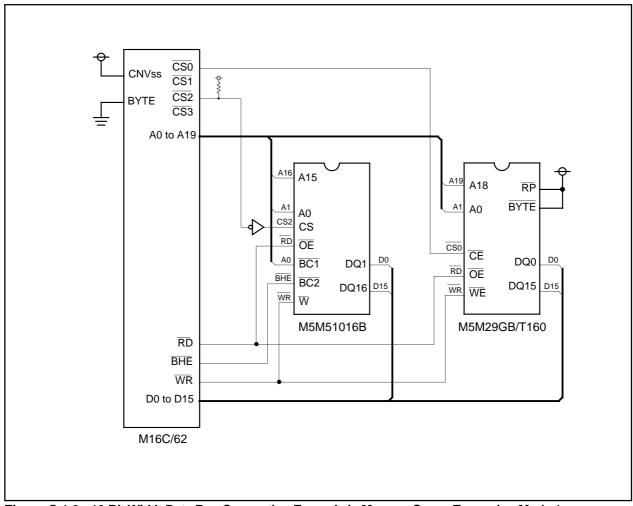


Figure 5.4.6. 16-Bit Width Data Bus Connection Example in Memory Space Expansion Mode 1

5.4.6 8-Bit Width Data Bus Connection Example in Memory Space Expansion Mode 1

Figure 5.4.7 shows how to connect the M5M29GB/T160 (16-Mbit flash memory), M5M5256D (256-Kbit SRAM), and M5M51008B (1-Mbit SRAM) when operating with a 3 V power supply voltage in microprocessor mode.

Figure 5.4.7. 8-Bit Width Data Bus Connection Example in Memory Space Expansion Mode 1

5.4.7 8-Bit Width Data Bus Connection Example in Memory Space Expansion Mode 2

Figure 5.4.8 shows how to connect the Am29F032B (32-Mbit flash memory), M5M5256D (256-Kbit SRAM), and M5M51008B (1-Mbit SRAM) when operating with a 5 V power supply voltage in microprocessor mode.

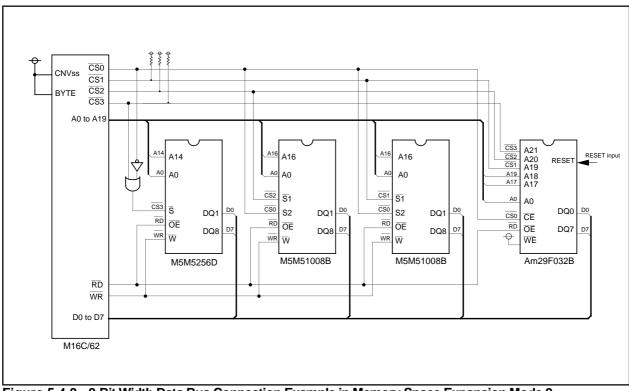


Figure 5.4.8. 8-Bit Width Data Bus Connection Example in Memory Space Expansion Mode 2

5.4.8 Chip Selects and Address Bus

When there are insufficient chip select signals, it is necessary to generate chip selects externally. Figure 5.4.9 shows an example of a connection in which the CS2 area is divided into four 32K byte areas.

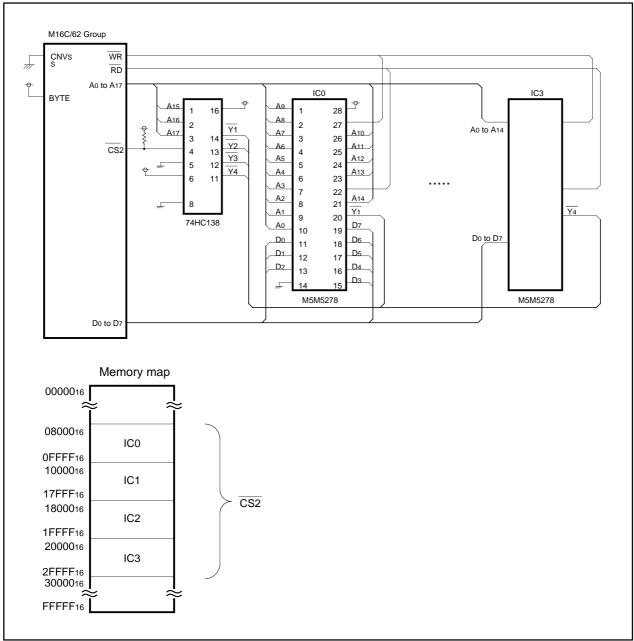


Figure 5.4.9. Chip selects and address bus

5.5 Connectable Memories

5.5.1 Operation Frequency and Access Time

Connectable memories depend upon the BCLK frequency f(BCLK). The frequency of f(BCLK) is equal to that of the BCLK, and is contingent on the oscillator's frequency and on the settings in the system clock select bits (bit 6 of address 000616, and bits 6 and 7 of address 000716).

The following are the conditional equations for the connections. Meet these conditions minimally. Figures 5.5.1 and 5.5.2 show the relation between the frequency of BCLK and memory.

(1) Read cycle time (tCR)/write cycle time (tCW)

Read cycle time (tCR) and write cycle time (tCW) must satisfy the following conditional expressions:

- With the Wait option cleared
- $tCR < 10^9/f(BCLK)$ and $tCW < 10^9/f(BCLK)$
- With the Wait option selected

 $tCR < 2 \times 10^9 / f(BCLK)$ and $tCW < 2 \times 10^9 / f(BCLK)$

(2) Address access time [ta(A)]

Address access time [ta(A)] must satisfy the following conditional expressions:

- (a) Vcc = 5V
- With the Wait option cleared

$$ta(A) < 10^9/f(BCLK) - 65(ns)^*$$

With the Wait option selected

$$ta(A) < 2 \times 10^9/f(BCLK) - 65(ns)^*$$

(b) Vcc = 3V

With the Wait option cleared

$$ta(A) < 10^9/f(BCLK) - 140(ns)^*$$

• With the Wait option selected

$$ta(A) < 2 X10^9/f(BCLK) - 140(ns)^*$$

```
* 140(ns) = td(BCLK-AD) + tsu(DB - RD) - th(BCLK - RD)
= (address output delay time) + (data input setup time) - (RD signal output hold time)
```

(3) Chip select access time [ta(S)]

Chip select access time [ta(S)] must satisfy the following conditional expressions:

(a)
$$Vcc = 5V$$

• With the Wait option cleared

```
ta(S) < 10^9/f(BCLK) - 65(ns)^*
```

With the Wait option selected

$$ta(S) < 2 X10^9/f(BCLK) - 65(ns)^*$$

```
    65(ns) = td(BCLK - CS) + tsu(DB - RD) - th(BCLK - RD)
    = (chip select output delay time) + (data input setup time) - (RD signal output hold time)
```


- (b) Vcc = 3V
- With the Wait option cleared

$$ta(S) < 10^9/f(BCLK) - 140(ns)^*$$

• With the Wait option selected

$$ta(S) < 2 X10^9/f(BCLK) - 140(ns)^*$$

(4) Output enable time [ta(OE)]

Output enable time [ta(OE)] must satisfy the following conditional expressions:

(a)
$$Vcc = 5V$$

• With the Wait option cleared

$$ta(OE) < 10^9/(f(BCLK) \times 2) - 45(ns) = tac1(RD-DB)$$

With the Wait option selected

$$ta(OE) < 3 \times 10^9/(f(BCLK) \times 2) - 45(ns) = tac2(RD-DB)$$

(b)
$$Vcc = 3V$$

• With the Wait option cleared

$$ta(OE) < 10^9/(f(BCLK) \times 2) - 90(ns) = tac1(RD-DB)$$

• With the Wait option selected

$$ta(OE) < 3X10^9/(f(BCLK) X 2) - 90(ns) = tac2(RD-DB)$$

(5) Data setup time [tsu(D)]

Data setup time [tsu(D)] must satisfy the following conditional expressions:

(a)
$$Vcc = 5V$$

• With the Wait option cleared

$$tsu(D) < 10^9/(f(BCLK) X 2) - 40(ns)^*$$

With the Wait option selected

$$tsu(D) < 10^9/f(BCLK) - 40(ns)^*$$

(b)
$$Vcc = 3V$$

• With the Wait option cleared

$$tsu(D) < 10^9/(f(BCLK) X 2) - 80(ns)^*$$

• With the Wait option selected

$$tsu(D) < 10^9/f(BCLK) - 80(ns)^*$$

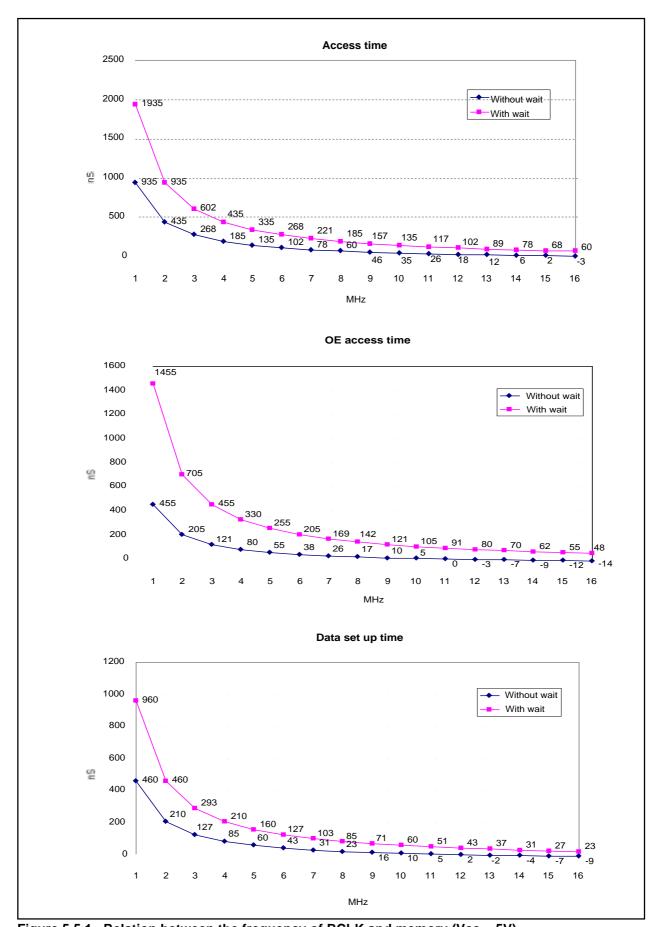


Figure 5.5.1. Relation between the frequency of BCLK and memory (Vcc = 5V)

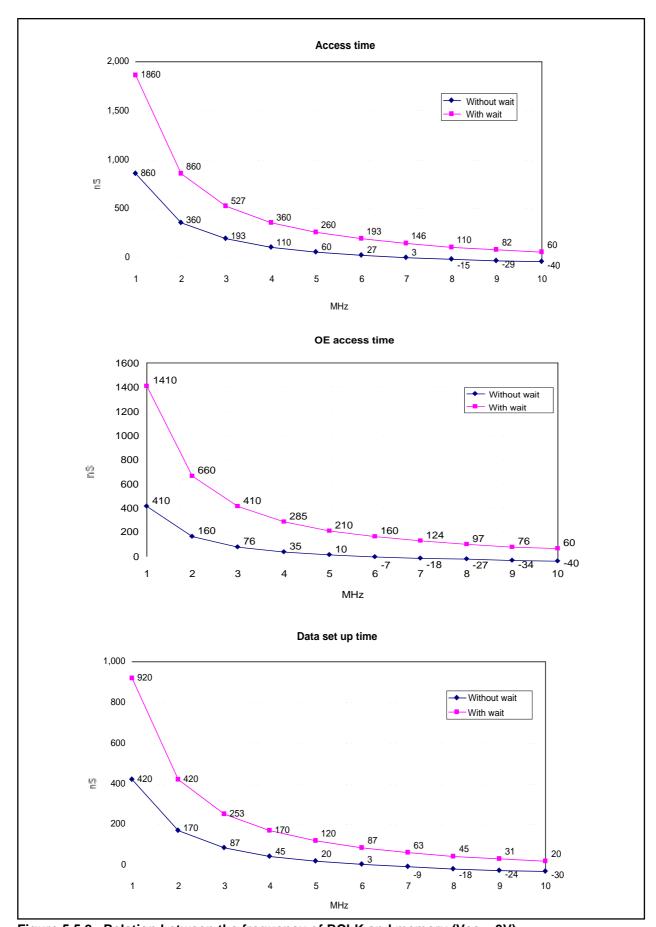


Figure 5.5.2. Relation between the frequency of BCLK and memory (Vcc = 3V)

5.5.2 Connecting Low-Speed Memory

To connect memory with long access time [ta(A)], either decrease the frequency of BCLK or set a software wait. Using the \overline{RDY} feature allows you to connect memory having the timing that precludes connection though you set software wait.

(1) Using software wait

Set software wait by using either of bit 7 (PM17) of processor mode register 1 or bits 4 through 7 (CS0W through CS3W) of the chip select control register. With software wait set, if an address space is accessed in which a separate bus is selected, the bus cycle results in two cycles of BCLK; if an address space is accessed in which a multiplex bus is selected, the bus cycle results in three cycles of BCLK.

If bit 7 (PM17) of processor mode register 1 is set to "Wait selected", the microcomputer accesses every area with this option in effect. If bit 7 (PM17) of processor mode register 1 is set to "Wait cleared", the Wait option can be either selected or cleared, chip select by chip select, by setting bits 4 through 7 (CS0W through CS3W) of the chip select control register. Figures 5.5.3 through 5.5.5 show relation of processor mode and the wait bit (PM17, CSiW).

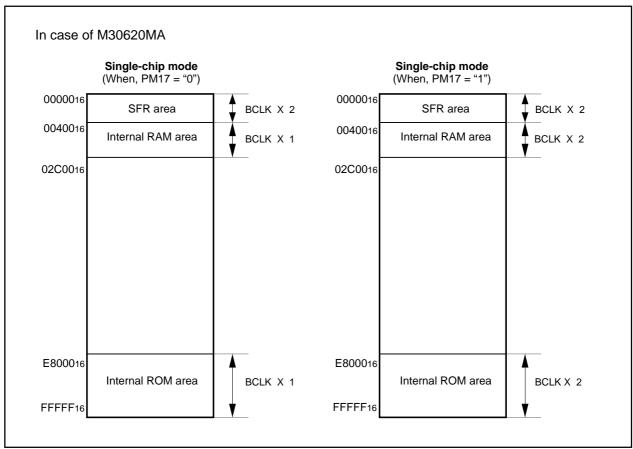


Figure 5.5.3. Relation of processor mode and the wait bit (PM17, CSiW) (1)

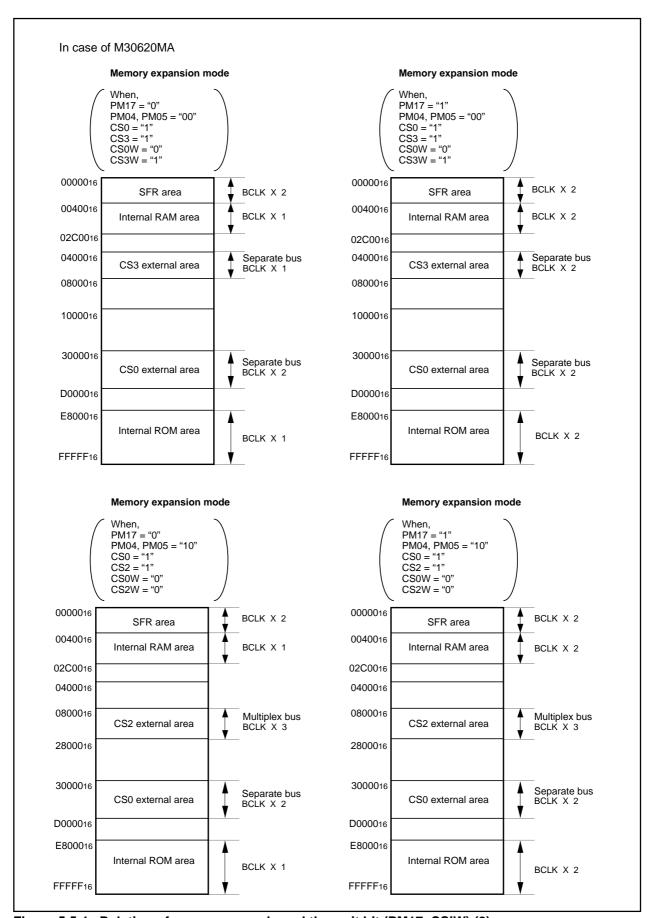


Figure 5.5.4. Relation of processor mode and the wait bit (PM17, CSiW) (2)

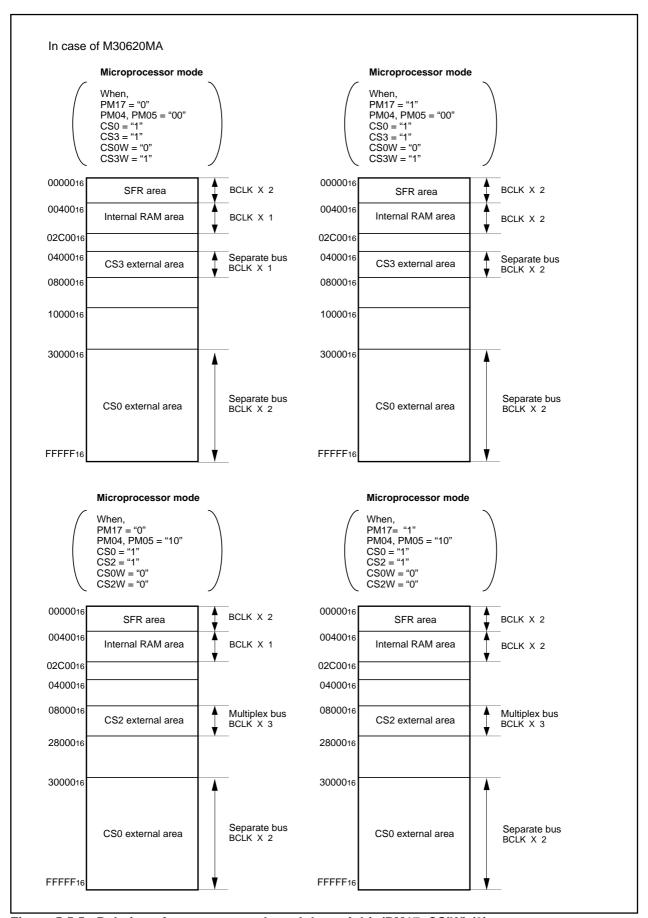


Figure 5.5.5. Relation of processor mode and the wait bit (PM17, CSiW) (3)

(2) RDY function usage

To use the RDY function, set a software wait.

The \overline{RDY} function operates when the BCLK signal falls with the \overline{RDY} pin at "L"; the bus does not vary for 1 BCLK, and the state at that moment is held.

The \overline{RDY} function holds the state of bus for the period in which the \overline{RDY} pin is at "L", and releases it when the BCLK signal falls with the \overline{RDY} pin at "H". Figure 5.5.6 shows an example of \overline{RDY} circuit that holds the state of bus for 1 BCLK.

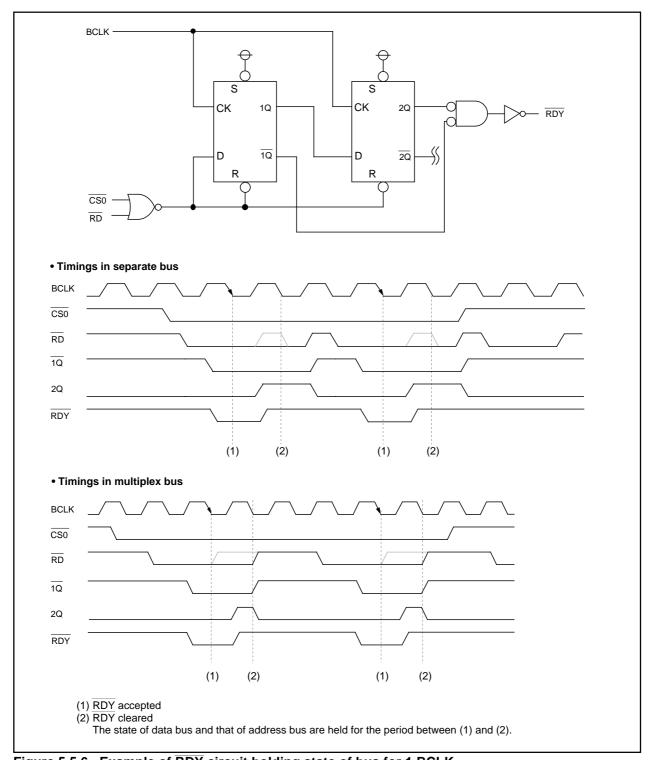


Figure 5.5.6. Example of \overline{RDY} circuit holding state of bus for 1 BCLK

5.5.3 Connectable Memories

Connectable memories and their maximum frequencies are given here;

M16C/62 group maximum frequency is

16MHz(without the wait) for Vcc=5V,

10MHz(with the one wait; Mask version and flash 5V version) for Vcc=3V

7MHz(with the one wait;One time PROM version) for Vcc=3V

(1) Flash memories(Read only mode)

(a) 5V without wait

Maximum frequency (MHz)	Model No.
5.26	M5M28F101AFP,J,VP,RV-10 M5M28F102AFP,J,VP,RV-10 M5M29JB/T160AVP-10
5.55	M5M28F101AFP,J,VP,RV-85 M5M28F102AFP,J,VP,RV-85
5.88	M5M29JB/T160AVP-80

(b) 5V with wait

Maximum frequency (MHz)	Model No.
12.12	M5M28F101AFP,J,VP,RV-10 M5M28F102AFP,J,VP,RV-10 M5M29JB/T160AVP-10
13.33	M5M28F101AFP,J,VP,RV-85 M5M28F102AFP,J,VP,RV-85
13.79	M5M29JB/T160AVP-80

(c) 3V without wait

Maximum frequency (MHz))	Model No.
3.33	M5M29FB/T800FP,VP,RV-12
	M5M29FB/T160AVP,RV-10
3.57	M5M29FB/T800FP,VP,RV-10
	M5M29FB/T160AVP,RV-80,8I
3.84	M5M29FB/T800FP,VP,RV-80

(d) 3V with wait

Maximum frequency (MHz))	Model No.
7.69	M5M29FB/T800FP,VP,RV-12
	M5M29FB/T160AVP,RV-10
8.33	M5M29FB/T800FP,VP,RV-10
	M5M29FB/T160AVP,RV-80,8I
9.09	M5M29FB/T800FP,VP,RV-80

(2) SRAM

(a) 5V without wait

Maximum frequency (MHz))		Model No.
4.17	M5M5256BP,FP,KP-15/L/LL	
4.76	M5M51008AP,FP,VP,RV-12L/LL/SL	M5M5256BP,FP,KP-12/L/LL
	M5M51T08AP,FP,VP,RV-12SL	
5.26	M5M51008AP,FP,VP,RV-10L/LL	M5M5256BP,FP,KP-10/L/LL
	M5M51T08AP,FP,VP,RV-10SL	M5M5256CP,FP,KP,VP,RV-10LL/XL
5.41	M5M5255BP,FP,KP-12/L/LL	
5.56	M5M51008AP,FP,VP,RV-85L/LL	M5M5256BP,FP,KP-85/L/LL
	M5M51T08AP,FP,VP,RV-85SL	M5M5256CP,FP,KP,VP,RV-85LL/XL
6.06	M5M5255BP,FP,KP-10/L/LL	
6.25	M5M51008AP,FP,VP,RV-70L/LL	M5M5256BP,FP,KP-70/L/LL
	M5M51T08AP,FP,VP,RV-70SL	M5M5256CP,FP,KP,VP,RV-70LL/XL
6.67	M5M51008AP,FP,VP,RV-55L/LL	M5M5255BP,FP,KP-85/L/LL
	M5M51T08AP,FP,VP,RV-55SL	M5M5256CP,FP,KP,VP,RV-55LL/XL
7.14	M5M5255BP,FP,KP-70/L/LL	

(b) 5V with wait

Maximum frequency (MHz))		Model No.
9.30	M5M5256BP,FP,KP-15/L/LL	
10.81	M5M51008AP,FP,VP,RV-12L/LL	M5M5255BP,FP,KP-12/L/LL
	M5M51T08AP,FP,VP,RV-12SL	M5M5256BP,FP,KP-12/L/LL
12.12	M5M51008AP,FP,VP,RV-10L/LL	M5M5256BP,FP,KP-10/L/LL
	M5M51T08AP,FP,VP,RV-10SL	M5M5256CP,FP,KP,VP,RV-10LL/XL
	M5M5255BP,FP,KP-10/L/LL	
13.33	M5M51008AP,FP,VP,RV-85L/LL	M5M5256BP,FP,KP-85/L/LL
	M5M51T08AP,FP,VP,RV-85SL	M5M5256CP,FP,KP,VP,RV-85LL/XL
	M5M5255BP,FP,KP-85/L/LL	
14.29	M5M51008AP,FP,VP,RV-70L/LL	M5M5256BP,FP,KP-70/L/LL
	M5M51T08AP,FP,VP,RV-70SL	M5M5256CP,FP,KP,VP,RV-70LL/XL
	M5M5255BP,FP,KP-70/L/LL	
15.38	M5M51008AP,FP,VP,RV-55L/LL	M5M5256CP,FP,KP,VP,RV-55LL/XL
	M5M51T08AP,FP,VP,RV-55SL	

(c) 3V without wait

Maximum frequency (MHz))	Model No.
3.03	M5M5256CFP, VP , RV-15VLL/-15VXL
	M5M51008AFP, VP , RV-15VL/-15VLL
3.33	M5M5256CFP, VP , RV-12VLL/-12VXL
	M5M51008AFP, VP , RV-12VL/-12VLL
3.57	M5M5256CFP, VP ,RV-10VLL/-10VXL
	M5M51008AFP, VP ,RV-10VL/-10VLL
3.70	M5M5256CFP, VP , RV-85VLL/-85VXL

(d) 3V with wait

Maximum frequency (MHz))	Model No.
6.90	M5M5256CFP ,VP ,RV-15VLL/-15VXL
	M5M51008AFP ,VP ,RV-15VL/-15VLL
7.69	M5M5256CFP ,VP ,RV-12VLL/-12VXL
	M5M51008AFP ,VP ,RV-12VL/-12VLL
8.33	M5M5256CFP ,VP ,RV-10VLL/-10VXL
	M5M51008AFP ,VP ,RV-10VL/-10VLL
8.70	M5M5256CFP ,VP ,RV-85VLL/-85VXL

5.6 Releasing an External Bus (HOLD input and HLDA output)

The Hold feature is to relinquish the address bus, the data bus, and the control bus on M16C/62 side in line with the Hold request from the bus master other than M16C/62 when the two or more bus masters share the address bus, the data bus, and the control bus. The Hold feature is effective only in memory expansion mode and microprocessor mode.

The sequence of using the Hold feature may be:

- 1. The external bus master turns the input level of the HOLD terminal to "L".
- 2. When M16C/62 becomes ready to relinquish buses, each bus becomes high-impedance state at the falling edge of BCLK.
- 3. The HLDA terminal becomes "L" at the rising edge of the next BCLK.
- 4. The external bus master uses a bus.
- 5. When the external bus master finishes using a bus, the external bus master returns the input level of the HOLD terminal to "H".
- 6. The output from HLDA terminal becomes "H" at the rising edge of the next BCLK.
- 7. Each bus returns from the high-impedance state to the former state at the rising edge of the next BCLK.

As given above, each bus invariably gets in the high-impedance state while the HLDA output is "L". Also, M16C/62 doesn't relinquish buses during a bus cycle. That is, if a Hold request comes in during a bus cycle, the HLDA output become "L" after that bus cycle finishes.

In the Hold state, the state of each terminal becomes as follows.

• Address bus A0 to A19

High-impedance state. The case in which A₁₆ to A₁₉ are used as ports P₄₀ to P₄₃ (64K byte address space) and the case in which A₉ to A₁₉ are used as ports P₃₁ to P₃₇ and P₄₀ to P₄₃ (multiplex for the whole area) in microprocessor mode too fall under this category.

• Data bus Do to D15

High-impedance state. The case in which D₈ to D₁₅ are used as ports P₁₀ to P₁₇ (8-bit external bus width) and the case in which D₀ to D₁₅ are used as ports P₀₀ to P₀₇ and P₁₀ to P₁₇ (multiplex for the whole area) in microprocessor mode too fall under this category.

• RD, WR, WRL, WRH, BHE

High-impedance state.

• ALE

An internal clock signal having the same phase as BCLK is output.

• CS0 to CS3

High-impedance state. The case in which ports are selected by the chip selection control register too falls under this category.

Figure. 5.6.1 shows an example of relinquishing external buses.

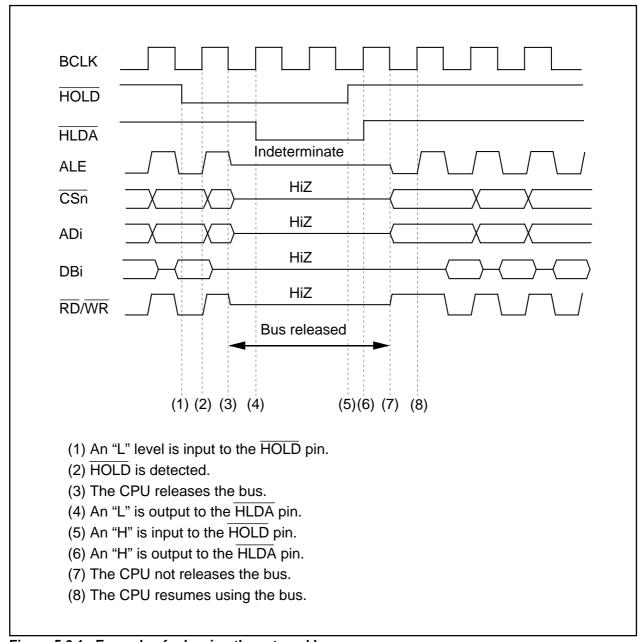


Figure 5.6.1. Example of releasing the external bus

5.7 Precautions for External Bus

- (1) The external ROM version can operate only in the microprocessor mode, so be sure to perform the following:
 - Connect the CNVss pin to Vcc.
 - Fix the processor mode bits (b1 and b0) to "112".

Chapter 6

External ROM Version

The external ROM version can operate only in the microprocessor mode.

Functions of the external ROM version differ from those of the mask ROM version in the following. therefore, only the differences are described in this chapter:

For the other functions, refer to chapters 1 to 5.

- Memory map
- Operated in only microprocessor mode

6.1 Pin Configuration

Figures 6.1.1 and 6.1.2 show the pin configrations (top view).

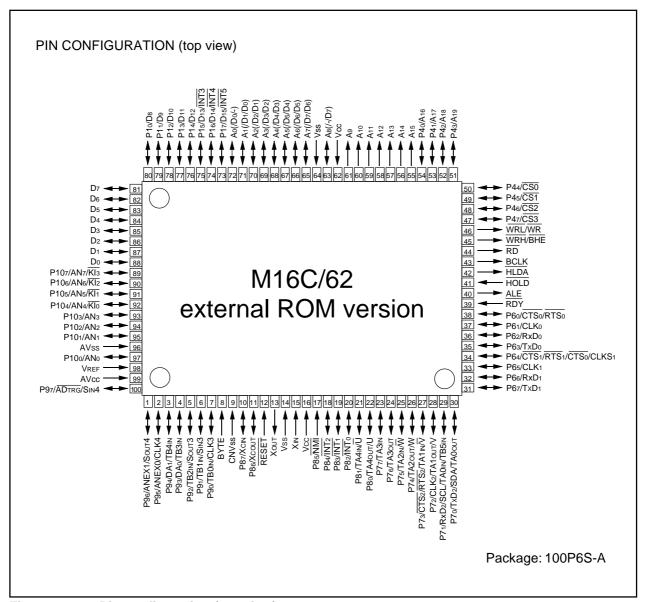


Figure 6.1.1. Pin configuration (top view)

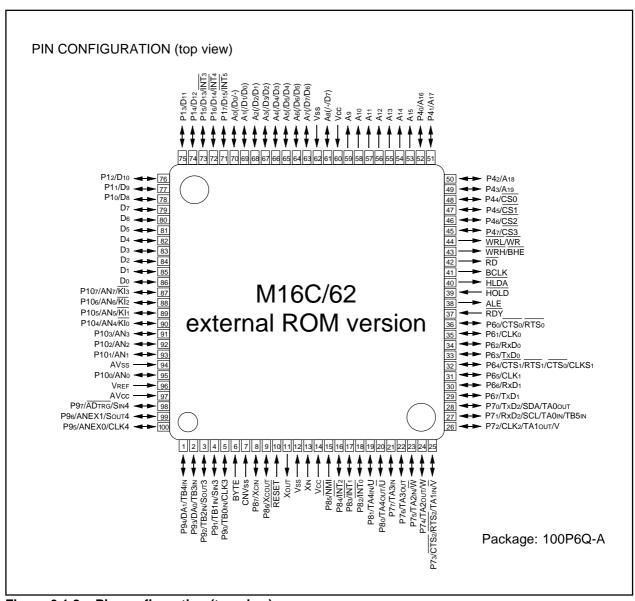


Figure 6.1.2. Pin configuration (top view)

6.2 Pin Description

Tables 6.2.1 and 6.2.2 show the pin description.

Table 6.2.1. Pin Description (1)

Pin name	Signal name	I/O type	Function
Vcc, Vss	Power supply input		Supply 2.7 to 5.5 V to the Vcc pin. Supply 0 V to the Vss pin.
CNVss	CNVss	Input	Connect this pin to Vcc.
RESET	Reset input	Input	A "L" on this input resets the microcomputer.
XIN	Clock input	Input	These pins are provided for the main clock generating circuit. Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To
Xout	Clock output	Output	use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
BYTE	External data bus width select input	Input	This pin selects the width of an external data bus. A 16-bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L".
AVcc	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vcc.
AVss	Analog power supply input		This pin is a power supply input for the A-D converter. Connect this pin to Vss.
VREF	Reference voltage input	Input	This pin is a reference voltage input for the A-D converter.
Do to D7	Data bus	Input/output	When set as a separate bus, these pins input and output data (Do-D7)
P10 to P17	I/O port P1	Input/output	This is an 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually.
D8 to D15	Data bus	Input/output	When set as a separate bus, these pins input and output data (D8-D15)
Ao to A7	Address bus	Output	These pins output 8 low-order address bits (A ₀ –A ₇).
A0/D0 to A7/D7	Address bus/ data bus	Input/output	If the external bus is set as an 8-bit wide multiplexed bus, these pins input and output data (D0–D7) and output 8 low-order address bits (A0–A7) separated in time by multiplexing.
A0, A1/D0 to A7/D6		Output Input/output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D0–D6) and output address (A1–A7) separated in time by multiplexing. They also output address (A0).
A8 to A15	Address bus	Output	These pins output 8 middle-order address bits (A8–A15).
A8/D7, A9 to A15	Address bus/ data bus	Input/output Output	If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A9–A15).
P40 to P47	I/O port P4	Input/output	This is an 8-bit I/O port equivalent to P1.
CS0 to CS3, A16 to A19		Output Output	These pins output CS0–CS3 signals and A16–A19. CS0–CS3 are chip select signals used to specify an access space. A16–A19 are 4 high-order address bits.

Table 6.2.2. Pin Description (2)

Pin name	Signal name	I/O type	Function
WRL/WR, WRH/BHE, RD, BCLK, HLDA, HOLD,	WRL/WR, WRH/BHE, RD, BCLK, HLDA, HOLD, ALE, RDY	Output Output Output Output Input Output Input	Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE signals. WRL and WRH, and BHE and WR can be switched using software control. WRL, WRH, and RD selecte With a 16-bit external data bus, data is written to even addresses when the WRL signal is "L" and to the odd addresses when the WRH signal is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". Data is read when RD is "L". Odd addresses are accessed when BHE is "L". Use this mode when using an 8-bit external data bus. While the input level at the HOLD pin is "L", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs a "L" level. ALE is used to latch the address. While the input level of the RDY pin is "L", the microcomputer is in the ready state.
P60 to P67	I/O port P6	Input/output	This is an 8-bit I/O port equivalent to P1. The port can be set to have or not have a pull-up resistor in units of four bits by software. Pins in this port also function as UART0 and UART1 I/O pins as selected by software.
P70 to P77	I/O port P7	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as timer A0–A3, timer B5, or UART2 I/O pins as selected by software.
P80 to P84, P86, P87, P85	I/O port P8	Input/output Input/output Input/output Input	P80 to P84, P86, and P87 are I/O ports with the same functions as P6. Using software, they can be made to function as the I/O pins for timer A4 and the input pins for external interrupts. P86 and P87 can be set using software to function as the I/O pins for a sub clock generation circuit. In this case, connect a quartz oscillator between P86 (XCOUT pin) and P87 (XCIN pin). P8s is an input-only port that also functions for NMI. The NMI interrupt is generated when the input at this pin changes from "H" to "L". The NMI function cannot be canceled using software. The pull-up cannot be set for this pin.
P90 to P97	I/O port P9	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as SI/O3,4 I/O pin, timer B0–B2 input pins, D-A converter output pins, A-D converter's extended input pins, or A-D trigger input pins as selected by software.
P100 to P107	I/O port P10	Input/output	This is an 8-bit I/O port equivalent to P6. Pins in this port also function as A-D converter input pins. Furthermore, P104–P107 also function as input pins for the key input interrupt function.

6.3 Memory Map

Figure 6.3.1 shows the memory map. Figures 6.3.2 and 6.3.3 show the SFR memory map.

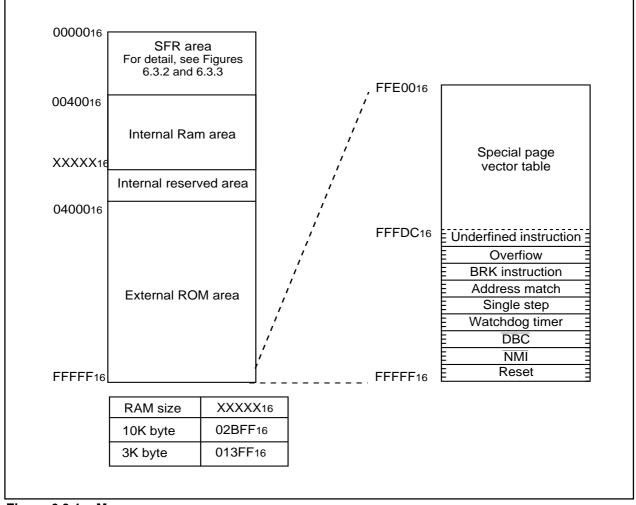


Figure 6.3.1. Memory map

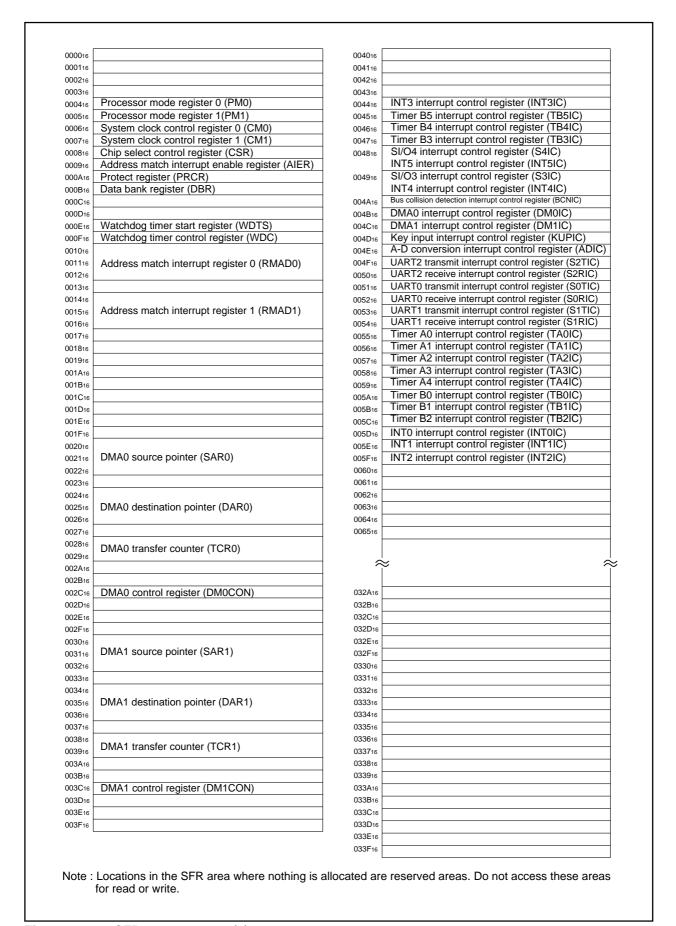


Figure 6.3.2. SFR memory map (1)

016	Timer B3, 4, 5 count start flag (TBSR)	038016	Count start flag (TABSR)
116		038116	Clock prescaler reset flag (CPSRF)
216	Timer A1-1 register (TA11)	038216	One-shot start flag (ONSF)
316		038316	Trigger select register (TRGSR)
416	Timer A2-1 register (TA21)	038416	Up-down flag (UDF)
516	Timer A2-1 register (TA21)	038516	
316	Times AAA manistan (TAAA)	038616	Timer AO (TAO)
716	Timer A4-1 register (TA41)	038716	Timer A0 (TA0)
316	Three-phase PWM control register 0(INVC0)	038816	
916	Three-phase PWM control register 1(INVC1)	038916	Timer A1 (TA1)
A ₁₆	Three-phase output buffer register 0(IDB0)	038A ₁₆	
316	Three-phase output buffer register 0(IDB0) Three-phase output buffer register 1(IDB1)	038B ₁₆	Timer A2 (TA2)
- 1			
C16	Dead time timer(DTT) Timer B2 interrupt occurrence frequency set counter(ICTB2)	038C ₁₆	Timer A3 (TA3)
D16	Timer B2 interrupt occurrence frequency set counter(ICTB2)	038D16	,
16		038E ₁₆	Timer A4 (TA4)
16		038F16	Timol 7t4 (17t4)
)16	Timer P2 register (TP2)	039016	Timer B0 (TB0)
16	Timer B3 register (TB3)	039116	Timer bo (Tbo)
216		039216	Timor D1 (TD1)
316	Timer B4 register (TB4)	039316	Timer B1 (TB1)
116		039416	
516	Timer B5 register (TB5)	039516	Timer B2 (TB2)
- 1			Timor A0 mode register (TAOMP)
616		039616	Timer A0 mode register (TA0MR)
16		039716	Timer A1 mode register (TA1MR)
316		039816	Timer A2 mode register (TA2MR)
16		039916	Timer A3 mode register (TA3MR)
116		039A16	Timer A4 mode register (TA4MR)
316	Timer B3 mode register (TB3MR)	039B16	Timer B0 mode register (TB0MR)
216	Timer B4 mode register (TB4MR)	039C ₁₆	Timer B1 mode register (TB1MR)
016	Timer B5 mode register (TB5MR)	039D ₁₆	Timer B2 mode register (TB2MR)
16	Timer by mode register (Tbownt)	039E ₁₆	rimer 22 mede register (+22mm)
- 1	Interrupt cause select register (IESP)	039E16	
16	Interrupt cause select register (IFSR)	F	LIADTO transcription and transcription (LIOME)
16	SI/O3 transmit/receive register (S3TRR)	03A016	UART0 transmit/receive mode register (U0MR)
16		03A116	UART0 bit rate generator (U0BRG)
16	SI/O3 control register (S3C)	03A216	UART0 transmit buffer register (U0TB)
16	SI/O3 bit rate generator (S3BRG)	03A316	GARTO transmit build register (GGTB)
-16	SI/O4 transmit/receive register (S4TRR)	03A416	UART0 transmit/receive control register 0 (U0C0)
16	<u> </u>	03A516	UART0 transmit/receive control register 1 (U0C1)
16	SI/O4 control register (S4C)	03A616	
16	SI/O4 bit rate generator (S4BRG)	03A716	UART0 receive buffer register (U0RB)
- 1	On O4 bit rate generator (O4BICO)	03A816	UART1 transmit/receive mode register (U1MR)
316		03A916	UART1 bit rate generator (U1BRG)
16		- t	UARTI DIL Tale generalor (UTBRG)
116		03AA16	UART1 transmit buffer register (U1TB)
316		03AB ₁₆	
16		03AC16	UART1 transmit/receive control register 0 (U1C0)
)16		03AD16	UART1 transmit/receive control register 1 (U1C1)
16		03AE16	LIARTA receive buffer register (LIARR)
16		03AF16	UART1 receive buffer register (U1RB)
16		03B016	UART transmit/receive control register 2 (UCON)
16		03B116	
- t		03B116	
16		l l	
16		03B316	
-16		03B416	
16		03B516	
16	UART2 special mode register 2(U2SMR2)	03B616	
16	UART2 special mode register (U2SMR)	03B7 ₁₆	
16	UART2 transmit/receive mode register (U2MR)	03B816	DMA0 request cause select register (DM0SL)
16	UART2 bit rate generator (U2BRG)	03B916	
T I	,	03BA ₁₆	DMA1 request cause select register (DM1SL)
16	UART2 transmit buffer register (U2TB)	03BB16	21111 11 Toquest suuse select register (DIVITOL)
16	LIADTO (managaritha anima anima)		
16	UART2 transmit/receive control register 0 (U2C0)	03BC16	CRC data register (CRCD)
16	UART2 transmit/receive control register 1 (U2C1)	03BD16	
16	HART2 receive huffer register (LI2DD)	03BE16	CRC input register (CRCIN)
16	UART2 receive buffer register (U2RB)	03BF16	

Figure 6.3.3. SFR memory map (2)

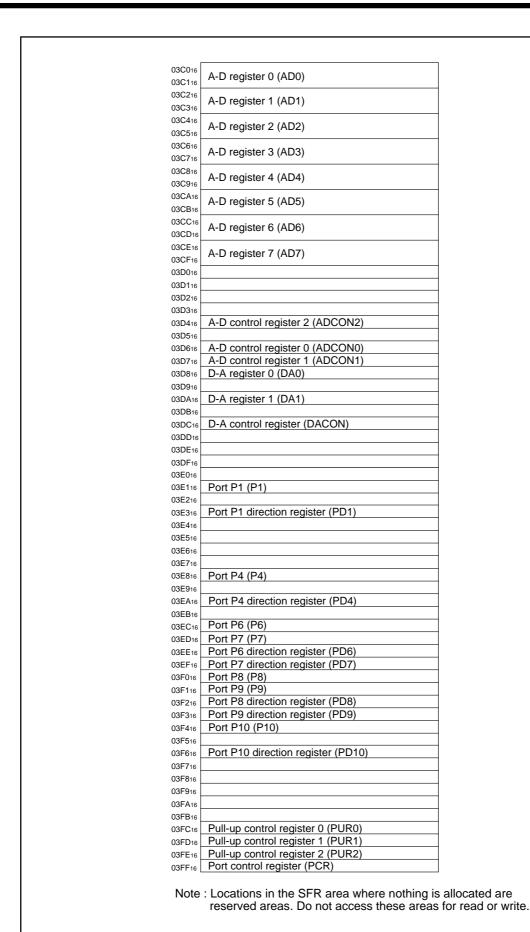


Figure 6.3.4. SFR memory map (3)

6.4 Processor Mode

The external ROM version is operated only in microprocessor mode, so be sure to perform the following:

- Connect CNVss pin to Vcc.
- Fix the processor mode bit to "112"

Figure 6.4.1 shows the processor mode register 0.

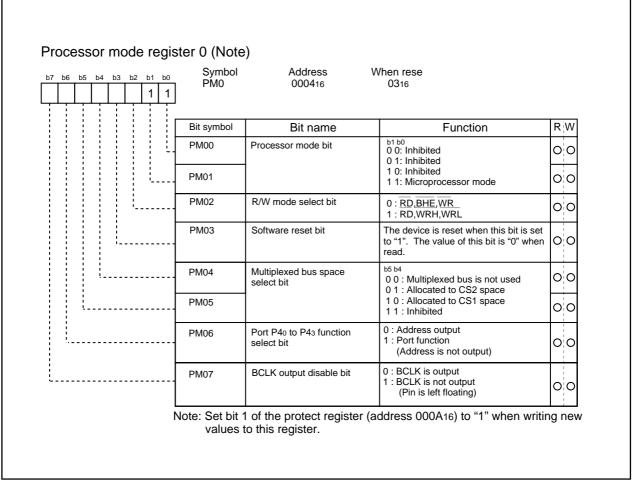


Figure 6.4.1. Processor mode register 0

Chapter 7

Standard Characteristics

7.1 Standard DC Characteristics

The standard characteristics given in this section are examples of M30620EC-XXXFP. The contents of these examples cannot be guaranteed. For standardized values, see "Electric characteristics".

7.1.1 Standard Ports Characteristics

Figures 7.1.1 through 7.1.4 show the standard ports characteristics.

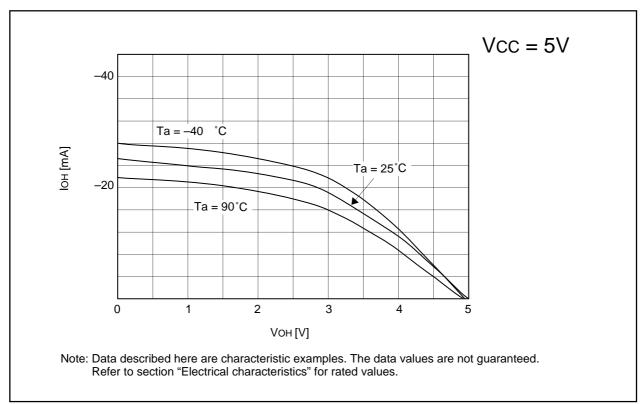


Figure 7.1.1. IOH - VOH standard characteristics of ports P0 to P10 (except P70, P71 and P85) (VCC = 5V)

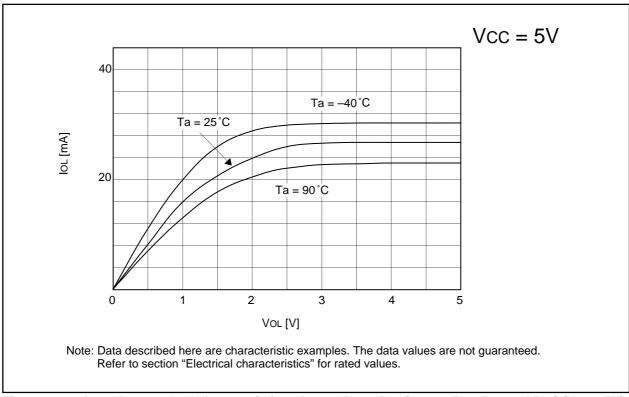


Figure 7.1.2. IoL - Vol standard characteristics of ports P0 to P10 (except P70, P71 and P85) (Vcc = 5V)

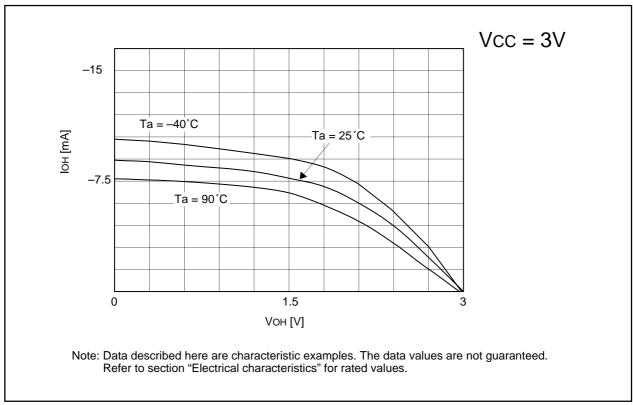


Figure 7.1.3. IOH - VOH standard characteristics of ports P0 to P10 (except P70, P71 and P85) (VCC = 3V)

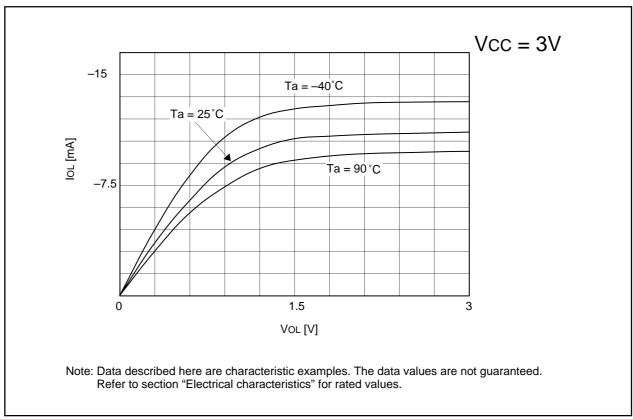


Figure 7.1.4. IoL - Vol standard characteristics of ports P0 to P10 (except P70, P71 and P85) (Vcc = 3V)

7.1.2 Standard characteristics of Icc-f(XIN)

The standard characteristics given in this section are examples of M30620EC-XXXFP. The contents of these examples cannot be guaranteed. For standardized values, see "Electric characteristics".

Figures 7.1.5 to 7.1.7 show the standard characteristics of ICC-f(XIN). Figure 7.1.7 is only mask ROM version.

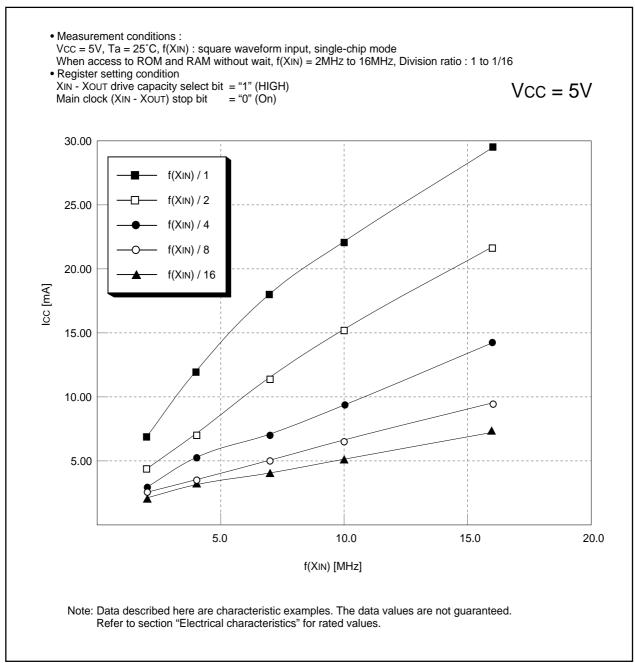


Figure 7.1.5. Standard characteristics of Icc-f(XIN) (Vcc = 5V)

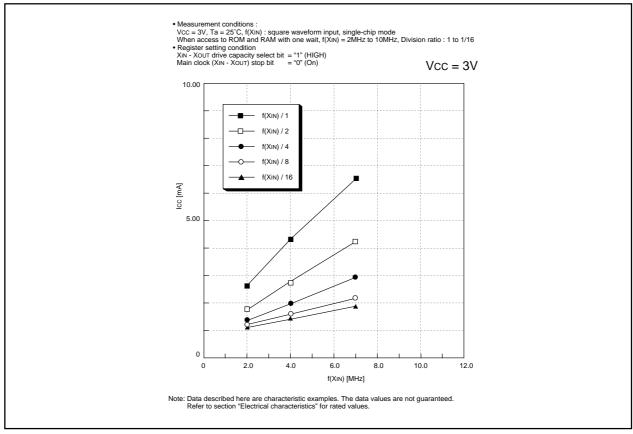


Figure 7.1.6. Standard characteristics of Icc-f(XIN) (Vcc = 3V) (one-time PROM version)

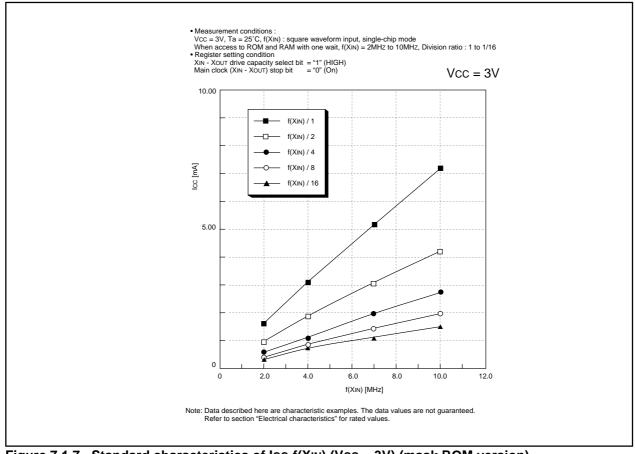


Figure 7.1.7. Standard characteristics of Icc-f(XIN) (Vcc = 3V) (mask ROM version)

7.2 Standard Characteristics of A-D Converter

The standard characteristics given in this section are an example of M30620EC-XXXFP. The contents of these examples cannot be guaranteed. For standardize values, see "Electric characteristics".

Figures 7.2.1 and 7.2.2 show the standard characteristics of the A-D converter.

The line on the top side of the graph represents absolute errors.

The line on the bottom side of the graph represents the width of input voltage bearing the equal output code.

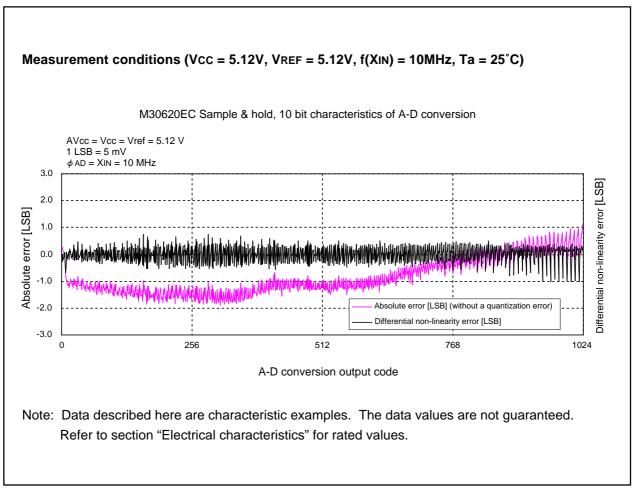


Figure 7.2.1. Standard characteristics of the A-D converter

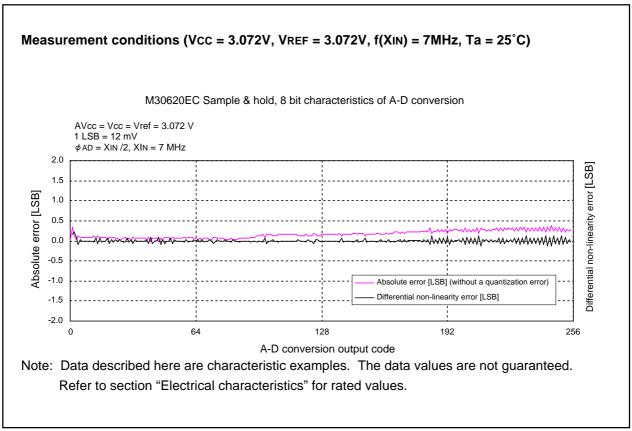


Figure 7.2.2. Standard characteristics of the A-D converter

7.3 Standard Characteristics of D-A Converter

The standard characteristics given in this section are an example of M30620EC-XXXFP. The contents of these examples cannot be guaranteed. For standardized values, see "Electric characteristics".

Figures 7.3.1 and 7.3.2 show the standard characteristics of the D-A converter.

The line on the bottom side of the graph represents absolute errors. This indicates the difference between the measurement and the ideal analog value corresponding to the input code.

The line on the top side of the graph represents the variation width of analog output value corresponding to 1-bit variation in the input code.

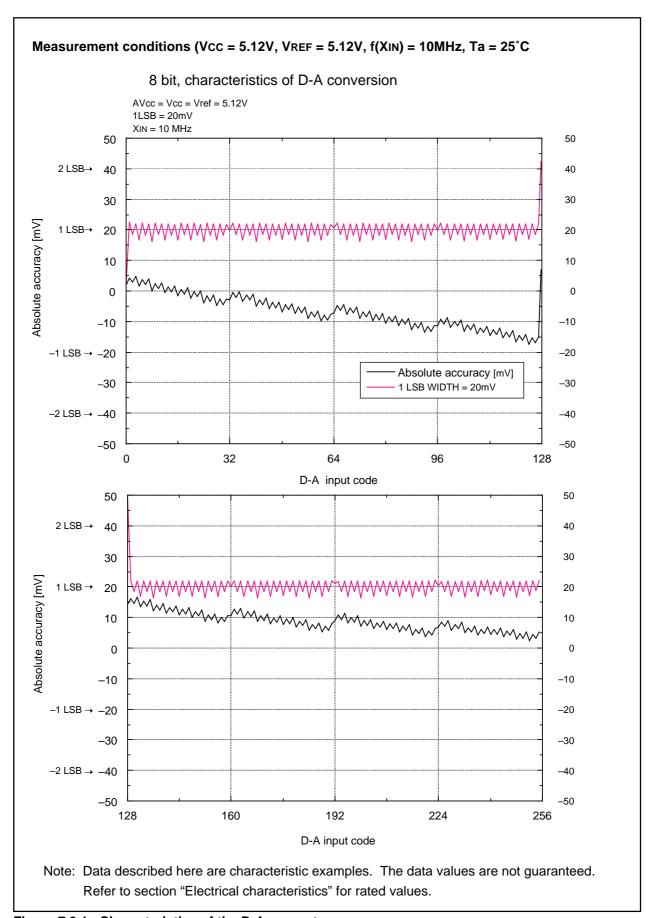


Figure 7.3.1. Characteristics of the D-A converter

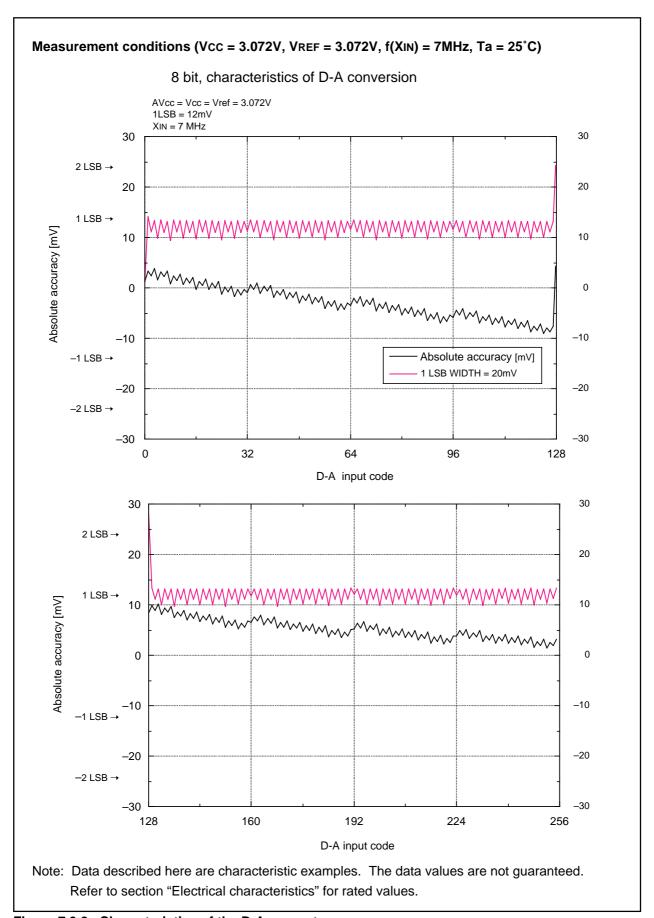


Figure 7.3.2. Characteristics of the D-A converter

7.4 Standard Characteristics of Pull-Up Resistor

The standard characteristics given in this section are examples of M30620EC-XXXFP. The contents of these examples cannot be guaranteed. For standardized values, see "Electric characteristics".

Figure 7.4.1 shows an example of the standard characteristics of the pull-up resistor.

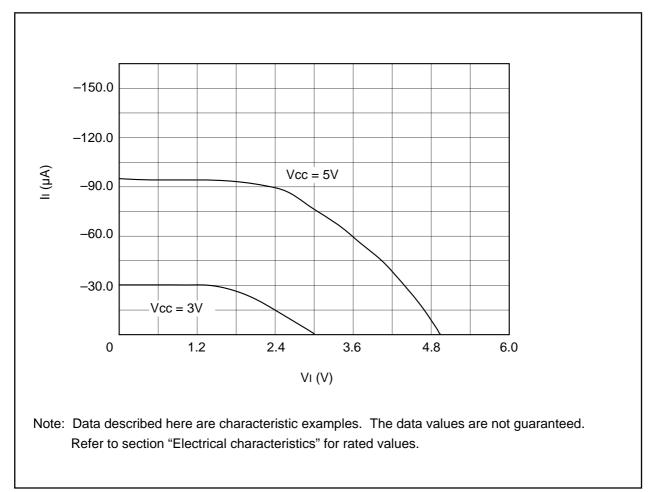


Figure 7.4.1. Example of the standard characteristics of the pull-up resistor

Appendix 1 Check Sheet	
The following check sheet was created based on items which had been the source of proble	ems in the nast
We recommend you refer to the check sheet when troubleshooting.	mo m mo paor
Are you making use of Technical News?	
For the latest copy of Technical News, contact an authorized dealer.	
Checks regarding register initial settings	
☐ Has the initial setting been made in the interrupt stack pointer (ISP) at the top of the p	rogram?
☐ Has the initial setting been made in the user stack pointer (USP)? (Only if using the U	SP)
☐ Does the USP overlap the ISP area? (Only if using the USP)	
☐ Is interrupt enabled after setting the ISP and USP?	
☐ Is the top address of the variable interrupt vector table set in the interrupt table registe	er (INTB)?
☐ Is interrupt enabled after setting the INTB?	
☐ Has the initial setting been made in the frame base register (FB)? (Only if using the FI	В)
☐ Has the initial setting been made in the stack base register (SB)? (Only if using the SE	3)
Checks regarding the internal memory	
☐ Does the RAM capacity used in the program exceed the RAM capacity of the microco	mputer?
☐ Does the ROM capacity used in the program exceed the ROM capacity of the microco	omputer?
Checks regarding the protect register	
☐ Is writing enabled in the protect register (address 000A16) before writing in the system register (addresses 000616 and 000716)?	n clock contro
☐ Is writing enabled in the protect register before writing in the processor mode regist 000416 and 000516)?	ter (addresses
☐ Is writing enabled in the protect register before writing in the port P9 direction reg 03F3₁6)?	jister (address
☐ Is writing effectuated in the port P9 direction register by the next instruction after writin	g is enabled ir

Does not an interrupt generate between the instruction writing is enabled in the protect register and

the instruction writing in the port P9 direction register?

☐ Does not instruction DMA transfer occur between the instruction writing is enabled in the protect register and the instruction writing in the port P9 direction register starts?
☐ Is writing enabled in the protect register before writing in the SI/Oi (i=3,4) control register (address 036216, 036616)?
☐ Is writing effectuated in the SI/Oi (i=3,4) control register by the next instruction after writing is enabled in the protect register?
☐ Does not an interrupt generate between the instruction writing is enabled in the protect register and the instruction writing in the SI/Oi (i=3,4) control register?
☐ Does not instruction DMA transfer occur between the instruction writing is enabled in the protect register and the instruction writing in the SI/Oi (i=3,4) control register starts?
Checks regarding the timer Is the timer started after a value is set in the timer register?
Checks regarding Interrupt
☐ When rewrite the interrupt register, do so at a point that does not generate the interruput request?
 When rewrite the interrupt register, do so at a point that does not generate the interruput request? Checks regarding low voltage and low power consumption ☐ When using at low voltage, have you checked recommended operating conditions and changed the wait bit (address 000516, bit 7) to "1"?
Checks regarding low voltage and low power consumption When using at low voltage, have you checked recommended operating conditions and changed the
 Checks regarding low voltage and low power consumption ☐ When using at low voltage, have you checked recommended operating conditions and changed the wait bit (address 000516, bit 7) to "1"? ☐ Does the oscillator to which the count source is going to be switched be oscillating stably, before the
 Checks regarding low voltage and low power consumption ☐ When using at low voltage, have you checked recommended operating conditions and changed the wait bit (address 000516, bit 7) to "1"? ☐ Does the oscillator to which the count source is going to be switched be oscillating stably, before the count source for BCLK can be changed from XIN to XCIN or vice versa? ☐ In the low power consumption mode, does not current flow from Vref when the Vref connection bit (bit
 Checks regarding low voltage and low power consumption ☐ When using at low voltage, have you checked recommended operating conditions and changed the wait bit (address 000516, bit 7) to "1"? ☐ Does the oscillator to which the count source is going to be switched be oscillating stably, before the count source for BCLK can be changed from XIN to XCIN or vice versa? ☐ In the low power consumption mode, does not current flow from Vref when the Vref connection bit (bit 5 in address 03D716) is set?
 Checks regarding low voltage and low power consumption ☐ When using at low voltage, have you checked recommended operating conditions and changed the wait bit (address 000516, bit 7) to "1"? ☐ Does the oscillator to which the count source is going to be switched be oscillating stably, before the count source for BCLK can be changed from XIN to XCIN or vice versa? ☐ In the low power consumption mode, does not current flow from Vref when the Vref connection bit (bit 5 in address 03D716) is set? ☐ Is not voltage level of port floating in the low power consumption mode?
 Checks regarding low voltage and low power consumption
 Checks regarding low voltage and low power consumption

	D7 to D4	0000	0001	0010	0011	0100	0101	0110	0111
D3 to D0		0	1	2	3	4	5	6	7
0000	0	BRK	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	MULU.B
			R0H,R0L	R0H,R0L	R0H,A0	0,11[SB]	0,11[SB]	label	src,dest
0001	1	MOV.B:S	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	MULU.W
		R0L,dsp:8[SB]	dsp:8[SB],R0L	dsp:8[SB],R0L	dsp:8[SB],A0	1,11[SB]	1,11[SB]	label	src,dest
0010	2	MOV.B:S	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	MOV.B:G
		R0L,dsp:8[FB]	dsp:8[FB],R0L	dsp:8[FB],R0L	dsp:8[FB],A0	2,11[SB]	2,11[SB]	label	src,dest
0011	3	MOV.B:S	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	MOV.W:G
		R0L,abs16	abs16,R0L	abs16,R0L	abs16,A0	3,11[SB]	3,11[SB]	label	src,dest
0100	4	NOP	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	CODE_74
			R0L,R0H	R0L,R0H	R0Çk,A1	4,11[SB]	4,11[SB]	label	
0101	5	MOV.B:S	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	CODE_75
		R0H,dsp:8[SB]	dsp:8[SB],R0H	dsp:8[SB],R0H	dsp:8[SB],A1	5,11[SB]	5,11[SB]	label	
0110	6	MOV.B:S	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	CODE_76
		R0H,dsp:8[FB]	dsp:8[FB],R0H	dsp:8[FB],R0H	dsp:8[FB],A1	6,11[SB]	6,11[SB]	label	
0111	7	MOV.B:S	AND.B:S	ADD.B:S	MOV.B:S	BCLR:S	BNOT:S	JMP.S	CODE_77
		R0H,abs16	abs16,R0H	abs16,R0H	abs16,A1	7,11[SB]	7,11[SB]	label	
1000	8	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JGEU/C	MUL.B
		R0H,R0L	R0H,R0L	R0H,R0L	R0H,R0L	0,11[SB]	0,11[SB]	label	src,dest
1001	9	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JGTU	MUL.W
		dsp:8[SB],R0L	dsp:8[SB],R0L	dsp:8[SB],R0L	dsp:8[SB],R0L	1,11[SB]	1,11[SB]	label	src,dest
1010	Α	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JEQ/Z	CODE_7A
		dsp:8[FB],R0L	dsp:8[FB],R0L	dsp:8[FB],R0L	dsp:8[FB],R0L	2,11[SB]	2,11[SB]	label	
1011	В	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JN	CODE_7B
		abs16,R0L	abs16,R0L	abs16,R0L	abs16,R0L	3,11[SB]	3,11[SB]	label	
1100	С	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JLTU/NC	CODE_7C
		R0L,R0H	R0L,R0H	R0L,R0H	R0L,R0H	4,11[SB]	4,11[SB]	label	
1101	D	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JLEU	CODE_7D
		dsp:8[SB],R0H	dsp:8[SB],R0H	dsp:8[SB],R0H	dsp:8[SB],R0H	5,11[SB]	5,11[SB]	label	
1110	Е	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JNE/JNZ	CODE_7E
		dsp:8[FB],R0H	dsp:8[FB],R0H	dsp:8[FB],R0H	dsp:8[FB],R0H	6,11[SB]	6,11[SB]	label	
1111	F	MOV.B:S	OR.B:S	SUB.B:S	CMP.B:S	BSET:S	BTST:S	JPZ	
		abs16,R0H	abs16,R0H	abs16,R0H	abs16,R0H	7,11[SB]	7,11[SB]	label	

The next instruction is arranged in each CODE.

CODE_74: STE, MOV, PUSH, NEG, ROT, NOT, LDE, POP, SHL, SHA

CODE_75: STE, MOV, PUSH, NEG, ROT, NOT, LDE, POP, SHL, SHA

CODE_76: TST, XOR, AND, OR, ADD, SUB, ADC, SBB, CMP, DIVX, ROLC, RORC, DIVU, DIV, ADCF, ABS

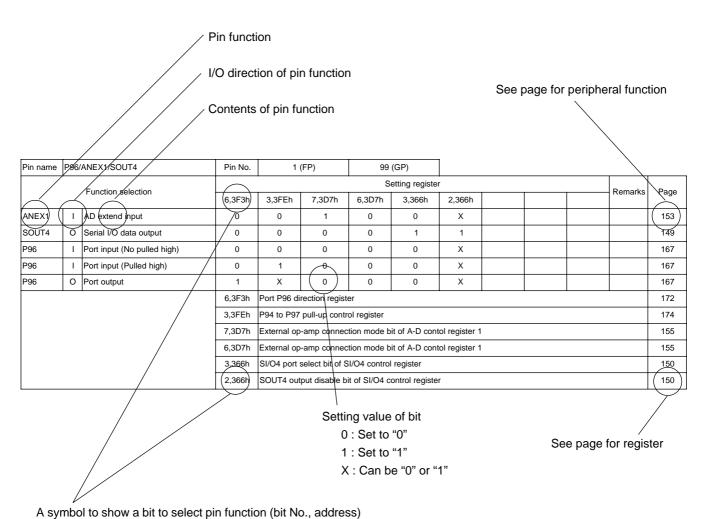
CODE_77: TST, XOR, AND, OR, ADD, SUB, ADC, SBB, CMP, DIVX, ROLC, RORC, DIVU, DIV, ADCF, ABS

CODE_7A: XCHG, LDC

 $\mathsf{CODE}_\mathsf{7B} : \mathsf{XCHG}, \, \mathsf{STC}$

 $\texttt{CODE_7C:MOVDir}, \texttt{MULU}, \texttt{MUL}, \texttt{EXTS}, \texttt{STC}, \texttt{DIVU}, \texttt{DIV}, \texttt{PUSH}, \texttt{DIVX}, \texttt{DADD}, \texttt{DSUB}, \texttt{DADC}, \texttt{DSBB}, \texttt{SMOVF}, \texttt{SMOVB}, \texttt{SSTR}, \texttt{ADD}, \texttt{LDCTX}, \texttt{RMPA}, \texttt{ENTER}, \texttt{COMPACTAL STATES}, \texttt{COMP$

 ${\tt CODE_7E:BTSTC,BMCnd,BNTST,BAND,BNAND,BOR,BNOR,BCLR,BSET,BNOT,BTST,BXOR,BN$


 ${\tt CODE_EB:SHL,FSET,FCLR,MOVA,LDC,SHA,PUSHC,POPC,INT}$

	D7 to D4	1000	1001	1010	1011	1100	1101	1110	1111
D3 to D0		8	9	Α	В	С	D	Е	F
0000	0	TST.B	AND.B:G	ADD.B:G	ADC.B	CMP.B:G	CMP.B:Q	ROT.B	SHA.B
		src,dest	src,dest	src,dest	src,dest	src,dest	#IMM,dest	#IMM,dest	#IMM,dest
0001	1	TST.W	AND.W:G	ADD.W:G	ADC.w	CMP.W:G	CMP.W:Q	ROT.W	SHA.W
		src,dest	src,dest	src,dest	src,dest	src,dest	#IMM,dest	#IMM,dest	#IMM,dest
0010	2	PUSH.B:S	POP.B:S	MOV.W:S	INC.W	PUSH.W:S	POP.W:S	MOV.B:S	DEC.W
		R0L	R0L	#IMM,A0	A0	A0	A0	#IMM,A0	A0
0011	3	ADD.B:S	AND.B:S	INC.B	MOV.B:Z	MOV.B:S	STNZ	CMP.B:S	RTS
		#IMM8,R0H	#IMM8,R0H	R0H	#0,R0H	#IMM8,R0H	#IMM8,R0H	#IMM8,R0H	
0100	4	ADD.B:S	AND.B:S	INC.B	MOV.B:Z	MOV.B:S	STNZ	CMP.B:S	JMP.W
		#IMM8,R0L	#IMM8,R0L	R0L	#0,R0L	#IMM8,R0L	#IMM8,R0L	#IMM8,R0L	label
0101	5	ADD.B:S	AND.B:S	INC.B	MOV.B:Z	MOV.B:S	STNZ	CMP.B:S	JSR.W
		#IMM8,dsp:8[SB]	#IMM8,dsp:8[SB]	dsp:8[SB]	#0,dsp:8[SB]	#IMM8,dsp:8[SB]	#IMM8,dsp:8[SB]	#IMM8,dsp:8[SB]	label
0110	6	ADD.B:S	AND.B:S	INC.B	MOV.B:Z	MOV.B:S	STNZ	CMP.B:S	INTO
		#IMM8,dsp:8[FB]	#IMM8,dsp:8[FB]	dsp:8[FB]	#0,dsp:8[FB]	#IMM8,dsp:8[FB]	#IMM8,dsp:8[FB]	#IMM8,dsp:8[FB]	
0111	7	ADD.B:S	AND.B:S	INC.B	MOV.B:Z	MOV.B:S	STNZ	CMP.B:S	
		#IMM8,abs16	#IMM8,abs16	abs16	#0,abs16	#IMM8,abs16	#IMM8,abs16	#IMM8,abs16	
1000	8	XOR.B	OR.B:G	SUB.B:G	SBB.B	ADD.B:Q	MOV.B:Q	SHL.B	ADJNZ.B
		src,dest	src,dest	src,dest	src,dest	#IMM,dest	#IMM,dest	#IMM,dest	#IMM,dest,label
1001	9	XOR.W	OR.W:G	SUB.W:G	SBB.W	ADD.W:Q	MOV.W:Q	SHL.W	ADJNZ.W
		src,dest	src,dest	src,dest	src,dest	#IMM,dest	#IMM,dest	#IMM,dest	#IMM,dest,label
1010	Α	PUSH.B:S	POP.B:S	MOV.W:S	INC.W	PUSH.W:S	POP.W:S	MOV.B:S	DEC.W
		R0H	R0H	#IMM,A1	A1	A1	A1	#IMM,A1	A1
1011	В	SUB.B:S	OR.B:S	DEC.B	NOT.B:S	STZ	STZX	CODE_EB	REIT
		#IMM8,R0H	#IMM8,R0H	R0H	R0H	#IMM8,R0H	#IMM8,#IMM8,R0H		
1100	С	SUB.B:S	OR.B:S	DEC.B	NOT.B:S	STZ	STZX	PUSHM	JMP.A
		#IMM8,R0L	#IMM8,R0L	R0L	R0L	#IMM8,R0L	#IMM8,#IMM8,R0L	src	label
1101	D	SUB.B:S	OR.B:S	DEC.B	NOT.B:S	STZ	STZX	POPM	JSR.A
		#IMM8,dsp:8[SB]	#IMM8,dsp:8[SB]	dsp:8[SB]	dsp:8[SB]	#IMM8,dsp:8[SB]	#IMM8,#IMM8,dsp:8[SB]	dest	label
1110	Е	SUB.B:S	OR.B:S	DEC.B	NOT.B:S	STZ	STZX	JMPS	JMP.B
		#IMM8,dsp:8[FB]	#IMM8,dsp:8[FB]	dsp:8[FB]	dsp:8[FB]	#IMM8,dsp:8[FB]	#IMM8,#IMM8,dsp:8[FB]	#IMM8	label
1111	F	SUB.B:S	OR.B:S	DEC.B	NOT.B:S	STZ	STZX	JSRS	UND
		#IMM8,abs16	#IMM8,abs16	abs16	abs16	#IMM8,abs16	#IMM8,#IMM8,abs16	#IMM8	

The following shows the register to select pin and the setting value. Refer to the table as follows.

rt symbol to show a bit to select pill fullotion (bit 140., address)

Pin name	P96/	ANEX1/SOUT4	Pin No.	1	(FP)	99	(GP)				
		Function selection				S	etting registe	r		Remarks	Dogo
		Function selection	6,3F3h	3,3FEh	7,3D7h	6,3D7h	3,366h	2,366h		Remarks	Page
ANEX1	I	AD extend input	0	0	1	0	0	Х			153
SOUT4	0	Serial I/O data output	0	0	0	0	1	0			149
P96	I	Port input (No pulled high)	0	0	0	0	0	Х			167
P96	ı	Port input (Pulled high)	0	1	0	0	0	Х			167
P96	0	Port output	1	Х	0	0	0	Х			167
			6,3F3h	Port P96 di	rection regist	er			•		172
			3,3FEh	P94 to P97	pull-up contr	ol register					174
			7,3D7h	External op	-amp connec	tion mode b	it of A-D cont	tol register 1			155
			6,3D7h	External op	-amp connec	tion mode b	it of A-D cont	tol register 1			155
			3,366h	SI/O4 port	select bit of S	SI/O4 control	register				150
			2,366h	SOUT4 out	put disable b	it of SI/O4 c	ontrol registe	r			150

Pin name	P95	/ANEX0/CLK4	Pin No.	2	(FP)	100	(GP)]		
	•	Formation coloration				S	etting registe	r	Damada	D
		Function selection	5,3F3h	3,3FEh	7,3D7h	6,3D7h	3,366h	6,366h	Remarks	Page
ANEX0	1	AD extend input	0	0	0	1	0	х		153
ANEX0	0	Output when op-amp connection mode	0	0	1	1	0	х		153
SCLK4	0	Serial clock output	0	0	0	0	1	1		149
SCLK4	ı	Serial clock input	0	0	0	0	1	0		149
P95	ı	Port input (No pulled high)	0	0	0	0	0	х		167
P95	ı	Port input (Pulled high)	0	1	0	0	0	х		167
P95	0	Port output	1	Х	0	0	0	х		167
	•	1	5,3F3h	Port P95 di	rection regist	er			,	172
			3,3FEh	P94 to P97	pull-up contr	ol register				174
			7,3D7h	External op	-amp connec	tion mode b	it of A-D cont	trol register 1		155
			6,3D7h	External op	-amp connec	tion mode b	it of A-D cont	trol register 1		155
			3,366h	SI/O4 port	select bit of S	SI/O4 control	register			150
			6,366h	Synchrono	us clock sele	ct bit of SI/O	4 control regi	ister		150

Pin name	P94/	/DA1/TB4IN	Pin No.	3 ((FP)	1 (GP)						
		Function selection				S	etting register	,				Remarks	Page
		Function Selection	4,3F3h	3,3FEh	1,3DCh	7,35Ch						Remarks	raye
DA1	0	DA output	0	0	1	0							163
TB4IN	I	Count source input	0	0	0	0							95
P94	I	Port input (No pulled high)	0	0	0	0							167
P94	I	Port input (Pulled high)	0	1	0	0							167
P94	0	Port output	1	Х	0	0							167
			4,3F3h	Port P94 di	rection regist	er			'	'		•	172
	3,3FEh P94 to P97 pull-up control register									174			
			1,3DCh	1,3DCh D-A1 output enable bit of D-A control register									164
			7,35Ch	Event clock	select bit ot	timer B4 mo	de register						95

Pin name	P93/	/DA0/TB3IN	Pin No.	4	(FP)	2 (GP)						
		Function selection				S	etting register	,				Remarks	Page
		Function Selection	3,3F3h	2,3FEh	0,3DCh	7,35Bh						Remarks	raye
DA0	0	DA output	0	0	1	0							163
TB3IN	1	Count source input	0	0	0	0							95
P93	ı	Port input (No pulled high)	0	0	0	0							167
P93	ı	Port input (Pulled high)	0	1	0	0							167
P93	0	Port output	1	Х	0	0							167
		•	3,3F3h	Port P93 di	rection regist	er			•		•		172
2,3FEh P90 to P93 pull-up control register									174				
			0,3DCh	0,3DCh D-A0 output enable bit of D-A control register									164
			7,35Bh	Event clock	select bit ot	timer B3 mc	de register						95

Pin name	P92/	/TB2IN/SOUT3	Pin No.	5	(FP)	3 (GP)					
		Function selection		•		S	etting registe	r			Remarks	Page
		Function Selection	2,3F3h	2,3FEh	7,39Dh	3,362h	2,362h				Remarks	rage
TB2IN	1	Count source input	0	0	0	0	Х					95
SOUT3	0	Serial I/O data output	0	0	0	1	0					149
P92	ı	Port input (No pulled high)	0	0	Х	0	Х					167
P92	1	Port input (Pulled high)	0	1	Х	0	Х					167
P92	0	Port output	1	Х	Х	0	Х					167
	•		2,3F3h	Port P92 di	rection regist	er		•	•	•	•	172
			2,3FEh	P90 to P93	pull-up contr	ol register						174
7,39Dh Event clock select bit ot time							de register					95
			3,362h	SI/O3 port	select bit of S	I/O3 control	register					150
			2,362h	SOUT3 out	put disable b	it of SI/O3 c	ontrol registe	er				150

Pin name	P91/	/TB1IN/SIN3	Pin No.	6	(FP)	4 (GP)						
		Function selection		•		S	etting registe	•				Remarks	Page
		runction selection	1,3F3h	2,3FEh	7,39Ch	3,362h						Remarks	Page
TB1IN	1	Count source input	0	0	0	0							95
SIN3	I	Serial I/O data input	0	0	0	1							149
P91	I	Port input (No pulled high)	0	0	Х	0							167
P91	I	Port input (Pulled high)	0	1	Х	0							167
P91	0	Port output	1	Х	Х	0							167
		•	1,3F3h	Port P91 di	rection regist	er			•	•		•	172
2,3FEh P90 to P93 pull-up control register										174			
			7,39Ch	7,39Ch Event clock select bit of timer B1 mode register									95
			3,362h	SI/O3 port	select bit of S	SI/O3 control	register						150

Pin name	P90/	/TB0IN/CLK3	Pin No.	7 ((FP)	5 (GP)						
	•	Function selection				S	etting registe	r				Domostka	Dono
		Function selection	0,3F3h	2,3FEh	7,39Bh	3,362h	6,362h					Remarks	Page
TB0IN	1	Count source input	0	0	0	0	Х						95
CLK3	0	Serial clock output	0	0	Х	1	1						149
CLK3	ı	Serial clock input	0	0	Х	1	0						149
P90	ı	Port input (No pulled high)	0	0	Х	0	Х						167
P90	ı	Port input (Pulled high)	0	1	Х	0	Х						167
P90	0	Port output	1	Х	Х	0	Х						167
		•	0,3F3h	Port P90 di	rection regist	er		•	•	•	•		172
			2,3FEh	P90 to P93	pull-up contr	ol register							174
7,39Bh Event clock select bit o							de register						95
			3,362h	SI/O3 port	select bit of S	I/O3 control	register						150
			6,362h	Synchronou	us clock seled	ct bit of SI/O	3 control reg	ister					150

Pin name	P87	/XCIN	Pin No.	10	(FP)	8 (GP)						
		Function selection		•		S	etting registe	r				Remarks	Page
		Function Selection	7,3F2h	1,3FEh	4,006h							Remarks	raye
XCIN	1	Sub clock input	0	0	1								41
P87	1	Port input (No pulled high)	0										167
P87	1	Port input (Pulled high)	0	0 1 0							167		
P87	0	Port output	1	Х	0								167
			7,3F2h	Port P87 di	rection regist	er		-					172
			1,3FEh	P84 to P87	pull-up contr	ol register							174
			4,006h	Port Xc sel	ect bit of syst	em clock co	ntrol register	0					44

Pin name	P86/	XCOUT	Pin No.	11	(FP)	9	(GP)						
		Function selection				S	etting registe	r				Remarks	Page
		Function Selection	6,3F2h	1,3FEh	4,006h							Remarks	raye
XCOUT	0	Sub clock output	0	0	1								41
P86	I	Port input (No pulled high)	0	0	0								167
P86	I	Port input (Pulled high)	0	1	0								167
P86	0	Port output	1	Х	0								167
		•	6,3F2h	Port P86 di	rection registe	er		•	•	•	•	•	172
			1,3FEh	P84 to P87	pull-up contr	ol register							174
			4,006h	Port Xc sel	ect bit of syst	em clock co	ntrol register	0					44

Pin name	P84/	/INT2	Pin No.	18	(FP)	16	(GP)				
		Function selection		•		S	etting register	-		Remarks	Page
		i unction selection	4,3F2h	1,3FEh						Remarks	rage
ĪNT2	ı	Interrupt input	0	Х						1	66
P84	ı	Port input (No pulled high)	0	0							167
P84	I	Port input (Pulled high)	0	1							167
P84	0	Port output	1	Х							167
			4,3F2h	Port P84 di	rection regist	er					172
			1,3FEh	P84 to P87	pull-up contr	ol register					174

Remark 1: Interrupt request bit generates by state change of a port, not by setting value of register.

Pin name	P83	/INT1	Pin No.	19	(FP)	17	(GP)					
		Function selection				Se	etting register	r			Remarks	Page
		i diletion selection	4,3F2h	1,3FEh							Itemarks	raye
INT1	1	Interrupt input	0	Х							1	66
P83	ı	Port input (No pulled high)	0	0								167
P83	ı	Port input (Pulled high)	0	1								167
P83	0	Port output	1	Х								167
			3,3F2h	Port P83 di	rection regist	er			•			172
			0,3FEh	P80 to P83	pull-up contr	ol register						174

Remark 1: Interrupt request bit generates by state change of a port, not by setting value of register.

Pin name	P82	/INTO	Pin No.	20	(FP)	18	(GP)]				
	•	Function selection				S	etting registe	r			Remarks	Page
		Function selection	2,3F2h	0,3FEh							Remarks	Page
INT0	1	Interrupt input	0	Х							1	66
P82	1	Port input (No pulled high)	0	0								167
P82	1	Port input (Pulled high)	0	1								167
P82	0	Port output	1	Х								167
			2,3F2h	Port P82 di	rection regist	er				-		172
			0,3FEh	P80 to P83	pull-up contr	ol register						174

Remark 1: Interrupt request bit generates by state change of a port, not by setting value of register.

Pin name	P81/	/TA4IN/Ū	Pin No.	21	(FP)	19	(GP)			
		Formation and action				S	etting registe	r	Damada	D
		Function selection	1,3F2h	0,3FEh	7,383h	6,383h	4,39Ah	2,348h	Remarks	Page
TA4IN	1	Gate function level input	0	Х	0	0	1	0		83
TA4IN	1	Count source input	0	Х	0	0	Х	0		83
TA4IN	ı	External trigger input	0	Х	0	0	1	0		83
Ū	0	U phase output	Х	Х	Х	Х	Х	1		101
P81	1	Port input (No pulled high)	0	0	Х	Х	Х	0		167
P81	1	Port input (Pulled high)	0	1	Х	Х	Х	0		167
P81	0	Port output	1	Х	Х	Х	Х	0		167
			1,3F2h	Port P81 di	rection regist	er				172
			0,3FEh	P80 to P83	pull-up contr	ol register				174
			7,383h	Timer A4 e	vent/trigger s	elect bit of t	rigger select	register		87
			6,383h	Timer A4 e	vent/trigger s	elect bit of t	igger select	register		87
			4,39Ah	Bit 4 of time	er A4 mode r	egister				85
			2,348h	Three phas	e mode sele	ct bit				101

Pin name	P80/	/TA4OUT/U	Pin No.	22	(FP)	20	(GP)				
		Function selection		•		S	etting registe	r		Remarks	Dogo
		Function Selection	0,3F2h	0,3FEh	4,39Ah	2,39Ah	7,384h	2,348h		Remarks	Page
TA4OUT	0	Pulse output	Х	Х	Х	1	0	0		1	83
TA4OUT	1	Up/down polarity select input	0	Х	1	0	0	0			83
TA4OUT	1	Two-phase pulse signal input	0	Х	1	0	1	0			83
U	0	U phase output	Х	Х	Х	Х	Х	1			101
P80	1	Port input (No pulled high)	0	0	Х	0	0	0			167
P80	1	Port input (Pulled high)	0	1	Х	0	0	0			167
P80	0	Port output	1	Х	Х	0	0	0			167
			0,3F2h	Port P80 di	irection regist	er			•		172
			0,3FEh	P80 to P83	pull-up contr	rol register					174
			4,39Ah	Bit 4 of time	er A4 mode r	egister					85
			2,39Ah	Bit 2 of time	er A4 mode r	egister					85
			7,384h	Timer A4 tv	wo-phase pul	se signal pro	cessing sele	ct bit of up/dow	vn flag		86
			2,348h	Three phas	se mode sele	ct bit					101

Remark 1: Can not be use when processing two-phase pulse signal.

Pin name	P77	/TA3IN	Pin No.	23	(FP)	21	(GP)						
		Function selection		•		S	etting registe	r				Remarks	Page
		Function Selection	7,3EFh	7,3FDh	5,383h	4,383h	4,399h					Remarks	raye
TA3IN	1	Gate function level input	0	Х	0	0	1						83
TA3IN	ı	Count source input	0	Х	0	0	Х						83
TA3IN	1	External trigger input	0	Х	0	0	1						83
P77	1	Port input (No pulled high)	0	0	Х	Х	Х						167
P77	ı	Port input (Pulled high)	0	1	Х	Х	Х						167
P77	0	Port output	1	Х	Х	Х	Х						167
		•	7,3EFh	Port P77 di	rection regist	er		•	•	•	_	•	172
			7,3FDh	P74 to P77	pull-up contr	ol register							174
			5,383h	Timer A3 e	vent/trigger s	elect bit of to	rigger select	register					87
			4,383h	Timer A3 e	vent/trigger s	elect bit of to	rigger select	register					87
			4,399h	Bit 4 of time	er A3 mode re	egister							85

Pin name	P76	/TA3OUT	Pin No.	24	(FP)	22	(GP)						
		Function selection				S	etting register	r				Remarks	Dogo
		Function selection	6,3EFh	7,3FDh	4,399h	2,399h	6,384h					Remarks	Page
TA3OUT	0	Pulse output	Х	Х	Х	1	0					1	83
TA3OUT	ı	Up/down polarity select input	0	Х	1	0	0						83
TA3OUT	ı	Two-phase pulse signal input	0	Х	1	0	1						83
P76	ı	Port input (No pulled high)	0	0	Х	0	0						167
P76	1	Port input (Pulled high)	0	1	Х	0	0						167
P76	0	Port output	1	Х	Х	0	0						167
		•	6,3EFh	Port P76 di	rection regist	er		•		•	•		172
			7,3FDh	P74 to P77	pull-up contr	ol register							174
			4,399h	Bit 4 of time	er A3 mode re	egister							85
			2,399h	Bit 2 of time	er A3 mode re	egister							85
			6,384h	Timer A3 tv	vo-phase pul	se signal pro	cessing sele	ct bit of up/o	down flag				86

Remark 1: Can not be use when processing two-phase pulse signal.

Pin name	P75	/TA2IN/W	Pin No.	25	(FP)	23	(GP)					
		Function selection				S	etting registe	ſ		D		Daga
		Function selection	5,3EFh	7,3FDh	3,383h	2,383h	4,398h	2,348h		T Re	emarks	Page
TA2IN	ı	Gate function level input	0	Х	0	0	1	0				83
TA2IN	ı	Count source input	0	Х	0	0	Х	0				83
TA2IN	ı	External trigger input	0	Х	0	0	1	0				83
W	0	W phase output	0	0	Х	Х	Х	1				101
P75	ı	Port input (No pulled high)	0	0	Х	Х	Х	0				167
P75	ı	Port input (Pulled high)	0	1	Х	Х	Х	0				167
P75	0	Port output	1	Х	Х	Х	Х	0				167
			5,3EFh	Port P75 di	rection regist	er			'	•		172
			7,3FDh	P74 to P77	pull-up contr	ol register						174
			3,383h	Timer A2 e	vent/trigger s	elect bit of to	igger select i	register				87
			2,383h	Timer A2 e	vent/trigger s	elect bit of to	igger select i	register				87
			4,398h	Bit 4 of time	er A2 mode r	egister						85
			2,348h	Three phas	se mode sele	ct bit						101

Pin name	P74	/TA2OUT/W	Pin No.	26	(FP)	24	(GP)						
		Function selection		•		s	etting registe	r				Remarks	Page
		Function selection	4,3EFh	7,3FDh	4,398h	2,398h	5,384h	2,348h				Remarks	raye
TA2OUT	0	Pulse output	Х	Х	Х	1	0	0				1	83
TA2OUT	1	Up/down polarity select input	0	Х	1	0	0	0					83
TA2OUT	1	Two-phase pulse signal input	0	Х	1	0	1	0					83
w	0	W phase output	Х	Х	Х	Х	Х	1					101
P74	1	Port input (No pulled high)	0	0	Х	0	0	0					167
P74	1	Port input (Pulled high)	0	1	Х	0	0	0					167
P74	0	Port output	1	Х	Х	0	0	0					167
		•	4,3EFh	Port P74 di	rection regist	er				•	•		172
			7,3FDh	P74 to P77	pull-up contr	ol register							174
			4,398h	Bit 4 of time	er A2 mode re	egister							85
			2,398h	Bit 2 of time	er A2 mode re	egister							85
			5,384h	Timer A2 tv	vo-phase pul	se signal pro	ocessing sele	ct bit of up/d	lown flag				86
			2,348h	Three phas	e mode sele	ct bit							101

Remark 1: Can not be use when processing two-phase pulse signal.

P73/	CTS2/RTS2/TA1IN/V	Pin No.	27	(FP)	25	(GP)]					
	Function coloration		•		S	etting registe	r			_	la ma a rii a	Dono
	runction selection	3,3EFh	6,3FDh	1,383h	0,383h	4,397h	4,37Ch	2,37Ch	2,348h	K	emarks	Page
ı	Gate function level input	0	Х	0	0	1	Х	Х	0			83
ı	Count source input	0	Х	0	0	Х	Х	Х	0			83
ı	External trigger input	0	Х	0	0	1	Х	Х	0			83
0	RTS output	Х	Х	Х	Х	Х	0	1	0		1	113
ı	CTS input	0	Х	Х	Х	Х	0	0	0		1	113
0	V phase output	Х	Х	Х	Х	Х	Х	Х	1			101
ı	Port input (No pulled high)	0	0	Х	Х	Х	Х	Х	0			167
ı	Port input (Pulled high)	0	1	Х	Х	Х	Х	Х	0			167
0	Port output	1	Х	Х	Х	Х	Х	Х	0			167
	•	3,3EFh	Port P73 di	rection regist	er					•		172
		6,3FDh	P70 to P73	pull-up contr	ol register							174
		1,383h	Bit 1 of trig	ger select reg	jister							87
		0,383h	Bit 0 of trig	ger select reg	jister							87
		4,397h	Bit 4 of time	er A1 mode r	egister							85
		4,37Ch	CTS/RTS o	lisable bit of	UART2 trans	smit/receive o	control regis	ter 0				119
		2,37Ch	CTS/RTS s	elect bit of U	ART2 transr	nit/receive co	ontrol registe	er O				119
		2,348h	Three phas	se mode sele	ct bit							101
	I	I Count source input I External trigger input O RTS output I CTS input O ∇ phase output I Port input (No pulled high) I Port input (Pulled high)	Function selection 3,3EFh I Gate function level input 0 I Count source input 0 RTS output X I CTS input 0 V phase output X Port input (No pulled high) 0 Port output 1 3,3EFh 6,3FDh 1,383h 0,383h 4,397h 4,37Ch 2,37Ch	Function selection 3,3EFh 6,3FDh Gate function level input 0 X Count source input 0 X External trigger input 0 X TS output X X TS input 0 X TS input 0 X Port input (No pulled high) 0 0 Port input (Pulled high) 0 1 O Port output 1 X 3,3EFh Port P73 di 6,3FDh P70 to P73 1,383h Bit 1 of triggent 0,383h Bit 0 of triggent 4,397h Bit 4 of time 4,37Ch CTS/RTS decent CTS/RTS	Function selection 3,3EFh 6,3FDh 1,383h Gate function level input 0 X 0 Count source input 0 X 0 External trigger input 0 X X CTS output X X X CTS input 0 X X Port input 0 X X Port input X X X Port input (No pulled high) 0 0 X Port input (Pulled high) 0 1 X O Port output 1 X X 3,3EFh Port P73 direction regist 6,3FDh P70 to P73 pull-up control 1,383h Bit 1 of trigger select regist 4,397h Bit 4 of timer A1 mode in 4,37Ch CTS/RTS disable bit of U 2,37Ch CTS/RTS select bit of U	Function selection 3,3EFh 6,3FDh 1,383h 0,383h Gate function level input 0 X 0 0 Count source input 0 X 0 0 External trigger input 0 X X X X CTS output X X X X X CTS input 0 X X X X Port input (No pulled high) 0 0 X X X Port input (No pulled high) 0 0 X X X Port output 1 X X X X O Port output 1 X X X X Port input (Pulled high) 0 1 X X X Symbol 1 X X X X Gate function level input X X X X Port input (No pulled high) 0 0 X X Port input (Pulled high) 0 1 X X X Symbol 3,3EFh Port P73 direction register 6,3FDh P70 to P73 pull-up control register 1,383h Bit 1 of trigger select register 4,397h Bit 4 of timer A1 mode register 4,37Ch CTS/RTS disable bit of UART2 transcripts CTS/RTS disable bit of UART2 transcripts CTS/RTS select bit of UART2 transcript	Setting register	Setting register	Setting register	Setting register	Function selection Setting register Setting register	Setting register Remarks 3,3EFh 6,3FDh 1,383h 0,383h 4,397h 4,37Ch 2,37Ch 2,348h Remarks 1 Gate function level input 0 X 0 0 1 X X 0 0 1 X X X 0 0 1 X X X 0 0 X X X X X

Remark 1 : Set serial I/O enabled by serial I/O mode select bit of UART2 transmit/receive mode register.

Pin name	P72/	/CLK2/TA1OUT/V	Pin No.	28	(FP)	26	(GP)				
		Function selection		•		S	etting registe	r		Remarks	Done
		Function selection	2,3EFh	6,3FDh	4,397h	2,397h	3,378h	2,348h		Remarks	Page
TA1OUT	0	Pulse output	Х	Х	Х	1	Х	0		1	83
TA1OUT	ı	Up/down polarity select input	0	Х	1	0	Х	0			83
CLK2	ı	Serial I/O clock input	0	0	Х	Х	1	0		2	113
CLK2	0	Serial I/O clock output	Х	0	Х	Х	0	0		2, 3	113
V	0	V phase output	Х	Х	Х	Х	Х	1			101
P72	I	Port input (No pulled high)	0	0	Х	0	Х	1			167
P72	ı	Port input (Pulled high)	0	1	Х	0	Х	0			167
P72	0	Port output	1	Х	Х	0	Х	0			167
		•	2,3EFh	Port P72 di	rection regist	er			'		172
			6,3FDh	P70 to P73	pull-up contr	ol register					174
			4,397h	Bit 4 of time	er A1 mode r	egister					85
			2,397h	Bit 2 of time	er A1 mode r	egister					85
			3,378h	Internal/ext	ernal clock se	elect bit of U	ART2 transm	nit/receive m	ode register		118
			2,348h	Three phas	se mode sele	ct bit					101

Remark 1: Can not be use when processing two-phase pulse signal.

Remark 2: Set serial I/O enabled by serial I/O mode select bit of UART2 transmit/receive mode register.

Remark 3: It become I/O port when UART mode selected.

Pin name	P71	RXD2/TA0IN/TB5IN/SCL	Pin No.	29	(FP)	27	(GP)					
		Function selection		•		S	etting registe	r			Remarks	Dogo
		Function Selection	1,3EFh	6,3FDh	7,382h	6,382h	4,396h	7,35Dh	0,377h	3,378h	Remarks	Page
TA0IN	1	Gate function level input	0	Х	0	0	1	0	0	Х		83
TA0IN	T	Count source input	0	Х	0	0	Х	0	0	Х		83
TA0IN	T	External trigger input	0	Х	0	0	1	0	0	Х		83
TB5IN	T	Count source input	0	0	Х	Х	Х	1	Х	0		95
SCL	0	IIC clock output	0	0	Х	Х	Х	0	1	0		141
SCL	T	IIC clock input	0	0	Х	Х	Х	0	1	1		141
RXD2	1	Serial I/O data input	0	0	Х	Х	Х	0	0	Х	1	113
P71	T	Serial I/O data input 0 0 X X X Port input (No pulled high) 0 0 X X X							0	Х		167
P71	1	Port input (Pulled high)	0	1	Х	Х	Х	0	0	Х		167
P71	0	Port output	1	Х	Х	Х	Х	0	0	Х		167
			1,3EFh	Port P71 di	rection regist	er		•	•		•	172
			6,3FDh	P70 to P73	pull-up contr	ol register						174
			7,382h	Bit 7 of one	-shot start fla	ag						87
			6,382h	Bit 6 of one	-shot start fla	ag						87
			4,396h	Bit 4 of time	er A0 mode re	egister						85
			7,35Dh	Event clock	select bit of	timer B5 mc	de register					95
			0,377h	IIC mode s	elect bit							141
			3,378h	Internal /ex	ternal select l	bit						131

Remark 1 : Set serial I/O enabled by serial I/O mode select bit of UART2 transmit/receive mode register.

Din nama	D70	/TXD2/TA0OUT/SDA	Pin No.	20	(ED)	20	(CD)	1					
Pin name	P70,	/1XD2/1A0001/SDA	PIN NO.	30	(FP)	20	(GP)						
		Function selection				S	etting registe	r				Remarks	Page
		I diletion selection	0,3EFh	6,3FDh	4,396h	2,396h	0,377h	6,376h				Itemarks	raye
TA0OUT	0	Pulse output	Х	Х	Х	1	0	Х				1	83
TA0OUT	1	Up/down polarity select input	0	Х	1	0	0	Х					83
TXD2	0	Serial I/O data output	Х	Х	Х	Х	0	Х				2, 3	113
SDA	T	IIC data input	0	0	0	0	1	1					141
SDA	0	IIC data output	0									141	
P70	1	Port input (No pulled high)	0									167	
P70	T	Port input (Pulled high)	0	1	0	0	0	Х					167
P70	0	Port output	1	Х	0	0	0	Х					167
	•		0,3EFh	Port P70 di	rection regist	er				•	•		172
			6,3FDh	P70 to P73	pull-up contr	ol register							174
	4,396h Bit 4 of timer A0 mode register									85			
			2,396h	Bit 2 of time	er A0 mode re	egister							85
			0,377h	IIC mode s	elect bit								141
			6,376h	SDA outpu	t stop bit								145

Remark 1: Can not be use when processing two-phase pulse signal.

Remark 2: Set serial I/O enabled by serial I/O mode select bit of UART2 transmit/receive mode register.

Remark 3: N channel open-drain output.

Pin name	P67/	TXD1	Pin No.	31	(FP)	29	(GP)						
		Function selection		•		S	etting register	,				Remarks	Dogo
		Function selection	7,3EEh	5,3FDh								Remarks	Page
TXD1	0	Serial I/O data output	Х	Х								1, 2	113
P67	ı	Port input (No pulled high)	0 0									167	
P67	ı	Port input (Pulled high)	0	1									167
P67	0	Port output	1	Х									167
			7,3EEh Port P67 direction register									172	
			5,3FDh	P64 to P67	pull-up contr	ol register							174

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART1 transmit/receive mode register.

Remark 2: Can be selected CMOS output or N channel open-drain output.

Pin name	P66/	RXD1	Pin No.	32	(FP)	30	(GP)						
	•	Function selection		•		S	etting register	r				Remarks	Page
		Function selection	6,3EEh	5,3FDh								Remarks	rage
RXD1 I Serial I/O data input 0 X									1	113			
P66	I	Port input (No pulled high)	0	0								167	
P66	-1	Port input (Pulled high)	0	1									167
P66	0	Port output	1	Х									167
			6,3EEh	EEh Port P66 direction register									172
			5,3FDh	P64 to P67	pull-up contr	ol register							174

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART1 transmit/receive mode register.

Pin name	P65	CLK1	Pin No.	33	(FP)	31	(GP)						
		Function selection		•		S	etting registe	r				Remarks	Page
		FullClion Selection	5,3EEh	5,3FDh	3,3A8h							Remarks	raye
CLK1	- 1	Serial I/O clock input	0	Х	1							1	113
CLK1												113	
P65	1	Port input (No pulled high)	0	0 0 X									
P65	- 1	Port input (Pulled high)	0	1	Х								167
P65	0	Port output	1	Х	Х								167
		•	6,3EEh	Port P65 di	rection regist	er		•	•	_	•	•	172
			5,3FDh	P64 to P67	pull-up contr	ol register							174
			3,3A8h	Internal/ext	ernal clock se	elect bit of L	ART1 transm	nit/receive i	mode regis	ter			118

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART1 transmit/receive mode register.

Remark 2: It become I/O port when UART mode selected.

Pin name	P64	CTS1/RTS1/CTS0/CLKS1	Pin No.	34	(FP)	32	(GP)					
		Function and artises		•		S	etting registe	r			Damada	D
		Function selection	4,3EEh	5,3FDh	6,3B0h	5,3B0h	4,3B0h	4,3ACh	2,3ACh	3,3A8h	Remarks	Page
CLKS1	0	Serial I/O clock output	Х	Х	Х	1	1	1	Х	0	1	113
CTS0	ı	CTS input	0	Х	1	0	0	0	Х	Х	1	113
RTS1	0	RTS output	Х	Х	0	0	0	0	1	Х	1	113
CTS1	T	CTS input	0	Х	0	0	0	0	0	Х	1	113
P64	1	Port input (No pulled high)	0	0	Х	Х	Х	Х	Х	Х		167
P64	T	Port input (Pulled high)	0	1	Х	Х	Х	Х	Х	Х		167
P64	0	Port output	1	Х	Х	Х	Х	Х	Х	Х		167
			4,3EEh	Port P64 di	rection regist	er			•		•	172
			5,3FDh	P64 to P67	pull-up contr	ol register						174
			6,3B0h	Separate C	TS/RTS bit o	f UART tran	smit/receive	control regis	ster 2			121
			5,3B0h	CLK/CLKS	select bit 1 o	f UART tran	smit/receive	control regis	ster 2			121
			4,3B0h	CLK/CLKS	select bit 0 o	f UART tran	smit/receive	control regis	ster 2			121
			4,3ACh	CTS/RTS o	lisable bit of l	JART1 trans	mit/receive of	control regis	ter 0			119
			2,3ACh	CTS/RTS s	elect bit of U	ART1 transr	nit/receive co	ontrol registe	er O			119
			3,3A8h	Internal/ext	ernal clock se	elect bit of U	ART1 transm	nit/receive m	ode registe	r		118

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART1 transmit/receive mode register.

Pin name	P63/	TXD0	Pin No.	35	(FP)	33	(GP)								
		Function selection				S	etting registe	r				Remarks	Page		
		Function Selection	3,3EEh	4,3FDh								Remarks	raye		
TXD0	0	Serial I/O data output	Х	X 1,2									113		
P63	1	Port input (No pulled high)	0	0									167		
P63	1	Port input (Pulled high)	0	1									167		
P63	0	Port output	1	Х									167		
			3,3EEh	BEEh Port P63 direction register									172		
			4,3FDh	P60 to P63	· ·										

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART0 transmit/receive mode register.

Remark 2: Can be selected CMOS output or N channel open-drain output.

Pin name	P62	/RXD0	Pin No.	36	(FP)	34	(GP)						
		Function selection				S	etting register	r				Remarks	Page
		Function Selection	2,3EEh	4,3FDh								Remarks	rage
RXD0	1	Serial I/O data input	0	Х								1	113
P62	1	Port input (No pulled high)	0	0									167
P62	1	Port input (Pulled high)	0	1									167
P62	0	Port output	1	Х									167
			2,3EEh	BEEh Port P62 direction register									172
			4,3FDh	P60 to P63	pull-up contr	ol register							174

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART0 transmit/receive mode register.

Pin name	P61	/CLK0	Pin No.	37	(FP)	35 (GP)						
		Function selection		•		Se	etting register	r				Remarks	Page
		Function Selection	1,3EEh	4,3FDh	3,3A0h							Remarks	raye
CLK0	1	Serial I/O clock input	0	Х	1							1	113
CLK0	0	Serial I/O clock output	Х	Х	0							1, 2	113
P61	1	Port input (No pulled high)	0	0	Х								167
P61	1	Port input (Pulled high)	0	1	Х								167
P61	0	Port output	1	Х	Х								167
			1,3EEh Port P61 direction register									172	
			4,3FDh	P60 to P63	pull-up contr	ol register							174
			3,3A0h	Internal/ext	ernal clock se	elect bit of U	ART0 transm	it/receive r	node registe	r			118

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART0 transmit/receive mode register.

Remark 2: It become I/O port when UART mode selected.

Pin name	Den	/CTS0/RTS0	Pin No.	38	(FP)	36	(GP)						
FIII Hallie	1 00/	/C130/K130	FIII NO.	30	(1 F)	30	(GF)						
		Function selection				S	etting register	r				Remarks	Page
		Function Selection	0,3EEh	4,3FDh	4,3A4h	2,3A4h						Remarks	raye
RTS0	0	RTS output	Х	Х	0	1						1	113
CTS0	T	CTS input	0	Х	0	0						1	113
P60 I Port input (No pulled high) 0 0 X X										167			
P60	1	Port input (Pulled high)	0	1	Х	Х							167
P60	0	Port output	1	Х	Х	Х							167
	•	•	0,3EEh	Port P60 di	irection regist	er			•	•			172
4,3FDh P60 to P63 pull-up control register										174			
			4,3A4h	CTS/RTS	disable bit of l	JART0 trans	mit/receive c	ontrol regi	ster 0				119
			2,3A4h	CTS/RTS s	select bit of U	ART0 transr	nit/receive co	ntrol regis	ter 0				119

Remark 1: Set serial I/O enabled by serial I/O mode select bit of UART0 transmit/receive mode register.

Pin name	P57	/RDY/CLKOUT	Pin No.	39	(FP)	37	(GP)			
		Function selection		•		S	etting registe	r	Damarka	Dono
		Function selection	7,3EBh	3,3FDh	1,004h	0,004h	1,006h	0,006h	Remarks	Page
CLKOUT	0	CLKOUT output	Х	Х	0	0	Exce	pt 00		45
RDY	1	RDY input	Х	Х	Х	1	Х	Х	1	38
P57	1	Port input (No pulled high)	0	0	0	0	0	0		167
P57	1	Port input (Pulled high)	0	1	0	0	0	0		167
P57	0	Port output	1	Х	0	0	0	0		167
	•		7,3EBh	Port P57 di	rection regist	er			 •	172
			3,3FDh	P54 to P57	pull-up contr	ol register				174
			1,004h	Processor i	mode bit of p	ocessor mo	de register 0			29
			0,004h	Processor i	mode bit of p	ocessor mo	de register 0			29
			1,006h	Clock outpo	ut function se	lect bit of sy	stem clock co	ontrol register 0		44
			0,006h	Clock outpo	ut function se	lect bit of sy	stem clock co	ontrol register 0		44

Remark 1: When the user is using the RDY, the wait bit of relevant chip selects must be set to "0".

Pin name	P56/	/ALE	Pin No.	40	(FP)	38 ((GP)					
	•	Function selection		•		Se	etting registe	er			Remarks	Page
		i unction selection	6,3EBh	3,3FDh	1,004h	0,004h]	IXCIIIAINS	raye
ALE	0	ALE output	Х	Х	Х	1						36
P56	I	Port input (No pulled high)	0	0	0	0						167
P56	I	Port input (Pulled high)	0	1	0	0						167
P56	0	Port output	1	Х	0	0						167
	•	•	6,3EBh	Port P56 di	rection regist	er				•		172
3,3FDh P54 to P57 pull-up control register									174			
			1,004h	Processor i	mode bit of pi	rocessor mo	de register (0				29
			0,004h	Processor r	mode bit of pr	rocessor mo	de register (0				29

Pin name	P55/	/HOLD	Pin No.	41	(FP)	39 (GP)	1					
		Function selection		•		Se	etting registe	er				Remarks	Dogo
		Function selection	5,3EBh	3,3FDh	1,004h	0,004h						Remarks	Page
HOLD	I	HOLD input	Х	Х	Х	1							38
P55	ı	Port input (No pulled high)	0	0	0	0							167
P55	ı	Port input (Pulled high)	0	1	0	0							167
P55	0	Port output	1	Х	0	0							167
		•	5,3EBh	Port P55 di	rection regist	er		•	•	•	•	•	172
			3,3FDh	P54 to P57	pull-up contr	ol register							174
			1,004h	Processor	mode bit of p	rocessor mo	de register	0					29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0					29

Pin name	ame P54/HLDA Pin No. 42 (FP) 40 (GP)												
		Function selection		,		Se	etting registe	er				Remarks	Page
		Function selection	4,3EBh	3,3FDh	1,004h	0,004h						Remarks	raye
HLDA	0	HLDA output	Х	Х	Х	1							34
P54	1	Port input (No pulled high)	0	0	0	0							167
P54	1	Port input (Pulled high)	0	1	0	0							167
P54	0	Port output	1	Х	0	0							167
			4,3EBh	Port P54 di	rection regist	er					•		172
			3,3FDh	P54 to P57	pull-up contr	ol register							174
			1,004h	Processor	mode bit of p	rocessor mo	de register	0					29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0					29

Pin name	P53/	/BCLK	Pin No.	43	(FP)	41 (GP)]			
	•	Function selection				Se	tting registe	er		Remarks	Page
		Function Selection	3,3EBh	2,3FDh	7,004h	1,004h	0,004h			Remarks	raye
BCLK	0	BCLK output	Х	Х	0	Х	1				34
P53	ı	Port input (No pulled high)	0	0	Х	0	0				167
P53	ı	Port input (Pulled high)	0	1	Х	0	0				167
P53	0	Port output	1	Х	Х	0	0				167
		•	3,3EBh	Port P53 di	rection regist	er		•			172
			2,3FDh	P50 to P53	pull-up contr	ol register					174
			7,004h	BCLK outp	ut disable bit	of processo	r mode regi	ister 0			29
			1,004h	Processor r	mode bit of pr	rocessor mo	de register	0			29
			0,004h	Processor r	mode bit of pr	rocessor mo	de register	0			29

Pin name	P52/	/RD	Pin No.	44	(FP)	42 (GP)				
	•	Function selection		•		Se	etting register		I.	Remarks	Page
		Function Selection	2,3EBh	2,3FDh	1,004h	0,004h				Remarks	raye
RD	0	RD output	Х	Х	Х	1					34
P52	I	Port input (No pulled high)	0	0	0	0					167
P52	I	Port input (Pulled high)	0	1	0	0					167
P52	0	Port output	1	Х	0	0					167
	•		2,3EBh	Port P52 di	rection regist	er		•			172
			2,3FDh	P50 to P53	pull-up contr	ol register					174
			1,004h	Processor	mode bit of p	rocessor mo	de register 0				29
			0,004h	Processor	mode bit of p	rocessor mo	de register 0				29

Pin name	P51	/WRH/BHE	Pin No.	45	(FP)	43 (GP)			
		Forestine coloration		•		Se	etting registe	er	Demonto	D
		Function selection	1,3EBh	2,3FDh	2,004h	1,004h	0,004h		Remarks	Page
BHE	0	BHE output	Х	Х	0	Х	1			34
WRH	0	WRH output	Х	Х	1	Х	1			34
P51	T	Port input (No pulled high)	0	0	Х	0	0			167
P51	ı	Port input (Pulled high)	0	1	Х	0	0			167
P51	0	Port output	1	Х	Х	0	0			167
	•	•	1,3EBh	Port P51 di	rection regist	er			 •	172
			2,3FDh	P50 to P53	pull-up contr	ol register				174
			2,004h	R/W mode	select bit of p	processor m	ode register	. 0		29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0		29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0		29

Pin name	P50/	WRL/WR	Pin No.	46	(FP)	44 ((GP)						
		Function selection				Se	etting regist	er				Remarks	Page
		Function Selection	0,3EBh	2,3FDh	2,004h	1,004h	0,004h					Remarks	raye
WR	0	WR output	Х	Х	0	Х	1						34
WRL	0	WRL output	Х	Х	1	Х	1						34
P50	1	Port input (No pulled high)	0	0	Х	0	0						167
P50	ı	Port input (Pulled high)	0	1	Х	0	0						167
P50	0	Port output	1	Х	Х	0	0						167
			0,3EBh	Port P50 di	rection regist	er	•	•	•	•	•	•	172
			2,3FDh	P50 to P53	pull-up contr	ol register							174
			2,004h	R/W select	bit of process	sor mode re	gister 0						29
			1,004h	Processor r	mode bit of p	rocessor mo	de register	0					29
			0,004h	Processor r	mode bit of p	rocessor mo	de register	0					29

Pin name	P47	/CS3	Pin No.	47	(FP)	45 (GP)]			
		Forestina and action		•		Se	etting registe	ər		Damada	D
		Function selection	7,3EAh	1,3FDh	3,008h	1,004h	0,004h			Remarks	Page
CS3	0	Chip select output	Х	Х	1	Х	1				34
P47	ı	Port input (No pulled high)	0	0	X 0	0 X	0 1				167
P47	ı	Port input (Pulled high)	0	1 1	X 0	0 X	0 1				167
P47	0	Port output	1 1	X X	X 0	0 X	0 1				167
		•	7,3EAh	Port P47 di	rection regist	er			•	•	172
			1,3FDh	P44 to P47	pull-up conti	ol register					174
			3,008h	CS3 output	enable bit of	f chip select	control regi	ster			35
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0			29

Pin name	P46/	CS2	Pin No.	48	(FP)	46 (GP)]		
	•	Function selection				Se	tting registe	er	Remarks	Page
		Function selection	6,3EAh	1,3FDh	2,008h	1,004h	0,004h		Remarks	rage
CS2	0	Chip select output	Х	Х	1	Х	1			34
P46	ı	Port input (No pulled high)	0 0	0 0	X 0	0 X	0 1			167
P46	ı	Port input (Pulled high)	0	1 1	X 0	0 X	0 1			167
P46	0	Port output	1 1	X X	X 0	0 X	0 1			167
	•	•	6,3EAh	Port P46 di	rection regist	er			•	172
			1,3FDh	P44 to P47	pull-up contr	ol register				174
			2,008h	CS2 output	enable bit of	chip select	control regi	ister		35
			1,004h	Processor r	mode bit of pr	ocessor mo	de register	0		29
			0,004h	Processor r	mode bit of pr	ocessor mo	de register	0		29

Pin name	P45/	CS1	Pin No.	49	(FP)	47 ((GP)					
		Function selection				Se	etting regist	er		Do	marka.	Dogo
		Function Selection	5,3EAh	1,3FDh	1,008h	1,004h	0,004h			Re	marks	Page
CS1	0	Chip select output	Х	Х	1	Х	1					34
P45	ı	Port input (No pulled high)	0	0	X 0	0 X	0 1					167
P45	ı	Port input (Pulled high)	0	1 0	X 0	0 X	0 1					167
P45	0	Port output	1 1	X X	X 0	0 X	0 1					167
			5,3EAh	Port P45 di	rection regist	er	•	<u>'</u>	<u>'</u>			172
			1,3FDh	P44 to P47	pull-up contr	ol register						174
			1,008h	CS1 output	enable bit of	chip select	control reg	ister				35
			1,004h	Processor i	mode bit of pr	ocessor mo	de register	. 0				29
			0,004h	Processor i	mode bit of pr	ocessor mo	de register	. 0				29

Pin name	P44/	(CSO	Pin No.	50	(FP)	48 (GP)]			
		Function selection		•		Se	tting registe	er		Domorko	Dogo
		runction selection	4,3EAh	1,3FDh	0,008h	1,004h	0,004h			Remarks	Page
CS0	0	Chip select output	Х	Х	1	Х	1				34
P44	ı	Port input (No pulled high)	0 0	0 0	X 0	0 X	0 1				167
P44	ı	Port input (Pulled high)	0	1 0	X 0	0 X	0 1				167
P44	0	Port output	1 1	X X	X 0	0 X	0 1				167
	-	•	4,3EAh	Port P44 di	rection regist	er			•	•	172
			1,3FDh	P44 to P47	pull-up contr	ol register					174
			0,008h	CS0 output	enable bit of	chip select	control regi	ster			35
			1,004h	Processor r	mode bit of pr	ocessor mo	de register	0			29
			0,004h	Processor r	mode bit of pr	ocessor mo	de register	0			29

Pin name	P43	/A19	Pin No.	51	(FP)	49 (GP)					
						Se	etting registe	er				
		Function selection	3,3EAh	0,3FDh	6,004h	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A19	0	Address output	Х	Х	0	Exce	pt 11	Х	1			34
P43	ı	Port input (No pulled high)	0 0 0	0 0 0	X 0 1		X 1 ept 11	0 0 X	0 1 1			167
P43	ı	Port input (Pulled high)	0 0 0	1 1 1	X 0 1	X 1 Exce	X 1 ept 11	0 0 X	0 1 1			167
P43	0	Port output	1 1 1	X X X	X 0 1	X 1 Exce	X 1 ept 11	0 0 X	0 1 1			167
			3,3EAh	Port P43 di	rection regist	er		•	•	•	•	172
			0,3FDh	P40 to P43	pull-up conti	ol register						174
			6,004h	Port P40 to	P43 function	select bit o	f processor	mode regis	ter 0			29
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	. 0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	. 0			29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29

Pin name	P42	/A18	Pin No.	52	(FP)	50 (GP)					
		Forestion and action		•		Se	tting registe	er			Damada	D
		Function selection	2,3EAh	0,3FDh	6,004h	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A18	0	Address output	Х	Х	0	Exce	pt 11	Х	1			34
P42	ı	Port input (No pulled high)	0 0 0	0 0 0	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
P42	ı	Port input (Pulled high)	0 0 0	1 1 1	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
	0	Port output	1 1 1	X X X	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
		•	2,3EAh	Port P42 di	rection regist	er				•	•	172
			0,3FDh	P40 to P43	pull-up contr	ol register						174
			6,004h	Port P40 to	P43 function	select bit o	processor	mode regis	ter 0			29
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	. 0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	. 0			29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29

Pin name	P41/	/A17	Pin No.	53	(FP)	51 (GP)					
		Formation and adding				Se	tting registe	er			D	D
		Function selection	1,3EAh	0,3FDh	6,004h	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A17	0	Address output	Х	Х	0	Exce	pt 11	Х	1			34
P41	I Port input (No pulled high) I Port input (Pulled high)		0 0 0	0 0 0	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
P41	ı	Port input (Pulled high)	0 0 0	1 1 1	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
P41	0	Port output	1 1 1	X X X	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
			1,3EAh	Port P41 di	rection regist	er					•	172
			0,3FDh	P40 to P43	pull-up conti	ol register						174
			6,004h	Port P40 to	P43 function	select bit o	fprocessor	mode regis	ter 0			29
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			1,004h	Processor r	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor r	node bit of p	rocessor mo	de register	0				29

Pin name	P40/	/A16	Pin No.	54	(FP)	52 (GP)					
		Formation and action				Se	tting registe	er			Damada	D
		Function selection	0,3EAh	0,3FDh	6,004h	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A16	0	Address output	Х	Х	0	Exce	pt 11	Х	1			34
P40	ı	Port input (No pulled high)	0 0 0	0 0 0	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
P40	ı	Port input (Pulled high)	0 0 0	1 1 1	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
P40	0	Port output	1 1 1	X X X	X 0 1	X 1 Exce	X 1 pt 11	0 0 X	0 1 1			167
		•	0,3EAh	Port P40 di	rection regist	er				•		172
			0,3FDh	P40 to P43	pull-up contr	ol register						174
			6,004h	Port P40 to	P43 function	select bit o	processor	mode regis	ter 0			29
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register	0			29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29

Pin name	P37/	/A15	Pin No.	55	(FP)	53 (GP)			
		Function selection				Se	etting registe	er	Remarks	Dogo
		Function Selection	7,3E7h	7,3FCh	5,004h	4,004h	1,004h	0,004h	Remarks	Page
A15	0	Address output	Х	Х	Exce	pt 11	Х	1		34
P37	ı	Port input (No pulled high)	0	0	X 1	X 1	0 0	0		167
P37	ı	Port input (Pulled high)	0	1 1	0 1	0	0	0		167
P37	0	Port output	1 1	X X	0	0	0	0		167
		•	7,3E7h	Port P37 di	rection regist	er				172
			7,3FCh	P34 to P37	pull-up contr	ol register				174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0		29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0		29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0		29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0		29

Pin name	P36	/A14	Pin No.	56	(FP)	54 (GP)				
		Function selection				Se	etting registe	er		Domorko	Dogo
		Function selection	6,3E7h	7,3FCh	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A14	0	Address output	Х	Х	Exce	pt 11	Х	1			34
P36	ı	Port input (No pulled high)	0	0	X 1	X 1	0	0			167
P36	ı	Port input (Pulled high)	0	1	0 1	0 1	0	0			167
P36	0	Port output	1 1	X X	0	0	0	0			167
			6,3E7h	Port P36 di	rection regist	er					172
			7,3FCh	P34 to P37	pull-up contr	ol register					174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register 0			29
			4,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register 0			29
			1,004h	Processor	mode bit of pi	rocessor mo	de register	0			29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0			29

Pin name	P35	/A13	Pin No.	57	(FP)	55 ((GP)				
		Function selection				Se	etting registe	er		Domorko	Dono
		Function selection	5,3E7h	7,3FCh	5,004h	4,004h	1,004h	0,004h		- Remarks	Page
A13	0	Address output	Х	Х	Exce	pt 11	Х	1			34
P35	ı	Port input (No pulled high)	0	0	X 1	X 1	0	0			167
P35	ı	Port input (Pulled high)	0	1 1	0 1	0	0	0			167
P35	0	Port output	1 1	X X	0	0	0	0			167
	•	•	5,3E7h	Port P35 di	rection regist	er			•		172
			7,3FCh	P34 to P37	pull-up contr	ol register					174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0			29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0			29

Pin name	P34/	/A12	Pin No.	58	(FP)	56 (GP)				
		Function coloction		•		Se	tting registe	r		Demorte	Dogo
		Function selection	4,3E7h	7,3FCh	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A12	0	Address output	Х	Х	Exce	pt 11	Х	1			34
P34	ı	Port input (No pulled high)	0	0	X 1	X 1	0	0			167
P34	ı	Port input (Pulled high)	0	1	0 1	0 1	0	0			167
P34	0	Port output	1	X X	0	0	0	0			167
		•	4,3E7h	Port P34 di	rection regist	er		<u>'</u>		•	172
			7,3FCh	P34 to P37	pull-up contr	ol register					174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register 0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register 0			29
1,004h Processor mode bit of processor mode register (29
0,004h Processor mode bit of processor mode register 0											29

Pin name	P33/	/A11	Pin No.	59	(FP)	57 (GP)			
		Function coloration				Se	tting registe	er	Domorko	Dogo
		Function selection	3,3E7h	6,3FCh	5,004h	4,004h	1,004h	0,004h	Remarks	Page
A11	0	Address output	Х	Х	Exce	pt 11	Х	1		34
P33	ı	Port input (No pulled high)	0	0	X 1	X 1	0	0		167
P33	ı	Port input (Pulled high)	0	1 1	0 1	0 1	0 0	0		167
P33	0	Port output	1 1	X X	0 0	0 0	0 0	0 1		167
		•	3,3E7h	Port P33 di	rection regist	er		'	•	172
			6,3FCh	P30 to P33	pull-up contr	ol register				174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register 0		29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register 0		29
			1,004h	Processor i	mode bit of pr	rocessor mo	de register	0		29
				29						

Pin name	P32	/A10	Pin No.	60	(FP)	58 (GP)			
		Function selection				Se	tting registe	r	Domorko	Dono
		Function Selection	2,3E7h	6,3FCh	5,004h	4,004h	1,004h	0,004h	Remarks	Page
A10	0	Address output	Х	Х	Exce	pt 11	Х	1		34
P32	1	Port input (No pulled high)	0	0	X 1	X 1	0	0		167
P32	1	Port input (Pulled high)	0	1 1	0 1	0 1	0	0		167
P32	0	Port output	1 1	X X	0	0	0	0		167
	•	•	2,3E7h	Port P32 di	rection regist	er		•	 •	172
			6,3FCh	P30 to P33	pull-up contr	ol register				174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0		29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0		29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0		29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0		29

Pin name	P31	/A9	Pin No.	61	(FP)	59 (GP)				
		Function selection		•		Se	tting registe	er		Remarks	Page
		Function selection	1,3E7h	6,3FCh	5,004h	4,004h	1,004h	0,004h		Remarks	Page
A9	0	Address output	Х	Х	Exce	pt 11	Х	1			34
P31	I Port input (No pulled high) I Port input (Pulled high)		0	0	X 1	X 1	0 0	0			167
P31	ı	Port input (Pulled high)	0	1 1	X 1	X 1	0 0	0			167
P31	0	Port output	1 1	X X	X 1	X 1	0 0	0			167
			1,3E7h	Port P31 di	rection regist	er			•	•	172
			6,3FCh	P30 to P33	pull-up contr	ol register					174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register 0			29
			1,004h	Processor	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0			29

Pin name	P30/	'A8(/-/D7)	Pin No.	63	(FP)	61 (GP)				
		Function coloration		•		Se	tting registe	er		Damada	D
		Function selection	0,3E7h	6,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE	Remarks	Page
A8/D7	I/O	Multiplexed bus	X	X X	0 1	1 0	X X	1 1	L L		34
A8/-	0	Multiplexed bus	X	X X	X 1	1 X	X X	1 1	H H		34
A8	0	Address output	Х	Х	0	0	Х	1	Х		34
P30	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х		167
P30	I	Port input (Pulled high)	0	1	Х	Х	0	0	Х		167
P30	0	Port output	1	Х	Х	Х	0	0	Х		167
			0,3E7h	Port P30 di	rection regist	er		•		'	172
			6,3FCh	P30 to P33	pull-up contr	ol register					174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0		29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0		29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			BYTE	BYTE pin							32

Pin name	P27/	'A7(/D7/D6)	Pin No.	65	(FP)	63 (GP)				
	•	Function selection				Se	tting registe	er		Domorko	Dogo
		Function selection	7,3E6h	5,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE	- Remarks	Page
A7/D6	I/O	Multiplexed bus	X	X X	0 1	1 0	X X	1 1	L L		34
A7/D7	I/O	Multiplexed bus	X	X X	X 1	1 X	X X	1 1	H H		34
A7	0	Address output	Х	Х	0	0	Х	1	Х		34
P27	I	Port input (No pulled high)	0	0	Х	Х	0	0	Х		167
P27	I	Port input (Pulled high)	0	1	Х	Х	0	0	Х		167
P27	0	Port output	1	Х	Х	Х	0	0	Х		167
		•	7,3E6h	Port P27 di	rection regist	er		!			172
			5,3FCh	P24 to P27	pull-up conti	ol register					174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0		29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0		29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			BYTE	BYTE pin							32

Pin name	P26/	'A6(/D6/D5)	Pin No.	66	(FP)	64 (GP)						
	•	Function selection				Se	tting registe	er				Remarks	Dogo
		Function Selection	6,3E6h	5,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE			Remarks	Page
A6/D5	I/O	Multiplexed bus	X	X X	0 1	1 0	X X	1 1	L L				34
A6/D6	I/O	Multiplexed bus	X	X X	X 1	1 X	X X	1 1	H H				34
A6	0	Address output	Х	Х	0	0	Х	1	Х				34
P26	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х				167
P26	I	Port input (Pulled high)	0	1	Х	Х	0	0	Х				167
P26	0	Port output	1	Х	Х	Х	0	0	Х				167
	•	•	6,3E6h	Port P26 di	rection regist	er				•	•	•	172
			5,3FCh	P24 to P27	pull-up contr	ol register							174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0				29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0				29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0					29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0					29
BYTE BYTE pin													32

Pin name	P25/	'A5(/D5/D4)	Pin No.	67	(FP)	65 ((GP)				
		Function coloration				Se	etting registe	er		Barrard	. D
		Function selection	5,3E6h	5,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE	Remark	s Page
A5/D4	I/O	Multiplexed bus	X	X X	0	1 0	X X	1 1	L L		34
A5/D5	I/O	Multiplexed bus	X X	X X	X 1	1 X	X X	1 1	H H		34
A5	0	Address output	Х	Х	0	0	Х	1	Х		34
P25	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х		167
P25	ı	Port input (Pulled high)	0	1	Х	Х	0	0	Х		167
P25	0	Port output	1	Х	Х	Х	0	0	Х		167
			5,3E6h	Port P25 di	rection regist	er	•	•	•		172
			5,3FCh	P24 to P27	pull-up contr	ol register					174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0		29
			4,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0		29
			1,004h	Processor	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0			29
			BYTE	BYTE pin							32

Pin name	P24/	'A4(/D4/D3)	Pin No.	68	(FP)	66 ((GP)					
		Function selection		•		Se	etting registe	er			Remarks	Dogo
		Function selection	4,3E6h	5,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
A4/D3	I/O	Multiplexed bus	X X	X X	0 1	1 0	X X	1 1	L L			34
A4/D4	I/O	Multiplexed bus	X X	X X	X 1	1 X	X X	1 1	H H			34
A4	0	Address output	Х	Х	0	0	Х	1	Х			34
P24	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х			167
P24	I	Port input (Pulled high)	0	1	Х	Х	0	0	Х			167
P24	0	Port output	1	Х	Х	Х	0	0	Х			167
		•	4,3E6h	Port P24 di	rection regist	er						172
			5,3FCh	P24 to P27	pull-up contr	ol register						174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0			29
4,004h Multiplexed bus space select bit of processor mode register 0									29			
1,004h Processor mode bit of processor mode register 0									29			
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P23/	'A3(/D3/D2)	Pin No.	69	(FP)	67 (GP)					
		Function selection		•		Se	etting registe	er			Remarks	Page
		Function selection	3,3E6h	4,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
A3/D2	I/O	Multiplexed bus	X	X X	0 1	1 0	X X	1 1	L L			34
A3/D3	I/O	Multiplexed bus	X X	X X	X 1	1 X	X X	1 1	H H			34
A3	0	Address output	Х	Х	0	0	Х	1	Х			34
P23	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х			167
P23	ı	Port input (Pulled high)	0	1	Х	Х	0	0	Х			167
P23	0	Port output	1	Х	Х	Х	0	0	Х			167
	-	•	3,3E6h	Port P23 di	rection regist	er				•	•	172
			4,3FCh	P20 to P23	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P22/	'A2(/D2/D1)	Pin No.	70	(FP)	68 ((GP)				
		Formation and action		•		Se	etting registe	er		Damada	D
		Function selection	2,3E6h	4,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE	Remarks	Page
A2/D1	I/O	Multiplexed bus	X	X X	0	1 0	X X	1 1	L L		34
A2/D2	I/O	Multiplexed bus	X	X X	X 1	1 X	X X	1 1	H H		34
A2	0	Address output	Х	Х	0	0	Х	1	Х		34
P22	1	Port input (No pulled high)	0	0	Х	Х	0	0	Х		167
P22	1	Port input (Pulled high)	0	1	Х	Х	0	0	Х		167
P22	0	Port output	1	Х	Х	Х	0	0	Х		167
			2,3E6h	Port P22 di	rection regist	er				 '	172
			4,3FCh	P20 to P23	pull-up contr	ol register					174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0		29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0		29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0			29
			BYTE	BYTE pin							32

Pin name	P21/	'A1(/D1/D0)	Pin No.	71	(FP)	69 (GP)					
		Function selection				Se	tting registe	er			Remarks	Dono
		Function selection	1,3E6h	4,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
A1/D0	I/O	Multiplexed bus	X X	X X	0 1	1 0	X X	1 1	L L			34
A1/D1	1/0	Multiplexed bus	X X	X X	X 1	1 X	X X	1 1	H H			34
A1	0	Address output	Х	Х	0	0	Х	1	Х			34
P21	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х			167
P21	1	Port input (Pulled high)	0	1	Х	Х	0	0	Х			167
P21	0	Port output	1	Х	Х	Х	0	0	Х			167
			1,3E6h	Port P21 di	rection regist	er					•	172
			4,3FCh	P20 to P23	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register	0			29
			1,004h	Processor r	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor r	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P20/	A0(/D0/-)	Pin No.	72	(FP)	70	GP)					
	•	Function selection				Se	tting registe	er			Domos	lea Dono
		Function selection	0,3E6h	4,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remar	ks Page
A0/-	I/O	Multiplexed bus	X	X X	0 1	1 0	X X	1 1	L L			34
A0/D0	I/O	Multiplexed bus	X	X X	X 1	1 X	X X	1 1	H H			34
A0	0	Address output	Х	Х	0	0	Х	1	Х			34
P20	ı	Port input (No pulled high)	0	0	Х	Х	0	0	Х			167
P20	ı	Port input (Pulled high)	0	1	Х	Х	0	0	Х			167
P20	0	Port output	1	Х	Х	Х	0	0	Х			167
	•	•	0,3E6h	Port P20 di	rection regist	er			<u> </u>			172
			4,3FCh	P20 to P23	pull-up contr	rol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor me	ode register	0			29
			4,004h Multiplexed bus space select bit of processor mode register 0								29	
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P17/	/D15/INT5	Pin No.	73	(FP)	71 ((GP)					
		Function selection		•		Se	etting registe	er			Remarks	Page
		Function Selection	7,3E3h	3,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	raye
D15	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
INT5	ı	Interrupt input	0	X X	X X	X	0 X	0 1	X H			65
P17	1	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H			167
P17	I	Port input (Pulled high)	0	1 1	X X	X X	0 X	0 1	X H			167
P17	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
	•		7,3E3h	Port P17 di	rection regist	er			•	•		172
			3,3FCh	P14 to P17	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			1,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P16/	/D14/INT4	Pin No.	74	(FP)	72 ((GP)					
		Function selection				Se	etting registe	er				D
		Function selection	6,3E3h	3,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE	T RE	marks	Page
D14	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
ĪNT4	1	Interrupt input	0	X X	X X	X X	0 X	0 1	X H			65
P16	ı	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H			167
P16	ı	Port input (Pulled high)	0	1 1	X X	X X	0 X	0 1	X H			167
P16	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
	•		6,3E3h	Port P16 di	rection regist	er						172
			3,3FCh	P14 to P17	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P15/	D13/INT3	Pin No.	75	(FP)	73 (GP)					
	•	Function coloation				Se	etting registe	er			Domorko	Dogo
		Function selection	5,3E3h	3,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D13	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
ĪNT3	ı	Interrupt input	0	X X	X X	X X	0 X	0 1	X H			65
P15	ı	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H			167
P15	ı	Port input (Pulled high)	0	1	X X	X X	0 X	0 1	X H			167
P15	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
			5,3E3h	Port P15 di	rection regist	er					•	172
			3,3FCh	P14 to P17	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h Multiplexed bus space select bit of processor mode register 0									29
			1,004h Processor mode bit of processor mode register 0									29
		0,004h Processor mode bit of processor mode register 0										29
			BYTE	BYTE pin								32

Pin name	P14	/D12	Pin No.	76	(FP)	74 ((GP)					
	•	Function selection		•		Se	etting registe	er			Domosko	Dono
		Function selection	4,3E3h	3,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D12	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
P14	ı	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H			167
P14	ı	Port input (Pulled high)	0	1	X X	X X	0 X	0 1	X H			167
P14	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
			4,3E3h	Port P14 di	irection regist	er					'	172
			3,3FCh	P14 to P17	pull-up contr	ol register						174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h									
			1,004h Processor mode bit of processor mode register 0								29	
			0,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P13/	D11	Pin No.	77	(FP)	75 (GP)					
		Function coloration				Se	tting registe	er			Damada	D
		Function selection	3,3E3h	2,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D11	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
P13	ı	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H			167
P13	ı	Port input (Pulled high)	0	1	X X	X X	0 X	0 1	X H			167
P13	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
			3,3E3h	Port P13 di	rection regist	er				•	•	172
			2,3FCh	P10 to P13	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h Multiplexed bus space select bit of processor mode register 0								29	
			1,004h Processor mode bit of processor mode register 0								29	
0,004h Processor mode bit of processor mode register 0										29		
			BYTE	BYTE pin								32

Pin name	P12	/D10	Pin No.	78	(FP)	76 ((GP)						
		Forestine colonice				Se	etting registe	er				Damada	D
		Function selection	2,3E3h	2,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE			Remarks	Page
D10	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L				34
P12	ı	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H				167
P12	ı	Port input (Pulled high)	0	1	X X	X X	0 X	0 1	X H				167
P12	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H				167
		!	2,3E3h	Port P12 di	rection regist	er		!			'		172
			2,3FCh	P10 to P13	pull-up contr	ol register							174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0				29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0				29
			1,004h Processor mode bit of processor mode register 0										29
			0,004h Processor mode bit of processor mode register 0										29
			BYTE BYTE pin										32

Pin name	P11	/D9	Pin No.	79	(FP)	77 (GP)					
	•	Function selection		•		Se	etting registe	er			Remarks	Page
		Function Selection	1,3E3h	2,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	raye
D9	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
P11	ı	Port input (No pulled high)	0	0	X X	X	0 X	0 1	X H			167
P11	ı	Port input (Pulled high)	0	1 1	X X	X X	0 X	0 1	X H			167
P11	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
		•	1,3E3h	Port P11 di	rection regist	er		•			•	172
			2,3FCh	P10 to P13	pull-up contr	ol register						174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0			29
			1,004h Processor mode bit of processor mode register 0									29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P10	/D8	Pin No.	80	(FP)	78 (GP)					
		Function coloration		!		Se	etting registe	er			Damada	D
		Function selection	0,3E3h	2,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D8	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	L			34
P10	ı	Port input (No pulled high)	0	0	X X	X X	0 X	0 1	X H			167
P10	ı	Port input (Pulled high)	0	1 1	X X	X X	0 X	0 1	X H			167
P10	0	Port output	1 1	X X	X X	X X	0 X	0 1	X H			167
			0,3E3h	Port P10 di	rection regist	er				•		172
			2,3FCh	P10 to P13	pull-up contr	ol register						174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0			29
4,004h Multiplexed bus space select bit of processor mode register 0										29		
			1,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P07/	/D7	Pin No.	81	(FP)	79 (GP)					
		Formation and action		•		Se	tting registe	er			Damada	D
		Function selection	7,3E2h	1,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D7	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P07	1	Port input (No pulled high)	0	0	X 1	X 1	X 0	0 1	X H			167
P07	ı	Port input (Pulled high)	0	1 1	X 1	X 1	0 0	0 1	X H			167
P07	0	Port output	1 1	X X	X 1	X 1	0 0	0 1	X H			167
		•	7,3E2h	Port P07 di	rection regist	er						172
			1,3FCh	P04 to P07	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h Multiplexed bus space select bit of processor mode register 0									29
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
0,004h Processor mode bit of processor mode register 0												29
			BYTE	BYTE pin								32

Pin name	P06/	/D6	Pin No.	82	(FP)	80 (GP)					
	•	Function selection				Se	etting registe	er			Remarks	Dogo
		Function selection	6,3E2h	1,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D6	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P06	I	Port input (No pulled high)	0	0	X 1	X 1	0 0	0 1	X H			167
P06	I	Port input (Pulled high)	0	1	X 1	X 1	0 0	0 1	X H			167
P06	0	Port output	1 1	X X	X 1	X 1	0 0	0 1	X H			167
		•	6,3E2h	Port P06 di	rection regist	er			•	 •	•	172
			1,3FCh	P04 to P07	pull-up contr	ol register						174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	. 0			29
			4,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	. 0			29
			1,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P05	/D5	Pin No.	83	(FP)	81 (GP)						
		Formation coloration				Se	etting registe	er				D	D
		Function selection	5,3E2h	1,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE			Remarks	Page
D5	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х				34
P05	ı	Port input (No pulled high)	0	0	X 1	X 1	0 0	0 1	X H				167
P05	ı	Port input (Pulled high)	0	1	X 1	X 1	0 0	0 1	X H				167
P05	0	Port output	1 1	X X	X 1	X 1	0 0	0 1	X H				167
			5,3E2h	Port P05 di	rection regist	er							172
			1,3FCh	P04 to P07	pull-up contr	ol register							174
			5,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0				29
			4,004h	Multiplexed	l bus space s	elect bit of p	rocessor m	ode register	0				29
			1,004h Processor mode bit of processor mode register 0									29	
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0					29
			BYTE	BYTE pin									32

Pin name	P04/	'D4	Pin No.	84	(FP)	82 (GP)					
	'	Function collection		•		Se	etting registe	er			Rama	lea Dage
		Function selection	4,3E2h	1,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remai	ks Page
D4	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P04	1	Port input (No pulled high)	0	0	X 1	X 1	0 0	0 1	X H			167
P04	ı	Port input (Pulled high)	0	1	X 1	X 1	0 0	0 1	X H			167
P04	0	Port output	1 1	X X	X 1	X 1	0 0	0 1	X H			167
		•	4,3E2h	Port P04 di	rection regist	er					•	172
			1,3FCh	P04 to P07	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
4,004h Multiplexed bus space select bit of processor mode register 0										29		
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P03/	D3	Pin No.	85	(FP)	83 (GP)					
	•	Function selection				Se	etting registe	er			Domorko	Page
		Function selection	3,3E2h	0,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D3	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P03	I	Port input (No pulled high)	0	0	X 1	X 1	0 0	0 1	X H			167
P03	ı	Port input (Pulled high)	0	1	X 1	X 1	0 0	0 1	X H			167
P03	0	Port output	1 1	X X	X 1	X 1	0	0 1	X H			167
			3,3E2h	Port P03 di	rection regist	er		•	'			172
			0,3FCh	P00 to P03	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
	1,004h Processor mode bit of processor mode register 0										29	
0,004h Processor mode bit of processor mode register 0										29		
			BYTE	BYTE pin								32

Pin name	P02/	D2	Pin No.	86	(FP)	84 (GP)					
		Formation and assign		•		Se	tting registe	er			Damada	D
		Function selection	2,3E2h	0,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D2	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P02	ı	Port input (No pulled high)	0	0	X 1	X 1	0	0 1	X H			167
P02	ı	Port input (Pulled high)	0	1	X 1	X 1	0 0	0 1	X H			167
P02	0	Port output	1 1	X X	X 1	X 1	0 0	0 1	X H			167
			2,3E2h	Port P02 di	rection regist	er						172
			0,3FCh	P00 to P03	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
4,004h Multiplexed bus space select bit of processor mode register 0										29		
			1,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			0,004h	Processor i	mode bit of p	rocessor mo	de register	0				29
			BYTE	BYTE pin								32

Pin name	P01	/D1	Pin No.	87	(FP)	85 (GP)					
		Function selection				Se	tting registe	er			Domosko	Dono
		Function selection	1,3E2h	0,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D1	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P01	ı	Port input (No pulled high)	0	0	X 1	X 1	0 0	0 1	X H			167
P01	ı	Port input (Pulled high)	0	1	X 1	X 1	0	0 1	X H			167
P01	0	Port output	1 1	X X	X 1	X 1	0	0 1	X H			167
		!	1,3E2h	Port P01 di	rection regist	er		!				172
			0,3FCh	P00 to P03	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	0			29
			1,004h Processor mode bit of processor mode register 0									29
0,004h Processor mode bit of processor mode register 0											29	
			BYTE	BYTE pin								32

Pin name	P00	/D0	Pin No.	88	(FP)	86 (GP)					
		Function selection				Se	etting registe	er			Remarks	Dogo
		Function selection	0,3E2h	0,3FCh	5,004h	4,004h	1,004h	0,004h	BYTE		Remarks	Page
D0	I/O	Data bus	Х	Х	Exce	pt 11	Х	1	Х			34
P00	ı	Port input (No pulled high)	0	0	X 1	X 1	0 0	0 1	X H			167
P00	ı	Port input (Pulled high)	0	1	X 1	X 1	0 0	0 1	X H			167
P00	0	Port output	1 1	X X	X 1	X 1	0 0	0 1	X H			167
		•	0,3E2h	Port P00 di	rection regist	er			•	•		172
			0,3FCh	P00 to P03	pull-up contr	ol register						174
			5,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	. 0			29
			4,004h	Multiplexed	bus space s	elect bit of p	rocessor m	ode register	. 0			29
	1,004h Processor mode bit of processor mode register 0										29	
0,004h Processor mode bit of processor mode regis												29
			BYTE	BYTE pin								32

Pin name	P10	7/AN7/KI3	Pin No.	89	(FP)	87 (0	GP)						
		Function selection				Se	tting regist	er				Remarks	Page
		Function Selection	7,3F6h	5,3FEh								Remarks	raye
KI3	1	Key input	0	Х									67
AN7	Т	A-D input	0	0									153
P107	ı	Port input (No pulled high)	0	0									167
P107	ı	Port input (Pulled high)	0	1									167
P107	0	Port output	1	Х									167
			7,3F6h	Port P107 direction register									172
			5,3FEh	P104 to P1	07 pull-up co	ntrol register							174

Pin name	P10	6/AN6/ K I2	Pin No.	90	(FP)	88 (GP)						
		Function selection		•		Se	etting registe	er				Remarks	Page
		Function selection	6,3F6h	5,3FEh								Remarks	raye
KI2	1	Key input	0	Х									67
AN6	1	A-D input	0	0									153
P106	Ι	Port input (No pulled high)	0	0									167
P106	1	Port input (Pulled high)	0	1									167
P106	0	Port output	1	Х									167
			6,3F6h	Port P106 direction register									172
			5,3FEh	P104 to P1	07 pull-up co	ntrol registe	r						174

Pin name	P10	5/AN5/KI1	Pin No.	91	(FP)	89 (G	SP)						
Function selection			Setting register									Dogo	
		Function selection	5,3F6h	5,3FEh								Remarks	Page
KI1	I	Key input	0	Х									67
AN5	I	A-D input	0	0									153
P105	I	Port input (No pulled high)	0	0									167
P105	-1	Port input (Pulled high)	0	1									167
P105	0	Port output	1	Х									167
			5,3F6h	Port P105	direction regis	ster		1	•		•	•	172
			5,3FEh	P104 to P1	07 pull-up co	ontrol register							174

Pin name	P10	4/AN4/KI0	Pin No.	92	(FP)	90 ((GP)						
	Function selection			Setting register									Dogo
		Function selection	4,3F6h	5,3FEh								Remarks	Page
KI0	1	Key input	0	Х									67
AN4	I	A-D input	0	0									153
P104	I	Port input (No pulled high)	0	0									167
P104	I	Port input (Pulled high)	0	1									167
P104	0	Port output	1	Х									167
			4,3F6h	Port P104	direction regis	ster							172
			5,3FEh	5,3FEh P104 to P107 pull-up control register								174	

Pin name	P10:	3/AN3	Pin No.	93	(FP)	91 (GP)						
	Function selection			•		Se	tting registe	r				Remarks	Page
		Fullction Selection	3,3F6h	4,3FEh								Remarks	raye
AN3	1	A-D input	0	0									153
P103	1	Port input (No pulled high)	0	0									167
P103	1	Port input (Pulled high)	0	1									167
P103	0	Port output	1	Х									167
			3,3F6h	Port P103	Port P103 direction register						•	172	
	4,3FEh P100 to P103 pull-up control register								174				

Pin name	P10	2/AN2	Pin No.	94	(FP)	92 ((GP)					
	Function selection			Setting register								
		Function Selection	2,3F6h	4,3FEh							Remarks	Page
AN2	ı	A-D input	0	0								153
P102	ı	Port input (No pulled high)	0	0								167
P102	ı	Port input (Pulled high)	0	1								167
P102	0	Port output	1	Х								167
			2,3F6h	Port P102 direction register						172		
			4,3FEh	4,3FEh P100 to P103 pull-up control register								174

Pin name	P10	1/AN1	Pin No.	95	(FP)	93 ((GP)						
Function selection			Setting register									Page	
		Function Selection	1,3F6h	4,3FEh								Remarks	rage
AN1	I	A-D input	0	0									153
P101	I	Port input (No pulled high)	0	0									167
P101	1	Port input (Pulled high)	0	1									167
P101	0	Port output	1	Х									167
	•	•	1,3F6h	Port P101 direction register						172			
			4,3FEh P100 to P103 pull-up control register								174		

Pin name	P100	0/AN0	Pin No.	97	(FP)	95 ((GP)						
Function selection			Setting register										
		Function selection	0,3F6h	4,3FEh								Remarks	Page
AN0	ı	A-D input	0	0									153
P100	ı	Port input (No pulled high)	0	0									167
P100	ı	Port input (Pulled high)	0	1									167
P100	0	Port output	1	Х									167
			0,3F6h	F6h Port P100 direction register							•	172	
			4,3FEh P100 to P103 pull-up control register								174		

Pin name	P97/	ADTRG/SIN4	Pin No.	100) (FP)	98 (GP)						
		Function selection		Setting register									Page
		runction selection	7,3F3h	3,3FEh	5,3D6h	3,366h						Remarks	Page
ADTRG	I	A-D trigger input	0	0	1	0							153
SIN4	I	Serial I/O data input	0	0	Х	1							149
P97	I	Port input (No pulled high)	0	0	Х	0							167
P97	I	Port input (Pulled high)	0	1	Х	0							167
P97	0	Port output	1	Х	Х	0							167
	•	•	7,3F3h	Port P97 di	rection registe	er						•	172
			3,3FEh	P94 to P97	pull-up contr	ol register							174
			5,3D6h	Trigger sele	ect bit of A-D	control regi	ster 0						155
	3,366h SI/O4 port select bit of SI/O4 control register							150					

Appendix 4 A practical example of connecting to the reset IC

M62015 and M62016 are reset ICs compatible with the M16C's backup mode. Here follow these ICs' overview and characteristics together with an example of connecting to the M16C when Vcc = 3 V.

Overview of the reset ICs

Either M62015 or M62016 detects the rising edge of the power, the falling edge, and abnormal voltage of the power of the 3-V family of microcomputer systems. It is an optimal semiconductor integrated circuit to reset or release the microcomputer system.

Either M62015 or M61016 carries out 2-step power voltage detection, and is provided with two output terminals (the forced reset signal output RESET and the interrupt handling signal output INT). Either M62015 or M62016 embeds the BiCMOS process and the low power consumption circuit, and outputs optimal signals from respective output terminals with low power consumption especially in dealing with a system that requires its RAM backup.

Characteristics of the reset ICs

* BiCMOS process low-consumption circuit configuration

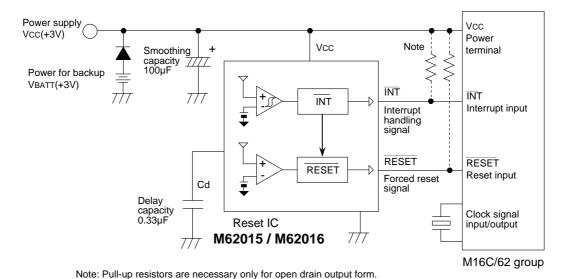
Circuit current $Icc = 3 \mu A$ (standard value normal mode Vcc = 3.0 V)

Icc = 3 μA (standard value backup mode Vcc = 2.5 V)

* Two-step power voltage detection

Normal power detection Vs = 2.7 V (standard value)

Power detection for backup VBATT = 2.0 V (standard value)


* Two outputs

Forced reset signal output RESET Interrupt handling signal output INT

* Output form

CMOS output : M62015 Open drain output : M62016

A practical example of connection

Revision History

Version		Contents for change		Revision date							
REV.C	Page 9 CNVss pin functi	on Line 1		99.11.2							
	Page 9 BYTE pin functio	n Line 1									
	Page 11 Figure 1.4.1 Add Note 3										
		7.1 to Figure 1.7.3 cations in the SFR area where nothing is allocations access these areas for read or write. "	ated are reserved								
	Page 45 Table 1.13.2 Bh	HE Status									
	Page 46 Table 1.13.3 BHE Status										
	Page 63 Interrupt Line 6										
	Page 68 Address Match	Interrupt Line 6									
	Page 118, 124, 131 UARTi Transmit/receive Mode Register Bit 3 (Internal/external Clock Select Bit) Function										
	Page 147 Line 5 Bit 1 of the UART2 special mode register 2 (address <u>036716</u>)>Bit 1 of the UART2 special mode register 2 (address <u>037616</u>)										
	Page 176 Table 1.23.2 and Figure 1.23.10 BCLK pin connection										
	Page 235 Flash memory Version Table 1.28.1 3V version: 2.4V to 3.6V (The bottom aim is 2.2V)>3V version: 2.4V to 3.6V										
	Page 4 P81/TA4IN/U> P P80/TA4OUT/Ū>			99.11.25							
	Page 335 Figure 2.4.7 E Add to Note.	xample of wiring		99.12.1							
	Page 383 Line12 256> 255										
	Page 445 Line25 Add to Set D-A register to "0016".										
	Page 461 Figure 3.2.1 All changed										
Re	vision history	M16C/62 User's Manual									

Version		Contents for change		Revision date					
REV.C	Page 463 Figure 3.2.4 S 3F16> 4016.	etting One-shot timer's time		99.12.1					
	Page 465 Figure 3.3.1 000016> 000116								
	Page 559 to 562 Figure All changed	7.1.5, Figure 7.1.6, Figure 7.2.1 and Figure 7.	2.2						
	Page 560 Add to Figure 7.1.	Page 560 Add to Figure 7.1.7							
	Page 567 to 601 Add to Appendix.								
REV.C1	Page 151 Note 2 • Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the <u>low</u> state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (SOUTi initial value set bit), make sure the CLKi pin input is held <u>low</u> > • Before data can be written to the SI/Oi transmit/receive register (addresses 036016, 036416), the CLKi pin input must be in the <u>high</u> state. Also, before rewriting the SI/Oi Control Register (addresses 036216, 036616)'s bit 7 (SOUTi initial value set bit), make sure the CLKi pin input is held <u>high</u> .								
REV.C2	0300016 to FFFFF Expansion mode ²	roprocessor mode, $\overline{\text{CS0}}$ area 16> $\underline{30}$ 00016 to FFFFF16 1, microprocessor mode, PM13=1, $\overline{\text{CS0}}$ area 16> 0600016 to $\underline{\text{B}}$ FFFF16		00.7.4					
	"0" . Other b	lue to an address after "1" is written to this bit it its do not automatically return to "0" and they the program.							
		2, bit 5 of the SI/Oi control register (i=3, 4) lect bit>Transfer direction select bit							
	Page 150, Figure 1.19.32, Note 2 When using the port as an input/output port by setting the SI/Oi port select bit (i = 3, 4) to "1", be sure to set the sync clock select bit to "1". > When using the port as an input/output port by setting the SI/Oi port select bit (i = 3, 4) to "0", be sure to set the sync clock select bit to "1".								
Re	vision history	M16C/62 User's Manual							

Version		Contents for change	Revision date					
REV.C2	Page 197, Table 1.26.23, 9.8 (Min) <u>Vcc(M</u>	tconv <u>Max)</u> >9.8 (Min)	00.7.4					
	This user's manual is written for the M16C/62 group. The reader of this manual is expected to have the basic knowledge of electric and logic circuits and microcomputers. This manual explains a function of the following kind. • M30620M8-XXXFP/GP • M30620MA-XXXFP/GP • M30620EC-XXXFP/GP • M30620ECFS • M30622MG-XXXFP/GP • M30622M8-XXXFP/GP • M30622M8-XXXFP/GP • M30622M8-XXXFP/GP • M30622MA-XXXFP/GP • M30622FP/GP • M30624FGFP/GP • M30624FGFP/GP These products have similar features except for the memories, which differ from one product to another. This manual gives descriptions of M30622MC-XXXFP. Ar electric characteristic refer to data sheet responded to. Page 368, Figure 2.5.15							
	Setting UART2 t	transmit/receive mode register Dark UARTi transmit/receive mode register [Address 037816] U2MR U2MR Serial I/O mode select bit b2 b1 b0						
	Setting UART2 t	transmit/receive control register 0 UART2 transmit/receive control register 0 [Address 037C16] U2C0 BRG count source select bit bi bi 0 0 : fr is selected 0 1 : fs is selected 1 0 : fs is selected 1 : Inhibited Valid when bit 4 = "0" Transmit register empty flag 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) CTS/RTS disable bit 1 : CTS/RTS function disabled Must be fixed to "0" in UART mode Transfer format select bit Must be "0" (LSB first) in direct format						
Re	vision history M16C/62 User's Manual							

Version		Contents for change	Revision date
REV.C2	Use <u>without f</u> Al	ns for A-D Converter onverter with Vcc = 2.7V to 4.0 V: D (no frequency division) for ϕ AD. ded frequency for fAD (undivided fAD is no	00.7.10 ot allowed).
REV.C3	O600016 to BFFFF16 - Page 414, 2.8.1 Overview (3) Output from the D-A To use the D-A output. >	icroprocessor mode, PM13=1, CS0 area>0600016 to FFFFF16 -A converter and the direction register a converter, set the direction register of the	
REV.C4	Page 325 2.3.7 Precautions for (3) is partly revised. Page 334, 338, 342 Table 2.4.1 to Table 2 Page 362 Operation (3) is partly Page 370 Operation (3) is partly Page 413		rement mode)
Re	vision history	M16C/62 User's Manual	

MITSUBISHI Single-Chip Microcomputer User's Manual M16C/62 Group Rev.C4

Jun. First Edition 2001

Editioned by

Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©2001 MITSUBISHI ELECTRIC CORPORATION